
1	
	

Optimising	configuration	of	a	hyperspectral	imager	for	on-line	field	1	

measurement	of	wheat	canopy	2	

Rebecca	L	Whettona,	Toby	W	Wainea,	and	Abdul	M	Mouazena,b*	3	

aCranfield	Soil	and	AgriFood	Institute,	Cranfield	University,	Bedfordshire	MK43	0AL,	UK.		4	

b	Department	of	Soil	Management,	Ghent	University,	Coupure	653,	9000	Gent,	Belgium.	5	

E-mail	of	corresponding	author:	Abdul.Mouazen@UGent.be	6	

Abstract	7	

There	 is	 a	 lack	 of	 information	 on	 optimal	 measurement	 configuration	 of	 hyperspectral	8	

imagers	 for	 on-line	 measurement	 of	 a	 wheat	 canopy,	 this	 paper	 aims	 at	 identifying	 this	9	

configuration	using	a	passive	sensor	(400-750	nm).	The	individual	and	interaction	effects	of	10	

camera	height	and	angle,	sensor	integration	time	and	light	source	distance	and	height	on	the	11	

spectra’s	 signal-to-noise	 ratio	 (SNR)	were	evaluated	under	 laboratory	 scanning	conditions,	12	

from	which	an	optimal	configuration	was	defined	and	tested	under	on-line	field	measurement	13	

conditions.	The	influences	of	soil	total	nitrogen	(TN)	and	moisture	content	(MC)	measured	14	

with	 an	 on-line	 visible	 and	 near	 infrared	 (vis-NIR)	 spectroscopy	 sensor	 on	 SNR	were	 also	15	

studied.	 Analysis	 of	 variance	 and	 principal	 component	 analysis	 (PCA)	 were	 applied	 to	16	

understand	 the	 effects	 of	 the	 laboratory	 considered	 factors	 and	 to	 identify	 the	 most	17	

influencing	components	on	SNR.		18	

Results	 showed	 that	 integration	 time	 and	 camera	 height	 and	 angle	 are	 highly	 influential	19	

factors	affecting	SNR.	Among	 integration	 times	of	10,	20	and	50	ms,	 the	highest	SNR	was	20	

obtained	with	1.2	m,	1.2	m	and	10°	values	of	light	height,	light	distance	and	camera	angle,	21	

respectively.	 The	 optimum	 integration	 time	 for	 on-line	 field	 measurement	 was	 50	 ms,	22	
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obtained	at	an	optimal	camera	height	of	0.3	m.	On-line	measured	soil	TN	and	MC	were	found	23	

to	have	significant	effects	on	the	SNR	with	Kappa	values	of	0.56	and	0.75,	 respectively.	 In	24	

conclusion,	 an	 optimal	 configuration	 for	 a	 tractor	 mounted	 hyperspectral	 imager	 was	25	

established	for	the	best	quality	of	on-line	spectra	collected	for	wheat	canopy.	26	

	27	
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	31	

1 Introduction	32	

Advanced	methods	for	early	disease	detection	in	crops	is	vital	for	improving	the	efficacy	of	33	

treatment,	 reducing	 infection	and	minimising	 the	 losses	 to	yield	and	quality.	Traditionally,	34	

disease	detection	is	carried	out	manually,	which	is	costly,	time	consuming	and	requires	special	35	

expertise	 (Schmale	 &	 Bergstrom,	 2003;	 Bock	 et	 al.,	 2010).	 Developments	 in	 agricultural	36	

technology	have	led	to	demands	for	a	non-destructive,	automated	approach	for	crop	disease	37	

detection	 that	 should	 be	 ideally	 rapid,	 disease	 specific,	 and	 sensitive	 to	 early	 symptoms	38	

(López	et	 al.,	 2003).	Optical	 sensing	methods	 are	non-destructive,	 allowing	 repeated	data	39	

acquisition	throughout	the	growing	season	without	inhibiting	crop	growth.	Spectroscopy	and	40	

imaging	techniques	have	been	used	in	disease	and	stress	monitoring	(Hahn,	2009).	However,	41	

their	 in-situ	 application	 although	 established	 in	 other	 industries	 (e.g.	 health	 services,	42	

pharmacology	and	food	safety)	is	still	rather	limited.	Both	Lenk	et	al.	(2007)	and	Sankaran	et	43	

al.	 (2010)	 focused	 on	 implementing	 the	 technology	 in	 the	 field,	 as	 a	 mobile	 (on-line)	44	
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application	 for	 mapping	 crop	 disease.	 Yuan	 et	 al.	 (2016)	 have	 used	 high	 spatial	 satellite	45	

imagery	 in	the	detection	of	powdery	mildew.	Remote	spectral	sensing	for	 identification	of	46	

weeds	in	wheat	fields	has	been	tested	by	means	of	ground	collected	data	(Gómez-Casero	et	47	

al.,	2009).	Herrmann	et	al.	(2013)	have	applied	proximal	hyperspectral	imagery	in	the	field	for	48	

weed	detection	(e.g.,	both	broadleaf	and	grass	weeds),	reporting	85%	accuracy.	Okamoto	&	49	

Lee	 (2009)	 collected	 in	 situ	 hyperspectral	 images	 for	 the	 detection	 of	 green	 citrus	 fruits,	50	

reporting	 promising	 results	 for	 identification	 of	 citrus	 fruits	 from	 background	 objects.	 In	51	

contrast,	non-mobile	 (off-line)	and	 laboratory	methods	 for	disease	classification	and	plant	52	

growing	conditions	have	been	studied	and	demonstrated	(Roggo	et	al.,	2003;	Wu	et	al.,	2008).	53	

Hahn	 (2009)	 claims	 that	 spectroscopic	 and	 imaging	 techniques	 could	 be	 integrated	 with	54	

agricultural	 vehicles,	 providing	 non-invasive	 and	 reliable	 systems	 for	 the	 monitoring	 and	55	

mapping	of	crop	diseases,	with	further	potential	for	early	disease	detection.	Moshou	et	al.	56	

(2005)	 have	 shown	 that	 hyperspectral	 imaging	 for	 the	 recognition	 of	 in-situ	 disease	 can	57	

provide	identification	with	a	high	degree	of	accuracy.	Depending	on	the	method	of	analysis	58	

and	data	fusion,	an	error	between	1	-	16.5%	was	reported.		59	

Spectral	 reflectance	 in	 vegetation	 canopies	 is	 dependent	 on	 several	 factors	 including	 the	60	

illumination	angle,	 the	canopy	architecture	and	the	radiative	properties	of	 the	plants.	The	61	

reflectance	of	crop	canopies	is	non-lambertian	scattering,	varying	with	the	sun	position,	view	62	

positions	and	meteorological	conditions	including	cloud	cover	(Pinter	&	Jackson,	1985;	Asner,	63	

1998).	 Plant	 species,	 maturity,	 phenology,	 level	 of	 foliage	 and	 nutrient	 status	 are	 plant	64	

properties	 affecting	 reflectance	 (Asner,	 1998;	 Coops	 et	 al.,	 2003;	 Gnyp	 et	 al.,	 2014).	65	

Geometrical	 arrangement	 of	 objects	 can	 affect	 the	 spectral	 reflectance	 such	 as	 leaf	66	

orientation,	which	cannot	be	controlled	during	on-line	measurements	 (Asner,	1998;	Coops	67	

et	al.,	2003).	This	creates	problems	associated	with	reduced	reflection	from	light	scattering.	68	
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Shadows	at	small	scale	can	be	reduced	by	additional	light	sources	and	that	opposing	lighting	69	

can	help	reduce	shadows	(Barbedo	et	al.,	2015).	Oberti	et	al.	(2014)	argued	that	the	angle	70	

between	the	canopy	and	camera	in	the	range	between	0°	to	60°	affects	the	sensitivity	of	a	71	

mounted	on-line	(mobile)	sensor	due	to	light	backscattering,	suggesting	the	potential	of	an	72	

oblique	camera	angle,	to	reduce	the	impact	on	signal-to-noise	ratio	(SNR)	variation.		73	

A	 tractor	mounted	 hyperspectral	 imager	 allows	 for	 on-line	 field	 crop	 canopy	 sensing	 and	74	

mapping,	however,	an	optimal	configuration	of	the	camera,	light	source	and	integration	time	75	

needs	to	be	established	for	optimal	quality	of	imagery	and	spectra	to	be	collected.	Spectral	76	

quality	 is	predominantly	affected	by	sensor	 integration	time,	camera	orientation,	and	light	77	

height	and	angle	from	the	object	(leaf	or	canopy).	Integration	time	is	the	period	over	which	78	

the	detector	collects	photons	of	light.	The	greater	the	integration	time	and	light	intensity,	the	79	

more	reflected	light	is	expected	to	be	captured	by	the	detector,	providing	a	higher	SNR	and	80	

pronunciation	of	the	spectral	peaks.	Though	when	relying	on	sun	light	the	intensity	can	be	81	

variable.	 When	 applying	 a	 spectral	 technique	 to	 a	 forward	 moving	 platform	 (on-line	82	

measurement)	 longer	 integration	 times	 result	 in	 an	 average	 spectrum	over	 a	 larger	 area,	83	

reducing	the	sensitivity.	Furthermore,	the	greater	the	distance	between	the	camera	and	its	84	

subject,	 the	 larger	 the	 area	 observed	 and	 captured	 by	 a	 single	 pixel,	 reducing	 spatial	85	

resolution.	Therefore,	optimising	the	measurement	configuration	is	essential	before	on-line	86	

field	measurements	can	be	successfully	carried	out.	Furthermore,	background	soil	influences	87	

canopy	spectra,	and	efforts	have	been	made	to	remove	this	influence	(Huete,	1988).	Based	88	

on	remote	sensing	data	of	the	surface	soil,	Demetriades-Shah	et	al.	(1990)	suggested	using	a	89	

second	order	derivative	to	remove	deviations	caused	by	the	soil	background.	However,	none	90	

of	these	studies	have	investigated	the	influences	of	on-line	measured	(at	a	depth	of	15-20	91	
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cm)	soil	properties	[e.g.,	moisture	content	(MC)	and	total	nitrogen	(TN)]	on	the	quality	of	crop	92	

canopy	spectra.	93	

This	paper	evaluates,	under	 laboratory	conditions,	the	individual	and	interaction	effects	of	94	

camera	height	and	angle,	integration	time	and	light	distance	and	height	on	the	spectral	SNR	95	

of	 a	 wheat	 plant	 canopy	 captured	 with	 a	 hyperspectral	 line	 imager.	 Furthermore,	 the	96	

influence	of	on-line	measured	soil	MC	and	TN	on	SNR	of	plant	spectra	collected	on-line	in	the	97	

field	 is	 also	 assessed.	 This	 was	 essential	 to	 inform	 optimal	 configuration	 and	 operational	98	

conditions	for	on-line	field	measurement	of	crop	canopy	and	diseases.		99	

	100	

Table	1.	Factors	included	in	configuring	hyperspectral	imager	(multiple	configurations	101	
considered)	102	

 103	

2 Materials	and	methods	104	

2.1	Hyperspectral	configuration	in	the	laboratory	105	

Winter	wheat	Triticum	Sativum	(Solstice	variety)	was	grown	outdoors	in	600	x	400	mm	trays	106	

(depth	of	120	mm)	with	100	seeds	evenly	sown	and	spaced	in	5	parallel	lines.	After	seeding	107	

the	trays	were	predominantly	rain	fed,	to	reduce	input	of	excess	salts	from	treated	tap	water.	108	

Camera angle, 

deg � 

Light height, 

m 

Light distance, 

m 

Camera height,  

m 

Integration 

time, ms 

0 0.90 0.60 0.15 10 

5 1.2 0.90 0.30 20 

10 - 1.2 0.45 50 

- - - 0.60 1000 
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A	push	broom	hyperspectral	imager	(spectrograph)	(HS	spectral	camera	model	from	Gilden	109	

Photonics	Ltd.,	UK)	was	used	to	capture	high-resolution	line	images	with	a	resolution	of	1,608	110	

pixels	over	1	second,	using	a	diode	array	detector.	It	is	a	12	bit	Basler	piA	1600-35	gm	camera,	111	

with	 Schneider-Kreuznach	 XNP1.4/23	 lens	 and	 has	 a	 pixel	 pitch	 of	 7.4	 μm	112	

interpolated/averaged	to	0.6	nm	readings	with	a	spectral	range	of	400	-	750	nm.	The	reflected	113	

light	 from	 the	 target	 travels	 through	 the	 lens,	 past	 an	 entrance	 slit	 through	 a	 series	 of	114	

inspector	 optics	 in	 the	 spectrograph	 and	 then	 split	 by	 the	 prism	 dispersing	 element	 into	115	

different	wavelengths.	 This	 sensor	was	 chosen	 for	 its	 potential	 for	 being	 applied	 to	 crop	116	

canopy	measurements,	and	was	of	low	price	compared	to	comparable	sensors,	commercially	117	

available	in	the	market.	118	

The	data	captured	is	in	the	form	of	a	line	array,	with	each	pixel	containing	a	spectrum	and	119	

one	detector	per	pixel	across	the	swath.	In	order	to	compile	a	full	image,	every	line	across	a	120	

target	 must	 be	 captured	 (Gilden	 Photonics	 Ltd,	 Glasgow,	 UK).	 When	 configured	 on	 a	121	

consistent	moving	platform,	the	imager	sweeps	across	an	area	to	build	up	an	image.	Due	to	122	

practical	 restraints	of	applying	a	consistent	moving	platform	the	spectraSENS	v3.3	 (Gilden	123	

Photonics	 Ltd,	 Glasgow,	 UK)	 software	 was	 adapted	 to	 record	 a	 single	 line	 array,	 which	124	

required	an	additional	RGB	photo	taken	by	a	5	megapixel	camera	with	a	3.85	mm	f/2.8	lens	125	

at	the	same	time	of	image	capture,	so	that	the	scanned	area	could	be	comprehended.	Two	126	

laser	pointers	were	added	at	each	side	of	the	hyperspectral	imager	to	indicate	the	area	of	the	127	

canopy	to	be	scanned.	The	laser	pointers	were	shut	off	when	the	spectral	image	was	captured	128	

to	 remove	 any	 interference.	 Before	 data	 analysis,	 the	 collected	 scans	 were	 corrected	 by	129	

means	of	a	dark	and	white	reference,	which	were	collected	just	before	spectral	capture,	and	130	

at	 10	 minute	 intervals	 until	 scanning	 was	 completed.	 The	 white	 reference	 used	 was	 a	131	
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commercially	available	Spectralon	Teflon	white	calibration	panel	with	99.9%	white	reflectance	132	

value.		133	

Factorial	analysis	was	undertaken	to	understand	and	quantify	the	influence	of	configuration	134	

parameters	on	SNR.	The	wheat	was	at	growth	stage	47	according	to	Zadoks	scale	(Zadoks	et	135	

al.,	1974)	(whilst	the	head	was	booting)	at	the	time	of	scanning.	The	studied	configuration	136	

parameters	are	shown	in	Table	1.	The	same	area	was	scanned	in	triplicate	for	the	different	137	

combination	of	configurations.	The	laboratory	(simulated-field)	measurement	configuration	138	

is	 shown	 in	 Figure	1.	 For	 the	 indoor	environment,	 two	500	watt	diffused	broad	 spectrum	139	

halogen	 lamps	 were	 positioned	 at	 either	 end	 of	 the	 crop	 sample	 tray.	 The	 additional	140	

illumination	used	in	the	current	work	was	shown	by	experience	to	reduce	the	influence	of	141	

shadow	within	the	complex	and	non-homogenous	canopy	structure.	Imagery	data	was	then	142	

captured	at	different	camera	and	light	heights,	light	distances,	camera	angles	and	integration	143	

times	(measured	in	milliseconds	(ms)),	as	illustrated	in	Table	1.	Light	angle	was	kept	constant	144	

at	45°,	which	is	debated	as	the	optimal	angle	to	provide	the	strongest	response	(Huadong,	145	

2001).	Additional	opposing	lighting	was	used	to	reduce	shadows	(Barbedo	et	al.,	2015).	Four	146	

integration	times	of	10,	20,	50	and	1000	ms	were	adopted	as	these	cover	the	most	practical	147	

ranges.	The	1000	ms	integration	time	illustrates	the	highest	potential	time,	during	which	the	148	

system	will	absorb	the	reflected	light	hence;	this	is	expected	to	give	the	smoothest	spectra.	149	

Having	 determined	 a	 suitable	 configuration	 in	 the	 laboratory	 the	 next	 experiments	 were	150	

designed	to	apply	 the	configurations	 to	a	 field	environment,	and	assess	 the	 impact	of	 the	151	

environmental	 factors;	e.g.,	 soil	moisture	and	 total	nitrogen,	on	SNR.	Field	measurements	152	

were	conducted	in	a	9	ha	field	at	Duck	End	farm,	Wilstead,	Bedfordshire,	UK	(52°05'46.3"N	153	

0°26'41.4"W),	with	an	average	annual	rainfall	of	598	mm.	The	farm	has	a	crop	rotation	of	154	
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barley,	 wheat	 and	 oil	 seed	 rape.	 Wheat	 was	 cultivated	 during	 the	 experiment	 in	 2013	155	

cropping	season.	The	dominant	soil	type	in	the	field	is	a	clay	loam,	but	has	a	sand	fraction	due	156	

to	underlying	gravel	deposits.	157	

	 	158	

Figure	1.	Schematic	illustration	of	the	laboratory	(simulated	field)	configurations	used	and	the	159	
variables	implemented	to	obtain	the	hyperspectral	data	with	the	highest	signal-to-noise	ratio	160	
(SNR).	The	hyperspectral	imager	is	a	passive	sensor,	but	has	been	applied	with	an	external	161	
halogen	light	source.	The	Laser	pointers	allow	to	precisely	position	the	hyperspectral	imager	162	
over	the	target.	163	

2.2	On-line	soil	and	crop	measurements	in	the	field		164	

The	on-line	field	measurements	included	crop	spectra	and	soil	MC	and	TN.	The	reason	why	165	

MC	and	TN	were	the	selected	soil	properties,	is	that	the	former	affects	the	soil	physical	and	166	

mechanical	conditions,	influencing	the	soil	dynamic	behaviour	below	the	tractor	tyres	during	167	

the	on-line	measurement,	whereas	both	may	well	be	linked	with	crop	growth	(assuming	that	168	

TN	is	directly	linked	to	mineral	nitrogen).	It	is	worth	mentioning	that	mineral	nitrogen	(e.g.	169	

nitrate	and	ammonia)	cannot	be	measured	with	visible	(400-780	nm)	and	near	infrared	(780-170	

2200	nm)	(vis-NIR)	spectroscopy	(Kuang	et	al.,	2012).	Furthermore,	the	literature	confirmed	171	
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the	potential	of	the	vis-NIR	to	measure	MC	and	TN,	which	is	attributed	to	the	direct	spectral	172	

response	of	these	properties	in	the	NIR	range	(Stenberg	et	al.,	2010;	Kuang	et	al.,	2012).	The	173	

SNR	values	from	the	canopies	hyperspectral	data	was	compared	against	the	on-line	measured	174	

soil	 properties	 at	 the	 same	 location	 via	 Kappa	 statistics	 and	 visual	 comparisons.	 This	was	175	

essential	to	evaluate	whether	or	not	the	optimal	measurement	configuration	established	in	176	

the	laboratory	is	applicable	in	the	field,	and	whether	modifications	should	be	considered.	177	

An	on-line	vis-NIR	soil	sensor	developed	by	Mouazen	(2006)	was	used	in	this	study	to	measure	178	

soil	MC	and	TN,	with	the	objective	of	mapping	the	spatial	variability	of	these	two	selected	soil	179	

properties.	 The	 system	 consists	 of	 a	 subsoiler,	 opening	 a	 smooth	 trench	 at	 15	 cm	 depth	180	

(Mouazen	 et	 al.,	 2005).	 The	 sensor	 was	 mounted	 on	 a	 three-point	 linkage	 of	 a	 tractor	181	

travelling	at	a	speed	of	3	km	h-1	and	collecting	spectral	soil	data	at	10	m	parallel	intervals.	In	182	

order	 to	measure	 soil	 spectra	an	AgroSpec	mobile,	 fibre	 type,	 vis–NIR	 spectrophotometer	183	

(Tec5	Technology	for	Spectroscopy,	Oberursel,	Germany),	with	a	measurement	range	of	305–184	

2200	nm	and	a	light	source	of	20W	tungsten	halogen	lamp	were	used	(Kuang	&	Mouazen,	185	

2013).	A	differential	global	positioning	system	(DGPS)	(EZ-Guide	250,	Trimble,	California,	USA)	186	

recorded	the	position	of	the	on-line	spectra	with	sub-meter	accuracy.	The	collection	of	soil	187	

spectra	and	DGPS	readings	took	place	at	1	sec	sampling	resolution	using	AgroSpec	software	188	

(Tec5	Technology	for	Spectroscopy,	Oberursel,	Germany).		189	

The	 same	 hyperspectral	 imager	 (Gilden	 Photonics	 Ltd,	 Glasgow,	 UK)	 as	 that	 used	 in	 the	190	

laboratory	to	optimise	measurement	configuration	was	used	for	on-line	measurement	the	191	

wheat	 canopy	 in	 the	 field.	 The	 following	 hyperspectral	 measurement	 configuration	 was	192	

considered:	 an	 integration	 time	 of	 50	ms,	 a	 camera	 height	 of	 0.3	m	 and	 light	 height	 and	193	

distance	of	1.2	m	and	a	camera	angle	of	10°.	The	hyperspectral	 imager	was	mounted	on	a	194	
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tractor	boom	(Fig.	2)	traveling	at	approximately	4	km	h-1.	The	direction	and	angle	of	the	imager	195	

was	kept	consistent,	and	a	day	with	uniformly	overcast	weather	(complete	cloud	cover)	was	196	

selected,	which	helped	prevent	issues	of	moving	shadows	from	lateral	sun	movement	on	the	197	

data	(West	et	al.,	2003).	Nevertheless,	a	handheld	LUX	meter	(RS	180	–	7133,	RS	Components	198	

&	Controls,	India)	was	utilized	to	check	the	sunlight	and	readings	ranged	between	1950	and	199	

2000,	indicating	no	significant	difference.	The	hyperspectral	camera	was	mounted	to	the	side	200	

of	the	tractor.		It	captures	images	of	1608	pixels	per	line,	over	a	one-second	interval,	which	is	201	

subsequently	logged	and	geo-located	using	a	DGPS.	The	collected	scans	were	corrected	by	202	

means	of	a	dark	and	a	white	reference	(spectralon	99%	white	reflectance	panel).	The	latter	203	

was	used	before	spectral	capture,	and	at	a	maximum	of	30	minute	intervals	until	scanning	204	

was	completed.		205	

	206	

Figure	 2.	 Illustrates	 the	 on-line	 field	 hyperspectral	 measurement	 using	 hyperspectral	207	
measurement	configuration.	208	

2.3	Data	analyses	209	

2.1.1 Spectrograph	spectral	data	processing	and	evaluation	210	

Quality	 of	 the	 wheat	 canopy	 spectra	 (measured	 both	 in	 the	 laboratory	 and	 field)	 was	211	

evaluated	by	analysing	SNR.	The	SNR	is	defined	here	as	a	ratio	of	the	signal	strength	to	that	of	212	
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unwanted	 interference.	 A	 strong	 signal	 devoid	 of	 interference	 is	 the	 desired	 outcome	 in	213	

measurements.	 If	 the	 data	 is	 too	 noisy	 it	 can	 hide	 key	 features	 of	 the	 spectrum,	 and	 data	 pre-214	

processing	such	as	smoothing	can	result	in	them	being	removed	(Dasu	&	Johnson,	2003).	A	noisy	215	

spectrum	can	result	in	poor	calibration	models,	due	to	noise	being	considered	as	a	feature.	There	216	

are	many	applications	for	estimating	the	SNR	from	sources	such	as	electrical,	chemical,	and	217	

spectral.	Different	methods	are	often	applied	to	estimate	the	SNR	value,	depending	on	the	218	

data	input.	Curran	&	Dungan	(1989)	used	a	bright	homogenous	surface	to	estimate	the	SNR	219	

and	produced	a	method	termed	the	geostatistical	method	for	removal	of	periodic	noise	in	220	

images.	 Van	 der	Meer	 (2000)	 used	 a	method	 outlined	 by	 Lee	 (1990)	 for	 remote	 spectral	221	

sensing,	 to	 asses	 SNR	 of	 Landsat	 Thematic	 imagery.	 Analysis	 of	 image	 SNR	 has	 also	 been	222	

conducted	through	production	of	histograms	of	an	image	(Ramamurthy	et	al.,	2004).	A	similar	223	

approach	was	outlined	earlier	by	smith	(1999),	where	spectra	were	collected	from	grayscale	224	

images.	Smith	(1999)	exampled	a	SNR	range	between	0.5	and	2.0,	stating	that	there	is	only	225	

an	issue	if	the	SNR	value	drops	below	1.0.	We	have	used	a	crop	canopy	in	this	study	instead	226	

of	a	white	or	grey	reference	panel	to	calculate	SNR,	since	the	intension	was	to	use	the	optimal	227	

configuration	for	on-line	measurement	of	crop	canopy	in	the	field,	where	variations	in	canopy	228	

architecture	and	leaf	orientation	are	foreseen.	Similar	to	the	current	work,	Daumard	et	al.	229	

(2010)	relied	on	crop	canopy	spectra	to	maximise	SNR,	although	details	of	the	calculation	of	230	

SNR	were	not	provided.	However,	they	considered	central	pixels	only	 in	their	calculations,	231	

whilst	we	have	considered	all	pixels	in	a	line	image	after	removing	non-crop	canopy	spectra.	232	

The	following	assumptions	were	made	in	the	current	study	to	justify	the	selection	of	a	crop	233	

canopy	for	achieving	an	optimal	measurement	setup:	234	

1-	Non-crop	contaminated	spectra	including	soil	and	soil-plant,	etc.	can	be	excluded	from	the	235	

analysis.	This	was	done	by	calculating	normalised	differential	vegetation	index	(NDVI)	of	all	236	
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pixels.	Spectra	of	pixels	with	NDVI	values	smaller	than	0.3	were	removed	from	the	calculation	237	

of	SNR.	This	method	is	used	by	Bravo	et	al.	(2004)	and	Rouse	et	al.	(1974).	238	

2-	Spectra	of	remaining	pixels	contain	both	noise	and	actual	canopy	signal,	the	intensity	of	239	

which	depends	on	the	pixel	position	within	a	complex	canopy	structure	of	the	crop.	This	will	240	

allows	mimicking	the	measurement	of	actual	canopy.	241	

3-	Variation	in	position	of	pixels	for	a	series	of	scans	can	be	minimised	by	fixing	the	position	242	

of	 crop	 trays,	 so	 that	 line	 images	 are	 collected	 from	 the	 same	 target	 area	 for	 different	243	

measurement	configurations.	In	this	case,	whilst	uniform	intensity	cannot	be	achieved	across	244	

the	spectrum	in	one	scan,	each	pixel	has	almost	the	same	target	object	throughout	all	the	245	

scans.	246	

The	calculation	of	the	SNR	was	done	in	this	study	following	a	similar	approach	adopted	by	247	

Ramamurthy	et	al.	(2014)	and	described	earlier	by	Smith	(1999).	As	the	data	collected	is	single	248	

line	 2-dimensional	 captures,	 the	 data	 was	 assessed	 as	 spectra	 rather	 than	 images.	 This	249	

method	of	SNR	was	selected	as	it	could	be	used	as	a	basis	of	comparison	between	individual	250	

spectral	data	captures.	We	calculated	the	SNR	of	individual	wavelength	(SNRw)	as	follows:	251	

	252	

SNRw	=	Mw/SDw	 	 	 	 	 	 	 	 	 	 (1)	253	

	254	

Where:	Mw	is	the	mean	reflectance	value	of	individual	wavelength	through	all	the	pixels,	and	255	

SDw	is	the	standard	deviation	of	individual	wavelength	of	all	pixels	(Fig.	3).	It	is	worth	noting	256	

that	all	pixels	were	considered	important	in	the	current	work	to	calculate	SNR.	An	alternative	257	
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approach	to	this	method	would	have	been	to	select	central	pixels	only	to	calculate	SNR,	a	258	

method	applied	by	Daumard	et	al.	(2010).			259	

The	mean	spectral	signal	describes	what	is	being	measured,	whereas	the	standard	deviation	260	

represents	noise	and	other	interference	for	each	pixel	(Smith,	1999).	Mw	values	for	different	261	

wavelengths	were	calculated	on	remaining	967	wavebands,	after	removing	the	spectral	range	262	

outside	of	the	400	to	750	nm	range,	since	they	were	found	to	be	noisy.	Once	Mw	and	SDw	263	

are	calculated	for	each	individual	wavelength,	the	SNR	for	a	spectrum	(SNRs)	was	calculated	264	

as	follows	(see	Fig.	3):	265	

	266	

SNRs	=	Ms/SDs		 	 	 	 	 	 	 	 	 	 (2)	267	

	268	

Where:	Ms	 is	mean	 reflectance	of	all	wavelengths	 in	a	 spectrum	 (a	 scan)	and	SDs	 is	mean	269	

standard	deviation	of	all	wavelengths	in	a	spectrum.		270	

The	 SNRs	was	 used	 in	 this	 study	 to	 evaluate	 the	 strength	 of	 scans,	 hence,	 the	 quality	 of	271	

spectral	signal.	It	is	worth	noting	that	SD	is	not	important	in	itself,	but	only	in	comparison	to	272	

the	mean.	While	convenient	and	straightforward,	the	deviation	is	a	statistic	doesn't	fit	well	273	

with	 the	 physics	 of	 how	 signals	 operate	 (Smith,	 1999).	 Therefore,	 a	 strong	 SNR	 with	274	

pronounced	absorption	peaks	provides	increased	recognition	for	the	association	of	spectral	275	

signatures	to	a	subject.		276	

A	 principal	 component	 analysis	 (PCA)	 was	 also	 undertaken	 on	 laboratory	 measured	277	

hyperspectral	data	only	using	Statistica	 software	 (StatSoft	 inc.,	Oklahoma	USA)	 to	 identify	278	
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parameters	with	the	greatest	impact	on	SNR.	PCA	is	a	statistical	method,	which	analyses	the	279	

distribution	 of	 data	 in	multidimensional	 space	 (principal	 components)	 or	 similarity	maps,	280	

where	 similarities	 (within	 groups	 of	 variable)	 and	 differences	 between	 groups	 can	 be	281	

evaluated	(Dytham,	2011).	In	this	instance,	SNR,	integration	time,	light	height	and	distance,	282	

and	camera	angle	and	height	were	used	as	input	variables	for	the	PCA	analysis.	Additionally,	283	

a	 two-way	 analysis	 of	 variance	 (ANOVA)	 was	 carried	 out	 with	 RStudio	 software	 (RStudio	284	

Boston,	MA)	to	estimate	significant	influences	of	individual	variables	and	interaction	between	285	

variables	on	SNR	(Webster,	2007;	Dytham,	2011).		286	

	287	

2.1.2 On-line	soil	sensor	calibration		288	

Laboratory	measurements	of	MC	and	TN	were	carried	out	using	standard	reference	method.	289	

Soil	MC	was	measured	with	 oven	 drying	 of	 samples	 at	 105ºC	 for	 24	 h,	 whereas	 TN	was	290	

measured	with	a	TrusSpecCNS	spectrometer	(LECO	Corporation,	St.	Joseph,	MI,	USA),	using	291	

the	Dumas	combustion	method	(Dumas,	1826	as	cited	by	Buckee,	1994).	The	on-line	collected	292	

soil	spectra	were	subjected	to	pre-processing	before	modelling.	Pre-processing	included	noise	293	

cut	by	removing	wavelengths	smaller	than	400	nm	and	larger	than	1900	nm.	Noise	cut	was	294	

followed	successively	by	maximum	normalisation,	first	derivative	and	smoothing.	Partial	least	295	

squares	regression	(PLSR)	analysis	with	leave-one-out	full	cross-validation	was	carried	out	to	296	

establish	correlations	between	soil	spectra	and	laboratory	measured	MC	and	TN.	Spectra	pre-297	

processing	and	PLSR	analysis	were	carried	out	using	Unscrambler	7.8	software	(Camo	Inc.;	298	

Oslo,	Norway).		299	

	300	
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2.4	Mapping	301	

Maps	 for	 on-line	 vis-NIR	 predicted	 MC	 and	 TN	 and	 on-line	 spectrograph	 measured	 crop	302	

canopy	of	wheat	were	developed	used	ArcGIS	10	(ESRI,	California,	USA)	software.	Kriging	was	303	

used	to	develop	maps,	assuming	that	the	distance	or	direction	between	sample	points	reflects	304	

a	spatial	correlation	that	can	be	used	to	explain	spatial	variations.	The	advanced	parameters	305	

option	 in	ArcGIS	10	software	(ESRI,	California,	USA)	allowed	control	of	the	semi-variogram	306	

used	for	kriging,	selecting	spherical	as	the	best	fit.	The	semi-variogram	values	were	calculated	307	

in	RStudio	(RStudio,	Boston,	MA).		308	

The	similarity	assessment	between	maps	can	be	performed	by	visual	inspection	and	statistical	309	

tests	(Tekin	et	al.,	2013).	The	simplest	way	of	comparing	between	maps	is	by	visual	inspection,	310	

to	conclude	on	similarities	that	may	exist	or	not.	However,	this	is	insufficient,	as	quantitative	311	

estimation	 of	 similarity	 is	 a	 more	 robust	 approach	 to	 adopt.	 To	 compare	 statistical	312	

relationship	 of	 pairs	 of	maps,	 Kappa	 statistics	 (Cohen,	 1960)	 analyses	were	 performed	 to	313	

calculate	Kappa	value	(κ),	using	SPSS	(Statistical	Package	for	the	Social	Sciences,	IBM,	Armonk,	314	

New	 York,	 USA).	 However,	 before	 running	 Kappa	 statistics	 data	 was	 subjected	 to	 raster	315	

analyses	 to	 have	 the	 same	 5	 m	 by	 5	 m	 grid	 size	 for	 all	 maps,	 after	 which	 the	 data	 was	316	

normalised.		317	
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	318	

Figure	3.	Schematic	illustration	outlining	how	mean,	standard	deviation	and	signal-to-noise	319	
ratio	 for	 wavelength	 (Mw,	 SDw,	 SNRw,	 respectively)	 and	 a	 spectrum	 (Ms,	 SDs,	 SNRs,	320	
respectively)	were	calculated.	321	

3 Results	and	Discussion	322	

3.1	Spectral	quality	in	the	laboratory	323	

Typical	 crop	 canopy	 spectra	 can	 be	 observed	 in	 Figure	 4,	 which	 shows	 clear,	 noisy	 and	324	

saturated	spectra.	The	clear	and	saturated	spectra	can	be	observed	to	be	more	pronounced,	325	

whereas	a	weak	absorption	in	the	spectral	signature	and	interference	in	the	noisy	spectrum	326	

leads	 to	 reduced	 quality,	 low	 SNR,	 masking	 detail	 in	 the	 signature	 and	 causing	 a	 loss	 of	327	

important	spectral	information	through	the	entire	spectral	range	studied.	The	clear	spectrum	328	

is	the	best	quality,	and	the	target	to	be	obtained.	The	noisy	spectrum	is	caused	by	the	low	329	

integration	 times,	 and	 greater	 distance	 of	 the	 Halogen	 light	 source.	 A	 strong	 SNR	 with	330	

pronounced	 absorption	 peaks	 would	 allow	 for	 a	 greater	 success	 in	 analysis	 of	 crop	331	

assessments	 and	 disease	 presence.	 Although,	 pre-processing	 of	 spectral	 data	 includes	332	

techniques	such	as	smoothing,	 if	the	process	of	cleaning	the	data	is	 intensive	due	to	noisy	333	

spectra	it	can	lead	to	the	loss	of	important	spectral	features,	and	thus	impact	on	the	success	334	

of	analysis	(Dasu	&	Johnson,	2003).		335	
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Saturation	 predominantly	 occurs	 within	 the	 central	 pixels	 associated	 with	 the	 highest	336	

reflectance,	causing	data	 in	the	peaks	of	the	electromagnetic	spectrum	to	be	lost	(starting	337	

around	650	nm).	Leaf	reflectance	in	the	NIR	range	is	affected	by	the	structure	of	the	plant	338	

leaves	(Gates	et	al.,	1965),	and	can	be	related	to	the	leaf	wax	coating	(Cameron	1970).	In	the	339	

case	 of	 spectral	 saturation	 the	 data	 becomes	 unusable.	 In	 the	 remaining	 parts	 of	 the	340	

spectrum,	however,	particularly	the	visible	range	(400–700	nm),	there	is	a	lower	reflectance	341	

due	to	a	larger	absorption	of	the	light,	which	is	attributed	to	the	photosynthetic	pigments	of	342	

the	plants	leaves,		(Gates	et	al.,	1965).	343	

When	 analysing	 the	 entire	 spectral	 signature	 saturation	 causes	 a	 reduction	 in	 sensitivity.	344	

Therefore,	sensor	configurations	leading	to	saturated	spectral	data	were	removed	from	the	345	

analysis	of	SNR.	All	saturated	data	was	obtained	with	integration	time	of	1000	ms,	this	is	in	346	

line	 with	 the	 literature,	 where	 larger	 integration	 times	 can	 cause	 saturation	 of	 the	 data	347	

(Dell’Endice,	2008).	348	

	349	

Figure	4.	Examples	of	smooth	(the	grey	 line	with	1.6	signal-to-noise	ratio	(SNR),	noisy	(the	350	
black	line	with	1.2	SNR),	and	saturated	(the	dotted	line	with	1.8	SNR)	spectra	of	wheat	canopy.	351	



18	
	

The	saturated	spectrum	flattens	off	at	680-750	nm	and	important	information	is	lost	on	the	352	
peak	around	700	nm	that	is	otherwise	illustrated	by	the	clear	spectra.	353	

3.2	Hyperspectral	images	configuration	parameters;	laboratory	354	

The	integration	time	considerably	affected	the	SNR,	expressed	as	average	and	SD	values	(Eq.	355	

1),	as	shown	in	Table	2.	The	longer	the	integration	time	the	greater	the	opportunity	for	more	356	

energy	 to	 be	 captured	 by	 the	 spectrograph.	 The	 1000	ms	 configuration	 was	 the	 highest	357	

potential	 integration	 time	 and	 was	 trialled	 (under	 field	 simulations)	 to	 see	 the	 potential	358	

highest	SNR,	whilst	the	manufacturer	recommended	around	20	ms	for	laboratory	use.	The	359	

results	from	the	1000	ms	integration	time	provided	a	high	percentage	of	saturated	results,	360	

the	non-saturated	recordings	were	of	the	same	SNR	values	to	that	of	the	50	ms	integration	361	

times,	 so	 integration	 times	 higher	 than	 50	ms	were	 not	 trialled	 further.	With	 varying	 the	362	

integration	time,	parameters	have	constant	values	apart	from	the	camera	height.	The	optimal	363	

camera	height	decreases	with	the	integration	time,	the	closer	the	camera	to	the	object	the	364	

shorter	the	integration	time	required.	This	may	mean	that	the	most	influencing	parameters	365	

on	the	SNR	are	the	integration	time	and	camera	height.	Other	studies	demonstrated	that	the	366	

movement	(adjustments,	bounce	or	vibration)	between	the	 imager	and	the	subject	during	367	

integration	time	can	cause	a	compiled	image	to	be	warped	or	noisy	(Zhong	et	al.,	2011).	For	368	

on-line	measurements	the	easiest	variable	to	control	is	integration	time,	as	angle	and	height	369	

can	 alter	 slightly	 as	 ground	 is	 uneven,	 crop	 stands	 vary	 and	 unavoidable	 movement	 in	370	

mountings.	 It	 becomes	 necessary	 to	 have	 the	 optimal	 configurations	 set	 initially	 but	 to	371	

understand	 there	would	be	 slight	deviations.	A	NADIR	 camera	angle	was	 selected,	due	 to	372	

reports	from	Oberti	et	al.	(2014)	and	Van	Beek	et	al.	(2013).	373	

ANOVA	 showed	 that	 all	 individual	 variables	 and	 interactions	 of	 variables	 have	 significant	374	

influences	on	SNR	at	 the	 (0.005)	95%	confidence	 level,	except	 for	 the	 interactions	of	 light	375	
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distance	and	integration	time	(0.001),	and	light	distance,	camera	height	and	integration	time	376	

(0.01).	 Therefore,	 the	 null	 hypothesise	 ‘that	 variables	 and	 subsequent	 interactions	 of	377	

variables	will	have	no	significant	effect	on	SNR’	can	be	rejected.	378	

Figure	5	illustrates	the	similarity	maps	of	principal	component	(PC)	1	and	2	(a),	and	PC1	and	3	379	

(b)	accounting	for	47.62%	and	42.26%	of	variance,	respectively.	Examining	the	plot	of	PC1	vs	380	

PC2	one	can	observe	that	the	integration	time,	SNR	and	camera	height	are	gathered	in	one	381	

group,	 which	 explains	 these	 to	 be	 closely	 related.	 Integration	 time	 shows	 the	 strongest	382	

influence	and	correlation	with	SNR,	whereas,	camera	height	demonstrates	the	second	closest	383	

corresponding	 variable	 on	 SNR	 with	 the	 latter	 having	 a	 weaker	 influence	 (Fig.	 5a).	 Light	384	

distance,	light	height	and	camera	angle	seem	to	have	only	minor	influences	on	SNR,	as	they	385	

make	 a	 separate	 group	 associated	 with	 PC2	 with	 minor	 variance	 associated	 with	 PC1.	386	

Disregarding	other	variables,	 it	becomes	clear	that	a	 longer	 integration	time	and	a	smaller	387	

camera	height	result	in	a	higher	SNR.		388	

Although	the	light	distance	and	height	are	strongly	associated	in	the	PCA	similarity	maps	(Fig.	389	

5a	&	b),	they	have	a	negligible	influence	on	the	SNR.	This	does	not	mean	that	the	absence	of	390	

light	would	have	no	effect.	As	long	as	there	was	ample	diffused	light,	in	order	for	the	detector	391	

to	collect	photons,	light	variables	appeared	to	have	little	impact.	Although	the	influence	of	392	

camera	height	was	the	second	largest	in	the	PC1-PC2	similarity	map,	in	the	PC1-PC3	similarity	393	

map,	the	camera	height	has	small	influence	on	SNR	similar	to	the	light	variables.	Furthermore,	394	

the	 close	 correlation	 between	 camera	 height	 and	 integration	 time	 shown	 in	 the	 PC1-PC2	395	

similarity	map	is	not	observed	in	the	PC1-PC3	similarity	map.	In	the	latter	similarity	map	(Fig.	396	

5b),	the	camera	angle	has	the	second	largest	influence	on	SNR	after	the	integration	time.	This	397	

means	 that	 both	 camera	 height	 and	 angle	 have	 strong	 influences	 on	 the	 SNR.	 Under	398	



20	
	

laboratory	measurement	conditions,	larger	camera	angles	were	reported	to	be	beneficial	for	399	

powdery	mildew	recognition	 in	 leaves	of	grape	vines	by	Oberti	et	al.	 (2014).	Smaller	view	400	

angles	are	discussed	by	Pisek	et	al.	(2009)	to	theoretically	be	better	due	to	observing	a	larger	401	

area.	Rautiainen	et	al.	(2008)	concluded	greater	nadir	angles	are	more	suitable	for	viewing	402	

the	top	canopy	and	had	a	very	limited	view	of	the	understory.	This	is	supported	by	the	finding	403	

that	80%	of	the	crop	yield	is	calculated	from	the	health	of	the	top	3	leaves	(HGCA,	2008).	The	404	

correlation	between	green	leaf	retention	and	yield	has	been	observed	in	a	number	of	trials	405	

(Reynolds	 et	 al.,	 2009;	 Ali	 et	 al.,	 2010;	 Hunt	 &	 Poole,	 2010)	 and	 can	 be	 observed	 with	406	

reference	to	trial	work	in	barley	conducted	by	the	authors	in	2009,	where	every	1%	reduction	407	

in	green	leaf	area	on	flag-1	at	GS80	correlated	to	a	20	kg/ha	loss	in	yield.	This	is	true	when	408	

applying	a	camera	angle.	But	when	assessing	light	conditions,	an	off-nadir	angle	can	create	409	

more	 lighting	variability,	due	to	shady	and	sunlit	areas	of	 the	crop.	Van	Beek	et	al.	 (2013)	410	

found	that	for	smaller	off-nadir	viewing	angles	(<20°)	of	the	sensor,	the	sun	orientation	was	411	

found	not	to	be	important.	This,	along	with	issues	of	shadow	from	the	infield	mountings,	is	412	

why	small	angles	for	the	configurations	were	selected.		413	



21	
	

	414	

Figure	5.	Principal	component	analysis	similarity	maps	developed	for	principal	components	1	415	
and	2	(a)	and	for	principal	components	1	and	3	(b).	Input	variables	are	camera	and	light	height,	416	
light	distance,	camera	angle,	integration	time	and	signal-to-noise	ratio	(SNR)	417	

	418	
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To	make	a	decision	on	an	optimal	configuration	that	would	result	in	the	highest	SNR,	was	not	419	

a	 straightforward	 process.	 However,	 when	 SNR	 values	 are	 arranged	 according	 to	 the	420	

integration	 time	 (Table	 2),	 a	 clear	 trend	 is	 observed.	 For	 example,	 SNR	 increased	 with	421	

integration	time,	where	the	highest	values	of	SNR	were	obtained	with	an	integration	time	of	422	

1000	ms,	 however,	 they	were	 only	marginally	 higher	 than	 the	 SNR	 values	 at	 50ms.	 Since	423	

several	 variable	 combinations	 resulted	 in	 similar	 SNR	 values,	 it	 is	 perhaps	 premature	 to	424	

suggest	the	optimal	configuration	as	the	single	highest,	so	configurations	with	SNR	variability	425	

of	 less	 than	 5%	 from	 the	 highest	 reading	 (of	 each	 integration	 time)	were	 considered	 for	426	

further	evaluation.	The	further	analysis	confirms	that	the	highest	SNR	occurs	with	the	same	427	

configurations	 of	 1.2	m,	 1.2	m,	 and	 10°	 of	 light	 height,	 light	 distance	 and	 camera	 angle,	428	

respectively.	As	stated	earlier,	the	camera	height	is	negatively	correlated	with	the	integration	429	

time	(Table	2).	A	possible	theory	for	reoccurrence	of	these	configurations	could	be	that	they	430	

allow	for	the	greatest	amount	of	reflected	light	to	be	captured	by	the	detector.	Among	the	431	

integration	 time	 steps	 of	 10,	 20,	 50	 and	 1000	 ms	 selected,	 a	 practical	 range	 for	 on-line	432	

measurement	is	between	10	ms	and	50	ms,	a	range	which	is	suggested	by	the	manufacturers.	433	

Assuming	that	the	best	 integration	time	for	practical	on-line	(mobile)	measurement	 in	the	434	

field	 is	 50	ms,	 the	 optimal	 configuration	 parameters	 of	 1.2	m,	 1.2	m,	 0.3	m	 and	 10°	 are	435	

recommended	for	light	height,	light	distance,	camera	height,	and	camera	angle,	respectively.	436	

The	average	SNR	for	 this	 integration	time	 is	1.669	 (seen	 in	 table	2),	which	 in	 reference	to	437	

Smith	 (1999)	we	believe	 is	 a	 strong	 signal	 for	 a	 crop	 canopy.	These	optimal	 configuration	438	

parameters	were	adopted	for	the	on-line	measurement	of	wheat	canopy	measurement	in	this	439	

study.	440	

 441	

 442	
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Table	2.	Average	and	standard	deviation	(SD)	values	of	the	highest	signal-to-noise-ratio	443	
(SNR)	obtained	with	different	integration	time,	camera	and	light	source	settings	when	444	
scanning	a	wheat	canopy.	Theoretical	forward	distance	travelled	(and	captured	to	a	single	445	
data	line)	if	applied	on	a	moving	platform	at	field	scale.	446	

	447	

3.3	Hyperspectral	imager;	on-line	measurement	448	

During	the	on-line	measurement,	it	was	noticed	that	there	was	an	unavoidable	bounce	in	the	449	

boom	observed	to	be	at	±0.2	m	of	the	original	height	of	the	mounting	(set	at	0.3	m	above	the	450	

crop	 canopy).	 On	 inspection	 of	 the	 data	 the	 camera	 height	 from	 the	 object	 affected	 the	451	

uniformity	of	light	intensity	measured	across	the	pixels,	(particularly	at	the	beginning	and	end	452	

of	 the	 captured	 line).	 Therefore,	 for	 calibrating	 the	 on-line	 hyperspectral	 scans,	 it	 is	453	

recommended	to	overcome	this	fluctuation	by	removing	the	first	and	last	320	pixels	from	the	454	

spectral	 data.	 This	 is	 specific	 to	 this	 hyperspectral	 imager	 but	 is	 an	 interesting	 factor	 for	455	

consideration.		456	

Comparing	the	laboratory	with	on-line	field	measured	canopy	spectra,	one	can	observe	that	457	

the	laboratory	reflectance	scans	to	be	marginally	higher	and	more	consistent	than	the	on-line	458	

scans	(Fig.	6).	Initially,	the	on-line	spectra	showed	variation	in	canopy	spectra	throughout	the	459	

field,	which	appeared	to	be	in	response	to	different	crop	spatial	conditions.	For	example,	the	460	

field	scan	1	refers	to	canopy	of	water	stressed	wheat	plants,	whereas	field	scan	2	refers	to	461	

Average, 

SNR 
SD 

Integration 

time,  

ms 

Light 

height,  

m 

Light 

distance,  

m 

Camera 

height,  

m 

Camera 

angle, 

deg 

Distance 

travelled, 

m 

1.688 0.102 1000 1.2 1.2 0.15 10 4  

1.669 0.160 50 1.2 1.2 0.30 10 0.2  

1.471 0.103 20 1.2 1.2 0.45 10 0.08  

1.386 0.078 10 1.2 1.2 0.45 10 0.04  
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healthier	wheat	plants.	Crop	starts	to	show	yellow	colour	as	a	symptom	of	water	stress,	which	462	

leads	to	reduce	light	absorption	and	increased	reflectance	as	shown	in	field	scan	1	(Fig.	6).	463	

More	 detailed	 analysis	 of	 crop	 and	 soil	 properties	 needs	 to	 be	 assessed	 to	 understand	464	

differences	in	quality	of	canopy	spectra	collected	in	the	field.		465	

	466	

Figure	6.	Comparison	of	canopy	spectra	of	wheat	crop	obtained	in	the	laboratory	(the	dashed	467	
line)	and	on-line	in	the	field	(the	dotted	and	grey	lines).	Crop	was	of	the	same	culture	and	at	468	
comparable	 growth	 stages.	 Laboratory	 scans	were	 collected	 under	 the	 suggested	 optimal	469	
configurations.	The	on-line	field	scans	are:	1)	field	scan	1	(the	grey	line)	is	of	a	more	water	470	
stressed	plant	and	2)	field	scan	2	(the	dotted	line)	is	of	a	less	water	stressed	plant.	471	

	472	
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	473	

Figure	7.	Maps	of	on-line	measured	soil	moisture	content	(MC)	(a)	total	nitrogen	(TN)	(b),	and	474	
the	average	signal-to-noise	ratio	(SNR)	per	scan	(c).	475	

	476	

3.4	 Influence	 of	 soil	 properties	 on	 signal-to-noise	 ratio	 during	 the	 on-line	477	

measurement	478	

The	on-line	measured	soil	MC	and	TN	maps	of	the	field	provided	a	visual	explanation	(Fig.	7)	479	

for	a	drop	in	absorbance	within	certain	areas	of	the	field.	Comparing	the	MC	map	with	the	480	

SNR	map,	one	can	draw	a	general	conclusion	that	areas	of	low	MC	correspond	with	areas	of	481	
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high	SNR,	and	vice	versa	(areas	of	high	MC	being	of	low	SNR).	This	can	be	explained	by	the	482	

fact	that	soil	deformation	under	the	tractor	tyre	in	wet	soils	is	larger	than	that	in	drier	soil	483	

conditions.	A	larger	soil	deformation	should	result	in	a	larger	fluctuation	in	camera	height	and	484	

angle,	compared	to	the	baseline	setup,	which	may	lead	to	reducing	the	SNR.	Work	carried	out	485	

by	Söhne	(1958)	showed	that	an	increase	in	the	MC	of	a	soil	and	the	increase	in	payload	on	a	486	

tyre	both	increase	the	depth	of	soil	deformation.	487	

Both	on-line	measured	MC	and	TN	were	found	to	have	significant	effects	on	the	SNR	of	the	488	

wheat	canopy	spectra	at	95%	confidence.	The	kappa	values	between	the	SNR	map	on	one	489	

hand	and	TN	and	MC	maps	on	the	other	hand	confirm	spatial	similarity	or	difference	the	field.	490	

Landis	&	 Koch	 (1977)	 classified	 Kappa	 values	 into	 different	 categories:	 0–0.20,	 0.21–0.40,	491	

0.41–0.60,	 0.61–0.80,	 and	 0.81–1,	 which	 indicate	 slight,	 fair,	 moderate,	 substantial,	 and	492	

almost	perfect	agreement,	respectively.	Results	show	that	the	Kappa	value	between	TN	and	493	

SNR	is	rather	small	(kappa	=	0.56),	indicating	moderate	similarity	between	these	two	maps.	494	

Since	TN	is	the	main	source	of	mineral	nitrogen	essential	for	crop	growth	and	development,	495	

it	can	be	influential	on	the	quality	of	crop	canopy	and	SNR.	The	kappa	value	between	MC	and	496	

SNR	 was	 much	 higher	 (kappa	 =	 0.75)	 than	 that	 between	 TN	 and	 SNR	 map,	 confirming	497	

substantial	similarity	between	the	two	maps.	This	supports	the	earlier	suggestion	about	the	498	

influence	 of	 MC	 on	 soil	 deformation	 that	 changes	 the	 initial	 (optimal)	 hyperspectral	499	

measurement	 configuration	 obtained	 in	 the	 laboratory	 and	 implemented	 for	 on-line	500	

measurement	in	the	field.	In	order	to	reduce	the	negative	influence	of	soil	deformation	on	501	

SNR	 due	 to	 high	 soil	 MC	 during	 on-line	 scanning,	 proper	 spectra	 pre-processing	 is	502	

recommended	e.g.,	normalisation,	derivation,	and	multiplicative	scatter	corrections.	Further	503	

research	is	required	to	confirm	this	assumption,	as	when	measuring	on-line,	deviations	from	504	
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the	 optimum	 configuration	 (due	 to	 tractor	 vibration,	 bounce	 in	 the	 boom	 and	 soil	505	

deformation)	were	unavoidable.		506	

	507	

4 Conclusions	508	

This	 study	 was	 undertaken	 to	 determine	 an	 optimal	 measurement	 configuration	 of	 a	509	

hyperspectral	line	imager	(400-750	nm)	by	evaluating	the	individual	and	interaction	effects	of	510	

the	systems	configurations,	on	the	hyperspectral	calculated	SNR	for	measurement	of	a	wheat	511	

canopy	 under	 laboratory	 scanning	 conditions.	 Optimal	 configuration	was	 determined	 and	512	

implemented	for	on-line	field	measurement.	The	influence	of	on-line	measured	soil	moisture	513	

content	(MC)	and	total	nitrogen	(TN)	on	SNR	was	evaluated.	Results	allowed	the	following	514	

conclusions	to	be	drawn:		515	

1-	The	integration	time	followed	by	the	camera	height	and	camera	angle	appeared	to	have	516	

the	largest	influence	of	the	SNR.	A	long	integration	time	(>50	ms)	was	of	a	negligible	influence	517	

and	only	slightly	increased	the	SNR,	but	result	in	spectral	saturation,	hence	should	be	avoided.	518	

3-	The	PCA	similarity	map	showed	that	the	light	height	and	distance	have	a	strong	correlation	519	

with	each	other	but	a	minimal	influence	on	SNR.		520	

4-	Both	on-line	measured	MC	and	TN	were	found	to	have	significant	effects	on	the	SNR	of	the	521	

wheat	canopy	spectra	at	95%	confidence.	The	on-line	soil	measurements	revealed	stronger	522	

spatial	similarity	between	the	hyperspectral	SNR	and	MC	maps	(kappa	value	=	0.75),	which	523	

was	attributed	to	soil	deformation	below	the	tractor	tyre.		524	

5-	The	variable	reflected	light	intensity	captured	by	the	different	pixels	across	the	line	imagery	525	

is	an	interesting	factor	to	take	into	account,	due	to	the	impact	of	varying	camera	height	during	526	
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the	 on-line	measurement.	Whilst	 the	 solution	 suggested	 here	 is	 appropriate,	 it	 is	 camera	527	

specific.		528	

Further	work	is	planned	to	overcome	variation	in	SNR	associated	with	camera	height	changes	529	

(vibration,	bounce	in	the	boom,	and	soil	deformation	during	the	on-line	measurement)	by	the	530	

implementation	of	a	proper	 spectra	pre-processing.	 It	 is	also	planned	 to	 implement	 these	531	

hyperspectral	 measurement	 configurations	 for	 on-line	 measurements	 of	 crop	 canopy	 for	532	

detection	of	crop	health	and	disease	presence.	533	

	534	

Acknowledgement	535	

We	acknowledge	 the	 funding	 received	 for	FarmFUSE	project	 from	the	 ICT-AGRI	under	 the	536	

European	Commission’s	ERA-NET	scheme	under	the	7th	Framework	Programme,	and	the	UK	537	

Department	of	Environment,	Food	and	Rural	Affairs	(contract	no:	IF0208).		538	

	539	

References	540	

Ali	M.A.,	Hussain	M.,	Khan	M.I.,	Ali	Z.,	Zulkiffal	M.,	Anwar	J.,	Sabir	W.,	Zeeshan	M.	(2010).	541	

Source-sink	 relationship	 between	 photosynthetic	 organs	 and	 grain	 yield	 attributes	 during	542	

grain	filling	stage	in	spring	wheat	(Triticum	aestivum).	International	Journal	of	Agriculture	and	543	

Biology,	12:	pp.	509–515.	544	

Asner,	G.	P.	(1998).	Biophysical	and	biochemical	sources	of	variability	in	canopy	reflectance.	545	

Remote	sensing	of	Environment,	64(3),	234-253.	546	



29	
	

Barbedo,	 J.	G.,	 Tibola,	C.	 S.,	&	 Fernandes,	 J.	M.	 (2015).	Detecting	 Fusarium	head	blight	 in	547	

wheat	kernels	using	hyperspectral	imaging.	Biosystems	Engineering,	131,	65-76.		548	

Bock,	C.	H.,	Graham,	J.	H.,	Gottwald,	T.	R.,	Cook,	A.	Z.,	&	Parker,	P.	E.	 (2010).	Wind	speed	549	

effects	on	the	quantity	of	Xanthomonas	citri	subsp.	citri	dispersed	downwind	from	canopies	550	

of	grapefruit	trees	infected	with	citrus	canker.	Plant	Disease,	94(6),	725-736.		551	

Bravo,	C.,	Moshou,	D.,	Orberti,	R.,	West,	J.,	McCartney,	A.,	Bodria,	L.	and	Ramon,	H.	(2004).	552	

Foliar	 disease	 detection	 in	 the	 field	 using	 optical	 sensor	 fusion.	Agricultural	 Engineering	553	

International:	CIGR	Journal	of	Scientific	Research	and	Development.	Manuscript	FP	04	008.	Vol.6,	554	

14p.	555	

Buckee,	 G.	 K.	 (1994).	 Determination	of	total	 nitrogen	in	barley,	malt	and	beer	by	Kjeldahl	556	

procedures	and	the	Dumas	combustion	method	—	Collaborative	trial.	Journal	of	the	Institute	557	

of	Brewing	1994,	100	(2)	pp.	57–64.	558	

Cameron,	R.	J.	(1970).	Light	intensity	and	the	growth	of	Eucalyptus	seedlings:	II.	The	effect	of	559	

cuticular	 waxes	 on	 light	 absorption	 in	 leaves	 of	 Eucalyptus	 species.	 Australian	 Journal	 of	560	

Botany,	18:	pp.	275	–	284.		561	

Cohen,	 J.,	 1960.	 Kappa:	 Coefficient	 of	 concordance.	Educational	 Psychologist,	562	

Measurement,	20,	p.37	563	

Coops,	N.	C.,	Smith,	M.	L.,	Martin,	M.	E.,	&	Ollinger,	S.	V.	(2003).	Prediction	of	eucalypt	foliage	564	

nitrogen	content	from	satellite-derived	hyperspectral	data.	IEEE	Transactions	on	Geoscience	565	

and	Remote	Sensing,	41(6),	1338-1346.	566	



30	
	

Curran,	P.J.	and	Dungan,	J.L.,	1989.	Estimation	of	signal-to-noise:	a	new	procedure	applied	to	567	

AVIRIS	data.	IEEE	Transactions	on	Geoscience	and	Remote	Sensing,	27(5):	pp.	620-628.	568	

Dasu,	 T.,	&	 Johnson,	 T.	 (2003).	Exploratory	data	mining	and	data	 cleaning	(Vol.	 479).	 John	569	

Wiley	&	Sons.	570	

Daumard,	F.,	Champagne,	S.,	Fournier,	A.,	Goulas,	Y.,	Ounis,	A.,	Hanocq,	 J.F.	and	Moya,	 I.,	571	

2010.	 A	 field	 platform	 for	 continuous	 measurement	 of	 canopy	 fluorescence.	IEEE	572	

Transactions	on	Geoscience	and	Remote	Sensing,	48(9),	pp.3358-3368.	573	

Dell’Endice,	 F.	 (2008).	 Improving	 the	 Performance	 of	 Hyperspectral	 Pushbroom	 Imaging	574	

Spectrometers	 for	 Specific	 Science	 Applications.	 In	ISPRS	 2008:	 Proceedings	 of	 the	 XXI	575	

Congress:	 Silk	 Road	 for	 Information	 from	 Imagery:	 The	 International	 Society	 for	576	

Photogrammetry	and	Remote	Sensing	(pp.	215-220).	577	

Demetriades-Shah,	T.H.,	Steven,	M.D.	and	Clark,	J.A.,	1990.	High	resolution	derivative	spectra	578	

in	remote	sensing.	Remote	Sensing	of	Environment,	33(1):	pp.55-64.	579	

Dytham,	C.	(2011).	Choosing	and	using	statistics:	a	biologist's	guide.	John	Wiley	&	Sons.		580	

Gates,	 D.M.,	 Keegan,	 H.J.,	 Schleter,	 J.C.	 and	Weidner,	 V.R.	 (1965).	 Spectral	 properties	 of	581	

plants.	Applied	optics,	4(1),	pp.11-20.	582	

Gnyp,	M.L.,	Miao,	Y.,	 Yuan,	F.,	Ustin,	 S.L.,	 Yu,	K.,	 Yao,	Y.,	Huang,	S.	and	Bareth,	G.	 (2014).	583	

Hyperspectral	canopy	sensing	of	paddy	rice	aboveground	biomass	at	different	growth	stages.	584	

Field	Crops	Research,	155:	pp.	42-55.	585	

Gómez-Casero,	M.T.,	Castillejo-González,	 I.,	García-Ferrer,	A.,	Peña-Barragán,	 J.M.,	 Jurado-586	

Expósito,	M.,	García-Torres,	L.	and	López-Granados,	F.	(2010).	Spectral	discrimination	of	wild	587	



31	
	

oat	and	canary	grass	in	wheat	fields	for	less	herbicide	application.	Agronomy	for	Sustainable	588	

Development,	30(3),	pp.	689-699.	589	

Hahn,	F.,	(2009).	Actual	pathogen	detection:	Sensors	and	algorithms—a	review.	Algorithms	2,	590	

301–338.		591	

Herrmann,	 I.,	 Shapira,	 U.,	 Kinast,	 S.,	 Karnieli,	 A.	 and	 Bonfil,	 D.J.,	 2013.	 Ground-level	592	

hyperspectral	 imagery	for	detecting	weeds	 in	wheat	fields.	Precision	agriculture,	14(6):	pp.	593	

637-659.		594	

Home	Grown	Cereal	Authority	(HGCA)	(2008).	The	spring	wheat	disease	management	guide.	595	

Warwickshire:	Home	Grown	Cereals	Authority	(HGCA	Publication).	596	

Huadong,	G.	 (2001).	Applications	of	Radar	Remote	Sensing	 in	China.	New	York:	Taylor	and	597	

Francis	inc.	56.		598	

Huete,	A.	R.	(1988).	A	soil	vegetation	adjusted	index	(SAVI).	Remote	Sensing	of	Environment,	599	

25:	pp.	295	–	309.	600	

Hunt	J.,	&	Poole	N.	(2010).	Simulating	leaf	area	duration	to	predict	yield	response	to	foliar	601	

fungicide	 in	 wheat	 and	 barley.	 In:	 Dove	 H,	 Culvenor	 RA,	 editors.	 Food	 security	 from.	602	

sustainable	agriculture.	Proceedings	of	15th	Agronomy	Conference;	2010	Nov;	Lincoln,	New	603	

Zealand.	604	

Kuang,	B.,	Mahmood,	H.S.,	Quraishi,	M.Z.,	Hoogmoed,	W.B.,	Mouazen,	A.M.	&	van	Henten,	605	

E.J.	 (2012).	 4	 Sensing	 Soil	 Properties	 in	 the	 Laboratory,	 In	 Situ,	 and	 On-Line:	 A	606	

Review.	Advances	in	Agronomy,	114(1),	pp.155-223.	607	



32	
	

Kuang,	B.	&	Mouazen,	A.M.,	(2013).	Non-biased	prediction	of	soil	organic	carbon	and	total	608	

nitrogen	 with	 vis–NIR	 spectroscopy,	 as	 affected	 by	 soil	 moisture	 content	 and	609	

texture.	Biosystems	engineering,	114(3),	pp.249-258.	610	

Landis,	J.	R.,	&	Koch,	G.	G.	(1977).	The	measurement	of	observer	agreement	for	categorical	611	

data.	Biometrics,	33,	159-174.		612	

Lee,	J.	B.,	Woodhyatt,	S.,	and	Berman,	M.	(1990).	Enhancement	of	high	spectral	resolution	613	

remote-sensing	data	by	a	noise-adjusted	principal	components	transform.	IEEE	Transactions	614	

on	Geoscience	and	Remote	Sensing,	28:	pp.	295–304	615	

Lenk,	S.,	Chaerle,	L.,	Pfündel,	E.E.,	Langsdorf,	G.,	Hagenbeek,	D.,	Lichtenthaler,	H.K.,	Van	Der	616	

Straeten,	D.,	&	Buschmann,	C.,	(2007).	Multispectral	fluorescence	and	reflectance	imaging	at	617	

the	leaf	level	and	its	possible	applications.	Journal	of	Experimental	Botany	58	(4),	807–814.	618	

López,	M.M.,	Bertolini,	E.,	Olmos,	A.,	Caruso,	P.,	Gorris,	M.T.,	Llop,	P.,	Penyalver,	R.,	&	Cambra,	619	

M.,	 (2003).	 Innovative	 tools	 for	 detection	 of	 plant	 pathogenic	 viruses	 and	 bacteria.	620	

International	Microbiology	6,	233–243.	621	

Moshou,	D.,	Bravo,	C.,	Oberti,	R.,	West,	 J.,	Bodria,	L.,	McCartney,	A.,	&	Ramon,	H.,	 (2005).	622	

Plant	 disease	 detection	 based	 on	 data	 fusion	 of	 hyper-spectral	 and	 multi-spectral	623	

fluorescence	imaging	using	Kohonen	maps.	Real-Time	Imaging	11	(2),	75–	83.	624	

Mouazen,	 A.	M.	 (2006).	 Soil	 Survey	Device.	 International	 publication	 published	 under	 the	625	

patent	 cooperation	 treaty	 (PCT).	 World	 Intellectual	 Property	 Organization,	 International	626	

Bureau.	 International	 Publication	 Number:	 WO2006/015463;	 PCT/BE2005/000129;	 IPC:	627	

G01N21/00;	G01N21/00.		628	



33	
	

Mouazen,	A.M.;	Anthonis,	 J.;	&	Ramon,	H.,	 (2005).	An	automatic	depth	control	system	for	629	

online	 measurement	 of	 spatial	 variation	 in	 soil	 compaction,	 Part	 4:	 improvement	 of	630	

compaction	maps	by	using	a	proportional	integrative	derivative	depth	controller.	Biosystems	631	

Engineering,	90(4),	409-418.	632	

Oberti,	R.,	Marchi,	M.,	Tirelli,	P.,	Calcante,	A.,	Iriti,	M.,	&	Borghese,	A.	N.	(2014).	Automatic	633	

detection	 of	 powdery	mildew	 on	 grapevine	 leaves	 by	 image	 analysis:	 Optimal	 view-angle	634	

range	to	increase	the	sensitivity.	Computers	and	Electronics	in	Agriculture,	104,	1-8.	635	

Okamoto,	 H.	 &	 Lee,	 W.S.	 (2009).	 Green	 citrus	 detection	 using	 hyperspectral	636	

imaging.	Computers	and	Electronics	in	Agriculture,	66(2):	pp.201-208.	637	

Pinter,	 JR,	 P.J.	 and	 Jackson,	 R.D.	 (1985).	 Sun-angle	 and	 canopy-architecture	 effects	 on	 the	638	

spectral	reflectance	of	six	wheat	cultivars.	INT.	J.	REMOTE	SENSING,	6(12):	pp.	1813-1825.	639	

Pisek,	 J.,	 Chen,	 J.	M.,	Miller,	 J.	 R.,	 Freemantle,	 J.	 R.,	 Peltoniemi,	 J.	 I.,	 &	 Simic,	 A.,	 (2009).	640	

Mapping	 forest	 background	 reflectance	 in	 a	 boreal	 region	 using	 multi-angle	 Compact	641	

Airborne	Spectrographic	 Imager	 (CASI)	data.	 IEEE	Transactions	on	Geoscience	and	Remote	642	

Sensing,	47.	doi:10.1109/TGRS.2009.2024756.	643	

Ramamurthy,	R.,	Canning,	C.	 F.,	 Scheetz,	 J.	P.,	&	Farman,	A.	G.	 (2004).	 Impact	of	ambient	644	

lighting	intensity	and	duration	on	the	signal-to-noise	ratio	of	 images	from	photostimulable	645	

phosphor	 plates	 processed	 using	DenOptix®	 and	 ScanX®	 systems.	 Dentomaxillofac	 Radiol,	646	

33(5),	307-11	647	

Rautiainen,	M.,	Lang,	M.,	Mõttus,	M.,	Kuusk,	A.,	Nilson,	T.,	Kuusk,	J.	&	Lükk,	T.,	2008.	Multi-648	

angular	 reflectance	 properties	 of	 a	 hemiboreal	 forest:	 An	 analysis	 using	 CHRIS	 PROBA	649	

data.	Remote	Sensing	of	Environment,112	(5),	pp.2627-2642	650	



34	
	

Reynolds,	M.,	Foules,	M.J.,	Slafer,	G.A.,	Berry,	P.,	Parry,	M.A.,	Snape,	J.W.,	Angus,	W.J.	(2009).	651	

Raising	wheat	potential.	Journal	of	Experimental	Botany.	60:	pp.	1899–1918.	652	

Roggo,	Y.,	Duponchel,	L.,	Huvenne,	J.P.	(2003).	Comparison	of	supervised	pattern	recognition	653	

methods	with	McNemar’s	statistical	test:	application	to	qualitative	analysis	of	sugar	beet	by	654	

near-infrared	spectroscopy.	Analytica	Chimica	Acta,	477(2):	pp.	187–200.	655	

Rouse,	 J.W.	 Jr.,	 R.H.	 Haas,	 D.W.	 Deering,	 J.A.	 Schell	 and	 J.C.	 Harlan.	 1974.	Monitoring	 the	 Vernal	656	

Advancement	 and	Retrogradation	 (Green	Wave	 Effect)	 of	Natural	 Vegetation.	NASA/GSFC	 Type	 III	657	

Final	Report,	Greenbelt,	MD.,	371.	658	

Sankaran,	S.,	Mishra,	A.,	Ehsani,	R.,	&	Davis,	C.	(2010).	A	review	of	advanced	techniques	for	659	

detecting	plant	diseases.	Computers	and	Electronics	in	Agriculture,	72(1),	1-13.		660	

Schmale,	D.	G.,	III,	&	Bergstrom,	G.	C.	(2003).	Fusarium	head	blightin	wheat.	The	Plant	Health	661	

Instructor.	http://dx.doi.org/10.1094/PHI-I-2003-0612-01.	662	

Smith,	S.	W.	(1999).	The	Scientist	and	Engineer's	Guide	to	Digital	Signal	Processing.	2nd	ed.	663	

San	Diego:	California	Technical	Publishing,	(Chapter	2	pp	13-16).	664	

Sohne,	W.	(1958).	Fundamentals	of	pressure	distribution	and	soil	compaction	under	tractor	665	

tires.	Agricultural	Engineering,	39,	290	666	

Tekin,	Y.,	Kuang,	B.,	&	Mouazen,	A.	M.	(2013).	Potential	of	on-line	visible	and	near	infrared	667	

spectroscopy	 for	 measurement	 of	 pH	 for	 deriving	 variable	 rate	 lime	668	

recommendations.	Sensors,	13(8),	10177-10190.).		669	

Van	Beek,	J.,	Tits,	L.,	Somers,	B.,	&	Coppin,	P.	(2013).	Stem	water	potential	monitoring	in	pear	670	

orchards	through	WorldView-2	multispectral	imagery.	Remote	Sensing,	5(12),	6647-6666.	671	



35	
	

Van	 der	Meer,	 F.	 and	 De	 Jong,	 S.M.,	 2000.	 Improving	 the	 results	 of	 spectral	 unmixing	 of	672	

Landsat	 Thematic	 Mapper	 imagery	 by	 enhancing	 the	 orthogonality	 of	 end-673	

members.	International	Journal	of	Remote	Sensing,21(15):	pp.	2781-2797.	674	

Webster,	 R.	 (2007).	 Analysis	 of	 variance,	 inference,	 multiple	 comparisons	 and	 sampling	675	

effects	in	soil	research.	European	Journal	of	Soil	Science,	58(1),	pp.	74-82.	676	

West,	 J.S.,	 Bravo,	 C.,	 Oberti,	 R.,	 Lemaire,	 D.,	Moshou,	 D.	 and	McCartney,	 H.A.,	 2003.	 The	677	

potential	of	optical	canopy	measurement	for	targeted	control	of	field	crop	diseases.	Annual	678	

review	of	Phytopathology,	41(1),	pp.	593-614.	679	

Wu,	D.,	Feng,	L.,	Zhang,	C.,	&	He,	Y.,	(2008).	Early	detection	of	Botrytis	cinerea	on	eggplant	680	

leaves	based	on	visible	and	near-infrared	spectroscopy.	Transactions	of	the	ASABE	51	(3),	pp.	681	

1133–1139.	682	

Yuan,	L.,	Pu,	R.,	Zhang,	J.,	Wang,	J.	and	Yang,	H.	(2016).	Using	high	spatial	resolution	satellite	683	

imagery	 for	mapping	powdery	mildew	at	 a	 regional	 scale.	Precision	Agriculture,	17(3):	 pp.	684	

332-348.	685	

Zadoks,	J.C.;	T.T.	Chang,	C.F.	Konzak	(1974).	"A	decimal	code	for	the	growth	stages	of	cereals.".	686	

Weed	Research	14	(6):	415–421.	doi:10.1111/j.1365-3180.1974.tb01084.x.	687	

Zhong,	C.,	Ding,	Y.,	&	Fu,	J.	(2011).	Image	Forward	Motion	Compensation	Method	for	Some	688	

Aerial	 Reconnaissance	 Camera	 Based	 on	 Neural	 Network	 Predictive	 Control.	Advanced	689	

Research	on	Computer	Science	and	Information	Engineering.	152	(1),	pp.	237-244.	690	


