1 Monetising the impacts of waste incinerators sited on brownfield land using the hedonic

2 pricing method

3 Monica Rivas Casado^a, Jan Serafini^a, John Glen^b & Andrew Angus^{b*}

- 4
- ⁵ ^aSchool of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, United Kingdom
- 6 ^bSchool of Management, Cranfield University, Cranfield, MK43 0AL, United Kingdom
- 7 *Corresponding author: a.angus@cranfield.ac.uk, Tel.:01234750111 ext 4334
- 8
- 9

10 ABSTRACT

11	In England and Wales planning regulations require local governments to treat waste near its
12	source. This policy principle alongside regional self-sufficiency and the logistical advantages of
13	minimising distances for waste treatment mean that waste incinerators have been built close
14	to, or even within urban conurbations. There is a clear policy need to balance the benefits of
15	EfW against the negative externalities experienced by local residents in a European context.
16	This study uses the Hedonic Pricing Method to estimate the monetary value of impacts
17	associated with three incinerators. Once operational, the impact of the incinerators on local
18	house prices ranged from approximately 0.4% to 1.3% of the mean house price for the
19	respective areas. Each of the incinerators studied had been sited on previously industrialised
20	land to minimise overall impact. To an extent this was achieved and results support the
21	effectiveness of spatial planning strategies to reduce the impact on residents. However,
22	negative impacts occurred in areas further afield from the incinerator, suggesting that more can
23	be done to minimise the impacts of incinerators.

Keywords: hedonic pricing method; incinerator; willingness to pay; negative externalities

1. Introduction

30	The waste hierarchy is the rationale that underpins most European waste legislation, such as
31	the European Waste Framework Directive 2008/98/EC (EU, 2008). The hierarchy is based on the
32	principle that prevention of waste is the most desirable form of waste management and
33	disposal of waste in landfill without energy recovery is the least. There are a range of other
34	management options between these polar opposites, such as incineration with energy
35	recovery, also known as Energy from Waste (EfW). When waste avoidance and recycling
36	opportunities are unfeasible EfW is the next best alternative.
37	
38	In England and Wales compliance with European legislation has driven significant investment in
39	waste management facilities that offer alternatives to landfill (Defra, 2014). In addition to the
40	30 incinerators currently operating in England and Wales (Defra, 2013), over 100 new
41	incinerators are in the proposal or planning stage (UKWIN, 2015). Two major guiding principles
42	of waste management strategy in England and Wales are that facilities should be located such
43	that: waste is managed or treated as close as possible to its source; and that the environmental
44	or social impacts of a waste management facility should be minimised (DCLG, 2015). These two
45	principles have the potential to conflict, given that those who create waste are those that must
46	be protected from the impacts of waste management.

48 This conflict has given rise to notable public protests where incinerators have been proposed 49 near residential areas (BBC, 2015; BBC, 2013; BBC, 2012). This opposition arises partly because 50 of the nuisances and risks associated with waste incineration (COWI, 2000; Eshet et al., 2005; Rabl et al., 2008; Defra, 2013). Incinerators share many of the same negative 51 52 externalities as landfills including noise, unpleasant odour, windblown litter, dust, vermin, 53 presence of seagulls, flies, traffic, visual intrusion and enhanced perception of health risks among local residents (Havranek et al., 2009). Thus, while the decision to site an incinerator 54 55 requires a technical and spatial assessment it also remains a highly sensitive issue for local residents. 56 57 Considering where to site EfW incinerators requires an analysis of all costs and benefits 58 59 associated with waste incineration. While the benefits of incineration are largely tangible, such as the monetary value of electricity generated and number of jobs created, many of the 60 disamenities are not. To date, the literature has typically used the Hedonic Pricing Method 61 62 (HPM) to monetise the negative externalities of waste management. The HPM uses housing 63 market data to estimate the price individuals are willing to pay for a non-marketed quality

64 (Lancaster *et al.*, 1996), such as distance from a waste management site.

65

Most studies that investigate the impact of incinerators on house prices have focused on US sites. These results are unsuitable for use in a European policy context (Havranek *et al.* 2009) because of differences in environmental policy and property markets. This leaves an important research gap. There is a clear policy need to balance the benefits of EfW against the negative

70 externalities experienced by local residents in a European context. Such analysis helps policy 71 makers identify instances where EfW offers clear gains in net present value and others where EfW is unsuitable and alternative waste management options should be considered. 72 73 74 To meet this research need, this paper uses the HPM to quantify the impact of three EfW incinerators in England. In particular, the study focuses on the effect that these waste 75 management sites have on property prices at three development stages: planning, construction 76 77 and operational. The analysis processes over 55,000 transactions over a 20 year period. To the authors' knowledge this is the first European study on incinerator negative externalities that 78 adopts a HPM approach using such a large volume of data. Although this study focuses on sites 79 80 in England, the results have relevance to other countries with duties to comply with EU Waste Regulations. This study also has international relevance, offering another comparison 81 82 measurement of the cost of the negative externalities of incinerators, as well as an analysis of whether spatial planning provides a useful option for waste management. 83 84 85 2. The impacts of EfW incinerators on house prices 86 87 88 Compared with research estimating the negative externalities landfill sites, the negative externalities of waste incineration have received less attention. The results of many 89 existing studies that monetise the negative externalities of incineration, such as Kiel and 90

91 McClain (1995a and 1995b) are based on outdated incinerator technology and hence resulting emissions have

92 outdated incinerator technology and hence resulting emissions have

93	improved significantly over the intervening period (HPA, 2009). Several other studies (Kohlhase,
94	1991; Deaton and Hoehnb, 2004; Kiel and Williams, 2007) focus on hazardous waste sites,
95	which, owing to the intrinsic toxic characteristics of the waste are expected to generate
96	stronger negative impacts on local properties relative to municipal and/or industrial waste
97	processing sites. This study focuses entirely on municipal waste sites, which are more common,
98	and as such the impact of the disposal of toxic waste is outside the scope of this paper.
99	
100	All European empirical studies that investigate the cost of externalities associated with
101	proximity to incinerators focus on UK sites. Pragnell (2003) used the HPM to assess the
102	monetary impact of proximity to 10 UK EfW incinerators. Their results show that incinerators
103	had a negative effect on house prices up to 1.6km from the incinerator. Between 0.4km and
104	1.6km the impact on house prices declined with increasing distance from the incinerator,
105	eventually reaching zero at 1.7km. The results from Pragnell (2003) must be treated with
106	caution. Firstly, the study only considers housing transactions in the fourth quarter of 2002.
107	This is opposed to Kiel and McClain (1995a and 1995b), who use a continuous time series.
108	Furthermore, the study assumes neighbourhood characteristics are homogeneous across
109	different sites. Thus, the research excludes other factors, such as quality of schools or crime

rates, which could affect house prices. Finally, the study uses data from the UK Land Registry

111 transaction dataset. This dataset excludes some critical housing characteristics, such as, number

of bedrooms and bathrooms, property and garden size, access to parking and garage, which can

113 explain approximately 60% of price variance (Cambridge Econometrics, 2003).

115	Havranek <i>et al</i> . (2009) focused on an EfW incinerator in Dudley, England. The study used a
116	choice experiment to estimate the impacts of noise, odour, visual intrusion and traffic. The
117	study found that participants had a low Willingness to Pay (WTP) to reduce the impact of the
118	incinerator's disamenities. However, the authors argue that the very small size of the
119	incinerator, the highly industrialised area in which it is sited and the fact that the facility has
120	existed for over 70 years are all factors that might have significantly affected the results of the
121	research. For all these reasons Havranek et al. (2009) concludes that the study offers limited
122	inferences for other UK incinerators.
123	
124	Phillips et al. (2014) provides the most recent research on the impact of UK EfW incinerators on
125	property prices. They investigated three existing facilities that began operations between 2000
126	and 2004, organising data into five 1km radius bands from the centre of each site. The analysis
127	adopted an approach similar to the repeat sales method (OECD, 2013), only considering houses
128	that sold twice during the period: once before the facility was operational and once after. The
129	results show that houses around two of three incinerators (Kirklees and Chineham plants)
130	experienced an increase in price after the facility became operative. Property values within 1.2
131	km from Marchwood incinerator, the largest and most visually intrusive of the facilities
132	examined by the study, were found to be lower after the facility became operative. However,
133	none of these results were statistically significant ($lpha$ =0.05). Thus, all three incinerators were
134	found to have no effect on local house prices.

136 Again, these results must be treated with caution. The repeat sales approach has some 137 limitations. Houses that sell twice during a given period could have some intrinsic characteristics that differentiate them from houses that were only sold once (for instance, for 138 139 refurbishment), leading to a sample selection bias. Secondly, this technique significantly 140 decreases the number of available observations, thus reducing the robustness of the analysis. The study researched house prices differentials associated with the proximity to an incinerator 141 in the operative phases of the facility, and should not be interpreted as the overall impact of 142 143 the facility on the local household prices. As demonstrated by Kiel and McClain (1995a), the 144 construction stage, which usually last several years, has a significant impact on property values. Finally, each of the three EfW plants chosen for the study was on the sites of previous 145 146 incinerators. Although each of these decommissioned facilities had been offline before the planning and construction of the new plant took place, a significant habituation effect 147 148 (Havranek et al., 2009) might have affected the transaction prices and could explain why the study was unable to detect any impacts. Fourthly, as already noted, this study did not control 149 for changes in neighbourhood characteristics and used the Land Registry dataset, which does 150 not include several housing characteristics. 151

152

153 **3. Methods**

154

155 **3.1.** Site selection

Site selection involved the identification of a range of incinerator plants that were 157 158 representative of overall waste treatment activity in the UK and had suitable characteristics for the implementation of the HPM. Incinerator plants managing municipal solid waste were 159 160 identified from an initial set of 134 facilities in England and Wales. Facilities located further than 161 0.8km from urban areas were excluded from the analysis as negative externalities are expected 162 only to be observed in close proximity to the source (Kiel and McClain, 1995a; Cambridge 163 Econometrics, 2003). Incinerators that burn waste from their own in-house processes were also 164 excluded. The remaining facilities were screened to exclude all sites with insufficient number of 165 housing transactions over the observed period (Havranek et al., 2009; Defra, 2013). Following this filtering process, three incinerator facilities (Table 1 and Figure 1) were selected for 166 167 analysis.

168

169 **3.2. Data**

170 House price data were obtained from mortgage records between 1983 and 2014 held by Lloyds Banking Group. The database holds records describing the transaction price and property 171 characteristics for over 6 million transactions. These were matched to annual ACORN (A 172 Classification Of Residential Neighbourhoods) geo-demographic segmentation records of the 173 174 UK population (CACI, 2006). To ensure the negative externalities of the incinerator were 175 quantified accurately, only houses within an 8km radius from the plant were included in line with Kiel and Mclain (1995a) and Cambridge Econometrics (2003). House selection was plotted 176 177 within a Geographical Information System (GIS) environment (ArcGIS version 9.3; ESRI Inc.).

178	Selected transactions were divided into incinerator planning, construction and operational				
179	phases (Table 1) to assess the negative externalities within each of these phases.				
180					
181	3.3.	Analytical framework			
182					
183	HPM model	s generally focus on five main house descriptors as defined by Malpezzi (2003): (i)		
184	geographica	al location; (ii) neighbourhood characteristics; (iii) property structural cha	racteristics;		
185	(iv) contract	t arrangements and additional conditions affecting price; and (v) the date	of the		
186	transaction.				
187					
188	The basic st	atistical approach to HPM is a simple linear regression model (Eq. 1).			
189					
190	$P = \beta_0 + \beta_2$	$_{1}X_{1} + \beta_{2}X_{2} + \dots + \beta_{n}X_{n} + \varepsilon$	Eq. 1		
191					
192	where P is t	he dependent variable price (i.e. house price), X _i are a set of independent	t variables		
193	describing t	he price (e.g. house and incinerator characteristic), n is the total number	of model		
194	parameters,	, ${m heta}$ are the regression coefficients and ${m \epsilon}$ is the error term.			
195					
196	More comp	lex but common functional forms for hedonic regression are nonlinear m	odels such		
197	as semi-log	and log-log. Here, we used a log-linear based HP model as described by E	q. 2.		
198					
199	$Log(P) = \mu$	$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n + \varepsilon$	Eq. 2		

201	The functiona	al form was selected after comparing the objective functions of linear, log	;-linear,
202	Box-Cox and c	quadratic models. For each site, models were independently fitted for the	e overall
203	data set as we	ell as for each of the construction phases beforehand mentioned. Within	each
204	phase, four re	egression models were fitted to test the negative externalities between 0	-2km, 2-
205	4km, 4-6km a	and 6-8km from the incinerator. All models were fitted using Ordinary Lea	ist
206	Squares. To ea	ase comparison between sites and ensure analytical consistency, all mod	els were
207	fitted with the	e same initial list of independent variables (Table 2). The validity of the m	odel
208	assumptions ((i.e. multicolinearity, residual normality and homocedasticity) as well as p	oresence
209	of specificatio	on errors was checked via residual analysis.	
210			
211	The monetary	y impact (I) of incinerators on house prices per 100m distance from incine	erator
212	was quantifie	d as follows:	
213			
214	$I = \bar{P}_{2013} * \beta_0$	$d_{d} * 100$	Eq. 3
215			
216	where \overline{P}_{2013} is	is the mean house price (2013 constant prices) calculated using the UK hi	storic
217	Consumer Prie	ice Index (CPI) data (ONS, 2014) and eta_d is the regression coefficient for va	iriable
218	"distance to E	EfW" (D_EfW in Table 2).	
219			
220	3.4.	Results	
221			

3.4.1 Newhaven

224	Newhaven is the model with the smallest sample of transactions (2,958), which might impact
225	the overall reliability of the results of this particular model. The results indicate that during the
226	planning and construction phase all the statistically significant coefficients were positively
227	signed, suggesting that the incinerator had a positive impact on house prices (Table 3). Once
228	the EfW incinerator became operational the model suggests there were negative impacts on
229	the price of houses at 2-4km from the site, but positive impacts on houses at 6-8km. Houses in
230	the 2-4km zone appear to be the only houses affected by negative impacts where the
231	incinerator reduced house prices by an average of £2,277 per house.
232	
233	3.4.2 Allington
233 234	3.4.2 Allington The model results for Allington (Table 4) suggests that proximity to the incinerator had a
233 234 235	3.4.2 AllingtonThe model results for Allington (Table 4) suggests that proximity to the incinerator had a negative impact on local house prices. During the planning phase there were negative impacts
233 234 235 236	3.4.2 Allington The model results for Allington (Table 4) suggests that proximity to the incinerator had a negative impact on local house prices. During the planning phase there were negative impacts at 2-4km and 4-6km during construction there were negative impacts at 4-6km and 6-8km.
233 234 235 236 237	 3.4.2 Allington The model results for Allington (Table 4) suggests that proximity to the incinerator had a negative impact on local house prices. During the planning phase there were negative impacts at 2-4km and 4-6km during construction there were negative impacts at 4-6km and 6-8km. Once operational there was a negative impact only at 6-8km. According to the literature, the
233 234 235 236 237 238	3.4.2 Allington The model results for Allington (Table 4) suggests that proximity to the incinerator had a negative impact on local house prices. During the planning phase there were negative impacts at 2-4km and 4-6km during construction there were negative impacts at 4-6km and 6-8km. Once operational there was a negative impact only at 6-8km. According to the literature, the strongest effect should be expected in close proximity to the incinerator. However, the nearest
233 234 235 236 237 238 239	 3.4.2 Allington The model results for Allington (Table 4) suggests that proximity to the incinerator had a negative impact on local house prices. During the planning phase there were negative impacts at 2-4km and 4-6km during construction there were negative impacts at 4-6km and 6-8km. Once operational there was a negative impact only at 6-8km. According to the literature, the strongest effect should be expected in close proximity to the incinerator. However, the nearest residential area is at least 380m from the incinerator. Hence the number of observations in the

negative effect detected in this study) and £589 per house respectively, while the impacts at

impacts during the planning phase at 2-4km and 4-6km were on average £14,866 (the largest

construction at 4-6km and 6-8km were £562 and £1,405 per house respectively. Once
operational the impact at 6-8km was £836 per house.

245

246 **3.4.3 Marchwood**

In all significant results (p-value<0.05) in the planning stages (Table 5), proximity to Marchwood
EfW enhanced property prices, albeit by a relatively small margin. Furthermore, in the
construction phase there was a slight increase in house price at a distance of 2-4km. However,
model coefficients show that once operational the EfW site had a negative impact house prices
at 0-2km of £2,422 per house.

252

253 3.4.4 Collected results and aggregate impacts

Table 6 shows that the incinerator at Allington had the largest and most consistent negative effect through the three stages of incinerator development and operation. The Newhaven and Marchwood models have a broadly similar negative effect per house. Table 6 aggregates the impact on price per house over the number of observed transactions to gauge the total impact of the incinerator. The negative impact (externalities) of the Allington incinerator aggregates to £22,651,116. This is followed by the Marchwood incinerator at £995,442 then the Newhaven incinerator with a negative impact of £195,822.

261

262 4 Discussion

With the exception of Allington the results show a number of significant positive coefficients,which suggests the planning, construction and/or operation of the incinerator increased the

value of houses within a specified distance of incinerators. There is nothing in our models that
can explain why house prices would increase as a result of the construction of an incinerator.
We can hypothesise that the increase in house prices could be associated with there being less
impact than local people expected. Thus the housing market response is positive after
construction or operation begins. However, it may also be possible that there are some
explanatory variables missing from the models, such as impact on employment.

271

272 Phillips et al. (2014) also found that three UK incinerators had no significant impact on local 273 house prices. The results from this current study in-part are supportive of Phillips et al. (2014), although some statistically significant negative impacts were also detected. This may indicate 274 275 that the impacts of local incinerators on house prices are not necessarily negative under certain 276 conditions, counter to much previous literature. However, it is unclear what conditions support 277 positive, neutral or negative impacts. This is a current gap in the literature and provides a fruitful area of future research. Given that there is nothing in our models to account for 278 279 positive impacts, henceforward we will only deal with the significant negative impacts. 280

The models of Allington, Newhaven and Marchwood show evidence of negative impacts from the incinerators. However, there is little commonality across the results, which may be because of the geographic differences between each incinerator and its surrounding area. All three incinerators have been built on brownfield sites, but with different previous uses:

285

286	• The Newhaven site is built in an industrial area on the banks of the tidal estuary of the					
287	River Ouse, over land formerly used as railway maintenance yard.					
288	• The Marchwood incinerator is sited in an industrial area on the banks of Southampton					
289	Water, a tidal estuary characterised by areas of both residential and industrial					
290	development. In the proximity of the facility an incinerator was closed nine years before					
291	the current plant went online, but used as a waste transfer station for further ten years					
292	(Hampshire County Council, 2006) and demolished in 2012, further six years later (New					
293	Forest District Council, 2012).					
294	• The Allington site was previously a stone quarry, with the incinerator being built within					
295	the quarry site and as such is mostly invisible from any residential structure. There is					
296	also a small industrial area, a reservoir and agricultural land in the proximity of the					
297	facility					
298						
299	The highest per house impact is found in Allington and aggregated over all transactions					
300	provides the largest negative impact from the three incinerators (Table 6). It is worth noting					
301	that the closest house to the incinerator at Allington is 380m distant, which may have mitigated					
302	some of the largest impacts. Allington is the only site selected which was not the site of a					
303	previous waste management facility.					
304						
305	The Marchwood incinerator had the second largest impact on local house prices. Marchwood					
306	has been the site of a previous waste management facility and some habituation effect is to be					
307	expected. Marchwood also has a series of other potential sources of current nuisance. It is host					

to a large military port (built in 1943), a sewage treatment work (established in the 1960s), and
a natural gas power station (established in 2009 and replacing a former power station from the
1960s) (New Forest District Council, 2004; Marchwood Power Limited, 2014). The sewage
treatment works, whose odour emissions are a major complaint of local residents (Marchwood
Parish Council, 2012) might have an important role in hiding any negative externalities caused
by the incinerator. Given this range of potential nuisance sources it is notable that the
incinerator still had an additional negative effect.

315

The Newhaven incinerator had the third largest impact per house, although it was very similar to the per house impact at Marchwood. Newhaven also had the third highest aggregate impact, although there was a relatively small sample of transactions. The negative value is in line with the opposition shown by local residents to the incinerator. Newhaven has 12,000 residents, yet there were more than 16,000 objections to the development of the incinerator (van der Zee and Jones, 2012).

322

123 It is useful to compare the results with the literature. In terms of studies that have estimated 1324 the negative impacts of incinerators, Pragnell (2003) found that in postcode sectors containing 1325 EfW incinerators average house prices are 18 percent lower than house prices at 2.8km from 1326 EfW sites. The results in this study show that the impacts are much lower than suggested by 1327 Pragnell (2003), although our model suggests that prices decreased in Allington by 10% in the 1328 planning phase at 2-4km), but greater than those estimated by Havranek *et al.* (2009), who 1329 found that households were willing to pay £3.69 for a 50% reduction in incinerator chimney

size, £2.12 for a 50% reduction in odour, £5.86 for a 50% reduction in traffic. Phillips *et al.*

331 (2014) reported that the Marchwood EfW plant had no statistically significant impact on house

332 prices within 5km of the incinerator, whereas this current study found that the Marchwood

incinerator had reduced the average house price within 2km of the incinerator by 1.3%.

334

The figures from Table 6 are generally (with the exception of Allington) within the estimated costs of negative externalities of landfill sites. Cambridge Econometrics (2003) found that on average, across the UK, operational landfills reduce the price of houses within 0.25 miles by approximately £5,500 and about £1,600 for those between 0.25 and 0.5 miles. It is notable that the impact of incinerators is detected at a greater range than that suggested by Cambridge Econometrics (2003) and in line with other literature looking at the disamenties of incinerators.

The study by Cambridge Econometrics (2003) treated the impacts of landfill on the surrounding area as 'stock disamenities', meaning that these impacts occur from the very existence of the landfill and are independent of the size or type of waste facility. The results of this current study suggests that the impacts of incinerator vary by site, so the use of stock disamenity as an indicator of impact may be less useful for the analysis of the impacts of incinerators than it is for landfill.

348

349 UK planning regulations require incinerators to be sited near the source of waste, but also in a 350 location that minimises the impacts of negative externalities. The incinerators studied were on 351 brownfield sites, which are perceived to have lower impacts than incinerators on virgin sites.

The results show that despite this careful siting, there is a still a detectable impact in the 352 353 operational phase of the incinerator. In Marchwood there is an impact in the immediate vicinity of the incinerator, despite the fact that there is likely to be a habituation effect from an older 354 355 incinerator. The impacts at Newhaven were experienced at 2-4km from the incinerator and 356 even further out at Allington (6-8km). For Allington there are very few houses to impact upon within 2-4km. The largest negative effect is experienced at 6-8km; again we can speculate that 357 this may because negative impacts were unanticipated at this distance. In Newhaven the 358 359 impact was again beyond the 0-2km range, suggesting that similarly to Allington, the impact of 360 the incinerator has been largely mitigated at close proximity, but there have been unanticipated impacts further away. 361

362

363 Therefore, the findings broadly support the hypothesis that careful siting of incinerators 364 minimises the social impacts (as indicated by house price changes), based on the evidence that 365 (apart from Marchwood) there were no impacts in the immediate vicinity of the incinerator. However, it appears that there is a need for extra measures in terms of minimising nuisance 366 beyond the immediate proximity (0-2km) of the incinerator. It should be noted that the largest 367 effect was experienced in the planning phase of the Allington incinerator. Section 1 highlighted 368 369 that there are usually large protests when a new incinerator is planned. As Allington had no 370 previous history of waste management it can be speculated that residents had serious concerns about the potential impacts of the incinerator in the planning phase. 371

372

373 It should be noted that this study did not analyse the benefits of waste incineration, nor did it 374 assess the negative impacts of alternative sites that could have been used for the four incinerators considered. In this way we have valued negative externalities, rather than 375 determine the net social costs of these incinerators. 376 377 The results of this study should be treated with caution. For instance, there is no consideration 378 379 of prevailing wind in these models, nor surface features. Many of the impacts associated with 380 incinerators depend on wind direction and also whether any natural barriers, such as 381 woodlands or mountains separate source and receptor. This may have played a part in our results. It is possible for an incinerator to be in close proximity to dwellings, but have low 382 383 impact because of prevailing wind and intervening geographic features (such as hills). Indeed, to our knowledge, the impact of geographical features and meteorological conditions has not 384 385 been considered. This is grounds for further research. 386 Conclusions 387 This paper uses the Hedonic Pricing Method, utilising 55,000 transactions over a 20 year period 388 to quantify the impact of four EfW incinerators in England, which have been sited on previously 389 390 industrialised land. Broadly the results show inconsistent impacts across the stage of 391 development (planning, construction or operation) and distance from incinerator. In this way the impacts of incineration appear to be different from those of landfill, which is often treated 392 393 as a stock disamenity (Cambridge Econometrics, 2003), so that individual analysis of 394 incinerators should be undertaken individually rather than aggregated.

396	The results show a number of significant positive coefficients, which suggests some incinerators
397	have increased the value of houses within a specified distance. There is nothing in our models
398	that can explain why house prices would increase as a result of the construction of an
399	incinerator and so this study focuses on the significant negative impact. The cause of the
400	positive coefficients was hypothesised to be where impacts were less severe than expected,
401	causing prices to increase. This represents grounds for further research.
402	
403	Each of the incinerators studied was sited in previously industrialised land to minimise the
404	impact on local residents. To an extent this was achieved. In two out of the three incinerators
405	there were no significant negative impacts detected within 2km of the incinerator. This
406	suggests that careful siting of incinerators reduced the impact on residents. However, negative
407	impacts occurred in areas further afield, suggesting more can be done to minimise the impacts
408	of incinerators. At the Marchwood incinerator there was a significant negative impact within
409	2km of the incinerator, despite this area previously hosting a now defunct incinerator. The
410	largest negative impact was in the planning phase of the Allington incinerator, where the land
411	was previously used for quarrying, unconnected to municipal waste management. It appears
412	that the perceived impacts of an incinerator negatively impacted local property prices.
413	
414	Once operational, the impact of the incinerators studied ranged from approximately 0.4% of
415	the mean house price to 1.3%. These estimates fall in between the highest and lowest
416	estimates from the literature. The highest impact (of an operational incinerator) per house is at

417	Marchwood (1.3% of the mean 2013 house price for the area). However, this differs from the
418	results of Phillips et al. (2014), who using the repeated sales method found the incinerator had
419	no significant negative impact on nearby households. Although the impact is a small proportion
420	of total house sale value, the total negative impact of incinerators on their local communities to
421	date have been estimated as £22,651,116 for Allington followed by the Marchwood incinerator
422	at £995,442 then the Newhaven incinerator with a negative impact of £195,822.
423	
424	The study of the economic impacts of waste management disamentities could be better
425	understood by including environmental factors, such as local topography and prevailing wind
426	direction. We also hypothesise that expected impacts relative to actual impacts could have a
427	large influence on the results of a hedonic pricing study of incinerators.
428	
429	Acknowledgements
430	We would like to thank Nitesh Patel at Lloyds Banking Group for kindly providing the data for
431	this study and the Cranfield University IT service Unit for facilitating safe transfer and storage of
432	the data following Information Commissioners Office's code of practice. We would also like to
433	thank Phil Longhurst at Cranfield University for his helpful comments on the development of
434	this paper.
435	
436	References

BBC, 2012. Protest over Gloucester waste incinerator scheme. <u>http://www.bbc.co.uk/news/uk-</u>
<u>england-gloucestershire-19784319</u> (accessed 19/4/2015).

- 439 BBC, 2013. Barnfield incinerator public inquiry opens to protests
- 440 http://www.bbc.co.uk/news/uk-england-beds-bucks-herts-24020242 (accessed 19/4/2015).
- 441 BBC, 2015. Javelin Park waste incinerator: Hundreds attend protest march.
- 442 <u>http://www.bbc.co.uk/news/uk-england-gloucestershire-30866217</u> (accessed
- 443 19/4/2015).
- 444 CACI, 2006. The ACORN User Guide.
- 445 <u>http://acorn.caci.co.uk/downloads/Acorn-User-guide.pdf</u>. (accessed 19/4/2015).
- 446 Cambridge Econometrics, 2003. A study to estimate the disamenity costs of landfill in Great
- 447 Britain.
- 448 <u>http://webarchive.nationalarchives.gov.uk/20130402151656/http:/archive.defra.gov.u</u>
- 449 k/environment/waste/strategy/legislation/landfill/documents/landfill_disamenity.pdf
- 450 (accessed 19/4/2015).
- 451 COWI, 2000. A Study on the Economic Valuation of Environmental Externalities from Landfill
- 452 Disposal and Incineration of Waste
- 453 <u>http://ec.europa.eu/environment/waste/studies/pdf/econ_eva_landfill_report.pdf</u>
- 454 (accessed 19/4/2015).
- 455 DCLG, 2015. Planning Policy Statement 10: Planning for Sustainable Waste Management.
- 456 <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/114</u>
- 457 <u>43/1876202.pdf</u> (accessed 19/4/2015).
- 458 Deaton, B., Hoehnb, J., 2004. Hedonic analysis of hazardous waste sites in the presence of other
- 459 urban disamenities. Environ. Sci. Policy. 7 (6), 499-508.
- 460 Defra, 2013. Incineration of municipal solid waste.

- 461 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/221036/pb13
- 462 <u>889-incineration-municipal-waste.pdf</u> (accessed 19/4/2016).
- 463 Defra, 2014. Energy from waste: A guide to the debate. HMSO, UK.
- 464 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/284
- 465 <u>612/pb14130-energy-waste-201402.pdf</u> (accessed 19/4/2015).
- 466 Eshet, T., Ayalon, O., Shechter, M., 2005. A critical review of economic valuation studies of
- 467 externalities from incineration and landfilling. Waste Manage. Res. 23 (6), 487-504.
- 468 European Union, 2008. DIRECTIVE 2008/98/EC OF THE EUROPEAN PARLIAMENT AND OF THE
- 469 COUNCIL on waste and repealing certain Directives.
- 470 <u>http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:ev0010</u> (accessed
- 471 19/4/2015).
- 472 Hampshire County Council, 2006. Minerals and waste sites in Hampshire 2003/2004.
- 473 <u>http://www3.hants.gov.uk/lpar_03-04_appendix_2.pdf</u> (accessed 19/4/2015).
- 474 Havranek, M., Liston, S., Rabl, A., Scasny, M., Taylor, T., Walton, H., Xingshu, Z., Zoughaib, A.,
- 475 2009. Final report on waste management externalities in EU25 and report on
- disamenity impacts in the UK. <u>http://www.feem-</u>
- 477 project.net/exiopol/M36+/EXIOPOL_PDII_5_b-2.pdf (accessed 19/4/2015).
- 478 HPA, 2009. The Impact on Health of Emissions to Air from Municipal Waste Incinerators.
- 479 <u>http://www.seas.columbia.edu/earth/wtert/sofos/HPA_Incinerator_Advice_Sept_09.p</u>
- 480 <u>df</u> (accessed 19/4/2015).
- 481 Kiel, K., McClain, K., 1995a. House prices during siting decision stages: the case of an incinerator
- 482 from rumor through operation. J. Environ. Econ. Manage. 28 (2), 241-255.

- 483 Kiel, K., McClain, K., 1995b. The Effect of an Incinerator Siting on Housing Appreciation Rates. J.
 484 Urban Econ. 37 (3), 311-323.
- Kiel, K., Williams, M., 2007. The impact of Superfund sites on local property values: Are all sites
 the same? J. Urban Econ. 61 (1), 170-192.
- Kohlhase, J., 1991. The impact of toxic waste sites on housing values. J. Urban Econ. 30 (1), 126.
- Lancaster, K., 1966. A new approach to consumer theory. J. Polit. Econ. 74 (2), 132-157.
- 490 Malpezzi, S., 2003. Hedonic pricing models: a selective and applied review, in: O'Sullivan T.,
- 491 Gibb T., (Eds.), Housing Economics and Public Policy. Blackwell Science Ltd., London,
 492 pp. 67-89.
- 493 Marchwood Parish Council., 2012. Community Plan consultation responses.
- 494 <u>http://www.marchwoodparishcouncil.org.uk/a/12/c/19_03_Report_B.pdf</u> (accessed
- 495 19/4/2015).
- 496 Marchwood Power Limited, 2014. Welcome to Marchwood Power.
- 497 <u>http://www.marchwoodpower.com/</u> (accessed 19/4/2015).
- 498 New Forest District Council, 2004. New Forest District Coastal Management Plan.
- 499 <u>http://www.newforest.gov.uk/media/adobe/1/1/CMPPartC11Zone11.pdf</u> (accessed
- 500 19/4/2015).
- 501 New Forest District Council, 2012. Hampshire County Council.
- 502 <u>http://www3.hants.gov.uk/new_forest.pdf</u> (accessed 19/4/2015).
- 503 OECD (2013). Repeat Sales Methods, in OECD, Handbook on Residential Property Price Indices.
- 504 <u>http://dx.doi.org/10.1787/9789264197183-8-en</u> (accessed 19/4/2015).

- 505 ONS (2015). Consumer Price Indices. Available at:
- 506http://ons.gov.uk/ons/taxonomy/index.html?nscl=Consumer+Price+Indices (accessed50719/4/2015).
- 508 Phillips, K., Longhurst, P., Wagland, S., (2014). Assessing the perception and reality of
- arguments against thermal waste treatment plants in terms of property prices. Waste
- 510 Manage. 34 (1), 219–225.
- 511 Pragnell, M., 2003. The Economic Impact of an EfW Incinerator in Newhaven.
- 512 <u>http://www.virginiawater.co.uk/protect/images/economic_impact.pdf</u> (accessed
- 513 19/4/2016).
- 514 Rabl, A., Spadaro, J., Zoughaib, A., 2008. Environmental Impacts and Costs of Solid Waste: A
- 515 Comparison of Landfill and Incineration. Waste Manage. Res. 26 (2), 147-162.
- 516 UKWIN, 2015. Table of Potential, Existing and Prevented Incinerators
- 517 <u>http://ukwin.org.uk/resources/table/</u> (accessed 19/4/2016).
- 518 Van der Zee, B., Jones, G., 2012. This is the end for Newheaven'- controversial incinerator fires
- 519 up. The Guardian. 5th July.
- 520 <u>http://www.theguardian.com/environment/2012/jul/05/newhaven-incinerator-opens</u>.
- 521 (accessed 19/4/2016)
- 522

523 Tables

524

- 525 Table 1. Summary description of the four incinerator facilities selected to assess the impact of negative externalities on
- 526 house prices. Permitted capacity (tn) and tonnage incinerated correspond to values obtained for 2012. AT, MW and NH stand
- 527 for Allington, Marchwood and Newhaven, respectively.

Incinera	Permitted	Tonnage	Phase			Previous land	Location
tor	capacity	incinerated	Planning	Construction	Operational	use	
AT	500,000	419,402	1996-2002	2003-2008	2008-2014	Quarry	Maidstone
MW	210,000	206,700	1995-2001	2002-2004	2004-2014	Incinerator	Southampton
						and industrial	
NV	240,000	224,730	2001-2007	2008-2011	2011-2014	Rail	East Sussex
						maintenance	
						yard and	
						brownfield	

- 529 Table 2. Independent variables considered for inclusion in the Hedonic Pricing Model. Variables have been grouped into five
- 530 categories based on Malpezzi (2003).

Category	Variable	Description
Dependent Variable	Transaction price	Transaction price in £
Transaction time Transaction date Date when the transaction took pl		Date when the transaction took place
	Pre 1919	Household sold before 1919 (dummy variable yes/no)
	1919-1945	Household sold between 1919 and 1945 (dummy variable yes/no)
	1945-1960	Household sold between 1945 and 196- (dummy variable yes/no)
	1960+	House sold after 1960 (dummy variable yes/no)
	Year#	Dummy variables for each year there are existing records of houses
		being sold
Contract arrangement	Tenure	Freehold or leasehold
Property structural	NW	New household (dummy variable yes/no)
characteristics	FT	Flat (dummy variable yes/no)
	BLW	Bungalow (dummy variable yes/no)
	DTC	Detached property (dummy variable yes/no)
	SDTC	Semi-detached property (dummy variable yes/no)
	TRC	Terraced property (dummy variable yes/no)
	LIV	Number of livingrooms
	BED	Number of bedrooms
	BTH	Number of bathrooms
	TLT	Number of toilets
	FCH	Full central heating (dummy variable (yes/no)
	РСН	Partial central heating (dummy variable yes/no)
	NCH	No central heating installed (dummy variable yes/no)

	NG	Number of garages
	NGS	The number of garage spaces
	GR	Garden (dummy yes/no).
	RCH	Road charge liable (dummy variable yes/no)
Neighbourhood	A	Property is in Acorn zone A- wealthy investors (dummy variable
characteristics		yes/no).
	В	Property is in Acorn zone B -prospering families (dummy variable
		yes/no).
	С	Property is in Acorn zone C - traditional money (dummy variable
		yes/no).
	D	Property is in Acorn zone - young urbanites (dummy variable
		yes/no).
	E, F, G	Property is in Acorn zone E/F/G - middle-aged families
		(comfortable), contented pensioners and families and individuals
		looking to settle down. Middle aged comfort €, contented
		pensioners (F) and settling down (G) (dummy variable yes/no).
	Н	Property is in Acorn zone H - moderate living (dummy variable
		yes/no)
	І, К	Property is in Acorn zone I/K - meagre means and impoverished
		pensioners (dummy variable yes/no).
	J	Property is in Acorn zone J - inner city existence (low income singles
		and couples, multi ethnic young singles renting flats, high rise
		poverty dependent on welfare and poor young financially inactive
		(dummy variable yes/no).
Location within the	House location	Postcode
market		

Spatial D_EfW	Linear distance to the incinerator	
---------------	------------------------------------	--

532 Table 3. Results obtained for the Hedonic Pricing Method (Lancaster *et al.*, 1996) for the case study area of Newhaven. I is

the monetary impact of the incinerator on house prices estimated as in Eq. 3. (*) indicates statistically significant coefficients

534 (p-value <0.05). \overline{P}_{2013} is the mean house price in 2013 calculated using historic Consumer Price Index data (ONS, 2014). β_d is

535 the regression coefficient as described in Eq. 3 and N is the number of records included in the regression model. The F-test

536 for the overall model was statistically significant (p-value<0.05).

Phase	Distance (km)	N	β_d	\overline{P}_{2013}	I
Planning	0-2km	380	0.000062*	210247	1304
	2-4km	532	0.000021		
	4-6km	922	0.000035*	258307	904
	6-8km	352	0.00018*	392859	7071
Construction	0-2km	84	0.000098		
	2-4km	139	-0.000467		
	4-6km	191	0.000023		
	6-8km	54	0.000463*	336291	15570
Operational	0-2km	78	0.000045		
	2-4km	86	-0.000099*	230050	-2277
	4-6km	115	0.00004		
	6-8km	25	0.000221*	288800	6382

537

- 539 Table 4. Results obtained for the Hedonic Pricing Method (Lancaster *et al.*, 1996) for the case study area of Allington. I is the
- 540 monetary impact of the incinerator on house prices estimated as in Eq. 3. (*) indicates statistically significant coefficients (p-
- 541 value <0.05). \overline{P}_{2013} is the mean house price in 2013 calculated using historic Consumer Price Index data (ONS, 2014). β_d is
- 542 the regression coefficient as described in Eq. 3 and N is the number of records included in the regression model. The F-test
- 543 for the overall model was statistically significant (p-value<0.05).

Phase	Distance (km)	Ν	β_d	\overline{P}_{2013}	1
	0-2km		0.00001		
Planning	2-4km	1162	-0.00101*	147190	-14866
	4-6km	1437	-0.00004*	147190	-589
	6-8km	1528	-0.00001		
	0-2km	453	0		
Construction	2-4km		0.00001		
	4-6km	1915	-0.00002*	281088	-562
	6-8km	2089	-0.00005*	281088	-1405
	0-2km	109	0.00003		
Operational	2-4km	576	0.00001		
	4-6km	556	-0.00001		
	6-8km	621	-0.00004*	208876	-836

- 546 Table 5. Results obtained for the Hedonic Pricing Method (Lancaster *et al.*, 1996) for the case study area of Marchwood. I is
- 547 the monetary impact of the incinerator on house prices estimated as in Eq. 3. (*) indicates statistically significant coefficients
- 548 (p-value <0.05). \overline{P}_{2013} is the mean house price in 2013 calculated using historic Cobsumer Price Index data (ONS, 2014). β_d is
- 549 the regression coefficient as described in Eq. 3 and N is the number of records included in the regression model. The F-test
- 550 for the overall model was statistically significant (p-value<0.05)

Phase	Distance (km)	Ν	β_d	\overline{P}_{2013}	/ 551
	0-2km	327	0.000129*	98450	1270
Planning	2-4km	1238	0		
_	4-6km	2359	-0.00001		
	6-8km	135	0.00003*	106966	321
	0-2km	148	-0.00004		
Construction	2-4km	657	0.000052*	200254	1041
	4-6km	1040	-0.00001		
	6-8km	613	0.00001		
	0-2km	411	-0.000133*	182141	-2422
Operational	2-4km	1927	0.00001		
	4-6km	2992	0		
	6-8km	1843	0.000016		

553

554 Table 6. Total monetary impact per incinerator. N stands for the number of transactions included in the overall Hedonic

555 Pricing Model.

Phase	Distance	Average economic impact per house (£) Total impact on			Percentage		
	(km)	Newhaven	Allington	Marchwood	N	house prices(£)	of mean
							house price

							(%)
Planning	2-4km	N/A	-14866	N/A	1162	-17,274,513	10
	4-6km	N/A	-589	N/A	1437	-846,393	0.4
Construction	4-6km	N/A	-562	N/A	1915	-1,076,239	0.2
	6-8km	N/A	-1405	N/A	2089	-2,935,045	0.5
	0-2km	N/A	N/A	-2422	411	-995,442	1.3
Operational	2-4km	-2277	N/A	N/A	86	-195,822	1
	6-8km	N/A	-836	N/A	621	-519,156	0.4

558 Figures

Figure 1: study areas selected for analysis.

Figure 2: Detailed map showing the houses selected for analysis falling within a 2km, 4km, 6km and 8km radius for the sites at (a) Allington, (c) Marchwood and (d) Newhaven.