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Quantum phase transitions reflect singular changes taking place in a many-body ground state; however,
computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights
into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the
wave function by a linear combination of classically displaced configurations. We find that the distribution of
low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking
while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality
provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement
and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational
matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics
of critical many-body states in quantum impurity models.

DOI: 10.1103/PhysRevB.95.085104

I. INTRODUCTION

The understanding of critical phenomena in classical
mechanics owes a great deal to the spatial representation
of critical states, whereby the order parameter experiences
statistical fluctuations on all length scales due to a diverging
correlation length [1,2] at the critical temperature. This scale
invariance property was the starting point for one of the
most powerful tools in theoretical physics, the renormalization
group, which allowed rationalization of classical criticality in
terms of trajectories in the space of coupling constants [3].
Today, one frontier of research in critical phenomena lies
in the quantum realm, where criticality may govern some
of the most fascinating and complex properties found in
strongly correlated materials or cold atoms [4,5]. One very
fruitful approach is to consider quantum criticality in light
of an effective classical theory in higher dimensions [5],
combining spatial and temporal fluctuations within the path
integral formalism. Quantum phase transitions are then probed
through physical response functions that display a diverging
correlation length in space-time. However, this point of view
does not provide a full picture of the physics at play, especially
since quantum criticality pertains to a singular change in
a many-body ground state. Developing wave-function-based
approaches to strong correlations is indeed a blossoming field,
ranging from quantum chemistry [6] to quantum information
[7,8], so that hopes are high that quantum critical states may
be rationalized in a simpler way.

Our aim in this article is to directly study the quantum
critical wave function of a simple toy model, the sub-Ohmic
spin-boson Hamiltonian, and to unveil some salient finger-
prints of criticality in its ground state. In this standard model,
to be described in further detail below, a single quantized spin

interacts with a continuum of bosonic modes, with a spectrum
of coupling constants that vanishes with a power law s < 1
at low energy. For this purpose, we shall use a combination
of two numerically exact wave-function-based methods for
quantum impurity models: a variational matrix-product-state
approach (VMPS) [8–11] and the coherent-state expansion
(CSE) [12–15]. VMPS is an abbreviation for the variational
matrix-product-state (MPS) formulation of the density matrix
renormalization group (DMRG), which has been established
as a very powerful and flexible technique, also in the context
of bosonic impurity models [11,16,17], and will be used as a
reference. Its all-purpose character makes it hard, however, to
rationalize the precise content of the wave function in simple
physical terms. For this reason, we implement the CSE vari-
ationally, which amounts to expanding environmental states
of the bath onto a discrete set of classical-like configurations,
namely, coherent states of the bosonic states in the bath. (Note
that an infinite discrete set is enough to ensure completeness of
the coherent-state basis [18].) Thus, crucial aspects of quantum
criticality can be directly inferred by reading-off the various
superpositions of oscillator displacements that parametrize the
set of coherent states.

For a given spin orientation of the impurity, we find
that the distribution of displacements within the CSE wave
function displays an emergent symmetry (between positive
and negative values) in the critical domain. This implies
that the average displacement decays to zero for low-energy
critical modes, with a universal exponent controlled by the
dynamical susceptibility. This behavior reflects the absence
of spontaneous symmetry breaking and the fact that the
magnetization order parameter directly couples to the bosonic
displacement field. Hence the displacements of the oscillators
in the critical many-body wave function vanish in average
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at low energy. In addition, the CSE wave function indicates
that the distribution of displacements admits a finite width at
the quantum critical point (although its mean value vanishes
algebraically for critical modes, as mentioned above). This
observation translates physically the wide fluctuations of the
order parameter that take place in the quantum critical regime
in absence of ordering. At the level of the critical wave
function, these effects amount to a finite average squeezing
amplitude of the quantum critical modes (averaged over a
logarithmic energy interval), which we show from field theory
arguments to take a constant universal value.

For the spin-boson model, we demonstrate that both the
MPS and CSE methodologies converge to the same results,
both away from and at the critical point. We find that the
number of coherent states required to capture quantum critical
behavior on a reasonable energy range (at least three decades)
is relatively large, of the order of a hundred. For this reason,
recent investigations of the sub-Ohmic model with variational
CSEs using fewer states [19,20] failed to grasp the critical
exponents found in large-scale VMPS calculations [16,17]. In
contrast to the usual Kondo problem associated with the Ohmic
spin-boson model, the sub-Ohmic case is indeed governed
by two energy scales in its delocalized phase, namely, the
renormalized tunneling amplitude and the mass of a soft
bosonic collective mode which drives the transition. Capturing
the critical softening requires careful and extensive numerical
simulations, as we shall show by benchmarking the VMPS and
CSE against each other.

The paper is organized as follows. In Sec. II, we present the
spin-boson model, its discretization on a Wilson energy mesh,
and the variational solution of its many-body wave function
using both MPS and CSE representations. The wave function
obtained by CSE is displayed to guide physical intuition in the
rest of the paper. Section III develops the necessary analytical
work that relates the dynamical critical exponent of the spin
susceptibility to two important features of the wave function:
the average displacement of the environmental state and the
average width (or squeezing amplitude). This allows us to
elucidate the different behaviors of the wave function in both
the noncritical delocalized phase and at the quantum critical
point. Finally, Sec. IV shows numerical results from the VMPS
and CSE approaches, finding excellent agreement between
each other, as well as with analytical predictions. Appendix A
provides details on our hierarchical algorithm devised to solve
the CSE in a fast and reliable way.

II. GROUND-STATE WAVE FUNCTION OF THE
SUB-OHMIC SPIN-BOSON MODEL

A. Model

Our study will be based on the spin-boson Hamiltonian
[4,21–24] with � the quantum Larmor frequency of a two-level
system described by Pauli matrices �σ :

H = �

2
σx − σz

2

∑
k

gk(a†
k + ak) +

∑
k

ωka
†
kak. (1)

The bosonic spectrum assumes a pure power law with exponent
0 � s � 1 up to a sharp high-energy cutoff ωc (ωc = 1 in all

our numerical computations):

J (ω) ≡
∑

k

πg2
k δ(ω − ωk) = 2παω1−s

c ωsθ (ω)θ (ωc − ω).

(2)

The Ohmic case (s = 1) can be realized in the context of
waveguide QED [25–28] by coupling a superconducting qubit
to a high-impedance transmission line consisting of a uniform
Josephson junction array. In principle, a precise tailoring of
the capacitance network could allow the sub-Ohmic regime to
be realized as well. In terms of quantum critical phenomena
[29–33], the sub-Ohmic model with 0 � s < 1 presents a
continuous quantum phase transition at a critical coupling αc

between a localized phase (with 〈σz〉 �= 0 for α > αc) and a
symmetric phase (with 〈σz〉 = 0 for α � αc), which will be
our focus.

B. Wilson discretization

The bosonic bath J (ω) is discretized in a logarithmic
fashion using a Wilson parameter 	 > 1, first on the highest
energy window close to the cutoff [	−1ωc,ωc], and then
iteratively on successive decreasing energy intervals [ωn+1,ωn]
with ωn = 	−nωc [16,29,30]. This leads to the so-called star
Hamiltonian, which involves the direct coupling of the spin to
all bosonic modes (and not to a single site within an extended
bosonic chain):

Hstar = �

2
σx − 1

2
σz

+∞∑
n=0

γn√
π

[a†
n + an] +

+∞∑
n=0

ξna
†
nan. (3)

The impurity coupling strength reads

γ 2
n =

∫ ωn

ωn+1

dω J (ω) = 2πα
1 − 	−(s+1)

s + 1
ω2

c	
−n(s+1), (4)

and the typical energy ξn in each Wilson shell is

ξn = 1

γ 2
n

∫ ωn

ωn+1

dω ω J (ω) = s + 1

s + 2

1 − 	−(s+2)

1 − 	−(s+1)
ωc	

−n. (5)

Note that the continuum limit is only recovered for 	 → 1 and
an infinite number of Wilson shells. However, in practice 	 =
2 will be used in the following, and 50 sites will be used for both
the MPS and the CSE variational calculations. This standard
choice of parameters offers a good compromise between
energy resolution and numerical costs, but our techniques can
be pushed in principle to smaller 	 values.

C. Variational matrix-product-states approach

One very successful approach that enables direct access
to the ground-state wave function of a low-dimensional
quantum system is the density matrix renormalization group
(DMRG) [9,10]. Though originally developed in the context of
one-dimensional real-space systems, the matrix-product-state
formulation of this variational method (VMPS) has been
established as indispensable tool also in the context of quantum
impurity models [8,11,16,17].

Its application to the spin-boson model works as follows.
First, the star Hamiltonian Hstar is mapped on a truncated
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Wilson chain, where the spin- 1
2 impurity is coupled to a length-

N tight-binding chain model whose hopping matrix elements
decrease exponentially with site number k. Next, one initializes
a random MPS for the Wilson chain Hamiltonian,

|ψ〉 =
∑
σ,m

A[σ ]A[m0]A[m1] ... A[mN ]|σ 〉|m〉, (6)

where |↑〉,|↓〉 represents the σz eigenstates of the impurity
and |m〉 = |m0〉...|mN 〉 describes boson number eigenstates
in a truncated Fock basis, i.e., m̂k|m〉 = mk|m〉, with mk =
0,1,...,dk − 1. The wave-function coefficient is split into a
product of tensors A[...], which are iteratively varied with
respect to the energy for finding the best approximation for
the ground-state wave function. If the parameters such as
the bond dimension D and the Fock-space dimension dk are
chosen appropriately large, the algorithm converges the MPS
to a numerically quasiexact representation of the ground-state
wave function. In practice, we use an optimal boson basis
[16,17] mapping the local Fock basis |mk〉 to a smaller,
effective bosonic basis |m̃k〉 for efficiency reasons. Good
convergence is ensured for the delocalized phase and at the
quantum critical point for D = 60, dk = 100, and d̃k = 16.

D. Coherent-state expansion

1. General methodology

More recently, an alternative representation of bosonic
environmental wave functions was proposed [12,13] based
on a simple physical picture of the energy landscape in
terms of classical-like configurations. These are parametrized
by multimode coherent states, | ± f (m)〉 = e± ∑

k f
(m)
k (a†

k−ak )|0〉,
with f

(m)
k the displacement of mode k for the mth variational

coherent state. Note that the index k labels momentum, while
the index m = 1 . . . Mcs represents an optimal choice of a set
of discrete coherent states which embodies a complete basis
for an infinite number of coherent states, Mcs → ∞ [18]. The
expansion for the many-body ground-state wave function |GS〉
reads

|GS〉 =
Mcs∑
m=1

[pm|f (m)〉|↑〉 + qm|h(m)〉|↓〉], (7)

with the normalization 〈GS|GS〉 = 1. Here, pm and qm char-
acterize the weight of the different coherent-state components
within the ground-state wave function for each spin orienta-
tion. The discrete sum over the index m can thus be interpreted
as an optimal discretization of the multidimensional integral
involved in the standard overcomplete Glauber-Sudarshan
representation [18] in terms of continuously varying displace-
ment functions. We find in practice that the coherent-state
representation does not show signs of this overcompleteness
once the wave function is developed on a discrete sum of
coherent states, as in Eq. (7), and if the number of coherent
states Mcs is typically much less than the number of states
in the Hilbert space required to capture the ground state
(which corresponds to the usual application of the method).
There is, of course, a trivial redundancy when reshuffling the
indices m of the set of coherent states for a given solution,
but apart from this, we usually find a single global minimum
in the variational procedure (although the local minima tend

to cluster in energy when more and more states are added).
Thus, the full many-body ground state of the spin-boson model
can be interpreted physically based on the optimal variational
state, a path that we will follow here. We have also developed
a hierarchical algorithm for the optimization of the systematic
variational state (7), see Appendix A.

For the spin-boson model without any magnetic field along
σz and in absence of spontaneous symmetry breaking (which
occurs for α > αc), the system obeys a Z2 symmetry, so that
the parameters for the ground state satisfy exactly pm = −qm

and f
(m)
k = −h

(m)
k for all k and m. This method was thoroughly

tested for the Ohmic spin-boson model (s = 1) [12,13], where
extremely rapid convergence was established for a moderate
number of coherent states Mcs � 10, unless one considers the
deep Kondo regime where α → 1.

2. Full many-body wave function

We show in Fig. 1 typical wave functions obtained with the
CSE near the quantum critical point (for two bath exponents
s = 0.3 and s = 0.8). Here the set of displacements f (m)

n for
each oscillator mode a

†
n is plotted versus the frequency ωn

of the mode, with m = 1 . . . Mcs the index in the expansion
(the corresponding weights pm are shown in the Appendix).
In both plots, the critical domain lies roughly for frequencies
in the range 10−4 < ωn < 10−2, which shows two striking
observations. First, the distribution of displacements looks
very symmetric between positive and negative values of the set
of f (m)

n , both in the critical regime, and in the region of runaway

FIG. 1. Nearly critical wave functions from the CSE for the case
s = 0.3 (upper panel) and s = 0.8 (lower panel), represented by the
set of displacements f (m)

n with m = 1 . . . Mcs given by the thin full
lines. Thick full lines show the average mean displacement 0.5fn,
and thick dashed lines the average width 0.5

√
κn. The critical regime

is identified in the range 10−4 < ωn < 10−2 by a constant plateau
in κn, which reflects the clearly wide distribution of the displace-
ments associated to the classical-like configurations of the CSE.
For frequencies ω � 10−4, the wave function is no more critical and
the displacements collapse onto a single curve, so that the distribution
narrows, and κn goes to zero.
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flow ωn < 10−4 at lower energy. This symmetry is clearly not
obeyed for the high-energy modes near the cutoff. Because the
displacement operator directly couples to the order parameter
σz in the Hamiltonian (1), this symmetry nicely reflects the
absence of spontaneous symmetry breaking at the critical
point. This observation can be substantiated mathematically
by defining, from the star Hamiltonian (3), the average fn of
the displacement fields in mode n (see Sec. III for a thorough
discussion):

fn ≡ 〈(a†
n + an)σz〉

= 2
MCS∑
m,m′

pmpm′ 〈f (m)|f (m′)〉(f (m)
n + f (m′)

n

)
. (8)

The absence of spontaneous symmetry breaking, both at the
critical point and in the whole delocalized phase, translates
in the fact that the average value fn vanishes for ωn → 0.
However, the set of displacements in the noncritical domain
(ωn < 10−4) obey a trivial symmetry, as all displacements
collapse on a single curve. In contrast, the displacements in
the critical range 10−4 < ωn < 10−2 keep fluctuating, showing
a finite width of the distribution. This width κn can be defined
as follows:

κn ≡ 〈(a†
n + an)2〉 − 1

= 2
MCS∑
m,m′

pmpm′ 〈f (m)|f (m′)〉(f (m)
n + f (m′)

n

)2
. (9)

This plateau in κn, seen in the critical domain, has for origin
the strong quantum fluctuations that take place at criticality
due to an order parameter that is nearly but not quite localized.
Alternatively, the width κn can be interpreted as a squeezing
parameter for the mode a

†
n.

Having clarified the physics at play in the wave function
itself, we will study these two coarse-grained quantities fn

(average) and κn (width), which capture mathematically the
distribution of classical configurations in the wave function.
This study will rely not only on the CSE variational state, but
also on VMPS calculations for benchmark, and on analytical
field theory calculations, which we present now.

III. ANALYTICAL INSIGHTS INTO VARIOUS
WAVE-FUNCTION PROPERTIES

We establish in this section a set of exact analytical results
for various wave-function properties, both in the noncritical
and in the critical regimes. The properties that we will consider
concern the average displacement of the bath oscillators, as
well as their squeezing amplitude, which can be interpreted
as the variance of the oscillator displacements. These two
quantities thus give interesting information on the structure
of the environmental wave function.

A. Average displacement

1. General formula

Owing to the linear coupling between σz and the oscillator
displacement operator (a†

k + ak), correlations are established
between the spin degree of freedom and its bosonic environ-

ment. Due to the symmetry properties of Hamiltonian (1),
the ground-state wave function can be written generically as
|GS〉 = |↑〉|�↑〉 − |↓〉|�↓〉, where |�↓〉 = P̂ |�↑〉, with the
parity operator P̂ = exp(iπ

∑
k a

†
kak). Thus, except for the

trivial noninteracting case α = 0 where the environmental
wave function is in the bare vacuum, the qubit does not fac-
torize from its environment. The manner in which correlations
in |�↑〉 penetrate the bath states can be viewed equally as
properties of a screening cloud [15,28]. One goal of this
paper is to illustrate the behavior of this screening cloud in
the sub-Ohmic model, both away from and at the quantum
critical point. Since the environmental wave function |�↑〉
is a complicated object, the simplest measure of the cloud
resides in the average displacement fk that is obeyed by a
given but arbitrary mode a

†
k within this state. This quantity is

defined as fk ≡< (a†
k + ak)σz >, where the average is taken

with respect to the full many-body ground state |GS〉. The
average displacement fk thus gives information on how strong
the order parameter fluctuates at the energy scale ωk .

Now, we would like to show that this average displacement
can be related exactly to the spin-spin equilibrium correlation
function, defined in imaginary time as

χ (τ ) = 〈GS|Tτ

σz(τ )

2

σz(0)

2
|GS〉, (10)

with Tτ the standard time-ordering operator, so
that TτA(τ )B(0) = θ (τ )A(τ )B(0) + θ (−τ )B(0)A(τ ). The
imaginary-time evolved operators read A(τ ) = eHτAe−Hτ .
For the purpose of computing fk , let us introduce the mixed
correlation function between the spin and the displacement
operator associated to a given bosonic k mode:

Gz,k(τ ) ≡ 〈GS|Tτ [a†
k(τ ) + ak(τ )]σz(0)|GS〉, (11)

so that fk = Gz,k(0+). Taking the time derivative in Eq. (11),
one gets the equations of motion:

∂2

∂τ 2
Gz,k(τ ) = ω2

kGz,k(τ ) − 4gkωkχ (τ ). (12)

Now, going to zero temperature (but the formula below
applies as well to finite temperature using discrete Matsubara
frequencies), with G(iω) = ∫ +∞

−∞ dt G(τ )eiωt , one obtains the
exact relation:

Gz,k(iω) = 4gkωk

ω2 + ω2
k

χ (iω). (13)

Going back to the time domain, one finds the connection
between the average displacement of the environmental wave
function (the screening cloud) and the local spin susceptibility:

fk =
∫

dω

2π
Gz,k(iω) = 4gkωk

∫
dω

2π

1

ω2 + ω2
k

χ (iω). (14)

From this equation, previous knowledge obtained for spin
dynamics of the sub-Ohmic model [29,30,33] will allow
us to make exact predictions for the average displacement
characterizing the screening cloud.
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2. Asymptotic behavior of the average displacement

A change of variable in Eq. (14) gives

fk = 4gk

∫
dx

2π

1

x2 + 1
χ (iωkx), (15)

so that the small-momentum behavior of fk is determined
by the low-energy scaling of the spin-spin correlation function
[29,30,33], which reads χ (iω) � 1/(mR + Bs |ω|s), with Bs =
4αω1−s

c

∫
dxxs−1/(1 + x2). Here mR is the renormalized

mass, which is finite in the delocalized phase (α < αc) and
vanishes at the quantum critical point. Thus, two scaling laws
are established in the limit k → 0:

fk � 2gk

mR

for α < αc, (16)

fk � 4As

Bs

gk

|ωk|s for α = αc, (17)

where As = ∫
(dx/2π )x−s/(1 + x2). Let us now specialize

to the case of the Wilson energy discretization on the grid
ωn = ωc	

−n, in which case ωk is replaced by ξn ∝ 	−n ∝ ωn

and gk by γn/
√

π ∝ 	−n(s+1)/2 ∝ ω
(s+1)/2
n . We thus find the

following low-energy scaling laws of the average displacement
for the modes obeying the Wilson energy discretization:

fn ∝ ω(1+s)/2
n for α < αc, (18)

fn ∝ ω(1−s)/2
n for α = αc. (19)

The noncritical modes thus follow a different and faster power
law than the critical ones, a result that we shall confirm from
our numerics in Sec. IV. In fact, our low-frequency analysis
allows us to extract the exact prefactor of the critical average
displacement. At α = αc, we find

fn =
√

2(s + 2)s(1 − 	−(s+1))s+
1
2 tan πs

2

π
√

αω
1−s

2
c (s + 1)s+

1
2 (1 − 	−(s+2))s

ω
1−s

2
n . (20)

The prefactor is clearly nonuniversal, as a dependence in the
frequency cutoff ωc is present.

B. Average width (squeezing amplitude)

1. General formula

Generalizing the previous results, we define the average
intramode squeezing amplitude as κk ≡ 〈(a†

k + ak)2〉 − 1, such
that it is exactly zero for a vacuum state. Following the previous
methodology, we introduce the intermode Green’s function of
the displacement field of the bosonic modes:

Gk,q(τ ) ≡ 〈GS|Tτ [a†
k(τ ) + ak(τ )][a†

q(0) + aq(0)]|GS〉. (21)

Applying the time derivative twice provides exact equations of
motion, which lead to the following formula in the Matsubara
domain:

Gk,q(iω) ≡ G0
k(iω)δk,q + gkgqG

0
k(iω)G0

q(iω)χ (iω), (22)

where G0
k(iω) = 2ωk/(ω2 + ω2

k). This gives the exact equation
relating the average squeezing parameter to the dynamical

spin-spin susceptibility:

κk =
∫

dω

2π
Gk,k(iω) − 1 = 4g2

kω
2
k

∫
dω

2π

1(
ω2 + ω2

k

)2 χ (iω).

(23)

Again, knowledge of the spin dynamics will give information
on the average squeezing parameter for the ground-state wave
function.

2. Asymptotic behavior of the average squeezing

Similar to our analysis of the average displacement, a
change of variable in Eq. (23) gives

κk = 4g2
k

ωk

∫
dx

2π

1

(x2 + 1)2
χ (iωkx), (24)

resulting in the following low-energy leading-order behavior
of the average squeezing amplitude:

κk � g2
k

mωk

for α < αc, (25)

κk � 4Cs

Bs

g2
k

|ωk|1+s
for α = αc, (26)

where Cs = ∫
(dx/2π )x−s/(1 + x2)2. In the case of the

Wilson energy discretization on the grid ωn = ωc	
−n, we get

the explicit scaling laws for the average squeezing amplitude:

κn ∝ ωs
n for α < αc,

(27)
κn = const. for α = αc.

We find a constant and universal (cutoff independent) value of
κn at the quantum critical point, as a precise computation of
the constant value for α = αc reads

κn = (s + 2)s+1(1 − 	−(s+1))s+2 tan πs
2

π (s + 1)s+1(1 − 	−(s+2))s+1
. (28)

Since the average displacement fn vanishes at low energy,
this means that the distribution of displacements of the critical
wave function is very broad, reflecting the strong fluctuations
of the order parameter at the quantum critical point. We stress
that κn, defined as (10), strictly vanishes in the continuum
limit 	 → 1 but that it remains finite when integrated over a
logarithmic energy mesh.

IV. NUMERICAL RESULTS

A. General scaling behavior

We start by presenting general VMPS calculations, al-
lowing us to outline the scaling behavior and the quantum
criticality of the sub-Ohmic spin-boson model. We shall
consider two different values of the bath spectral density
throughout the paper, s = 0.3 and s = 0.8. The former
corresponds to the case where the quantum phase transition
is of mean-field type, while the latter case is associated to an
interacting fixed point [29–32]. We stress beforehand that both
the average displacement fn and average squeezing amplitude
κn are exactly related to the dynamical susceptibility from
Eqs. (14) and (23), so that their scaling behavior as a function
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FIG. 2. The upper panel shows the average displacement fn =
〈(a†

n + an)σz〉 from the VMPS calculation at s = 0.8, for three values
of α = 0.25,0.387,0.393 638. (The last value is very close to the
quantum critical interaction strength αc). The dotted line denotes
the noncritical scaling fn ∝ ω(1+s)/2

n for ω � ω�, while the dashed
line indicates the expected critical behavior fn ∝ ω(1−s)/2

n for ω� �
ω � ωc. The crossover scale ω� between the two scaling behaviors is
shown in the lower panel for a large selection of α values, allowing us
to extract the correlation length exponent ν � 0.47 for s = 0.8. This
value is quite different from the mean-field result νMF = 1/s = 1.25,
because the system lies below its upper critical dimension [29,30].

of momenta, both in the noncritical and critical regimes, is
determined by a trivial s-dependent exponent.

However, nontrivial exponents in the interacting case 0.5 <

s < 1 will show up in the α dependence of the correlation
length ξ that is defined by the spatial extent up to which
quantum critical fluctuations penetrates within the bath states.
More precisely, the correlation length is given by an inverse
energy ξ = 1/ω�, where ω� is such that quantum critical
behavior is established for ω� � ωk � ωc. (This regime sets
in only if α is quite close to αc.) This correlation length
behaves as ξ ∝ |αc − α|−ν , with the exponent νMF = 1/s in
the mean-field regime 0 < s < 1/2. This can be gathered from
the low-energy behavior χ (iω) � 1/(mR + Bs |ω|s) and the
absence of singular vertex corrections at mean-field level,
giving the renormalized mass mR ∝ αc − α. However, ν

assumes nontrivial values given by a classical long-range Ising
model [29,30] for the interacting regime 1/2 < s < 1. This
behavior is illustrated in the lower panels of Figs. 2 and 3.
Thus, both the average displacement and average squeezing
amplitude (not shown here) encode nontrivial exponents for
1/2 < s < 1, but only due to the divergent correlation length
ξ = 1/ω�. These observations can be also summed up by
scaling laws:

fn = ω(1−s)/2
n F (ωn/ω

�), (29)

κn = K(ωn/ω
�), (30)

with F (x),K(x) ∝ 1 for x � 1, and F (x),K(x) ∝ xs for x �
1. This general scaling behavior of the average displacement

FIG. 3. The upper panel shows, similarly to Fig. 2, the aver-
age displacement, but now for s = 0.3, with α = 0.032 6, 0.036,
0.036 622. (The last value is very close to the quantum critical point.)
The dotted line shows the noncritical scaling fn ∝ ω(1+s)/2

n , while
the dashed line indicates the expected critical quantum behavior
fn ∝ ω(1−s)/2

n . The lower panel shows the extracted correlation length
exponent ν for various values of s, which assumes the mean-field
prediction νMF = 1/s only for 0 < s < 1/2.

is illustrated in the upper panel of Fig. 2 for s = 0.8 and in
the upper panel of Fig. 3 for s = 0.3. We find indeed that
our VMPS data exhibits the expected noncritical and critical
scaling laws, respectively fn ∝ ω

(1+s)/2
n for α � αc (dotted

line) and fn ∝ ω
(1−s)/2
n for α = αc (dashed line). We now turn

to a more detailed analysis, with a comparison to our analytical
predictions, and with the numerics from the coherent-state
expansion.

B. Noncritical regime

Let us now investigate the noncritical regime, which is
established either for α � αc at all frequencies, or for α � αc

but for ω � ω�. Focusing first on the average displacement,
we consider in Fig. 4 the two cases s = 0.3 and s = 0.8 for
values of α that are sufficiently away from αc so that critical
behavior is not triggered. The comparison between the fully
converged VMPS data and CSE at increasing number Mcs of
coherent states shows that the CSE converges very quickly in
this simplest noncritical regime. In addition, the CSE captures
the exact leading behavior of the average displacement,
fn ∝ ω

(1+s)/2
n , already for Mcs = 1 (the so-called Silbey-Harris

theory [34–36]), since the variational equation gives fk =
(gk/2)/(ωk + �R) ∝ gk/�R for k → 0, in agreement with
the exact result (16). Note that the quantum critical scaling
fn ∝ ω

(1−s)/2
n is not apparent in this plot because the α value

is too far away from αc.
Turning to the average squeezing amplitude, we find

excellent agreement of our converged CSE results to the
expected noncritical scaling behavior κn ∝ ωs

n (see Fig. 5).
However, we observe a much slower convergence of the
CSE for the average squeezing amplitude as compared to
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FIG. 4. Average displacement fn of mode a†
n in the noncritical

regime (α � αc) for two values of the bath spectra, s = 0.3 (top
panel, with α = 0.025) and s = 0.8 (bottom panel, with α = 0.25).
The full black line denotes the fully converged VMPS results, while
the colored symbols show the CSE at increasing number of coherent
states, Mcs = 1,2,10 (bottom to top). A dotted line denotes the
expected fn ∝ ω(1+s)/2

n behavior in the noncritical regime.

the computation of the average displacements in Fig. 4,
especially regarding the low-energy modes. This behavior
can be understood from the Silbey-Harris theory at Mcs = 1,
which predicts incorrectly κn = (fn)2 ∝ ω1+s

n instead of the
exact noncritical scaling κn ∝ ωs

n. This disagreement is not

FIG. 5. Average squeezing amplitude κn of mode a†
n in the

noncritical regime (α � αc) for two values of the bath spectra,
s = 0.3 (top panel, with α = 0.025) and s = 0.8 (bottom panel, with
α = 0.25). The full black line denotes the fully converged VMPS
results, while the colored symbols show the CSE at increasing number
of coherent states, Mcs = 1,2,5,10,20,30 (bottom to top). A dotted
line denotes the expected κn ∝ ωs

n behavior in the noncritical regime.

fully a surprise, because the Silbey-Harris theory is based on
a single coherent state and is tailored to address at best the
displacement and not necessarily the squeezing amplitude. As
a matter of fact, one can prove from the explicit form of the
displacements [13] at arbitrary Mcs values that the incorrect
scaling behavior κn ∝ ω1+s

n at vanishing ωn is found for any
finite value of Mcs, which is also clear from Fig. 5. Only in
the strict limit Mcs → ∞ is the correct noncritical scaling
obeyed down to zero energy. Nevertheless, if one focuses
on a reasonable energy range (typically a few decades), the
correct noncritical scaling behavior is well captured for both
the average displacement and the average squeezing amplitude
in our CSE computations. This analysis illustrates the general
fact that systematic variational calculations may lead to the
rapid convergence of some physical observables but not of
others. This problem is particularly severe near quantum
critical points, because the deviations concern asymptotically
low energy modes, which occupy a tiny fraction of the total
ground-state energy.

C. Critical regime

We now consider the quantum critical point, where the
dissipation strength α = αc is such that the correlation length
ξ = 1/ω� diverges. In practice we fine tune αc − α to more
than seven digits so that ξ is larger than 1010, as can be seen
from the VMPS data of Fig. 2. The coherent-state expansion
offers, alternatively, a more pictorial view of the quantum
critical wave function, which can be fully represented by a
set of classical-like displacement configurations, as shown
previously in Fig. 1.

While the average critical displacement fn ∝ ω
(1−s)/2
n

vanishes (with the expected exponent) at low energy, we
showed analytically in Eq. (28) that the average squeezing
amplitude κn = 〈(a†

n + an)2〉 − 1 is constant at the quantum
critical point. Thus κn can be viewed as the average fluctuation
of the displacements within the many-body wave function.
Therefore we conclude that κn � (fn)2 at the quantum critical
point, which reflects the strong fluctuations of the order
parameter. This expected physical picture is very clear in
Fig. 1: in the intermediate energy range 10−4 < ω < 10−2, the
distribution of displacements is nearly symmetric around zero,
and thus almost vanishes on average. (This behavior is more
pronounced for s = 0.3 than for s = 0.8 because the average
displacement vanishes as ω

(1−s)/2
n .) In contrast, the width of the

distribution of displacements has roughly a constant value in
the critical domain. Away from the critical domain, namely, for
very low frequencies ω � ω�, the distribution of the classical-
like configurations becomes very narrow as all displacements
collapse onto the same curve. Thus the average squeezing
amplitude should vanish, with the noncritical scaling behavior
κn ∝ ωs

n. However, due to the finite size of the coherent-state
basis set used here, we find for this computation the different
behavior κn ∝ ω1+s

n as discussed previously.
Let us finally check in more detail the precise scaling

behavior of the critical average displacement in Fig. 6. Again
we find excellent convergence of the CSE to the VMPS curves,
and we are able to match quantitatively the expected scaling
law Eq. (20), including the analytic prefactor Fs in front of
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FIG. 6. Average displacement fn of mode a†
n at the critical point

(α = αc) for two values of the bath spectra, s = 0.3 (top panel, with
α = 0.036 62) and s = 0.8 (bottom panel, with α = 0.393 638). The
full black line denotes the fully converged VMPS results, while the
colored symbols show the CSE at increasing number of coherent
states, Mcs = 1,2,5,10,20,35 (bottom to top) for s = 0.3 and Mcs =
1,2,5,10,20,30,40 for s = 0.8. A dashed line denotes the expected
fn � Fsω

(1−s)/2
n scaling behavior in the critical regime, including the

analytical prefactor Fs given in Eq. (20).

the power law ω
(1−s)/2
n . Due to the construction of the CSE

based on coherent states, one sees again that any truncation
to finite Mcs produces an incorrect scaling fn ∝ ω

(1+s)/2
n at

FIG. 7. Average squeezing amplitude κn of mode a†
n at the critical

point (α = αc) for two values of the bath spectra, s = 0.3 (top panel,
with α = 0.036 62) and s = 0.8 (bottom panel, with α = 0.393 638).
The full black line denotes the fully converged VMPS results, while
the colored symbols show the CSE at increasing number of coherent
states, Mcs = 1,2,5,10,20,35 (bottom to top) for s = 0.3 and Mcs =
1,2,5,10,20,30,40 for s = 0.8. A dashed line denotes the expected
universal constant value of κn given by Eq. (28) in the critical regime.

vanishing energy. But the correct power law is typically
obeyed on several decades for a moderate numerical effort.
The same type of behavior is also found in the critical average
squeezing amplitude κn, which shows the expected constant
plateau (see Fig. 7) and that matches the analytical prediction
of Eq. (28) nicely. We have assessed the general prediction of
the power-law dependence of the critical average displacement
fn ∝ ω

(1−s)/2
n by fitting the low-energy tails of our converged

data for a wide selection of the bath exponent s in the range
0 < s < 1. We found that the critical exponent (1 − s)/2 is
very well obeyed, both in the mean field and interacting
regimes, with an accuracy of a few percent. This reflects the
peculiarity of the spin-boson model, which does not present
anomalous exponents in the spin-spin correlation function
[29,30,33], even below its upper critical dimension.

V. CONCLUSION

We have investigated physical properties of ground-state
wave functions in a simple model of quantum criticality,
the sub-Ohmic spin-boson Hamiltonian. For this purpose,
a combination of variational matrix product states and an
extensive coherent-state expansion has been performed and
compared very precisely. The coherent-state approach allows
a direct representation of many-body wave functions in terms
of a collection of classical-like trajectories associated to a set
of displacements. Focusing on the quantum critical regime,
the wave function displays a nearly symmetric distribution of
displacements at low energy. However its width, related to
a squeezing amplitude of the low-energy modes defined on
a logarithmic energy interval, remains finite with a universal
value. This behavior strikingly reflects the wide fluctuations
of the order parameter at the quantum critical point in absence
of spontaneous symmetry breaking, in analogy with strong
statistical fluctuations near classical phase transitions. Detailed
analytical predictions have been made using exact field theory
results, which match very well all the obtained numerical data,
both in the noncritical and critical regimes. Similar analysis
should be possible for various extensions of the dissipative
impurity model, such as the two-bath case [16,17], which
presents new classes of interacting fixed points. It should be
applicable also to fermionic models, both with impurities or
with bulk interactions, using a similar decomposition of the
many-body wave function in terms of a distribution of one- or
two-body phase shifts [37].
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FIG. 8. Weights pm of the coherent state |f (m)〉 in the coherent-
state expansion (7), as a function of index m, for s = 0.3 (triangles)
and s = 0.8 (circles), with the same parameters as in Fig. 1. The fast
exponential decay of the weights illustrates the hierarchical structure
of the CSE.

APPENDIX: HIERARCHICAL ALGORITHM
FOR THE CSE

We present here a new algorithm for finding the many-body
ground state (7) of the spin-boson model (1), which radically
improves the methodology developed previously in Refs. [12]
and [13], allowing us to incorporate a large number Mcs

of coherent states. This new scheme, devised to optimize
efficiently the energy functional, is based only on fast local
minimization routines. Indeed, while global minimization
routines such as simulated annealing can give the most reliable
estimates, they do not scale favorably in the case of a large
number of variational parameters. However, blind application
of local routines, for instance, L-BFGS or conjugate gradients
[38], do not guarantee convergence to the lowest energy
minimum. Hence, physical insight must be used as a guide
to implement a fast and reliable local optimization method.

Here, we use the fact that the coherent-state decomposition
(7) is an expansion that displays a hierarchical structure.
Indeed, our simulations demonstrate that the weight pM of
a newly added coherent state is typically smaller than the
majority of the weights pm of the preceding states. This
hierarchical structure is clearly apparent in Fig. 8.

This feature is exploited as follows in our numerical
implementation. The algorithm starts with the solution for

a single coherent state (the so-called Silbey-Harris ansatz)
with Mcs = 1, which is reliably obtained by a local routine,
providing a first estimate of f

(1)
k . Then the energy is minimized

for Mcs = 2 with two coherent states, using the previously
determined f

(1)
k as an initial guess, f

(2)
k = 0, and p2 = p1/2.

Both displacements (and their corresponding weights) are
then optimized together. The algorithm continues in the same
manner by increasing Mcs by one unit at a time and using
the previous displacements and weights as an initial guess for
the next minimization stage. For completeness, we give below
all the required analytical expressions used in our simulations.

1. Explicit form of the energy functional

We focus here on the case of Z2 symmetry, so that the
averaged Hamiltonian from the systematic variational state
(7) reads

〈H 〉 = −�

Mcs∑
n,m=1

pnpm〈f (n)| − f (m)〉

+
Mcs∑

n,m=1

pnpm〈f (n)|f (m)〉
∑

q

2ωqf
(n)
q f (m)

q

−
Mcs∑

n,m=1

pnpm〈f (n)|f (m)〉
∑

q

gq

(
f (n)

q + f (m)
q

)
. (A1)

The overlaps obey the usual coherent-state algebra (all dis-
placements f (n)

q and weights pn are real in the ground state),

namely, 〈f (n)|f (m)〉 = e−(1/2)
∑

q (f (n)
q −f

(m)
q )2

. The minimization
is performed on the energy E = 〈H 〉/N with the norm
N = 〈GS|GS〉 = 2

∑Mcs
n,m=1 pnpm〈f (n)|f (m)〉.

2. Energy gradients

Standard optimization routines gain a huge computing
advantage by using an explicit expression for the gradient
of the function to be minimized. We thus provide here the
gradients with respect to the weight pM and displacement
f

(M)
k :

∂E

∂pM

= 2

N

Mcs∑
n=1

pn

{
−�〈f (n)| − f (M)〉 + 〈f (n)|f (M)〉

[∑
q

[
2ωqf

(n)
q f (M)

q − gq

(
f (n)

q + f (M)
q

)] − 2E

]}
, (A2)

∂E

∂f
(M)
k

= 2pM

N

Mcs∑
n=1

pn

{
�〈f (n)| − f (M)〉(f (n)

k + f
(M)
k

) + 〈f (n)|f (M)〉(2ωkf
(n)
k − gk

)

+ 〈f (n)|f (M)〉(f (n)
k − f

(M)
k

)(∑
q

[
2ωqf

(n)
q f (M)

q − gq

(
f (n)

q + f (M)
q

)] − 2E

)}
. (A3)
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