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A multi-objective optimisation method is demonstrated using an evolutionary genetic 

algorithm. The applicability of this method to preliminary nacelle design is demonstrated by 

coupling it with a response surface model of a wide range of nacelle designs. These designs 

were modelled using computational fluid dynamics and a Kriging interpolation was carried 

out on the results. The NSGA-II algorithm was tested and verified on established multi-

dimensional problems. Optimisation on the nacelle model provided 3-dimensional Pareto 

surfaces of optimal designs at both cruise and off-design conditions. In setting up this 

methodology several adaptations to the basic NSGA-II algorithm were tested including 

constraint handling, weighted objective functions and initial sample size. The influence of 

these operators is demonstrated in terms of the hypervolume of the determined Pareto set. 

Nomenclature 

BPR = By-pass ratio 

CFD = Computational fluid dynamics 

MFCR = Mass flow capture ratio 

MOO = Multi-objective optimisation 

NDS = Non-dominated set 

NSGA-II = Non-dominated sorting genetic algorithm II 

RSM = Response Surface Model 

 

𝑎𝑥𝑥 = Coefficients of dominance weighting [-] 

𝑐𝐷 = Drag coefficient [-] 

𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒   = Nacelle drag coefficient in cruise [-] 

𝑑𝑖 = Distance metric [-] 

𝑖𝑔𝑒𝑛0 = Number of individuals in generation 0 [-] 

𝑓𝑖 = Objective function where 𝑖 ∈ 𝑚 [-] 

𝑓𝑚𝑎𝑥 = Axial position of maximum diameter as a fraction of nacelle length [-] 

𝑙𝑓𝑏 = Nacelle forebody length [m] 

𝑙𝑛𝑎𝑐 = Nacelle length [m] 

𝑚 =  Number of objective functions [-] 

𝑀𝐷𝑅 = Drag rise Mach number [-] 

𝑀 = Mach number [-] 

𝑀1
∗ = Convergence metric [-] 

𝑟ℎ𝑖  = Highlight radius [m] 

𝑟𝑚𝑎𝑥 = Nacelle maximum radius [m] 
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𝑟𝑇𝐸 = Trailing edge radius [m] 

𝑟𝑖𝑓 = Initial forebody radius [m] 

Pt = Parent population [-] 

Qt = Child population [-] 

xi = Decision variable [-] 

𝑌′ = Optimal set from optimisation [-] 

𝑌̅ = Pareto set [-] 

𝑤𝑘
′  = Coefficients of spacing weighting [-] 

𝛽𝑛𝑎𝑐 = Nacelle boat tail angle [°] 

∆ = Diversity uniformity metric [-] 

𝛥𝑐𝐷,𝑠𝑝𝑖𝑙𝑙  = Change in spillage drag coefficient [-]  

σ = Standard deviation 

Ω𝑖  = Modified objective function [-] 

I. Introduction 

istorically the development of the aero-engine has followed a trend of increasing bypass ratio (BPR) to 

improve propulsive efficiency [1]. As the bypass ratio has increased the fan diameter has grown to much 

larger sizes, whilst the relative size of the core size has reduced [2]. The limitation to this approach for underwing 

configurations could potentially arise from an excessive engine installation penalty due to nacelle wetted area and 

adverse wing interference A previous study reported an overall nacelle contribution of around 14% of the drag for a 

civil twin-engine airliner [3]. With much larger engines mounted under the wing, the impact of interference effects 

on the wing increases and correct engine sizing and placement is of greater importance [4]. The penalty from a 

larger diameter engine nacelle is apparent as an increase in overall aircraft drag and weight. The drag is caused by a 

larger nacelle wetted area which incurs additional skin friction and an increase in installation drag. For example, one 

study [5] found that whilst an increase in BPR from 11.5 to 21.5 reduced the specific fuel consumption by 7%, the 

optimal engine in terms of block fuel burn was BPR=14.3. This was a result of the installation of the larger engine 

incurring weight, drag and interference penalties. Therefore in order to avoid excessive installation penalties 

associated with the larger engine diameter, these aspects need to be addressed.  

To assess the plausibility of larger engines, an assessment of the nacelle performance is required at a preliminary 

stage in the design process. The definition of a nacelle is an engineering problem which must incorporate 

requirements from different operating conditions and design points. The design can therefore be viewed as a multi-

objective problem and previous work has been carried out to optimise the aerodynamic shape [6] [7]. To reduce the 

computational cost previous work has looked at optimisation based on surrogate models such as a Kriging 

interpolation of a design space [6]. This surrogate modelling allows quick assessment of a nacelle design in a Pareto 

front and allows an optimisation to be carried out in a much smaller amount of time in comparison to a higher order 

simulation. 

Of specific interest in the aerodynamic design of nacelles is the drag during the cruise portion of the flight since, 

in general, this will contribute the most to the overall fuel burn. However it is also important that the nacelle 

performs well in off-design conditions. These include operation at a range of flight Mach numbers and engine mass 

flows. When an aero-engine nacelle operates in the transonic region it is important to have knowledge of the drag 

rise Mach number (𝑀𝐷𝑅), that is the value of freestream Mach number at which a precipitous rise in drag occurs. In 

addition to the drag rise, the influence of the nacelle design on the spillage drag is also important. Spillage drag is 

incurred when the ratio of the freestream stream tube area is less than the area of the nacelle highlight. This area 

ratio is called the mass flow capture ratio (MFCR) and typically in cruise a nacelle will operate at around 

MFCR=0.7 [8]. 

Multi-objective optimisation (MOO) deals with a certain class of mathematical problems in which a ‘Pareto’ 

surface of trade-offs is sought [9]. Since a balance of performance at various operating points is required for nacelle 

design, a Pareto optimal set must be found. A certain class of methods used to determine a Pareto surface in a MOO 

problem, termed evolutionary algorithms, mimic evolution in nature. These evolutionary algorithms have the benefit 

that they can create and preserve diversity across the solutions by simulating a population of individuals in each 

iteration. The aim of this paper is to demonstrate an application of an evolutionary algorithm to nacelle design and to 

assess how efficiently this can be performed for the purposes of preliminary nacelle design. Multi-objective 

optimisation is utilised to demonstrate the need to concurrently optimise for more than one performance metric. A 

method is then demonstrated which can be used to understand such nacelle performance Pareto fronts. 
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II. Methods and scope 

A. Nacelle definition and parameterisation 

To allow preliminary design optimisation, a rapid prediction of nacelle performance based on geometric and 

aerodynamic parameters is required. A nacelle parameterisation was developed in a previous study [10] which 

consisted of 7 design variables (Figure 1). The axial end points of the nacelle are defined by 𝑙𝑛𝑎𝑐, 𝑟ℎ𝑖  and 𝑟𝑇𝐸, of 

which 𝑟𝑇𝐸 is typically set by a required nozzle area, 𝑟ℎ𝑖  is defined by the intake design and the 𝑙𝑛𝑎𝑐 is reduced 

insofar as is practicable. The forebody length (𝑙𝑓𝑏) and initial forebody radius (𝑟𝑖𝑓) determine the shape and 

curvature distribution of the forebody and therefore the aerodynamic loading. The boattail angle (β) is then set to 

produce a steady diffusion from the maximum radius to the trailing edge. The nacelles were constructed from iCST 

curves [12] with a simplified cylindrical nozzle geometry (Figure 1). Class Shape Transformation (CST) curves 

consist of a class function which is modified by a shape function [11]. The class function can define several shapes 

including a straight line and an aerofoil with a curved leading edge and a sharp trailing edge. iCST curves are an 

adaptation of CST which solve the underlying equations through the specification of ‘intuitive’ variables.  

Two aerodynamic variables of particular interest in nacelle design are the freestream Mach number (𝑀∞) and the 

MFCR. Through the assessment of the drag as a function of 𝑀∞ and MFCR, the drag rise Mach number and the 

spillage drag can be assessed. To understand the influence on the drag from the six geometric variables (Figure 1) 

and the Mach number (𝑀∞) and MFCR, a lower order model was desired. To have an appropriate representation of 

the drag gradients as a function of the 𝑀∞ and MFCR, a large number of individual simulations are required. In 

addition, a three level full factorial assessment of the geometric variables would consist of 3
6
 designs, each of which 

would require in the order of at least hundred aerodynamic simulations to determine the performance. A response 

surface model (RSM) has been developed from computational fluid dynamics simulations of a wide variety of 

axisymmetric nacelle designs. The RSM consisted of a design space of 8 dimensions including 6 geometric variables 

(𝑙𝑛𝑎𝑐, 𝑟𝑚𝑎𝑥, 𝑟𝑇𝐸,  𝑙𝑓𝑏 , 𝑟𝑖𝑓, β) (Figure 1) [10] and 2 aerodynamic variables (𝑀∞, 𝑀𝐹𝐶𝑅) with modified nacelle drag 

[10] as the dependant variable. A design of experiments was constructed for 153 nacelle designs with a Latin 

hypercube approach.  

The computational analyses for these nacelle designs were represented with a simplified cylindrical nozzle 

(Figure 1). These configurations used an axisymmetric multi-block mesh with a semi-circular domain which 

incorporated a farfield boundary condition [10]. A mesh independence study was carried out using three meshes and 

a mesh size of approximately 39000 used for each axisymmetric design [10]. Similarly a domain sensitivity study 

found that the nacelle drag varied less than 0.004% from an increase in domain radius from 70 times the maximum 

nacelle radius to 80 times the maximum nacelle radius [10]. The domain was therefore set to 80 times the nacelle 

maximum radius [10]. The total pressure and total temperature at the inlet to the nozzle were specified to equal the 

freestream value which acts to remove the influence of the post exit stream tube. Each of these 153 designs was 

simulated across 224 aerodynamic points with a steady RANS computational fluid dynamics (CFD) method. The 

CFD analyses were performed using an implicit density-based solver with a 2
nd

 order discretisation scheme. This 

covered a range of 𝑀∞ from 0.2 to 0.95 and a range of MFCR from 0.3 to 95% of the intake choking mass flow.  

The RSM was created from a Kriging interpolation of the results of all the aerodynamic analyses. Consequently 

this enables the calculation of the drag rise Mach number [13] (MDR, equation (1)) and a nominal spillage drag 

(∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙 , equation (2)) for each design within the RSM. These designs were analysed across a range of aerodynamic 

points and the RSM was then coupled with an optimisation method for rapid assessment of nacelle drag as a 

function of the geometry. 

 

Figure 1.  Geometric parameters used to construct RSM [7] 
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𝜕𝐶𝐷

𝜕𝑀∞

|
M=MDR

= 0.05 
(1) 

 

∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙 = 𝑐𝐷,𝑀𝐹𝐶𝑅=0.65 − 𝑐𝐷,𝑀𝐹𝐶𝑅=0.7 (2) 

 

B. Optimisation method 

To address the need of rapid design for engine nacelles an optimisation tool has been developed which can 

determine the optimal fitness for a given set of objectives in a search space. The non-dominated sorting genetic 

algorithm II (NSGA-II) was proposed by Deb [14] as an appropriate evolutionary algorithm for a wide variety of 

multi-objective problems. The algorithm is a multi-step process which aims to find the optimal fitness for a given set 

of objectives. The concept of dominance is used to rank fitness levels of individuals where an individual (x) 

dominates another (y) if it is no worse in any objective function and strictly lower in at least one (equation (3)). The 

NSGA-II algorithm starts by creating a combined population from a parent population P t and a child population Qt. 

This combined population is then sorted into non-dominated sets (NDSs), in which no individual dominates any 

other. Within these NDSs, individuals are given a crowd distance value based on their proximity to other solutions 

in the NDS. Tournaments are then carried out between individuals to determine the subsequent mating pool from 

which later generations are produced as part of the optimisation process. The subsequent generation utilises this 

mating pool along with crossover and mutation to ensure variation. This algorithm has been developed to preserve 

diversity, whilst quickly converging on a Pareto optimal front and has been demonstrated as appropriate for several 

non-convex problems [15]. 

 

𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦) (3) 

 

Within this work an optimisation routine has been established based on the NSGA-II evolutionary algorithm 

(Figure 2). This routine begins with a randomly generated vector which creates the first generation of individuals. 

These are then dimensionalised based on the bounds of the degrees of freedom used to define the edges of the 

desired design space. Corresponding objective values are then evaluated from either the benchmark function or from 

an RSM interpolation. These values are ranked by dominance, distance and tournaments carried out. From the 

subsequent mating pool which is determined from these tournaments the next generation is produced using blend 

crossover (BLX) and Gaussian mutation. This overall process then repeats for subsequent generations. Unless 

otherwise stated all optimisation analyses were carried out with the settings in Table 1. 

 

Table 1 Algorithm settings 

Parameter Value 

Number of generations 100 

Population size 40 

Crossover rate 0.1 

Mutation rate 0.2 

Gaussian mutation σ 0.0005 
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Figure 2.  Optimisation routine outlined as a flow chart 

 

A multi-objective-optimisation approach was applied to three objective functions. The design point for an engine 

nacelle is the cruise condition at which the drag should be minimised to generally reduce the fuel burn of an aircraft. 

Therefore the mid-cruise drag (𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒) was assessed as the first objective function which for the considered nacelle 

was estimated at the aerodynamic operating point of M=0.85, and a mass flow capture ratio (MFCR) of 0.7. In 

addition to performing as well as possible at this design point, it is also desirable that a nacelle should not invoke too 

high a drag penalty when operating off design. The drag rise Mach number at cruise MFCR=0.7 was used as the 

second objective function. Spillage was assessed as a 𝛥𝑐𝐷 between a mid-cruise MFCR and an end of cruise MFCR 

and this used as the third objective function. Five geometric degrees of freedom for the optimisation vector were 

used with the bounds given in Table 2. These are five variables which represent the design space available for an 

engine design with a prior knowledge of the trailing edge radius.  

 

Table 2 Bounds used for the optimisation using the RSM 

Parameter Lower bound Upper bound 

𝑙𝑓𝑏/𝑟ℎ𝑖  0.35 0.5 

𝑟𝑚𝑎𝑥/𝑟ℎ𝑖  1.15 1.35 

𝛽𝑛𝑎𝑐 10 15 

𝑙𝑛𝑎𝑐 5.57 8.36 

𝑟𝑖𝑓𝑙𝑓𝑏/(𝑟𝑚𝑎𝑥 − 𝑟ℎ𝑖)
2 0.6 1.2 

 

C. Performance metrics 

The ability of an algorithm to effectively solve an MOO problem relies on its ability to both converge on the 

optimal set of solutions and to avoid clustering around a specific non-dominated solution. Performance, therefore, of 

an algorithm can be assessed in terms of proximity of solutions to the true Pareto set and diversity of solutions in 

optimisation. To give an indication of the relative performances of the analyses carried out, three metrics are 

considered in this paper. Each of these gives slightly different information on the convergence and/or diversity of 

the final optimised Pareto set. Zitzler [16] defined the metric 𝑀1
∗ (equation (6)) to assess the performance of an 

algorithm for the proximity of solutions to the Pareto set and Deb proposed a metric Δ (equation (7)) for the 

diversity of solutions in optimisation. The convergence metric (𝑀1
∗) is calculated for an optimal set found from 

optimisation (𝑌′) by comparison to a known Pareto front (𝑌̅). The Euclidean distance (‖𝑑′ − 𝑑̅‖) from the true 

Pareto front (𝑑̅) is assessed for each member of the optimal set (𝑑′). An optimal set which has converged perfectly 

to the Pareto set will have a value of 𝑀1
∗ = 0 [16]. The diversity parameter relates the difference between a distance 

metric (𝑑𝑖) and the average distance metric (𝑑̅) for the entire optimal set (𝑌′) of size N. The distance metric used in 

this work was the crowding distance as suggested for the NSGA-II algorithm [14]. 𝑑𝑓 and 𝑑𝑙 correspond to the 

distance to the extreme values of the Pareto set. An optimally spread out solution will have a diversity metric of Δ = 

0 since the distance between every individual (𝑑𝑖) would be equal to the average (𝑑̅) and no extremities would exist 
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(𝑑𝑓, 𝑑𝑙) [14]. Since the true Pareto front of the Kursawe function [17] is an unknown, 𝑀1
∗ cannot be assessed for this 

test case, however ∆ can be assessed to determine the ability to maintain diversity within the optimal solutions. 

 

𝑓1(𝑥) = ∑ [−10 exp (−0.2√𝑥𝑖
2 + 𝑥𝑖+1

2 )]
2

𝑖=1
 

(4) 

𝑓2(𝑥) = ∑ [|𝑥𝑖|0.8 + 5 sin(𝑥𝑖
3)] 

3

𝑖=1
 

(5) 

𝑀1
∗ =

1

|𝑌′|
∑ 𝑚𝑖𝑛{‖𝑑′ − 𝑑̅‖

∗
; 𝑑̅ ∈ 𝑌̅}

𝑑′∈𝑌′

 
(6) 

∆=
𝑑𝑓 + 𝑑𝑙 + ∑ |𝑑𝑖 − 𝑑̅|𝑁−1

𝑖=1

𝑑𝑓 + 𝑑𝑙 + (𝑁 − 1)𝑑̅
 

(7) 

 

The hypervolume [18] is another metric which combines the convergence and the diversity into a single value 

(equation (8)). The hypervolume of a solution set (𝑌′) is defined as the m-dimensional space which is covered by the 

set in reference to an arbitrary point (Figure 3). If the reference point is greater in value than the population 

individuals, and the objectives are to be minimised, then higher values of hypervolume represent improvements in 

the solution space. The hypervolume is increased by both improvements in convergence and diversity. A benefit of 

this metric is that it can also be compared to the hypervolume of a known Pareto set (𝑌̅) to determine the percentage 

of the true Pareto set which has been found by the algorithm. 

 

𝐻𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 (∪𝑖=1

|𝑌′|
𝑣𝑖) (8) 

 

Figure 3.  Schematic of hypervolume in two dimensions, based on [19] 

 

  

Hypervolume 
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III. Results and analysis 

A. Benchmark test cases 

To verify that the NSGA-II algorithm has correctly been implemented and that it can correctly determine optimal 

sets in a variety of problems, two benchmark functions were tested. 

1. Kursawe test function 

The Kursawe function [17] is a two objective problem with a disconnected Pareto front which adds to the 

complexity in acquiring a distribution along the entire front. It involves minimisation of two functions (equations (4) 

and (5)) using three degrees of freedom each of which is bounded between -5 and 5. The optimisation tool was 

applied using a generation size of 40 for 100 generations. The convergence of the optimisation process was assessed 

based on the evolution of the hypervolume throughout the generations. This analysis demonstrated a monotonic 

progression and that beyond generation 61 there is less than 1% increase in the hypervolume relative to the initial 

hypervolume indicating that the solution is converged. 

The results from this analysis (Figure 4) show that a spread in f1 was achieved between -19.95 and -14.40 whilst 

f2 varied between -11.52 and 0.06. These ranges are similar to those found by NSGA-II previously [14] and overall 

the optimisation covered all the disconnected regions found in previous analyses [20] and had a diversity of 

∆= 0.531. The Kursawe function is a standard test case for MOO algorithms and these results demonstrate the 

ability of this routine to find the disconnected Pareto fronts. 

 

 
Figure 4.  Evaluations of the Kursawe function [17] plotted in objective space showing the Pareto front 

 

The hypervolume was determined for 40 independent instances of the optimisation tool to assess statistically 

how reliable the implementation was. There are some outliers in the sample solutions with two lying beyond 3 

standard deviations from the mean hypervolume. Given that the implementation of the NSGA-II was identical 

between the optimisation instances these differences arise from the nondeterminism of the algorithm. Three stages 

of the algorithm incorporate randomness. The first of these is the initial generation in which random vectors 

initialise the algorithm. The second and third are the mutation and crossover operators which include a random 

number and are randomly applied according to a specific rate. To investigate the calibration of this randomness 

additional tests were carried out with the Kursawe function (Figure 5). Further optimisation analyses were 

performed with an enlarged zeroth generation size (igen0 = 400), but with the same number of evaluations of 4000. 

This enlarged zeroth generation led to an improved initial set from which the optimisation process was initiated 

(Figure 5) with a higher median hypervolume in the 40 instances of the optimisation. It also had less scatter with a 

range of 53.6 compared to 89.4 from the standard igen0 = 40. This ultimately gave a similar median and 

interquartile range (IQR) for the final generation 𝑛𝑔𝑒𝑛 = 𝑁 for both configurations. However, there were fewer 

outliers in the configuration with an enlarged zeroth generation suggesting a more robust implementation for the 

same number of evaluations. This therefore indicates that an enlarged random sample may be of use to improve the 

likelihood of convergence to the Pareto front without any increase in computational cost. 
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Figure 5.  Median hypervolume of zeroth and final generations with IQR and range for 40 optimisation 

analyses of the Kursawe function with (a) 𝒊𝒈𝒆𝒏𝟎 = 𝟒𝟎, N=100 and (b) 𝒊𝒈𝒆𝒏𝟎 = 𝟒𝟎𝟎, N=90 

 

2. DTLZ2 

The DTLZ2 test problem was proposed to be scalable to the required number of degrees of freedom and 

objective functions [15]. The optimisation tool was applied to a formulation of this problem which consists of 5 

variables and 3 objectives (equations (9),(10),(11)) to be representative of the three objectives which will be used for 

nacelle optimisation. Results from this demonstrate that optimal individuals over the three objectives was obtained 

by using a population size of 40 over 100 generations (Figure 6). To determine the performance of the algorithm 

with 3 objective functions, the optimal solutions were compared to the analytical Pareto set (sphere of radius 1) to 

calculate 𝑀1
∗ and Δ. These metrics suggest a close approximation of the true Pareto front with a convergence of 

𝑀1
∗ = 0.0109 with a relatively even diversity of ∆= 0.438. A previous study with NSGA-II on the DTLZ2 problem 

indicated values in the range of Δ=0.5 and Δ=0.8 with an average performance around Δ=0.7 [21]. This gave 

confidence that the NSGA-II algorithm had been implemented correctly and that the parameters for the mutation and 

crossover were well posed. 

𝑓1(𝑥) = (1 + 𝑔(𝑿𝑀)) cos (
𝑥1𝜋

2
) cos (

𝑥2𝜋

2
) (9) 

𝑓2(𝑥) = (1 + 𝑔(𝑿𝑀)) cos (
𝑥1𝜋

2
) sin (

𝑥2𝜋

2
) (10) 

𝑓3(𝑥) = (1 + 𝑔(𝑿𝑀)) sin (
𝑥1𝜋

2
) (11) 

Where 𝑔(𝑿𝑀) = ∑ (𝑥𝑖 − 0.5)2
𝑥𝑖∈𝑿𝑀

 for 𝑥3, 𝑥4, 𝑥5 ∈ 𝑿𝑀 

 

Figure 6. Evaluations of the DTLZ2 function [13] plotted in objective space showing the Pareto front  

𝑛𝑔𝑒𝑛 = 0 

𝑛𝑔𝑒𝑛 = 𝑁 
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Hypervolume can be calculated exactly for the DTLZ2 problem since the Pareto set (𝑌̅) is known. As such, the 

performance of the NSGA-II algorithm can be assessed in terms of percentage of the true Pareto front which is 

determined. The hypervolume was assessed from the reference coordinate of (2,2,2). The hypervolume covered by 

the NSGA-II algorithm (𝑌′) reached 99% of the true hypervolume (𝑌̅) within 30 generations; after 100 generations 

the hypervolume was 99.6% (Figure 7a). A good MOO method should avoid bias towards any of the objective 

functions. The three objectives in the DTLZ2 function were individually assessed to determine the convergence in 

each dimension of the search space. The mean value in each of the dimensions is 0.5 for a perfectly converged 

solution. The results of this optimisation converged to within 10% of 0.5 for all three objective functions after 47 

generations (Figure 7b). No objective function reached a significantly different level of convergence. Similar levels 

of hypervolume convergence for NSGA-II has been reported for the DTLZ2 problem [22]. 

 

 

Figure 7.  As a function of the generation number for the DTLZ2 function [15] evaluated over 100 

generations: (a) Percentage of true Pareto hypervolume (b) Mean objective function values 

 

B. Optimisation on a nacelle drag response surface model 

The optimisation routine described above was applied to the RSM of the nacelle aerodynamic characteristics. 

The aim was to determine the Pareto optimal solutions within the Kriging interpolation for the three objective 

functions defined (𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒 , 𝑀𝐷𝑅 , ∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙). The optimisation on the RSM began with a random initial generation 

(Figure 8a) which was then used to produce subsequent, improved generations (Figure 8b,c,d). After 100 

generations and 4000 individual evaluations of the RSM model the non-dominated members of these generations 

produce an overall optimal Pareto front (𝑌′)(Figure 9). It can be seen from this optimal set that the design space 

narrows as the drag rise Mach number is improved until MDR=0.896, above which there are no nacelle designs 

which have been identified in the optimal set (𝑌′). To obtain drag rise Mach numbers above MDR=0.89 spillage drag 

increases to above ∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙 = 0.0028, however this can be traded off against the cruise drag. Overall, the 

optimisation produced a relatively large tradeoff surface from which designs could be chosen. A designer will 

typically design for a 𝑀𝐷𝑅 which is 0.02 above the desired cruise Mach number [23] and as such this tradeoff 

surface allows cruise Mach numbers in excess of M=0.87. The designer could then choose from amongst the designs 

one which gave the lowest overall fuel burn integrated over a full mission. Relative to lowest drag found in the 

random design space search (Figure 8a) the final optimal designs have up to a 7% reduction in drag. The final Pareto 

had a diversity measure of ∆= 0.449. This value provides a baseline for the alterations to the methodology tested in 

the next section. 
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Figure 8.  Population in objective space for (a) generation 0 (b) generation 25 (c) generation 50 and (d) 

generation 99 

 

Figure 9. Final Pareto optimal set extracted from the RSM plotted as a function of the 3 objective functions 

1. Influence of initial sample size 

The design space for nacelle performance in terms of the three functions (𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒 , 𝑀𝐷𝑅, ∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙) is expected to 

have an uneven shape due to different viable designs producing effective local minima. Consequently it is important 

to ensure that the implementation of the NSGA-II optimisation algorithm is sufficiently calibrated to ensure correct 

convergence and diversity preservation since the MOO problem of nacelle design may not be represented fully by 

(a) (b) 

(c) (d) 
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existing benchmark functions. To determine the dependency of the method on the initial estimate from the random 

sample, the initial population size was varied. To perform well, an algorithm should be independent of the random 

sample and should converge to a Pareto set of reasonably equivalent fitness irrespective of the initial data. The 

results from this analysis showed that using different initial sample sizes could have some influence over the final 

optimal designs (Figure 10). The peak MDR achieved is mostly invariant at about 0.896, but with a larger initial 

sample (Figure 10b,c,d) a greater range of Pareto solutions is present at lower MDR numbers, covering up to a 30% 

wider range in terms of drag coefficient (𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒) and up to a 1.5% wider range in the spillage drag (∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙). The 

diversity metric of the solutions is not highly influenced by the initial seed however with a minimum value from an 

initial population size of 𝑖𝑔𝑒𝑛0 = 200 of Δ=0.419, which does not offer a significant improvement from ∆= 0.449 

after 100 generations. 

 

 

 

A potential benefit from using a larger initial random generation may come from reducing the number of overall 

generations. Whilst solving simple benchmark functions or extracting interpolated values from an existing RSM are 

relatively quick to evaluate, this method could be applied to more time consuming evaluations such as CFD and in 

this instance reducing the number of evaluations could equate to significant resource savings. Figure 11 

demonstrates the influence of using an initial seed with a relatively low number of generations. To ensure a fair 

comparison, two computations have been computed over 1200 evaluations where the optimisation with 𝑖𝑔𝑒𝑛0 = 40 

has been computed for 30 generations and the analysis with 𝑖𝑔𝑒𝑛0 = 400 covers 20 generations. The optimisation 

with the larger initial sample produced a Pareto front with a greater, more uniform spread, Δ=0.399 compared to 

Δ=0.414. This allowed a wider range of individuals in the trade-off surface between 𝑐𝐷,𝑛𝑎𝑐  and ∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙  with lower 

Figure 10. Final Pareto optimal set extracted from the RSM with (a) 𝒊𝒈𝒆𝒏𝟎 = 𝟒𝟎 (b) 𝒊𝒈𝒆𝒏𝟎 = 𝟏𝟎𝟎 (c) 

𝒊𝒈𝒆𝒏𝟎 = 𝟐𝟎𝟎 (d) 𝒊𝒈𝒆𝒏𝟎 = 𝟒𝟎𝟎 

(c) 

(a) (b) 

(d) 
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values achieved in both. Specifically a reduction in the 𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒  of 3% and 6% in 𝑐𝐷,𝑠𝑝𝑖𝑙𝑙  was found by use of an 

enlarged 𝑖𝑔𝑒𝑛0. 

 
Figure 11. Final Pareto optimal set extracted from the RSM with (a) 𝒊𝒈𝒆𝒏𝟎 = 𝟒𝟎 and N=30 (b) 𝒊𝒈𝒆𝒏𝟎 =

𝟒𝟎𝟎 and N=20 

A statistical approach, with a sample size of 50, was taken to determine the differences in the Pareto optimal set 

from 1200 evaluations using the two configurations outlined above (𝑖𝑔𝑒𝑛0 = 40, N=30 and 𝑖𝑔𝑒𝑛0 = 400, N=20). 

Hypervolume was calculated for each instance of the optimisation using a reference position in the objective space 

of (1,1,1). The distance measured in the drag rise dimension was the distance to 1-MDR rather than MDR so that the 

maximal hypervolume indicates the preferred solution. Through the use of an enlarged zeroth generation of 𝑖𝑔𝑒𝑛0 =

400, a 0.0011 higher median hypervolume after 1200 evaluations was achieved relative to a smaller initial 

population of 𝑖𝑔𝑒𝑛0 = 40 (Figure 12). There was also considerably less scatter in the results of the analyses which 

used 𝑖𝑔𝑒𝑛0 = 400, with a range of 0.0044 compared to a range of 0.0101 for the cases with 𝑖𝑔𝑒𝑛0 = 40, which 

indicates a more robust approach for the same computational expense. 

 

 
Figure 12. Hypervolume median, IQR and range of final generation for 50 optimisation computations 

with 1200 evaluations each with (a) 𝒊𝒈𝒆𝒏𝟎 = 𝟒𝟎 and N=30 (b) 𝒊𝒈𝒆𝒏𝟎 = 𝟒𝟎𝟎 and N=20 

 

2. Influence of constraints 

Often in a MOO problem it is desirable to focus the results to a specific region of interest. For example in a 

nacelle design optimisation it is typically desired that MDR be 0.02 above the cruise Mach number [23]. By applying 

constraints to the objective functions, it is possible to restrict the objective space which is being resolved and 

therefore focus the population into a region of interest. This can then reduce the computational cost from finding the 

entire Pareto front when a more time consuming optimisation procedure incorporating CFD analyses is being 

performed. An analysis was carried out with a constraint of MDR≥0.87 which produced a denser population in the 

(b) (a) 
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region of interest (Figure 13) with a diversity uniformity of Δ=0.443 signifying no loss in uniformity by adding the 

constraint.  

 

Figure 13. Final Pareto optimal set extracted from the RSM with (a) constrained to MDR≥0.87 (b) 

unconstrained 

3. Influence of weighting the objective functions 

In some situations one objective function is more important to the designer than others. For example, in a nacelle 

design activity it may be desired to put a greater importance on the cruise drag coefficient over the spillage drag 

since the majority of the fuel burn is typically dictated by the cruise drag. In these cases, the option to guide the 

optimisation into regions of particular interest would be desirable. Several methods of applying weights to the 

objective functions have been proposed [24] [25] [26] and this section deals with applying some to the nacelle RSM 

optimisation to determine their efficacy.  

Objective weightings for evolutionary algorithms can broadly be split into two groups: those which manipulate 

the dominance function and those which skew the distance algorithm [25]. Different benefits and downsides have 

been observed for these two approaches with guided dominance for instance being significantly faster [25]. For the 

purposes of this analysis two approaches have been compared: dominance weighting [24] and distance weighting 

[26]. Adjustment of the dominance function involves redefining the concept of domination [24]. In a standard 

implementation of NSGA-II, dominance is defined by the equation (3) in which the inequality must be strictly true 

in at least one objective. The weighted dominance approach which was utilised skews this definition to include a 

larger region in at least one objective dimension. This has the impact that if a solution dominates another in the 

weighted objective then it is allowed to be slightly worse in another. The domination equation then becomes 

equation (12), where ‘x’ dominates ‘y’ if the equation is satisfied for all objectives and the inequality is strictly true 

in at least one. Values of 𝑎12, 𝑎13 … 𝑎𝑚(𝑚−1) can then be set to any value to give a weighting of one objective 

function over another. For instance a value of 𝑎12 = 2 would give a preference of the second objective function over 

the first objective function of 2 units. 

 

𝛺𝑖(𝑓(𝑥)) ≤ 𝛺𝑖(𝑓(𝑦)) (12) 

where, 𝛺1(𝑓1, 𝑓2) = 𝑓1 + 𝑎12𝑓2 

𝛺2(𝑓2, 𝑓1) = 𝑓2 + 𝑎21𝑓1 

𝛺1(𝑓1, 𝑓3) = 𝑓1 + 𝑎13𝑓3 …etc. 

 

The weighted dominance operator was implemented into the NSGA-II algorithm and tested on the nacelle RSM 

to determine the performance of this method to find a specific region of the design space. In this instance a lower 

cruise drag was desired at the expense of the other objectives. For these purposes values of 𝑎21 = 2, 𝑎31 = 2, 

𝑎12 = 0.5, 𝑎13 = 0.5, 𝑎23 = 1 and 𝑎32 = 1 were used. This will give the first function (𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒) a weighting over 

the other two (𝑀𝐷𝑅 , ∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙) and make the other two equally weighted between each other. These settings were 

used for an analysis to optimise the three objective functions in the nacelle RSM. The results of this (Figure 14) 

demonstrated that a weighted dominance operator can give improved values of a particular objective function at the 

expense of the others. Specifically, 𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒 was reduced to 0.0322, compared to 0.0330 in the unweighted example. 

(a) (b) 
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However maximum drag rise Mach number decreased from 0.896 to 0.895 due to the weighting and minimum 

∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙  remained the same as the unweighted optimisation at 0.0017. 

 

 

Figure 14. Final Pareto optimal set extracted from the RSM with (a) unweighted (b) weighted through 

dominance operator 

 

An alternative means of weighting the objective functions in the optimisation is to adjust the distance operator 

[26]. In the standard implementation, the Euclidean distance is calculated between each individual in a NDS and 

used to determine the most isolated individuals. In a weighted distance operator, the Euclidean distance is skewed to 

give higher values to individuals which perform better in a preferred objective function whilst still including 

information on the spread of the individuals (equation (13)). 

 

𝑑(𝑖, 𝑗) = [∑ 𝑤𝑘
′

(𝑓𝑘
𝑖 − 𝑓𝑘

𝑗
)

2

(𝑓𝑘
𝑚𝑎𝑥 − 𝑓𝑘

𝑚𝑖𝑛)
2

𝑚

𝑘=1

]

1
2

 

(13) 

where 𝑤𝑘
′ =

(1−𝑤𝑘)

𝑚𝑎𝑥𝑚=1
𝑚=𝑛(1−𝑤𝑚)

 for convex pareto fronts 

or 𝑤𝑘
′ =

𝑤𝑘

𝑚𝑎𝑥𝑚=1
𝑚=𝑛𝑤𝑚

 for non-convex pareto fronts 

𝑤𝑘 ∈ (0,1) 
 

To compare to the performance of dominance weighting, a similar problem was posed for distance weighting. To 

weight cruise drag over spillage drag and drag rise Mach number values of 𝑤𝑘
′ = 1, 𝑤2

′ = 0.5 and 𝑤3
′ = 0.5 were 

used. An analysis was carried out with these settings for the three objective functions used in the nacelle RSM. 4000 

evaluations were undertaken over 100 generations using the settings in Table 1. The results of this analysis (Figure 

15) demonstrated that the use of a weighted distance operator provided more beneficial values of a particular 

objective function at the expense of the others. In this case 𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒  was reduced to 0.0318, compared to 0.0330 in 

the unweighted example. However, maximum drag rise Mach number decreased from 0.896 to 0.895 due to the 

weighting whilst minimum ∆𝑐𝐷,𝑠𝑝𝑖𝑙𝑙  was unchanged. 

 

(a) (b) 



 

 

American Institute of Aeronautics and Astronautics 
 

 

15 

Figure 15. Final Pareto optimal set extracted from the RSM with (a) unweighted (b) weighted through 

spacing operator 

 

To compare the two different weighting approaches, the mean values of the cruise drag objective function were 

assessed throughout the generations. The mean value of 𝑐𝐷,𝑐𝑟𝑢𝑖𝑠𝑒  in the final Pareto set from the unweighted 

optimisation was 0.0376. When weighting was applied to the spacing operator (13) this beneficially decreased to 

0.0373, however when weighting was applied to the dominance operator (12) this value adversely increased to 

0.0379. The application of objective weighting to the spacing operator began to clearly bias the solutions found to 

the chosen objective after eight generations (Figure 16) which suggests it is more applicable in this RSM 

optimisation to explore specific regions of the design space. This is just one implementation of the dominance 

weighting however and it is possible that the non-deterministic nature of the algorithm has simply given a poor 

result this time. It is also possible that the weighting factors could be more finely tuned with additional analysis, 

however since there are more factors in the dominance weighting than in the spacing weighting, this would take 

more computational effort. 

 

 

Figure 16 Mean 𝒄𝑫,𝒄𝒓𝒖𝒊𝒔𝒆 of Pareto set as a function of generation for different objective weighting 

configurations 

 

(a) (b) 
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IV. Conclusions 

A method has been demonstrated to assess the design space for nacelle performance at a preliminary stage of the 

design. The optimisation method has been demonstrated to converge to the Pareto fronts of both the 2 objective 

Kursawe problem [17] and the 3 objective DTLZ2 problem [15] with a convergence of 𝑀1
∗ = 0.0109 for DTLZ2. 

The method was applied to an RSM of nacelle performance to optimise for three objective functions. This method 

produced a three dimensional Pareto front which can be used in preliminary design to ensure good performance at 

both on and off design conditions. To assess the robustness of the method, different initial sample sizes were tested. 

It was shown that over 1200 evaluations a better converged Pareto set can be obtained from using an initial sample 

size of 400 and 19 subsequent generations than using 30 generations of 40. This provided on average a higher 

hypervolume with less scatter for the same number of evaluations. Application of a constraint to one objective 

function has also been shown to have little impact on the diversity of the final solution but can provide a better use 

of resources. Two methods of weighting the objective functions have also been demonstrated and distance weighting 

shown to provide a more efficient bias towards a particular objective for these cases. 
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