
 

 

Nomenclature 

 

kbf = Base fluid thermal conductivity, W/m.K 

knf = nanofluid thermal conductivity, W/m.K 

q = heat flux, W/m2 

r = radial coordinate, m 

T = temperature, K 

t = time, s 

αnf = nanofluid thermal diffusivity, m2/s 

ω = electric current frequency, Hz 

 

Abbreviations 

BG= BioGlycol 

CNF= Carbon nanofiber 

CTAB= Hexadecyltrimethylammonium bromide 

DE= Decene 

DI= Deionized water 

DWCNT= Double-walled carbon nanotubes 

DO= Diathermic oil  

EG= Ethylene glycol 

EO= Engine oil 

HTF= High-temperature heat transfer fluid 

HTO= Heat transfer oil 

MEG= Mono ethylene glycol 

MO= Mineral Oil 

MWCNT= Multi-wall carbon nanotube 

NSAQ= Nanosperse AQ 

OAK+= Potassium oleate 

PO= Pump oil 

TH66= Therminol 66 

1. Introduction  

Heat transfer is one of the most important processes in 

many industrial and consumer products. For more than a 

century, scientists and engineers have made great efforts to 

enhance the inherently poor thermal conductivity of 

conventional fluids [1,2]. In 1873, Maxwell [3] proposed an 

idea of using metallic particles to enhance the electrical or 

thermal conductivity of matrix materials. He presented a 

theory for effective conductivity of slurries, by dispersing 

millimeter- or micrometer-sized particles (typically have size 

between 0.1 and 100 μm [4]) in liquids. However, major 

problems such as sedimentation, erosion, and high pressure 

drop prevented the usual micro-particle slurries to be used as 

heat transfer fluids. Nanofluids, which is a dilute suspension of 

nanometer-size particles or fibers (typically less than 100 nm) 

dispersed in a fluid such as water, oil, and ethylene glycol (EG) 

[5], have emerged as a potential candidate for the design of 

heat transfer fluids [6]. According to their potential 

applications in the heat transfer field, nanofluids have been a 

subject of intensive investigation [7–12]. 

According to the definition of micro- and nano-particles 

size, nanoparticles have surface/volume ratio 1000 times 

larger than that of microparticles [13]. This in turn, allows 

improving thermal properties of nanofluids rather than 

microparticles-colloidal suspensions, since heat transfer occurs 

on the surface of the particle [14]. Compared with 

microparticles, nanoparticles stay suspended much longer in 

base fluids, with very little settling under static conditions, 

unlike micron-sized suspensions [15]. However, strong van der 

Waals interactions generate an aggregation tendency between 

nanoparticles [16]. Therefore, different techniques are utilized 
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to minimize long-term particles aggregation. This process is 

quite critical in preparation of nanofluids as particles clustering 

has been reported as features increasing thermal conductivity 

of nanofluids [17–19]. Moreover, the number of atoms present 

on the surface of nanoparticles is very large, as opposed to the 

interior [20]. These unique properties of nanoparticles can be 

exploited to develop nanofluids with an unprecedented 

combination of the two features most highly desired for heat 

transfer systems: extreme stability and ultrahigh thermal 

conductivity. Furthermore, because the nanoparticles are so 

small, they may reduce erosion and clogging dramatically. 

Other benefits envisioned for nanofluids include decreased 

demand for pumping power, reduced inventory of heat transfer 

fluid, and significant energy savings [21]. 

This discovery brought about a wave of studies in this area, 

predominantly experimental confirmation of the huge potential 

of nanofluids as well as efforts to theorize the phenomenon. In 

this paper, various techniques used to measure thermal 

conductivity are covered. Then, experimental work carried on 

studying the thermal conductivity enhancement of nanofluids 

against their base fluids is reviewed. This review aims to define 

parameters investigated experimentally through the literature 

in order to find out points of agreement and conflict in the 

obtained results to understand the thermal behavior of 

nanofluids. Moreover, different applications using nanofluid is 

also reviewed.   

2. Thermal Conductivity Measurement Techniques 

Measuring the thermal conductivity of nanofluids can be 

carried out with different methods. The most common 

techniques for this purpose are the transient ones including: 

transient hot-wire method [22–37], temperature oscillation 

method [38,39], and 3-ω method [40–42]. Some other methods 

such as steady-state parallel-plate technique, micro-hot strip 

method, and optical beam deflection technique have also been 

utilized by some researchers [43–45]. 

2.1 Transient Hot-Wire Method 

The transient hot-wire (THW) method is the most widely 

used experimental technique for measuring fluids thermal 

conductivity, as it is an easy and low cost method to be 

implemented. It is a standard transient dynamic technique 

based on the measurement of the temperature rise in a defined 

distance from a linear heat source (hot wire) embedded in the 

test material. A hot wire is placed in the fluid, which functions 

as both a heat source and a thermometer [46–48]. The ideal 

mathematical model of the method is based on Fourier’s law, 

assuming the hot wire as an ideal, infinite thin and long heat 

source in an infinite surrounding from homogeneous and 

isotropic material with constant initial temperature. According 

to Fourier’s law, when the wire is heated, fluid of higher 

thermal conductivity corresponds to a lower temperature rise. 

The mathematical model which describes the relation 

between thermal conductivity knf and measured temperature T 

using the THW method is explained and summarized as follows 

[47]. Assuming a thin, infinitely long line source dissipating 

heat into a fluid reservoir, the energy equation in cylindrical 

coordinates can be written as: 

        rrTrrtT
nf

 11    (1) 

The initial condition can be written as shown in Eq. (2):  
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while the boundary conditions are defined by Eq. (3) and 

Eq. (4) as follows: 
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and  

  0
r

rT     (4) 

If the temperatures of the hot wire at times t1 and t2 are T1 and 

T2, then by neglecting higher-order terms, the thermal 

conductivity can be approximated as [5]: 

     
2121

ln4 TTttqk
nf

     (5) 

Therefore, in order to determine knf experimentally using THW 

method according to Eq. (5), a constant electric power supply is 

used to heat the wire with a constant heat flux, q, at a time step, 

t. A Wheatstone-bridge circuit is used to determine the 

temperature increase of the wire from its change in resistance. 

Although the THW is an easy, fast response and low cost 

method; its accuracy can be affected by nanoparticle 

interactions, sedimentation and/or aggregation, and natural 

convection during extended measurement times. In addition, 

the assumptions of an infinite wire-length and the ambient 

acting like a reservoir may also introduce errors [42,49]. 

2.2 Temperature Oscillation Method 

This method is based on the oscillation method proposed 

by Roetzel et al. [50] and further developed by Czarnetzki and 

Roetzel [38]. Applying this method requires measuring the 

temperature response of the nanofluid sample when a 

temperature oscillation or heat flux is imposed. The measured 

temperature response of the sample is an indication of 

averaged or localized thermal conductivity in the direction of 

sample chamber height [51]. The experimental set up of this 

method is explained in details by Paul et al. [42]. 

2.3 3-ω Method 

The 3-ω method is quite similar to the THW method, as it 

uses a radial flow of heat from a single element which acts both 

as the heater and the thermometer. However, the main major 

difference is the use of electric current frequency dependence 

response instead of the time dependent response which is 

utilized by the TWH method. When a sinusoidal current at 

frequency, ω, passes through the metal wire, a heat wave can be 

generated at a frequency of 2ω, which is deduced by the 

voltage component at frequency 3ω. More details about this 

method are available in [42,52]. 

2.4 Other Thermal Measurement Methods 

The short-hot-wire method is an improved design of the 

hot-wire method, in which boundary effects can be taken into 

account, It has been applied by [53,54]. Another modification of 

THW is carried out by Mintsa et al. [55], who inserted a mixer 

into his THW experimental devices to avoid nanoparticle 

aggregation/deposition in the suspensions. In order to avoid 

interference between the detector and heater, Ali et al. [56] 



 

 

separated them by combining the THW method with a laser 

beam displacement method. 

2.5 Optical Measurement Methods 
In order to improve the thermal conductivity measurement 

accuracy, optical measurement techniques have been proposed 

as non-invasive methods [57–61]. The accuracy improvement 

resulted from separating detector and heater from each other 

avoiding the unavoidable interference between them in the 

THW method. In addition, optical techniques provide faster 

measurement, within a few microseconds compared with 2 to 

8 s of measurement using the THW method. This fast response 

helps in avoiding natural convection effects. 

One of the proposed optical techniques is thermal-lensing 

(TL) method, which is applied by Rusconi et al. [57,62]. In this 

method, a laser-diode module was used as a heater and a 

photodiode was used as a thermometer to measure the 

temperature difference as optical signals. 

The forced Rayleigh scattering (FRS) method is an 

extension of quasi elastic Rayleigh light scattering technique 

[63,64]. In the FRS method, two intersecting laser beams are 

absorbed by the sample in order to generate a spatially 

periodic temperature distribution. Analyzing the time 

dependence of the light scattered by the thermal fluctuations 

inside the sample was required in order to measure thermal 

diffusivity. The FRS was also used by many researchers to 

measure the thermal conductivity of nanofluids [36,58,65]. 

Optical beam deflection was another optical technique 

which was used to measure thermal conductivity of nanofluids 

[44,66]. In this method, two parallel lines using a square 

current were used to heat the nanofluid sample. Dual 

photodiodes were used to capture light signals that indicate the 

temperature change of nanofluids. 

Other optical techniques were applied by different 

researchers, such as the Transient Optical Grating method [59], 

Laser Flash method [61], Modern Light Flash technique [67]. 

However, there is a critical need to apply different 

measurement techniques for the same nanofluids in order to 

compare the accuracy and reproducibility of their experimental 

results. 

 

3. Experimental Studies on Conduction Heat Transfer of 

Nanofluids  

3.1 Liquid-Based Nanofluids 
Liquid-based nanofluid is used to enhance thermal 

properties of a “liquid” base fluid. Since thermal conductivity is 

the most important parameter responsible for enhanced heat 

transfer, many experimental works have been reported on this 

aspect. Choi et al. [68] developed a new project to design and 

analyze a microchannel heat exchanger that uses liquid-

nitrogen as the cooling fluid which used to cool high-heat-load 

x-ray optical elements. They focused on the thermal 

conductivity of the fluid itself rather than on channel size to 

develop a new heat transfer fluid concept that enables heat 

transfer enhancement without a large pumping power increase 

and without cryogenic coolants. A summary of maximum 

measured thermal conductivity enhancement for nanofluids is 

given in Table 1. 

According to the previous literature, there are different types of 

nanoparticles that were commonly used, including oxides, 

nanotubes, metals and carbides. These nanoparticles were 

dispersed in different base fluids. The number of contributions 

mentioned in the present work versus different nanoparticles 

is shown in Fig. 1, while Fig. 2 represents the number of 

publications per year, mentioned in this paper and concerned 

with experimental studies on thermal conductivity in 

nanofluids
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Table 1 Summary of maximum measured thermal conductivity enhancement for nanofluids 

Ref. Year 
Particles Type / 

Size (nm) 
Base-fluid 

Loading 

(% vol.) 

Enhancement* 

(%) 

Parameters Investigated 

Particle 

Concentration 
Particle Size Particle Shape 

Particle Thermal 

Conductivity 
Base Fluid Type Temperature 

Preparation 

Technique 

[22] 1993 Al2O3 / 13 Water 4.33 32 

 

 
 

  
 

 

SiO2 / 12 2.3 1.1 

TiO2 / 27 4.35 11.6 

[69] 1997 Al2O3 / 33 Water 5 29 

 

 
 

  
 

 

CuO / 36 5 60 

Cu / 35 HE-200 Oil 0.052 44 

[70] 1998 Al2O3 / 13 Water 4.33 32 

 
 

 
 

 
 

 TiO2 / 27 4.35 11.6 

[71] 1999 Al2O3 / 38 Water 4.3 10 

       
EG 5 18 

CuO / 24 Water 3.41 12 

EG 4 23 

 [43] 1999 Al2O3 / 28 Water 5.5 16 

       

EG 8 41 

EO 7.4 30 

PO 7.1 20 

CuO / 23 Water 9.7 34 

EG 14.8 54 

 [72] 2000 Cu / 100 Water 7.5 78 
       HE-200 Oil 7.5 43 

[73] 2001 Cu / < 10 EG 0.3 40        

[74] 2001 MWCNT / 

Ø25×50,000 

Oil 1 160 
       

[23] 2002 SiC 

(sphere)/26  

DI 4.2 15.8 

       

SiC (cylinder) / 

600  

4 22.9 

SiC 

(sphere)/26  

EG 3.5 13 

SiC (cylinder) / 

600 

4 23 

[75] 2002 Al2O3 / 29 EG 4 17 

       

CeO2 / 29 4 18 

TiO2 / 40 4 13 

CuO / 33 4 17 

Fe2O3 / 28 4 16 
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Ref. Year 
Particles Type / 

Size (nm) 
Base-fluid 

Loading 

(% vol.) 

Enhancement* 

(%) 

Parameters Investigated 

Particle 

Concentration 
Particle Size Particle Shape 

Particle Thermal 

Conductivity 
Base Fluid Type Temperature 

Preparation 

Technique 

ZnO / 56 4 21 

[76] 2002 Al2O3 / 60.4 Water 5 23 

       
EG 5 30 

PO 5 38 

Glycerol 5 27 

[77] 2003 MWCNT / 

Ø15×30,000 

DI 1 7 

       EG 1 12.7 

DE 1 19.6 

 [78] 2003 Au / 10–20 Water 0.00026 21 

       Toluene 0.011 8.8 

Ag / 10–20 Water 0.001 16.5 

[39] 2003 Al2O3 / 38.4 Water 4 24 
       

CuO / 28.6 4 36 

[79] 2004 MWCNT / Ø20–

60 ×(few 

tens×103) 

Water 0.84 21 

       

[24] 2005 DWCNT / Ø5 Water 1 8 

       MWCNT / 

Ø130×10000 

0.6 34 

[80] 2005 Al2O3 / 11 Water 1 9 

       Al2O3 / 47 1 2 

Al2O3 / 150 1 0.5 

[25] 2005 Fe / 10 EG 0.55 18        
[26] 2005 MWCNT /  

Ø20~50  

EG 1 12.4 
       

EO 1 8.5 

[27] 2005 TiO2 / 15 

(sphere) 

DI 5 30 

       
TiO2 / Ø10×40 

(cylinder) 

5 33 

[81] 2005 Al2O3 / 10 Water 0.5 100        

[82] 2006 Al70Cu30 / 20-

40 

EG 2.5 125 
       

[83] 2006 Ag-Cu / 10 PO 0.003 15 

       
0.006 33 

0.009 12 

0.015 0.02 

[28] 2006 MWCNT / Ø40  Water 0.49 80        
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Ref. Year 
Particles Type / 

Size (nm) 
Base-fluid 

Loading 

(% vol.) 

Enhancement* 

(%) 

Parameters Investigated 

Particle 

Concentration 
Particle Size Particle Shape 

Particle Thermal 

Conductivity 
Base Fluid Type Temperature 

Preparation 

Technique 

[84] 2006 MWCNT / Ø10–

30×10,000–

50,000  

Water 1 11.3 

       
CuO / 33 1 5 

SiO2 / 12 1 3 

CuO / 33  EG 1 9 

[85] 2006 CuO / 29 Water 6 52 
       

Al2O3 / 36 10 30 

[44] 2006 Au / 4 Ethanol 0.018 1.3  

       
Au / 2 Toluene 0.024 1.4 

C60–C70 

fullerenes 

0.378 0.816 

[86] 2006 TiO2 / 34 Water 6.8 6        

[87] 2007 TiO2 / 20 Water 2 4.2        

[29] 2007 

 

Al2O3 / 38 Water 3 8 

       

EG 3 10.6 

TiO2 / 10 Water 3 11.4 

EG 3 15.4 

TiO2 / 34 Water 3 8.7 

EG 3 12.3 

TiO2 / 70 Water 3 6.4 

EG 3 7.5 

ZnO / 10  Water 3 14.2 

ZnO / 30 Water 3 11.5 

EG 3 21 

ZnO / 60 Water 3 7.3 

EG 3 10.7 

[88] 2007 Al2O3 / 36 Water 6 28 
       

Al2O3 / 47 6 26 

[31] 2007 TiO2 / 25 DI 1 14.4 

       
Al2O3 / 48 1 4 

Fe / 10 EG 0.3 16.5 

WO3 / 38 0.3 13.8 

[32] 2007 Au / 1.65 Toluene 0.003 8 

 

   

 
 

 

Al2O3 / 20 Water 14.6 22 

TiO2 / 40 2.6 6.5 

CuO / 33 4.18 16.5 
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Ref. Year 
Particles Type / 

Size (nm) 
Base-fluid 

Loading 

(% vol.) 

Enhancement* 

(%) 

Parameters Investigated 

Particle 

Concentration 
Particle Size Particle Shape 

Particle Thermal 

Conductivity 
Base Fluid Type Temperature 

Preparation 

Technique 

CNF / 

150Ø×10,000 

0.89 41.4 

 [89] 2007 MWCNT / Ø10–

30×10,000–

50,000  

Water 1 7 

       

CuO / 33 1 5 

SiO2 / 12 1 3.2 

CuO / 33 EG 1 9.1 

MWCNT / Ø10–

30×10,000–

50,000  

MO 0.5 8.7 

C60–C70 

fullerenes / 10  

5 6 

[90] 2008 Al2Cu / 31 Water 2 96 

       

Al2Cu / 101 2 61 

Ag2Al / 33 2 106 

Ag2Al / 120 2 75 

Al2Cu / 31 EG 2 84 

Al2Cu / 101 2 56 

Ag2Al / 33 2 96 

Ag2Al / 120 2 62 

[34] 2008 TiO2 / 15 EG 5 18 
       

Al / 80 5 45 

[40] 2008 Al2O3 / 45 DI 4 13.3 
       

EG 4 9.7 

[91] 2008 Fe3O4 / 6.7 Kerosene < 2% 300        
[35] 2009 Al2O3 / 282 Water 4 17.7 

       
Al2O3 / 282 EG 3 16.3 

[92] 2009 TiO2 / 21 Water 2 7        

[55] 2009 Al2O3 / 36 Water 18 31 

       Al2O3 / 47 18 31 

CuO / 29 16 24 

[93] 2009 TiO2 / 21 DI 3 7.2        

[94] 2009 Al2O3 / 15-50 Water 4 10.1        
[95] 2010 Fe3O4 / 15-22 Water 3 11.5        
[96] 2010 Al2O3 / 12 Water 4 5.4        
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Ref. Year 
Particles Type / 

Size (nm) 
Base-fluid 

Loading 

(% vol.) 

Enhancement* 

(%) 

Parameters Investigated 

Particle 

Concentration 
Particle Size Particle Shape 

Particle Thermal 

Conductivity 
Base Fluid Type Temperature 

Preparation 

Technique 

EG 4 14.3 

Al2O3 / 10 EG–Water 

(50:50 wt.%) 

3 11.3 

Al2O3 / 50 3 10.4 

[97] 2010 Fe3O4 / 15 Kerosene 1 34.6        

[98] 2011 SiC / 100 DI 3 7.2        

[99] 2012 SWCNT / 100–

600 

Water 0.3 12.1 
       

[100] 2012 SWCNT / 100–

600 

EG 0.21 15.5 
       

[101] 2012 CuO / 25 Water 7.5 32.3 
       MEG 7.5 21.3 

[102] 2012 MWCNT / Ø5–

20 

HTO 2 15 
       

[103] 2013 SiO2 / 10 Water 1.2 11 
       

SiO2 / 60 1.2 13 

[104] 2013 Al2O3 / 36.5 EG–Water 

(50:50 wt.%) 

8 17.89 
       

CuO / 27 8 24.56 

[105] 2014 γ-Al2O3 / 13 Water 6 14.5 

       
SiO2 / 15 6 10.8 

TiO2 / 13.5 4 15.1 

α-Al2O3 / 24.4 6 18.6 

[106] 2014 Sn-SiO2 / 50–

100 

TH66 5 13 
       

[107] 2015 Al2O3 / 40 Water 4 14.4        
[108] 2015 DWCNT / Ø3 + 

ZnO / 10–30 

(50:50 vol.%) 

EG–Water 

(60:40 wt.%) 

1 33 

       

[109] 2015 NiFe2O4 / 8 DI 2 17.2        

[110] 2015 AG / 5–25 DI 0.5 16        
[111] 2015 Al2O3 / 13 EG–Water 

(60:40 wt.%) 

2 8.4 

       
EG–Water 

(50:50 wt.%) 

2 12.6 

EG–Water 

(40:60 wt.%) 

2 16.2 

[112] 2015 MgO / 40 EG–Water 

(40:60 wt.%) 

3 34.43 
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Ref. Year 
Particles Type / 

Size (nm) 
Base-fluid 

Loading 

(% vol.) 

Enhancement* 

(%) 

Parameters Investigated 

Particle 

Concentration 
Particle Size Particle Shape 

Particle Thermal 

Conductivity 
Base Fluid Type Temperature 

Preparation 

Technique 

[113] 2016 SiC / 30 DO 0.8 7.36        
[114] 2016 ZnO / 50 EG 2.4 13        
[115] 2016 CuO / 55–66 Water 2 24 

       EG 2 21 

EO 2 14 

[116] 2016 AG / 20 HTO 0.171 41        

[117] 2016 TiO2 / 5 EG 7 19.52        

[118] 2016 AG / 10 HTO 0.6  36.3        

[119] 2016 S-SWCNT / 

Ø1–2 x1000–

3000 

Water 048 8.1 

       

L-SWCNT / 

Ø1–2 x5000–

30,000 

0.48 16.2 

MWCNT / 

Ø10–

30x30,000 

0.48 5 

* Enhancement % is calculated based on: Enhancement (%) = [(knf – kbf)/ kbf]*100 
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Fig. 1 Number of contributions vs. nanoparticles (according to this review) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Number of experimental publications dealing with thermal conductivity in nanofluids per year 

(according to this review) 
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3.2 Gas-Based Nanofluids 

In such type, nanoparticles are dispersed in gaseous base 

fluids. This mixture is also known as aerosols [120,121]. 

Studying heat transfer characteristics of aerosols has a great 

importance not only for thermal applications, but also for 

environmental and climate studies [121–123]. Although 

natural convection heat transfer in gas-based nanofluids is 

investigated [124–127], limited research work was done in the 

field of thermal conductivity enhancement and forced 

convection of aerosol nanoparticle systems [128].  

In the field of thermal conductivity enhancement, Bibire et 

al. [129] carried out a mathematical analysis to study thermal 

and electrical conductivities of atmospheric aerosols. They 

applied the scale relativity model [130]. They found that the 

enhancement in the effective conductivity is inversely 

proportional to atmospheric nanoparticle diameter for a given 

atmospheric nanofluid. 

 

4. Parameters Affecting Nanofluids Thermal Conductivity 

According to literature listed in 
, there are different investigated parameters affecting 

thermal conductivity of nanofluids, as illustrated in Fig. 3. In 

this section, such parameters will be discussed based on past 

work observations. 

 
Fig. 3 Parameters affecting the thermal conductivity of 

nanofluids 

4.1 Nanoparticle Concentration 

Many researchers investigated the effect of volumetric 

loading of nanoparticles in suspension on thermal conductivity 

enhancement. Most of them found that the more nanoparticles 

concentration, the more enhanced thermal conductivity of the 

suspension. Some of researchers found the relation to be 

nonlinear [25,79,86,87], while others found it linear [22,23,26–

29,31,32,34,35,39,40,55,69–78,82,84,85,88–102,104–119,131–

133].  

However, this relation is associated with a limited 

nanoparticle loading. This fact was observed by Ceylan et al. 

[83], who tested suspended Ag-Cu alloy nanoparticles (10 nm) 

in PO. They found that the thermal conductivity enhancement 

increases with increasing volumetric loading until a certain 

peak point. Beyond this point the thermal conductivity 

decreases until it reaches its value for the base fluid. On the 

other hand, the proportionality relationship between 

nanoparticles volume fraction and thermal conductivity 

enhancement could not be proven by Putnam et al. [44]. They 

investigated thermal conductivity of Au suspensions in ethanol 

and toluene and fullerene in toluene for very low loadings 

(<< 1% vol.). Their results showed fluctuating small 

enhancements. This may be attributed to their inability to 

synthesize and study well-dispersed nanoparticle suspensions, 

especially for nanofluids with particles concentrations higher 

than 1% vol.    

 

4.2 Nanoparticle Size 

Particles size plays a great role in enhancing thermal 

conductivity of nanofluids. It represents the most significant 

difference between nanofluids and micron-sized suspensions. 

The effect of nanoparticles size is not limited to suspension 

stability, but extends to include thermal properties. The effect 

on enhancing thermal conductivity of nanofluids was studied 

frequently. It was found by Lee et al. [71] that the effective 

thermal conductivity of nanofluids increases with decreasing 

particle size. They observed this relation through comparing 

their results with reported data provided by Masuda et al. [22]. 

This fact was confirmed later by Wang et al. [43], who 

compared their results with Masuda et al. [22] and Lee et al. 

[71] results. Another proof of the validity of this conclusion 

comes through comparing Xuan and Li [72] results with 

Eastman et al. [69] ones, as the larger particle size of Cu used 

by Xuan and Li [72] leaded to drop the enhancement from 44% 

to 12% despite the relatively higher concentration than used by 

Eastman et al. [69]. In the same context, achieving a near 

amount of enhancement by 100 nm compared to 35 nm, it was 

required to raise the concentration from 0.052 vol.% to 

7.5 vol.%. This inverse relation between particle size and 

thermal conductivity enhancement was proven by many 

authors [29,31,55,75,80–82,87,88,90,96,119].  

However, this relation is not always true, especially if 

particle shape parameter is interfered. Based on [23] and [89] 

results, large cylindrical-shaped and MWCNT nanoparticles can 

enhance the conductivity more than smaller spherical-shaped 

ones if dispersed in the same base fluid. Moreover, Pak and 

Cho [70] recommended selecting larger particles to enhance 

heat transfer performance, based on their results. This finding 

was confirmed later by and Hwang et al. [89] Beck et al. [35]. 

Hwang et al. [89] results showed that CuO (33nm) enhanced 

thermal conductivity higher than SiO2 (12nm) for the same 

base fluid and concentration. Beck et al. [35], who studied 

thermal conductivity of Al2O3/water and Al2O3/EG nanofluids 

for particles sizes ranging from 8 to 282 nm, also found that the 

enhancement of thermal conductivity decreases as the particle 

size decreases below about 50 nm. They attributed this to a 

decrease in the thermal conductivity of the nanoparticles as a 

result of increased phonon scattering effect.  

4.3 Nanoparticle Shape 

The effect of nanoparticles shape was studied by Xie et al. 

[23].Their results indicated that the cylindrical-shaped 

nanoparticles showed higher enhancement than spherical-

shaped ones for the same base fluid, despite their larger 

average size. This conclusion was confirmed later by [26–

28,77,84] results. Moreover, the increase in length-to-diameter 

ratio of the dispersed nanotubes leads to the increase of the 

thermal conductivity enhancement [24,32]. In the same 
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context, the effective thermal conductivity measured by Choi et 

al. [74] showed that nanotubes (MWCNT) yield an anomalously 

nonlinear increase in the conductivity compared to predicted 

linear behavior. On the other hand, fullerenes, which are carbon 

molecules in the form of a hollow sphere, ellipsoid, tube and 

many other shapes [134], showed lower enhancement. This 

result was concluded by Putnam et al. [44] who dispersed C60–

C70 fullerenes in toluene and compared their effect on 

enhancement of thermal conductivity against dispersing Au 

nanoparticles. Their results indicated that fullerenes showed 

lower enhancement than Au at loadings << 1% vol. However, 

these data was not confirmed for higher volumetric loadings. 

Another lower enhancement of fullerenes in mineral oil 

nanofluids was observed by Hwang et al. [89] when compared 

its enhancement with MWCNT in the same base fluid, even at 

higher concentration.  

4.4 Nanoparticle Thermal Conductivity 
Select nanoparticles having higher thermal conductivity 

was recommended by Pak and Cho [70] to enhance heat 

transfer performance. This finding was confirmed later by 

[32,34,39,71,89] results. In the same context, by comparing 

[111] and [112] results, it is clear to find that for the same base 

fluid, MgO showed significant higher thermal conductivity 

enhancement compared to the A12O3 system, despite the 

larger MgO particle size (40nm) compared to (13 nm) for 

A12O3 nanoparticles. This comparison indicates that the 

particle thermal conductivity has a stronger effect than particle 

size. According to Eastman et al. [73], nanofluids containing 

metallic particles can achieve a large improvement in effective 

conductivity compared to either base fluids or nanofluids 

containing oxide particles. Moreover, Cingarapu et al. [106] 

found that addition of ceramics encapsulated phase change 

nanoparticles enhances thermal conductivity of nanofluids 

than conventional HTFs. They also observed that such type of 

particles improved the heat transfer and thermal storage 

properties of HTFs. However, Yoo et al. [31] reported that 

determining nanofluids thermal conductivity was not primarily 

affected by suspended nanoparticles thermal. Thermal 

conductivities of some materials used as nanoparticles are 

listed in Table 2.  

Table 2 Thermal conductivities of some materials used as 
nanoparticles  

Particle Thermal conductivity (W/mK) Reference 

Al2O3 40 [135] 

CuO 76.5 [89] 

Fe2O3 6  [136] 

MgO 54.9 [137] 

SiO2 1.34–1.38 [89,138] 

TiO2 8.4  [29] 

ZnO 29  [29] 

Ag 429 [139] 

Al 238–273 [138,139] 

Au 310 [139] 

Cu 401 [139] 

Fe 75–80 [138,139] 

MWCNT 2000~3000 [140,141] 

C60–C70 

(Fullerene) 
0.4 

[89] 

SiC 490  [142] 

4.5 Base Fluid Type 

For the nanofluids using the same nanoparticles, the 

thermal conductivity improvement was found to be inversely 

proportional to the base fluid thermal conductivity, regardless 

nanoparticles shape [29]. This conclusion was achieved and 

confirmed through observing higher thermal conductivity 

enhancement for nanofluids with EG as a base fluid compared 

to others that with water base fluid [23,71,76,77,84,89,96]. 

In contrast of that conclusion, observations reported by 

[26,115] indicated that at the same volume fraction, using EG 

as the base fluid leaded to achieving higher enhancements 

compared to the enhancement in case of using EO. This conflict 

was reconfirmed through measurements obtained by [90,115], 

as water-based nanofluids they tested showed higher 

enhancement In thermal conductivity compared to EG-based 

ones at the same volume fraction.  

With the beginning of the 2000s, a new research trend 

emerged. It was based on investigating the use of mixed base 

fluids instead of conventional ones. In that trend, Beck et al. 

[96] discussed the use of EG–water mixture as a base fluid with 

mixing ratio of 50:50% by weight. As a result of improved 

thermal conductivity of such new base fluid, adding 

nanoparticles showed more enhancement than dispersing in 

conventional base fluids.  

However, using mixed base fluids requires intensive study 

to select the appropriate mixing ratio, as it dramatically affects 

thermal conductivity. As an evidence on this fact, Abdolbaqi et 

al. [131] observed that the enhancement in thermal 

conductivity by dispersing Al2O3 (13 nm) in BG–water base 

fluid mixed at a ratio of 40:60 wt.% was 24% at 2 vol.% with 

temperature of 80C. This enhancement dropped to 13% by 

opposing the base fluid mixing ratio to be 60:40 wt.%. This 

result also agrees with Usri et al. [111] results, who tested 

Al2O3 (13 nm) in EG–water base fluid, as they observed that 

increasing the EG concentration decreases the thermal 

conductivity. Thermal conductivities of some base fluids that 

used in this review as are listed in Table 3. 

Table 3 Thermal conductivities of some base fluids 

Base fluid 
Thermal conductivity 

(W/mK) 
Reference 

EG 0.257 [138] 

EO 0.139–0.146 [115] 

Ethanol 0.161–0.171 [143,144] 

Glycerol 0.285 [138] 

Kerosene 0.145–0.168 [143,145] 

Toluene 0.133 [142] 

Water 0.608 [146] 

4.6 Nanofluid Temperature 

The effect of nanofluid temperature on improving their 

thermal conductivity has been studied by many researchers. 

Patel et al. [78] observed that the increments in thermal 

conductivity of the nanofluids were directly proportional to 

temperature. This result was in agreement with observations 

reported later by [34,39,55,80,81,88,95,99,100,104,109,111–

113,115–118,131]. Even in case of dispersing nanotubes in 

base fluids, the thermal conductivity enhancement increased 

with increasing temperature nonlinearly [28,79,102,119,147]. 

However, Experiments carried out using MWCNT at 
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temperatures 60–70C showed destabilization of the nanofluid. 

However, Li and Peterson [85] concluded that dependence of 

the effective thermal conductivity on the bulk temperature is 

much weaker than the dependence on the volume fraction. This 

conclusion was confirmed later by [107,108] results. In the 

same context, Beck et al. [96] results indicated that the thermal 

conductivity enhancement behavior over temperature 

variation followed closely that of the base fluid. This 

observation was concluded through studying different base 

fluids including: water, EG and EG–water mixture. Results 

reported by [97,114] was in agreement with that conclusion. 

In contrast with previous literature, Duangthongsuk and 

Wongwises [92] results indicated that nanofluid thermal 

conductivity enhancement slightly decreases with increasing 

temperature in reverse relation. This result agreed with Turgut 

et al. [93] findings, despite the insignificant dependence on 

temperature. 

4.7 Preparation Technique 

Nanofluid dispersion technique plays a great role in 

stabilizing nanofluid and in improving its thermal conductivity, 

as it might change the morphology of the nanoparticles [43,72]. 

This section includes investigating the effect of adding different 

additives to control the pH value of the prepared nanofluid. In 

addition, the effect of sonication time will be covered.  

Investigating nanofluids pH value was started in early stage. 

The effect of adding acid (HCl) or base (NaOH) on electrostatic 

repulsive forces among the particles was firstly reported by 

Masuda et al. [22]. This effect kept the nanoparticles dispersed. 

Xie et al. [76] results showed that the increase in the difference 

between the pH value and isoelectric point1of Al2O3 resulted in 

the enhancement of the effective thermal conductivity. This 

may be the reason for indicating much higher thermal 

conductivity than that of Wang et al. [75] for Al2O3-EG 

nanofluid although the particle size used by Xie et al. [76] was 

double that of the particles of Wang et al. [75]. Moreover, Xie et 

al. [76] results indicated that the thermal conductivity 

enhancement decreases with an increase in pH value. Zhu et al. 

[94] observed that that enhancement in thermal conductivity 

increased with increasing the pH value up to 8–9, then the 

relation turns to be inversely proportional as reported before 

by Xie et al. [76]. They also recommended using a chemical 

dispersant combined with adjusting the pH of the suspension 

to improve the thermal conductivity. In the same context, 

Abareshi et al. [95] observed the best crystallinity at a pH of 

9.5.   

On selecting additive type side, Assael et al. [24] also found 

that the dispersant type affects the enhancement achieved, as 

they observed larger enhancement in case of adding 

Nanosperse AQ (NSAQ) compared to 

Hexadecyltrimethylammonium bromide (CTAB) addition. 

While Parametthanuwat et al. [110] found that the addition of 

potassium oleate surfactant (OAK+) with 1 wt.% improved the 

working properties, especially with Ag nanoparticles. 

Moreover, using oleic acid boosted the rise in the heat transfer 

rate.  

The sonication (or homogenization) time is a critical 

parameter should be considered in preparing nanofluids, as it 

plays a major role in stabilizing the suspension [24,110,113–

                                                                 
1
 the pH value at which a molecule carries no net electrical charge [248]. 

115,131]. Khedkar et al. [101] observed that increasing the 

sonication time enhances the thermal conductivity of the 

nanofluids until certain limits. They attributed this result to the 

increased Brownian motion of small particles and 

agglomeration. However, a moderate sonicating time should be 

applied, as very low time leaves the nanoparticles bundles 

untangled, while intensive sonication breaks down the 

agglomerates size. In case of using nanotubes, longer 

sonication time decreases the nanotubes length, which leads to 

quick suspensions precipitation [24,148,149]. These results are 

in agreement with observations reported by Hong et al. [25], 

who found that thermal conductivity enhancement increased 

with increasing the sonication time up to 50 minutes while 

saturation was shown after this point [25]. In 2015, Buonomo 

et al. [107] proposed a simple procedure to estimate the 

minimum sonication time required to obtain a stable nanofluid 

mixtures. Philip et al. [91] achieved an extraordinary thermal 

conductivity enhancement of 300% via applying a magnetic 

field on Fe3O4 nanoparticles dispersed in base fluid in order to 

form the linear chain-like structures.  

5. Applications of Nanofluids in Practical Community 

Applications of nanofluids have a wide spectrum in the 

practical field, so that they require separate review articles to 

be covered. However, this section focuses on some applications 

where nanofluids contribution to the thermal conductivity 

enhancement is significant. Fig. 4 shows different practical 

applications covered in the present work. 

 
Fig. 4 Practical applications of nanofluids 

4.1 Solar Thermal Applications 

Nanofluids can be used in order to improve the 

performance of solar thermal devices ranging from the solar 

water heaters to Concentrated Solar Power (CSP) plants. This is 

as a result of many advantages of nanofluids over conventional 

HTFs. These include: small particles size allow them to be 

fluidized to pass through pumps, micro-channels and piping 

without any adverse effects. In addition, nanoparticles 

represent an absorption medium allowing the fluid to absorb 

solar energy directly [150]. Moreover, by studying photo 

thermal characteristics of the nanofluids [151–155], they 
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showed improved optical properties compared to that of their 

base fluids [156], such as low emittance in the infrared region 

[150]. 

Research papers [157–176] investigated the thermal 

performance enhancement achieved by using nanofluids in 

different types of solar collectors. In addition, the optical 

properties of nanofluids used in solar collectors were studied 

in [177–185]. Recent CSP systems require high operating 

temperature and high heat storage capacity [52]. Since 

nanofluids have improved heat transfer and thermal storage 

properties [106], they can be used as a HTF in CSP plants 

rather than conventional HTFs. This, in turn, can improve 

efficiencies and reduce the costs of CSP plants [186–188]. 

However, many authors are concerned with using nanofluid in 

CSP systems and performed investigations on the achievable 

enhancement in the performance of these systems [189–198]. 

4.2 Automobiles Applications 

In recent years, the energy crisis and fuel economy created 

a competition between automobiles manufacturers. According 

to this, designers have to improve the aerodynamic designs of 

vehicles in order to reduce the amount of energy required to 

overcome the drag force. Unfortunately, they face the fact that 

more than 50% of the total vehicle energy output is lost in 

overcoming the aerodynamic drag. The large radiator position 

in the vehicle front is partly responsible for this fact [199]. 

Therefore, it is required to replace poor cooling medium, such 

as EG-water mixture, with nanofluids to remove heat from 

relatively smaller size [200,201]. 

Many researchers have been attracted to investigate, either 

experimentally or numerically, the use of nanofluids as engine 

coolant [202–208]. They reported excellent enhancements in 

the thermal properties of nanofluids, such as EG-based 

nanofluids, compared to conventional coolants, e.g. 50/50 

mixture of EG and water. In addition, some authors indicated 

that the frontal area of the radiator can be reduced up to 10% 

due to the use of nanofluid coolants. This in turn can lead to 

reduce aerodynamic drag and save fuel up to 5% [204]. Engine 

cooling is not only the application of using nanofluids in 

automobiles, but also they can be used to cool other moving 

parts in an automobile. Tzeng et al. [209] dispersed 

nanoparticles into engine transmission oil. They reported that 

the thermal performance of nanofluids has a clear advantage as 

they produced the lowest transmission temperatures at both 

low and high speeds. 

4.3 Electronic Cooling Applications 

Heat transfer at medium and low temperatures is also 

affected by the improvements raised by nanofluids. Nanofluids 

are used as the working fluid in heat pipes and thermosyphons, 

which can be utilized for compact device cooling, e.g. electronic 

devices. Some researchers investigated the use of nanofluids in 

heat pipes [210–217], while others studied the effect of using 

nanofluids on the performance of thermosyphons [218–226]. 

They observed obvious enhancements in thermosyphons 

performance, as a result of the reduction of thermosyphons 

thermal resistance due to the use of nanofluids. Other 

researchers investigated the use of nanofluids in electronic 

devices of cooling systems [227,228]. They also reported 

higher cooling performance in their coolers. 

4.4 Medical Applications 

Recently, nanofluids contributed in a wide range of 

applications in medical applications and biomedical industry 

[229]. Nanofluids have been used in nano-medicine 

applications as iron based nanoparticles can be used as 

nanodrug delivery vehicles [230–237]. Nanofluids can be also 

used in cancer therapeutics. They can be utilized in cancer 

imaging and drug delivery, by using magnetic nanofluids which 

guide the particles up the bloodstream to a tumor with 

magnets. In addition, they can be used to kill cancerous cells 

without affecting the nearby healthy cells by producing higher 

temperatures around tumors [238–241]. On the other hand, 

nanofluids can also be used in Cryosurgery, which is a 

procedure that uses freezing to destroy undesired tissues. This 

procedure can be regarded as a novel method of cancer 

treatment [241,242]. In addition, nanofluids can be used to 

avoid risk of organ damage by cooling around the surgical 

region in surgery operations [243]. 

4.5 Other Applications 

Many other fields were invaded by nanofluids. They can be 

used in detergency. Nanofluids differ from conventional simple 

liquids as they have different behavior of spreading and 

adhesion on solid surfaces [244–247]. According to this fact, 

nanofluids arise as excellent candidates in lubrication, 

processes of soil remediation, oil recovery and detergency. 

Nanofluids are also applied in some military applications. In 

such applications, high heat flux cooling fluids are required in 

order to remove a large amount of heat from both military 

mechanical and electrical devices, e.g. submarines and high 

power laser [243]. 

6. Conclusions 

The present work reviewed recent research progress 

achieved in enhancing thermal conductivity using nanofluids. 

In addition, some practical applications that used the 

improvements resulting from the use of nanofluids were 

presented including solar thermal applications, automotives, 

electronic cooling, medical, detergency and military 

applications. According to this contribution, it can be found 

that the main parameters affecting heat transfer properties 

of the base fluid are nanoparticles concentration, size, shape, 

thermal conductivity, base fluid type, nanofluid temperature 

and preparation technique. The key parameter which had the 

most significant effect was nanoparticle concentration. It was 

found in most literature that it has a direct proportional 

relationship with thermal conductivity enhancement. 

However, this relation was found to be limited and extra 

particle loadings dramatically affect such enhancement. For 

particles size, it was quite agreed that is the relation was 

inversely proportional with thermal conductivity 

improvement for spherical particles, while large size 

cylindrical-shaped particles can enhance effective 

conductivity than small spherical ones. The particle shape 

was also found to be a critical parameter. Nanotubes were 

found to increase thermal conductivity compared to 

spherical particles, while fullerenes showed lower 

enhancement. Selecting particles with higher thermal 

conductivity, including using metallic particles, was 

recommended by many authors to increase the nanofluid 



 

 

15 

 

thermal conductivity. In addition, it was found by some 

researchers that the thermal conductivity improvement was 

found to be inversely proportional to the base fluid thermal 

conductivity, while other authors reported an opposite 

finding. Moreover, using mixed base fluids has been emerged 

as a new research trend. However, mixing fluids was found to 

be investigated intensively, as small difference in mixing ratio 

affects thermal conductivity significantly. Nanofluid 

temperature effect was found to be much weaker than 

volumetric concentration, but it also found to increase 

thermal conductivity by raising the fluid temperature. 

Agglomeration leads to losing the advantage of using 

nanofluids. Therefore, using appropriate surfactants and 

sonication are required to improve nanoparticles dispersion 

behavior. It was found that thermal conductivity increased 

with increasing the pH value up to a certain limit (8–9.5), 

while turns to be inversely proportional beyond this point. In 

addition, it was recommended to apply a moderate 

sonicating time, as very low time keeps nanoparticles 

agglomerated, while intensive sonication breaks down the 

agglomerates size leading to quick suspensions precipitation.  
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