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Abstract

Multiphase flows are commonly encountered in industrial processes but remain
challenging to predict. The role of droplets in the setting of various flow patterns
seen in pipes is capital. Being able to simulate accurately the motion, the dis-
persion, the deposition and the entrainment of droplets from a liquid film or pool
would allow refining the various numerical models and would provide a useful
insight to people involved with such flows. The PhD work summarised in this
thesis aims at answering that ambitious goal, i.e. to reproduce the whole "life"
of a cloud of droplets, with application to pipes and industrial systems. To the
author’s knowledge, such study has never been realized with any open source
computational fluid dynamics code such as OpenFOAM and in such details. An
original surface-tracking motion has also been developed to solve wavy-stratified
flows and droplets entrainment by extending OpenFOAM'’s capabilities. The La-
grangian framework has been selected for this study as the relationship with
various forces could be expressed directly and statistical information, including
any Eulerian field if needed, could be retrieved.
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Chapter 1

Introduction

In oil and gas applications, it is often of significant importance to evaluate the
behaviour of multiphase flows to design suitable equipments for extraction and
safe transportation of fossil fuels. Nowadays, the use of computers to simulate
such complex flows is mature enough to successfully help the industry on a
daily basis. However, the precision and the complexity requested have never
decreased and new models are always required to achieve more accurate results
or to simulate more complex flow configurations.

Most of the flows involved in industrial processes are multiphase flows. Multi-
phase flows generally involve the generation and/or transport of droplets/particles.
These droplets/particles are often responsible of major changes in the flow char-
acteristics (flow pattern, mean density per phase, enhanced transport...) which
are important to make industrial operations reliable. From the multiphase be-
haviour of the flows it is possible to evaluate the droplet transport, dispersion,
collisions, deposition and the mass entrainment from one phase to another. The
relation between droplet dispersion and deposition is not clearly known, especially
in large or complex geometries.

Consequently, this research work aims at developing a new code able to repro-
duce the full "life" of droplets in industrial applications: from their injection, their
motion, their deposition, up to the formation of a new continuous phase. To that
end, it is important to study and understand the factors influencing the droplet
motion (droplet properties, flow properties, interactions). This is the objective of
the literature review, in the second chapter of this thesis. Multiphase flows will be
introduced first, exposing the general behaviour of various flow patterns. Basics
related to particulate flows is then explained. In particular, ways of representing
poly-dispersed particles are discussed.

Next, common formulations to resolve particulate flows are briefly reviewed,
especially the Euler-Euler and Euler-Lagrange methods. A section about the
phenomena involved in particulate flows details the various forces and interac-
tions that can be of importance when simulating this kind of flows. This section
includes a description of the mathematical models used to solve the turbulent
dispersion, the Brownian diffusion, as well as the method chosen to evaluate
particle-particle collisions. Other phenomena such as the droplet break-up and
the deposition are also explained.
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After presenting the physical behaviour of particles motion, two sections present
the computational details required to simulate multi-phase flows. These sections
make aware the reader of the whole complexity of the task carried out during this
thesis. They also explain why the Lagrangian approach was selected for in this
research work.

The choice of the Lagrangian approach is not straightforward. Indeed Eule-
rian or PDF methods are perfectly valid ways of investigating the matter and the
comparison with all these methods can be a thesis subject of its own. However,
the Lagrangian approach is the one that is more directly related to the actual
forces acting in real life. There are in theory no limitations to this approach, in
contrary to other approaches which require further hypothesis to be put into ac-
tion. It must be noted that other methods can sometimes be more informative,
easier to interpret or more convenient to use in industrial applications. However,
ways to post-process Lagrangian data to retrieve such useful information, and
interpretations are detailed in this document.

Once the pre-requirements are exposed, the current limitations to be overcome
become obvious, as well as potential ways of solving them. For instance, little
information is available about the scaling-up of known and validated data in small
pipes, to data in large industrial pipes. The reliability of the usual dimensionless
data provided in the literature is also questionable. To palliate those problems,
numerous simulations have been performed during this PhD, each looking at
specific aspects of the numerics affecting directly the particulate flow prediction.
Thus, Chapter (3| goes through the major results, obtained from the simulations
performed during this PhD.

The statistics of the dispersion of a cloud of droplets is discussed in this chap-
ter, introducing a new and published model of dispersion. Transient deposition of
small droplets in a small vertical pipe is studied, in addition to a moving cloud of
droplets. The former leads to the study of the time averaged deposition, expressing
ways to post process large quantities of Lagrangian data.

These simulations are then extended and applied to pipes of large diameter,
allowing a thorough investigation of the carrier flow and particle behaviours when
scaling-up a rather simple geometry.

To demonstrate the operability of the code developed in an industrial context,
the droplet deposition obtained in a perforated plate and on a valve geometry are
discussed.

Chapter[4]is here to fulfil the scope of this PhD using the code developed during
the past few years. Once deposited, droplets can coalesce and form a separated
phase. To simulate this, a topological mesh solver has been implemented to
represent the carrier phase in its own region. The details of the implementation
are presented in this chapter. A proof of concept on the particle entrainment from
the tracked interface is also discussed.

Finally, a general conclusion constitute the last chapter of this thesis. Droplet
and flow results are summarized and potential future work is highlighted.



Chapter 2

Literature review

2.1 Description of multiphase flows

2.1.1 General description

Various visual aspects of the flow have been observed in multi-phase flows in
pipes and they have been classified in what is generally called a “flow regime
map”. There are several factors that influence the aspect of a pipe flow, and
among them, the surface volumetric velocity of each phase also called superficial
velocity, often noted j; or sometimes, like in this report, using the notation Usg.
The superficial velocity of a phase is the velocity that the phase should have, if it

were the only phase in the flow, to obtain the same flow rate. It is calculated as:
Ug == (2.1)

where () is the volumetric flow rate of the considered phase and A is the pipe cross
section. They are the most relevant parameters, at least, when the experimental
conditions do not change the surface tension or the viscosity. A valuable descrip-
tion of multiphase flows is provided in |Kolev| (1993b) and Kolev| (2007) where flow
pattern transitions are described.

Figure[2.1]has been extracted from Baker (1954) and shows a flow pattern map
for horizontal air-water pipe flows, depending on the gas and liquid superficial
velocities. Similarly, Figure shows the flow pattern map for vertical gas-water
pipe flows. It should be kept in mind that boundary lines in this flow regime
map are not that sharp in reality. They are actually transition zones to express
the unstable configuration of both phases. It should also be mentioned that it
exists no universal flow regime map, even for a simple geometry like a pipe, as
many parameters are involved in transitions from a configuration to another one
(roughness, pipe inclination, etc.). Moreover, as it can be often seen, such maps
are established for a given geometry, and all attempts to make dimensionless flow
maps failed since transitions are not based on the same characteristic numbers.
However, it will be assumed in this work that only one configuration can exist
for a given set of flow parameters. Nevertheless, a common behaviour can be
highlighted: with the increase of gas speed, the flow aspect will be more diffused
and will eventually lead to an annular flow.
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Figure shows the flow aspect for sectors that appear on Figure for hori-
zontal flows and Figure shows the flow aspect for the sectors that appear on
Figure for vertical pipes. Notice that for a horizontal or near horizontal pipe,
the heavier phase phase can sometimes appear in top regions of the pipe. This
PhD. focuses on the disperse flow regime as it can generate all the other flow
patterns. The code developed is able to start a disperse flow regime which can
change into a wavy stratified flow or even an annular flow if all the conditions are
met. However these sorts of flow are significantly more complex to obtain, and
only a brief proof of concept will be provided in Chapters and of the thesis.

2.1.2 Secondary flows

In fluid mechanics, a secondary flow is a flow occurring in another plan/direction
than the main one. This is illustrated by Figure [2.5] Three kind of secondary
flows have been described by Prantl (1952):

- Secondary flows of first kind are generated by a significant pressure dif-
ference in an other direction than the main one, or for rotating flows (in
hurricanes for instance).

- Secondary flows of second kind are generated by turbulence and by geometry
effects; this is this one which is of interest for separated pipe flows.

- Secondary flows of third kind are generated by oscillations in a stationary
fluid.

As the pipe section is partially obstructed by a pool, secondary flows occur in the
gas region. Predicting this, is important to evaluate the wetting due to impinge-
ment of small droplets that are more likely to follow small convective structures
of the gas flow. Their origin is probably linked to the kinetic turbulent energy,
which is anisotropic and interact with walls and the interface. [Flores et al.| (1995)
present secondary flows in various flow patterns. Brown et al. (2009); Verdin
et al.| (2014) describe the simulation of droplets entrainment and deposition in a
large (38 in.) pipeline. A secondary flow was enhanced, due to the presence of
interfacial roughness varying with position and was assumed to be related to the
local thickness of the liquid film.

2.1.3 Dimensional analysis

To characterize the flows and to quantify the balance of forces involved in mul-
tiphase flows, a dimensional analysis is often performed. This can be done to
evaluate the order of magnitude of various terms in equations to obtain approxi-
mations. It can also be used to produce non-dimensional equations (or variables).

One of the most usual way to establish such an analysis is by using the
Buckingham II-Theorem. It consists in expressing a set of physical quantities
which are assumed to influence the problem (thereafter designated by "n"), and
"k" the number of fundamental dimensions involved (such as "Time", "Length"
and so on). The theorem states that n — k& non-dimensional numbers can be
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secondary
flow

Figure 2.5: Secondary flows in pipes contributes to wet the walls
Source: |Vij et al.| (1996)

created to describe the physical phenomenon that link them. This is done by
taking a sub-set k of variables over n possible ones. It is recommended to discard
variables made of many dimensions. New dimensionless variables are generated
by doing the product of all the remaining variables, elevated to an unknown
power. A system is then solved to determine the values of the unknowns, making
the overall number dimensionless.

An example is provided below, establishing a relation linking the drag force "F"
exerted on a particle: it can be inferred from daily observations that parameters
influencing such a force would be the (relative) flow velocity, the particle diameter,
the flow density and the flow viscosity. This leads to the introduction of the
following variables:

EV.D,p, i .

Here, n = 5. The following Table is used to determine how many independent
dimensions there are:

Table 2.1: Dimensions of some variables

variable dimension
force F M.LT?
velocity V LT
diameter D L
density p M.L3
viscosity | M.L71.T1

A maximum of three dimensions are involved in all these variables. Therefore
k = 3. The theorem says n — k = 2 dimensionless variables can be constructed.
The two variables chosen to be discarded which will serve as a base for the non-
dimensionalization process, are the force /' and the viscosity x. Two independent
dimensionless numbers II; and II; can then be expressed as follow:

I, = FV*.D% p7 2.2)
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I, = p.Ve.Db p° (2.3)

The sum of the exponents must be equal to zero, to obtain a dimensionless num-
ber. For the first "[I-variable", the following system (3 equations and 3 unknowns)
can be written:

M:14+~v=0 (2.4a)
{L:l+a+6—3’y:0 (2.4b)
T: 2-a=0 (2.4¢)

which leads to a« = —2, § = -2, and 7 = —1.
The first dimensionless number is:

I, =FV2D?%p!

This expression describes the drag coefficient, usually expressed by introducing
the particle area (S = 7D?/4) as:

2F T

Cp = p.S.V2

(2.5)

Note that the [I-theorem does not allow to retrieve the multiplicative constants as

it deals with the dimensions only.
For the second non-dimensional number II,, the system is the following one:

M:14+c=0 (2.6a)

{L:1+a+b3c() (2.6b)

T: —1—a=0 (2.6¢)

which leads to a = —1, b = —1, and ¢ = —1. The second dimensionless number

is:
Oy = p.V 1D 1 pt

This is in fact the (droplet-based) Reynolds number inverted, which can be ex-
pressed in the form of Equation by introducing v = p/p.

Non-dimensional numbers thus created often describe a balance between various
physical forces. This has lead to numerous named numbers (Stokes Number,
Reynolds Number, Froude Number, Weber Number to name but a few). To char-
acterize the overall turbulent state of a flow, the Reynolds number is used. It
compares the inertia effects (momentum quantity) to the viscous effects (viscous
friction that counters the momentum). It exists several versions of this number
to account for the various scales on which the comparison can be done. The most
common one is the following:

UL

14

Re (2.7)

where U represents, in most cases, the average velocity magnitude, or the far-field
velocity value. L is a characteristic distance, often taken as the pipe diameter in
pipe flows (sometimes, the turbulence length of establishment can be used) and
v is the kinematic viscosity. There are other relevant non-dimensional numbers
for this work, such as the Stokes number, representing the balance between the
particle characteristic time against a characteristic time of the carrier flow. Again,
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this definition is sufficiently imprecise to account for various estimates of one or
both of these specific times. The most usual is the following:
2
St = M (2.8)
uL
where p, is the particle density, d, is the particle diameter, U the average flow
velocity and L a characteristic length. This number is used to characterize the
particle response.
The non-dimensionalization process is important in physics as it is both a tool
and an indicator of the prevalent forces in a phenomenon.
The friction velocity is widely used to characterize all sorts of flows:

Ur— T (2.9)

where 7, is the wall shear stress:

oU,
S— (2.10)
ay wall

These numbers are very important to qualify any flow, and especially dispersed
flows. The following section introduce the basics of particulate flows.

2.1.4 Qualifying a particulate flow

Droplet flows are a subtype of multiphase flows which can be compared to any
particle flow. The fact that the particles transported are droplets can have various
consequences, such as coalescence, break-up, deformation, evaporation, freezing,
wetting, splash, internal circulation, etc. However, most of those droplet-specific
aspects can be neglected in simple configurations, which will mainly be the case
in this thesis.

A dispersed field such as a gas or a dense particle flow, can be interpreted
as a continuum. A continuum can be defined by the continuous variation of the
intensive variables when an extensive associated variable varies. This means that
if the intensive variable is the density, and the sampling volume an extensive
variable, a continuum is present when the density does not vary when increasing
or decreasing the sampling volume.

In reality, this is not always the case as it is not always possible to define a
meaningful intensive variable. The rule generally used to settle down this matter
is given by the Knudsen number:

A
Kn=— 2.11
D 2.11)
where )\ is the mean free path and D the particle diameter. If Kn < 1073, the
medium is considered as a continuum and the usual conservation equations can
safely be applied.
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Once the continuity is ensured, the volume fraction of a dispersed phase can

be written as:

_ 2.12)

o= E (2.

with ¢ the cell characteristic length when assuming a quad-based mesh. Oth-
erwise it is the ratio of the cumulated particle volume in a cell divided by the
cell volume. According to Crowe et al.|(1998), a flow is said dilute if o < 0.001,
collision-dominated if 0.001 < o < 0.1 and contact-dominated if & > 0.1. Section
details how the collisions can be handled in case of a collision-dominated
flow.

Descriptive statistics of particulate flows

Generally, a particulate flow is constituted by a large number of particles of var-
ious shapes, sizes, and possibly of various materials. Before going further into
the study of particulate flows, it is necessary to detail first how such flows are
commonly described.

The main parameter associated with a particle is its diameter. Particle-Size Distri-
butions (PSD) are used to qualify the sizes of many particles. They can be discrete
or continuous. The shape of the distribution is given by a function f(D). The
usual descriptive statistics applies:

the n'™ moment of the distribution is expressed by the following formula:

Dmax
oy = / (D — po)" f (D)dD (2.13)
0

where D represents a particle diameter. A very valuable review of the various
approaches for particulate flows has been performed by |Loth/ (2000).

How to measure a statistical property in a Lagrangian flow

It is often useful to recover volume averaged quantities from a Lagrangian
representation of a particulate flow. Results thus obtained could be compared to
the results one could obtain with an Eulerian approach.

The choice of the averaging volume is not straightforward: the volume must
be large enough so the averaged property does not vary much with the chosen
volume. But it should not be too large compared to the domain, otherwise no
significant variations can be seen over the domain. The Poisson distribution can
be used to establish a confidence level. The probability of having N particles in a
flow with a concentration n of drops per cubic meter, in a volume V' is therefore:

P (N) = (nV)"N exp(—nV) /NI (2.14)

as an example, for a flow with a concentration n = 10® drops per cubic meter, if
the sampling volume V is a cube of side of 3 cm (i.e.: V = 2.7 - 1077 m?), then the
probability that there are between 2700 and 3300 drops in the domain is about
49.5 %, 3000 being enough to evaluate a property such as the mean temperature,
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or any value carried by the particles. If s is the standard deviation of the sampling
(here about 3000 particles), then the confidence interval at 95% is:

- E s
I=|T-2—;T+2— (2.15)
VN VN
where T is the mean value of the random variable 7" from the sampling size V.

In other words, the mean value is T & 5%, with a confidence level of 95% ,
which is statistically significant. In case of collision evaluation, only a fraction of
these particles will collide, so the sampling volume should be larger to get reliable
collision estimations. Assuming the particle density is homogeneous throughout
the domain of averaging, the sampling volume recommended by |Crowe et al.
(1998) is:

18

/3
4 /3

(2.16)

where V is the sampling volume and n the particle number density. If the volume
fraction « is known, then:

(=D (61@)1/3 2.17)

then
V3 180 (2.18)

The next section introduces the equations to solve multiphase flows, for both the
Eulerian and the Lagrangian framework.

2.2 Mathematical formulations

2.2.1 Euler-Euler

Figure shows the two non-miscible domains (2; and (), separated by an inter-
face I'. The Navier-Stokes equations can be directly applied to each fluid domain:

pi <8§: +u-grad (uL)) — div <u1; (grad (W) + gradT (u,))) + grad (p;) = pif(2.19a)
div (1) = 0 (2.19b)

with
f =70+ okndr (2.20)

where ¢ is the surface tension, k the curvature, 1 is the external normal to the
interface. The subscript .; represents each fluid.



22125 Literature review

Figure 2.6: Two non-mixing Fluid descriptive scheme

As it is numerically expensive to solve the Navier-Stokes Equations, only one
velocity field is usually solved for all phases. There is a discontinuity when passing
through the interfaces, the density in particular varies between fluids.

Volume of Fluid

The Volume Of Fluid (VOF) method was developed to simulate flows between non
miscible phases. Hirt and Nichols (1981), are usually referred as the founder
of this approach, even if the first implementation has been done by Noh and
Woodward (1976).

This method is based on a transport equation for a phase cell concentration,
in the Eulerian framework, see Equation An algorithm should be added to
the basic implementation of the VOF method to reconstruct the interface, where
the volume fraction is between 0 and 1. The most commonly used today is the
Piecewise-Linear Interface Calculation (or PLIC) scheme.

a—a + U.grad (a) =0 (2.21)
ot
where o denotes the cell concentration of one phase. Navier-Stokes Equations
still need to be solved in addition to Equation [2.21] One of the advantages of this
method is that it conserves the mass of the tracked fluid and allows discontinuous
values for . One drawback of this approach is that the interface is diffusive with
most interface reconstruction methods.

Two-fluid approach

When considering the two-fluid approach (also called Euler-Euler model), each
phase has its own velocity solved directly along with other physical values such
as temperature, density or pressure. Differences between densities may imply
a slip velocity at the interface. A similar behaviour of the temperature is also
present: the time scale of energy transfer may vary for rapidly changing flow con-
ditions and therefore the two fluids may show different temperatures.
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Figure 2.7: Two Fluid descriptive scheme

Generally, the pressure difference between phases is not taken into account.
However, for applications in this thesis, the pressure difference should be inves-
tigated. The main contribution of pressure difference between phases are likely
to be the pressure induced by the surface tension (in a curved interface, it is
called Laplace pressure) and the pressure due to mass transfer between phases
(droplets impingements and entrainment, evaporation and condensation...). The
overall dynamic of the flow can also cause pressure variations. The establish-
ment of two-fluid equations is based on volume averaged or temporal averagedE]
mass conservation and momentum equations for each phase. Figure shows
notations used in their context to set up this method.

- Mass conservation

% [ai<pi>4+? o <Vf’i7i>i - Aig /A P (7?“ - 71‘) ' st (2.22)

(1) (2) 3

wsn
1

where «; is the concentration of phase “i” over a control volume V; (commonly
called volumetric concentration), (-), denotes a volume averaging over the

whole volume occupied by the phase “i”, ﬁj”t is the velocity field of the
interface seen by the phase “i” (here integrated over a control volume), ﬁ;”t

is the normal field over the interface and pointing out the phase “”, a" is
the ratio of interface over a control volume, Ag is the surface associated with

Ve
- Momentum balance

0 |:04i <Pzﬁz>z] +V- [Oéz‘ <pzﬁz§ﬁz + pj + %>j - <p§:m> Va;

Q_t _ —
@’) (‘5’) © (2.23)
— O_Z]\/[ <ﬁ;ﬁxan9€>' + <szv>z ‘I‘ <E>Z
N 5 N~
RS 8 ¢

(7)

IThe principle of ergodicity is generally assumed.
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where ¢ = Term (3) in Equation [2.22]

Term (1) is the volume averaged density, Term (2) the volume averaged mass
flux, Term (3) is a source term based on the interfacial mass flux. Term (4) is
the transient term and term (5) expresses the fluid forces. Term (6) represents
the Laplace pressure (which is resulting from the interface curvature), Term (7)
represents the momentum transfer through the interface (which takes into ac-
count the mass transfer), Term (8) is the resultant of viscous forces acting on the
interface (expression of interfacial shear stress) as well as the pressure from the
other phase, and Term (9) describes the external forces acting on phase i.

The main advantage of the two fluid model is that it provides an accurate de-
scription of the problem, and allows non dispersive interface simulation. However
it requires an extended knowledge and difficult work is required to model closure
terms: this frequently leads to non mass conservative closure methods.

Drift-flux model

In that model, the velocities of each phase is related to another. For instance, in
terms of fluxes:

Ji—2=(1—a)j1 —aj (2.24)

where j; expresses the volumetric flux of the i phase, and j;_, is the drift flux.

The drift-flux Eulerian expression to compute the droplet transport is usually
written as:

%—I—V-[(u—l—vs)o]:V-[(D+€p)vo]+5 (2.25)
where C' is the particle mass concentration, u is the carrier fluid velocity, vy is
the particle settling velocity, D is the diffusion coefficient (Brownian Motion), ¢, is
the particle Eddy diffusivity (turbulent dispersion) and S accounts for the mass
concentration sources.

It should be noted that this expression requires to input or estimate important
parameters generally not well known (such as ¢,).

The boundary conditions should also take into account the deposition and/or
entrainment/re-suspension. These conditions should be based on the boundary
flux (Neumann boundary condition).

2.2.2 Euler-Lagrange

Equation of motion of a single particle

The transport of particles, given by Equation is called the BBO, i.e. the
Boussinesq, Basset and Oseen equation:
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where )V represents the particle volume, F7, the lift force and F; any other force
unaccounted for. Note that u, stands for the instantaneous particle velocity,
which includes the fluctuating velocity. The BBO equation can be simplified
based on the following assumptions:

- the droplet volume is sufliciently small so that the virtual mass term can be
neglected,

- the density of the particles is much higher than the density of the carrier
fluid: p, > py.

A simple equation can usually be retained to describe the particle motion in the
core flow: p
U U —u
ke N . + f (2.27)
dt Tp ~
N—— other forces
Drag ef fects
where 7, is the particle response time defined by:
4ppde, 1
Tp = -—— —— 2.28
b 3 MG C DRBP ( )

with d., the aerodynamically equivalent particle diameter and Cp the drag coeffi-
cient. For liquid drops, an alternative 7, is used:

i
o ilppdzq Cc 1 + (E)

Tp = (2.29)
3 CpR 2
o\ ()
with the C'; Cunningham slip correction factor:
2\
C. =1+ == (1.257 + 0.4 "1%/2Y) (2.30)

d

P
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where ) is the mean free path. The particle response time 7, expresses the ability
for a particle to follow the flow. The added mass is handled by an additional
force, proportional to the particle acceleration. Equation is valid when the
flow seen by the particle has a low Reynolds number. In this regime, Stokes flow
approximations apply (Cp = 24/Re,) and the drag force is proportional to the
relative velocity uy — u,. Near-wall corrections from |/Ahmadi & McLaughlin| (2008)
have been applied with the Faxen correction defined as:

1
9 (d,\ , 1(d,\* 45 (d,\" 1 (d,\°
— Ul = (22 2y - == (2] - =2 2.31
CpRe, [ 16 (2h)+8(2h> 256(2h) 16(2h)] 231

where h is the distance from the particle centre to the nearest wall. For particles
of size comparable to the carrier fluid mean free path (or smaller), the Brownian
motion has to be taken into account along with the drag slip factor of Cunning-
ham, which depends mainly of the mean free path. The following forces have been
used in this PhD work to compute the motion of the particles:

- Drag force that accounts for sphere drag with the Cunningham factor auto-
calculated with medium properties, near wall corrections and valid for droplet-
based Reynolds numbers less than 1 (the Stokes regime),

- Gravity,

- Saffman-Mei lift force for spheres (Pang & Wei, [2011),
- Virtual mass effects,

- Pressure gradient force,

- Brownian motion, providing the mean free path A or the medium molecule
inter-spacing.

The effects of lift can be important, see Gupta & Pagalthivarthi (2006); the lift force
should ideally include the effects of lift due to particles rotation. However, for the
sake of simplicity, no droplet rotation was assumed in the simulations performed
during this PhD. One of the most common expression for the Saffman lift force is
the following:

Feaffman = 1.61p.D |u; — v;| / Reg (2.32)

where Reg is the shear Reynolds number:

Reg = —— (2.33)
ve dy

The numerical integration commonly used to solve Equation is detailed in
Graham & James (1996). The instantaneous particle velocity u, includes the
particle fluctuation v/, which arises from the turbulent dispersion influencing
the droplets (see Section [2.3.1).
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Since only particles diameters vary in the current document, their behaviour
can be associated with their size. For small droplets, where the dimensionless
particle relaxation time:

I (2.34)
vy
is less than 0.3, the Brownian motion, the Stokes-Cunningham drag, and the
thermophoretic forces are important. For medium size droplets (0.3 < 7'; < 20),
Stokes drag, thermophoretic, lift/pressure gradient, centrifugal forces and the
conservation of angular momentum along with the turbulent dispersion should be
taken into account. For large drops, where T;_ > 20, the Stokes drag, lift/pressure
gradient, centrifugal, mass added forces, conservation of angular momentum and
weight should be included (Matida et al., 2000).

Two-way coupling

Particles do interact with their surroundings. They change the flow and the turbu-
lent fields they cross. This is often called the "two-way" coupling as opposed to the
"one-way" coupling (particles only are affected by the flow), and the "four-way" cou-
pling, which includes the particle-particles collisions. For the two-way coupling,
new source terms must be added to the momentum and turbulence equations
of the carrier phase. Berlemont et al.| (1990); Lain & Sommerfeld (2003); [Nasr &
Ahmadi (2007) proposed the following equations (source terms):

NP NT pyn+1 _ P\
1 [(uz)k (uz)k] pf
Sho = — mi N Atp X — g <1 — —) (2.35)
' PfVeell kz:; R k ; AtL Pp
SP = uP St — St (2.36)
SP = 053255 (2.37)

with C® not clearly determined, but Lain & Sommerfeld (2003) suggested a value
of 1.87. The next section discusses in more details how particles interacts with
the carrier flow and other particles.

2.3 Particle phenomenology

2.3.1 Particles and turbulence

Particle induced reduction or enhancement of the turbulence

Particles has been found to alter significantly the turbulence, either by attenua-
tion or by increasing its intensity. It is mainly thanks to Laser Doppler Velocimetry
(LDV) techniques from the 1970s and later with their democratization that accu-
rate predictions were possible, even though some attempts in measuring these
effects using hot-wire were carried out by Hetsroni & Sokolov| (1971).
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Figure 2.8: Turbulence modulation by particles ; taken from|Crowe et al. (1998)

Figure is a summary of various data on turbulence modulation up to 1989,
that is taken out from [Crowe et al.| (1998). Some empirical models are available
to account for the turbulence modulation.

It has been shown by various authors (Tsuji et al., [1984; Vreman, 2015) that
the particle size determine the attenuation or the enhancement of turbulence.
Large particles have been found to heavily enhance the turbulence, while for the
small particles, the effects opposite.

Despite various estimations, there are currently no firm methods able to correctly
reproduce all the effects responsible for the turbulence modulation and therefore,
all models currently available have limitations or can not easily be implemented.

Turbulent dispersion

In turbulent flows, the carrier fluid velocity influences highly the particles motion.
Even if Lagrangian statistics can be obtained (Govan et al., |1989), it is often easier
to obtain the Eulerian description of the main fluid fluctuations rather than the
Lagrangian fluctuations of the disperse phase. Intuitively, as the particles are
carried by the fluid, the Lagrangian statistics should be related to the Eulerian
ones. This implies that the Lagrangian auto-correlation should converge to the
Eulerian auto-correlation when a particle becomes a “fluid particle". However,
for large particles or when the ratio of densities becomes important, the corre-
lation with the Eulerian field should become more distant, as particles are more
likely to have uncorrelated velocities with the flow. Based on the particle velocity
field (Crowe et al., |1998), the auto-correlation function Rp can be defined as:

(up(x,t)up(z + oz, t + 6t))

Bp(z.1) = (e, )

(2.38)
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where up denotes the particle instantaneous velocity. Considering the stationary
turbulent field imposed by the flow, the particle auto-correlation function can be
written:

Rp(x,t) = Rp(x) X RL(t) (2.39)

where Rp and R; express the Eulerian spatial and Lagrangian temporal auto-
correlations, respectively. The determination of R; can be obtained in different
ways. For instance, Govan et al.|(1989) provide a measurement of this correlation,
with the following general form:

Ri(t)=e¢ " (2.40)

where 7 can be taken as 7p, the particle relaxation time. Other formulations exist,
such as the Berlemont et al.| (1990) one, which uses Frenkiel’s family of correla-
tion function. (Gouesbet & Berlemont, 1998) did a study of particle behaviour
in turbulent flows, and summarize various expressions of the Lagrangian auto-
correlation and their effects on the particle dispersion. The determination of Ry is
obtained from the two-point auto-correlation function for homogeneous isotropic
turbulence. In general, the same family of functions used for R; can be used for
Rp, scaled with the fluctuation intensities.

Taylor (1922) developed the idea of linking the Eulerian turbulence statistics
to the Lagrangian turbulent dispersion for a homogeneous isotropic turbulent
flow, see also Dosio et al.|(2005) and Koeltzsch (1998). Taylor was thus able to
determine the variance of the particle displacement in any direction and for small
Stokes number particles:

t ot 7242 .
2+/var (u’)/ / R} (1) drdt’ = { ut ift <Tp (2.41a)
o Jo

Tt ift> Ty (2.41b)

where var expresses the variance (using a spatial average) and v’ denotes the
fluctuating velocity. The superscript » shows that only the radial direction is con-
sidered here. This spreading result can be recovered using the Langevin equation:

du  w 2.var(u)

_ = - 2.42
o T, + T n(t) ( )

where n(t) is a Wiener process (Szabados|, [2010) and 77, is the Lagrangian integral
time scale:

TL == / RL (T) dr (2.43]
0

Once determined, the auto-correlation function can be used to alter the parti-
cle velocity (obtained from Equation [2.27), by adding a fluctuating part /s

ubt = ul - Rp + up (2.44)

up = ue\/1 — REE (2.45)

with u, defined as:
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¢ is a random number following the standard normal distribution and u, =
\/2k/3, which is representative of an eddy velocity.

Other approaches are possible to evaluate R;. One of the most common ones is
to consider the flow as a set of eddies interacting with any particle in its vicinity.
This interaction generates a constant fluctuation velocity on the particle until
it leaves the eddy or until the eddy dies. When this happens, another random
velocity is applied to the particle. A popular scheme for this eddy interaction model
is discussed in |Gosman & Ioannides| (1983), where the constant eddy-lifetime is
based on a linear approximation of ;. Using the “constant Eddy lifetime model"
is similar as having the following linear correlation (Graham & James), |1996):

R(0T)=1— — 2.46
1(0T) o7 (2.46)
The time of interaction, i.e. the laps of time during which a particle keeps the
same fluctuation, can be written as:

T;nteraction = man (Tca Te) (247]
where 7, is the crossing time and 7. the eddy-lifetime:
Te = 217, (2.48)

with 77, the Lagrangian integral time scale:

k
T, =Cy7 (2.49)

Different values of time scale constant (', can be used, depending on the type
of turbulence model selected. In most cases, a value around 0.32, as proposed by
Hinze| (1975), is suitable. Note however that the [FLUENT) (2014) manual specifies
a default value C';, = 0.15 and advises to apply C';, = 0.30 when using the Reynolds
stress turbulence model.

OpenFOAM assumes that the Lagrangian integral time scale 77}, is zero at the
walls. However, it has been proven that this assumption is not valid (Bocksell
& Loth, 2006). Thus, for y© < 5, a constant adjustable value Tzr is usually
taken around 2.5. For y™ > 100 the description from Equation applies. For
100 < y* < 5, a quadratic correlation such as the one suggested by [Kallio &
Reeks| (1989) and applied in this work, can be used:

2.3 ( Vf) ifyt <5 (2.50a)
€ wall
Ty, = (7.122 +0.5731 x y* —0.00129 x y+2) < Vf) if 5 <yt <100 (2.50b)
€ wall
k .
Cr— otherwise (2.50¢)
€

Note that there is a discontinuity for y* = 5 in the model presented here. How-
ever, this discontinuity does not affect much the results. 77 could have been
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made continuous, for instance, with a quadratic interpolation, as proposed by
Lecrivain & Hampel (2012).

As stated previously, a particle will follow the same velocity fluctuation until
the eddy dies (interaction time greater than eddy lifetime) or until the drop leaves
the eddy. When the particle leaves the eddy before the end of the eddy lifetime,
which is expected to be more frequent for “large" particles, it will follow a new
velocity fluctuation. The “crossing time” 7, is the time for a particle moving at the
eddy relative velocity, to travel at the characteristic length of the eddy L.:

L
T, = —T,n (1 — —) (2.51)
Tp lug — wpl
with
k3/2
L.=C,— (2.52)
€

Using Equations [2.48 and [2.51] the local particle turbulent interaction time
can be evaluated from Equation [2.47]

The models described above are all based on the turbulent kinetic energy.
This approach can show limitations for cases where the turbulence is anisotropic
(Kallio & Reeks, [1989). Although not applied for this work, enhanced models use
the Reynolds tensor components. For a numerical approach, this requires the use
of a Reynolds Stress model or the use of the Boussinesq approximation. For pipe
flow studies, it is a common practice to use the radial component and to define a
radial Lagrangian integral time scale such as in [Tian & Ahmadi| (2007):

v

TLT = CQ
3

(2.53)

where (5 is, according to Matida et al.|(2000), close to 1.

Thanks to DNS and measurements of the fluctuations in the layer 10 < y* <
30, a trend that explains the enhanced deposition has been found. By trying
to account and characterize the seeps (pushing particles to the wall or holding
them in a close-wall layer) and burst events (moving particles away from the wall)
that are playing an important role in the particle deposition and concentration.
An interesting review and a simple stochastic model to account for these events
is proposed by Jin et al| (2015). This can seen as having a skewed Gaussian
distribution to represent the near wall fluctuations for both radial and axial fluc-
tuations. It means that there are more fluctuations pushing the droplets towards
the wall in that layer, while above y™ = 50 the fluctuations push the drops away
from the walls.

Turbophoresis

The turbophoresis phenomenon is related to the average particle drift from high
turbulence regions towards low turbulence regions.
The usual expression of this force is the following:

1 wd} ou?

Frurps = —=pp—2 9.54
tur 2776 or (2.54)
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This expression directly appears in Eulerian formulations, and is generally only
seen as a consequence of the turbulence fluctuations in Lagrangian approaches.

In cases of pipe flows, this effect leads to push particles near the wall. However,
Vreman! (2007, 12015) has shown this near-wall build up concentration is function
of the mass loading of particles: the higher the mass loading, the lesser the
turbophoretic effect becomes visible. It can even become negligible. In low particle
concentration, this is a major effect, leading to concentrations up to 300% higher
near the wall than at the centre.

2.3.2 Diffuse dispersion - Brownian motion

The Brownian motion is the main actor in the diffuse dispersion of droplets. Any
molecule having a temperature, experiences a small random motion or oscilla-
tions. For particles small enough to see the carrier fluid as a discontinuous
phase of agitated particles, the Brownian force is the force resulting from the col-
lisions of such fluctuating particles. A common formulation for this force can be
written, considering the vector £}, of components £}, :

S
Fy, = Gy %to (2.55)

where (; are zero-mean, unit-variance-independent Gaussian random numbers
and Sy, the spectral density, defined as:
216vkgT
So = i (2.56)
prdp5 (Z—;) C.

with the Cunningham slip correction factor:

2
Co =1+ —= (1257 + 0.4 14 /2%) (2.57)

P

When a particle no longer sees the carrier fluid as a continuous medium, the
“no-slip" condition stops being valid and the Cunningham slip factor is used to
correct this.

The diffusion process has been characterized by Einstein (1905) as well as
the square root of the geometric mean of the squares of the displacements in a
direction (variance of displacement), as it follows:

V12 = 2Dt (2.58)

where D is the diffusion coefficient. To test the Brownian motion model imple-
mented in OpenFOAM, a droplet size distribution has been chosen to include
sub-micron-particles, with droplets ranging from 1 x 107 m to 68 x 107¢ m.

This makes the Brownian motion a slow diffusion process compared to the
turbulent dispersion or the particle characteristic time. However, it plays an
important role in deposition and collisions of sub-micron to micrometer particles
sizes.
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2.3.3 Collisions and coalescence

Collisions can occur only when the particle density is high enough. According
to Crowe et al.| (1998), the collision-dominated domain begins when the particle
volume fraction is greater than 0.001. The collisions are also function of the
particle relative fluctuating velocity, as the flow surrounding colliding particles is
almost the same. Neglecting the Basset historical term, the particle fluctuation
relative to the flow is function of the particle characteristic time and the Eulerian
autocorrelation R;, usually known. Based on this, it becomes possible to evaluate
the particle-particle relative fluctuation:

10y = (uP (z) u” (z + 1)) (2.59)

However, large particles are more uncorrelated with the flow, as represented in

Figure 2.9: Two particles colliding with uncorrelated fluctuating velocities; source: Kruis
& Kusters (1997)

Figure Kruis & Kusters|(1997) proposed an expression for 7775 for small and
large droplets (described later in this section).

When two particles are getting close to one another, the fluid pressure between
these particles increases. This generates a repulsive force expressed by:

3’/T,UCR1 . R2 %

Fapproach = - 2h0 (2.60)

where R; and R, are the particle radius of the colliding particles, % expresses the

rate at which the particles are approaching and h is the half distance between
the particles.
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Binary collision settings

Figure 2.10: Droplet-droplet collision settings.

Collision outcome

The terminology used to describe the outcome of a droplet-droplet collision (bounc-
ing, coalescence, disruption and fragmentation) will be identical to those intro-
duced by /Abbott|(1977). Figure presents the settings usually used to evaluate
the collision between two droplets. The distance b refers to the distance centre-
to-centre at collision point, taken perpendicularly to the vector U, which is the
resultant velocity, vectorial composition of individual drops just before collision.
The collisional kinetic energy (denoted CKE) for two droplets of same fluid is de-
fined in |Orme| (1997) as follows:

D3D3
CKkE="" (l—> (V, = V,)? (2.61)

where D denotes droplet diameters and the subscripts [ and s represent the large
and small droplets, respectively.

For a collision to happen, the CKE must be such that the force due to the gas
layer between the approaching particles generates can be overcame.
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Figure 2.11: Droplet-droplet collision regime map at 1 atm.
Source: reproduced from|Qian & Law| (1997)

Figure is a droplet-droplet collision regime map (for two particle of the same
b

size), where the parameter B = T is a non-dimensional number characterizing
the collision angle, for B = 0 is a head-on collision and B = 0.5 is a collision with
an angle of 45°. In this graph, the Weber number is mainly an indication of the
velocity of the impact.

Coalescence expresses the fact that all collision energy and the energy neces-
sary to droplet shape-change is completely dissipated. According to Orme|(1997),
the shape-change-energy is expressed by comparing the difference of drop surface
energy (assuming that all drops have a spherical shape), and is given by Equation
2.62] )

AS, = o ((DF+ D2) = (D} + D3)*) (2.62)
Thus, the total collisional energy Fr is defined as the sum of CK E and AS,,. Sev-
eral expressions depending on this parameter express the coalescence efficiency.

Modelled collisions

Droplet-droplet collision algorithm

The algorithm (shown on Figure [2.12) applied every O.1s (for each snapshot) to
determine collision events is now described briefly.

— —
Let us consider that the distance between two droplets at position X; and X, is
defined with the following objective function:

f(t):(f;ﬂx@)—()?inﬁ) (2.63)

The following algorithm can be applied for each snapshot:

- select a parcel P, of diameter d;

- select another parcel (so the pair check is unique) P, of diameter ds

- for t in [0, t o[, minimize Equation [2.63} with tp5,, = 2]2%‘;””
t

i
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—if f (tmin) < C X Dinteraction» Where C = N1/3 is a scaling factor, with N the
number of real drops in the box, and Dj,seraction = (d1 + dg) /2

If mono-dispersed drops are evenly distributed in a box, then the distance
between drops varies with the cubic root of the number of drops in this
volume. The parcel behaviour is representative of the actual behaviour of the
drops. Increasing the interaction distance (thus increasing the occurrence
of the collisions) is similar to reduce the distance between drops.

If (|[V2 — Vi|| > ¢) then:
- increase the number of interactions (by one)

- set the time of interactionE] as:

_ \/2Ri2nt + f (tin)?
7]

At the end of the algorithm the number of parcel interactions for one snapshot
is obtained. This process is repeated for all snapshots. This leads to an array
of interaction numbers (and interaction times) over which an average value is
calculated. Note that this “average” value is not a time average, but rather a
“snapshot" average. To get a proper time average, the number obtained is divided
by a “particle transit time" based on the length of the box Lp,, and the average
velocity in this box (V') g,.:

(2.64)

Tinteraction

t _ Lo (2.65)
transit — <V>BOI .

2the time a drop is within the interaction distance
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Figure 2.12: droplet crowding algorithm
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The “transit time" is the time required for a set of drops to cross the box length
(L Boz). This “transit time" is different from the “residence time", which is the time
required for a drop to leave a box, following its curvilinear pathline. For this
calculation, it is assumed that the box length is in a direction parallel to the main
flow direction. The number of parcel “interaction”" per second being obtained, the
number of colliding drops per seconds needs to be retrieved. Several methods are
possible:

- Use a constant (' value so that the collision distance is corrected (enlarged)
to take into account the fact that the effective separation of droplets is
smaller than the separation distance of the parcels.

- Use the particle number per parcel carried by each parcel. When an interac-
tion of a pair of parcels is determined, one could say that the actual number
of droplet collisions is determined by the smallest number of particles per
parcel of both parcels.

A consequence of using the parcel approach is that both the first and the sec-
ond approaches lose accuracy if the flow becomes too dilute. Using this algorithm
over a long time and using a large number of snapshots would, however, increase
the chances of getting an event but would make the whole calculation impractical
due to the time and resources required.

Collision correlations

Another approach to evaluate the collisions is to use correlations relating the
particle concentration number, the velocity of the particles relative to each other
(of which turbulent effects are often the main contributor) to the collision rate.
Kruis & Kusters| (1997); [Sommerfeld (2001) summarized the two most common
correlation-based models used: the model of Abrahamson (Abrahamson, [1975)
and the Saffman model (Saffman & Turner, [1956). Most of the correlations pro-
viding the number of collisions per seconds between species 7 and j are computed
using the following expression:

where [ is the collision frequency, dependent on the particle sizes and relative
velocities, etc. There are several methods to estimate this parameter.

Here are the steps to be followed in this order, to compute the Kruis and
Kuster’s collision correlation. Before starting, all the fluid and droplet physical
properties should be available (pf, v, vs...) as well as the droplet instantaneous
or averaged number concentration fields (thereafter named n; and n;, ¢ and j being
markers for the droplet size (they could be the same). Note that v; represents the
local carrier flow velocity.

1. Compute the wall distance field

y = interpolation(cell centers) (2.67)
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10.

11.

Compute and set as field over the whole mesh (values per cross-section if
varying) the wall shear stress using Equation [2.10

Compute
3
h— _OPF (2.68)
2pp + py
Compute u* using Equation
Compute using and
u*
yt =Y (2.69)
v
Compute 77, using Equations [2.50
. Compute using [2.50]
Compute using [2.70]
1 . u fL f
7= 0.183 (Rey, ) with Rey, = 2.71)
v
an alternate expression can be used:
L 300\ 2
v
v~ ZLowith Ay = u (—) (2.72)
A f 9
In practice, both should be computed an compared one another: it may
happen that one cannot be used as approximation of the other.
Compute for each droplet size involved

Ce, =1+ E—A (1.253 + 0.56(—0-55%-“)) (2.73)

Pi

where ) is the mean distance between molecules. Note that this expression
has been developed for particles in air. For a liquid, as long as the particles
(from the dispersed phase) are larger than the molecular size, one can as-
sume that C. = 1. It is assumed that the typical molecular size for a liquid
is about 107 m.

Compute for each size involved, and using
Ce, (2 s
= G ot )T ©.74)
)

Compute for each size involved, using [2.74] and [2.50

T
— 2.75
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12. Compute for each size involved, using [2.75/and [2.71|or [2.72

b o ( ! ! ) 2.76)
iy —1\1+6  (1+16)7 -
13. Compute for each size involved, using 2.68, [2.75/and [2.71|or [2.72
2 [ 146:+6;
wgcc 2 i <91 T 6J> N 4620] (1+9i)(1+J9j)
v =(1=9) -1 (0; +0;)
! 7 i 2.77)

1 1
(L+6)(1+6;) (1+96,)(1+ Wj)}

Note that Kruis & Kusters| (1997) report this expression to be valid for a
range of particle whose sizes are ranging from the Kolmogorov scale up to
larger ballistic particles.

14. Compute for each size involved, using [2.76|and [2.77

V;V; (%

2
2 =2 4 _32 _ acc (2.78)
Uy

15. Compute for each size involved, using [2.76|and [2.78

2 R

2
2 Vi 2, Y 2 Vivj €
Wihear — <U_]2£TZ + U—]%’f’j + Qv—j%’f’i’f’j> 5_V (279]

16. Compute for each size involved, using vy as the local carrier flow velocity
and Equations [2.79and 2.77

/8T
5acc+shear = ? (Ti + Tj)Q wgcc + wghear (2.80)

That final expression is then to be used in Equation to compute the
particle collision number in collisions per seconds.

This method was used to derive collisions rates using reconstructed particle con-
centrations, for cases where it was either impossible or inaccurate to use the
previously presented algorithm for direct estimations of collisions in a sampling
box.

2.3.4 Break-up

The droplet subdivision under the effects of several phenomena is called break-up.
Studying the break-up mechanisms is also studying the phenomenon responsible
for it. In general, destructive instabilities are often induced friction forces on the
droplet, coupled with capillarity effects. A droplet under such charge will have its
surface wobbling and its overall shape distorted until the surface tension is no
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longer able to hold the droplet cohesion. When this happens, secondary droplets
will appear, by minimizing the surface energy. The surface energy is given by:

S, = 4dror? (2.81)

where o is the surface tension in J/m? or N/m.

To characterize the balance between inertia forces that tends to break-up the
droplet, and the surface tension that holds the droplet coherence, the Weber
number is generally used, often in various versions, along with the Ohnesorge
number.

The Weber number used in breakup is given by:

pplv—u* D
Webreakup = pf (2.82)
where |v — u/ is the relative velocity between the particle and the surrounding flow
and the diameter used is the one from the initial drop.
There is a critical Weber number under which no breakup event can occur.
The critical Weber number correlation was given by Brodkey in 1969 for gas-liquid
flows:

We, =12 (1 + 1.0770n"%) (2.83)
where On is the Ohnesorge number:
Hp
On=—"=-= (2.84)
(IOPDU)O.5

with 1, the dynamic viscosity of the drop, D the initial drop diameter, p, the drop
density and o the surface tension.

Pilch & Erdman! (1987) described the following breakup modes, and gave cor-
relations in the form of total breakup time versus Weber number for each one.

- Vibrational breakup (We < 12)

- Bag breakup (12 < We < 50)

- Sheet stripping (100 < We < 350)
- Wave crest stripping (350 < We)
- Catastrophic breakup (350 < We)

Most authors consider two breakup regimes: the primary breakup and the
secondary breakup. This approach generally refers to liquid jet atomization: the
primary breakup corresponds to the formation of large drops from the starting
continuous liquid jet or sheet. The secondary breakup is the breaking from large-
average-size drops into smaller droplets. This report will mainly focus on the
secondary breakup. For acceleration or shear-induced break-up (does not applies
to a jet or film breakup) the primary break-up time refers to the time the initial
drop cease to exist in a coherent shape. The secondary breakup time is the time
needed to generate the smallest drop size for the flow conditions.
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The largest size of child droplets is estimated ultimately (at the end of the total
breakup time) using the critical Weber number:

d = Wec# (2.85)
p

There are several models of the breakup; here only the most commonly used ones
will be briefly exposed:

- The Taylor Analogy Breakup model (TAB)

This model was developed by Taylorﬁ and is based on a force balance model
similar to a forced damped spring-mass system, where surface tension acts
as the spring stiffness, the forcing term similar to the drag force and the
damping force expressed by the viscous forces. Droplets are distorted under
the actions of oscillations and when the oscillations’ amplitude goes beyond
a critical value based on the droplet’s radius, the droplet simply breaks-up.
To determine the size and therefore the number of child droplets, as sug-
gested by O’Rourkeﬂ one uses an energy conservation relation by assuming
that child droplets are not oscillating.

However this approach is only valid for low We (IWe < 100); beyond that
critical value, droplets are shattered by high-speed flows. And this model
should not be used when the full break-up dynamic is needed. The TAB
model is implemented in OpenFOAM.

- The WAVE model (or Reitz Model)
This model, suitable for high pressure and velocity flows (IWe > 100), was
originally developed for spray applications by Reit. It is based on the
Kelvin-Helmholtz instabilities, which produces waves at the droplet’s sur-
face. By determining the fastest growing unstable wavelength, it is possible
to evaluate the radius of child droplets. This method is implemented in
OpenFOAM.

- The Pilch & Erdman Correlation
This break up model is based on the work from Pilch & Erdman| (1987),
described at the beginning of this Section [2.3.4] This model is implemented
in OpenFOAM.

All those models have their interval of validity, which explains why several models
can coexist in the same simulation. Several modifications have been provided
to the original OpenFOAM implementation, adapting it to the software created
during this PhD.

3G. L. Taylor. The Shape and Acceleration of a Drop in a High Speed Air Stream. Technical report,
In the Scientific Papers of G. I. Taylor, ed., G. K. Batchelor, 1963

4p. J. O'Rourke and A. A. Amsden. The TAB Method for Numerical Calculation of Spray Droplet
Breakup. SAE Technical Paper 872089, SAE, 1987.

5R. D. Reitz. Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays. Atom-
ization and Spray Technology, 3:309-337, 1987.
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2.3.5 Deposition

General information covering the deposition of particles is provided in this section,
regardless of the nature of the particle, as this theory applies well to droplets and
solid particles, even if small variations can be found. Based on the formulae
given in the previous section (Equation [2.27), particles transported by the flow
may collide with a boundary wall. The deposition denotes here the fact that
particles remain on the boundary after they reach a wall. The deposition can be
characterized by the dimensionless velocity of deposition or by the mass rate of
droplets that are assimilated in the film/pool. It is shown in Ueda (1981) that the
mass rate of deposition is directly proportional to the particle concentration in the
core flow. Figure shows the dimensionless velocity of deposition, given as:

Mdep

Vdep+ — m (2 86]

where myg, is the mass deposited per seconds and C' is the concentration of

2
particles in the flow, versus the particle response time 7';'_ = Tp. <Uy > U* is the
friction velocity defined previously in Equation
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Figure 2.13: Deposition curve in a turbulent pipe flow. Source: |Young & Leeming (1997)
Three regions can be observed in Figure
- T; < 0.3 where particle deposition is dominated by the Brownian motion.
- 03< T; < 20 where turbulence plays a major role.

- T;r > 20 where the particles motion is dominated by inertia.
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In the first zone, particles are so small that their motion is almost fully determined
by their own agitation. For that kind of particles, deposition is determined by the
probability for droplets to reach a wall with such an agitation. As the agitation
becomes more and more significant for particles of a molecular size, this proba-
bility increases.

For medium-size particles, drag forces are predominant and the fluid behaviour
impacts particle trajectories. This regime is also said driven by the particle-
turbulence interaction (or turbulence dispersion). A general description of the
turbulent dispersion is provided in Section For lower-middle-size parti-
cles, particles easily follow fluid variations in the core flow and in the buffer layer,
where particles that were expected to touch the wall can suddenly be re-entrained.
Therefore, the deposition rate is low.

The larger the particles, the greater their inertia becomes. The particle motion
can no longer be evaluated without taking into account the crossing trajectories
effect (see Wells & Stock (1983) for details). Gravity cannot be neglected in this
case, as particles attempt to fall on a nearby wall.

2.3.6 Miscellaneous phenomena

Various phenomena related to droplets are worthwhile to mention and discuss.
Most of them are generally neglected, as they are often difficult to model, not well
known or simply too detailed compared to the previously exposed forces. Never-
theless, this sub-section introduces phenomena useful to model the full droplet
cycle in a multi-phase environment. Many methods exist to model those various
phenomena and several of them are briefly presented here, although not used in
any simulation carried out during this PhD. This document does not pretend to
be exhaustive by any means, and only a handful of phenomena, thought to be
relevant in multi-phase flows, are introduced.

Particle shape

Throughout this thesis, all the particles tracked are supposed to have a perfectly
spherical shape. This hypothesis is often reasonable, in particular when the
drop diameter is less than a micrometer, or when using solid glass particles,
frequently used experimentally. However, for both solid particles and droplets,
such assumption does not always hold. The previous droplet break-up based
section has shown how the flow can deform the droplets, eventually leading
to its break-up.

The particle shape affects the linear and rotational momentum equations, as
well as the particle wall interactions.

Accounting for the particle shape

This paragraph briefly introduces the notations used to deal with non-spherical
particles. The informations provided here are mainly extracted from the book
by [Crowe et al. (1998) and the same notations are being used here. Some of
these notations were themselves introduced by earlier authors, like Waddel who
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introduced the sphericity term for particle description in 1933. Since then, these
notations have been used by many other authors, including [Loth| (2000).
Several parameters exist to account for the non-spherical state of a particle.
The sphericity parameter is defined as:
A

-2 (2.87)

where A, is the surface area of a sphere of the same volume and A the actual
surface area. The Volume-equivalent-sphere diameter used in that case is:

1/3
D, = (6—%) (2.88)

™

where V; is the non-spherical particle volume. The surface-equivalent-sphere
diameter is then expressed by:

™

1/2
Dy= (4—Ap) (2.89)

where A, is the projected area of the particle in the direction of the relative velocity.
It should be noted that the ratio:

D3

dyy = =1
32 Di

(2.90)
is also known as the Sauter mean diameter (SMD). The particle circularity can be

written as:
¢ =nDy/P, (2.91)

where P, is the projected perimeter of the particle in the direction of the relative
motion. These parameters are used to correct the drag factor. The drag force is
given by:

Fp =3ru.D, fAU (2.92)

where f is the drag factor and AU is the relative velocity. Then, the modified drag
factor for non-spherical particles is given by Tran-Cong (2004):

2
Dy

5 015 /D 0.687 0.0175Re (—)
f:—All‘l'—(—ARer) D

NG [1 +4.25 x 104 (22 Re )‘“6}

n T

_l_

D, /e \D, (2.93)

D —
where Re, = p“’;—‘"v‘
C

Agglomeration and packings

When the local volume fraction of particles approaches the packing limit, particles
begins to regroup themselves into various shapes. For mono-dispersed spherical
particles, the packing density starts at 0.52, and the densest packing is can reach
a packing density of 0.74.

In the conditions tested during this PhD, only dispersed flow were considered,
so no packing was possible.
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Turbulent bursts and sweeps effects on particles

Near-wall turbulent structures affect the behaviour of small Stokes number par-
ticles. In practice, close to walls the assumption of a Gaussian distribution of the
fluctuations is wrong (Jin et al., [2015). The Gaussian distribution is skewed (per
components) to represent the occurrence of sudden burst of fluctuations pushing
particles away from the wall and sweeps which tends to push particles towards
the wall. This can modify the prediction of deposition, but it is difficult to evaluate
their effects on the averaged deposition velocity.

Droplet-boundaries interaction

The impaction of droplets on dry or wet walls has been studied in details in Rein
(1993). In the case of a wetted wall, a droplet may bounce, splash or merge with
the film. Most of the time, a droplet hitting a wall is assumed to simply merge
with the film.

25
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Figure 2.14: Droplet-film interaction regime H-We
Source: |[Pan & Law) (2007)

The study of [Pan & Lawi (2007), from which Figure2.14]is extracted, shows evi-
dence that two main parameters control the droplet-film interaction: the Weber
number and the film thickness. The Weber number is defined by:
2
Wedrop—fitm = RIS (2.94)
o

where V' is the impact velocity, p; the density of liquid, ¢ the surface tension and R
the droplet radius. Pan and Law define also the dimensionless parameter H = %.
This is illustrated in Figure for three droplets radii (165 ym, 250 ym and 305
pm). Two main regions are shown in this figure: the absorption region and the
bouncing region. It appears that bouncing can only happen for Weber numbers
lower than 15. Absorption may happen for Weber numbers below 15, for values
of H around 0.8 and for values lower than 0.3. The impaction of droplets on dry
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walls can lead to three major behaviours: bouncing, splashing and wetting. The
wetting phenomenon is very briefly introduced in the following paragraph.

Wetting and drop spreading

The details of the droplet spreading are out of the scope of this thesis, although,
some features of the code do include the droplet spreading to generate a pool.
Here, only the basics of droplet wetting are discussed. For more information, con-
sult the reviews from Bonn et al. (2009); |Coninck et al.|(2001); Haerth & Schubert
(2012); Rein/ (1993); [Yarin! (2006); Zhang et al.| (2008) for instance. The wettability
is the characteristic of a substrate quantifying the easiness a liquid can spread
over its surface. A frequently reported parameter qualifying this is the apparent
contact angle 53, where the subscript "123" refers to the three medium involved
("1" being the substrate, "2" being the droplet and "3" the medium carrying the
droplets and also in contact with the substrate. A contact angle of #,5,3 = 0° mean-
ing the substrate is completely wet and a contact angle of 6153 = 180° meaning a
completely non-wetting substrate. The surface roughness, the temperature, the
chemical nature of both substrate and wetting liquid as well as the third medium
affects the wettability of a substrate. Usually, contact angles are tabulated for a
giving liquid-substrate combination (the third medium being often implicitly the
air, frequently not reported).

Haerth & Schubert (2012) reports, for droplet large enough for the gravity to affect
the spreading, the droplet radius evolution in time as:

g 1/8

Rapreaa () oc 73/ (—t) (2.95)
n

where 7 is the droplet volume, ¢ the gravitational acceleration. Coninck et al.

(2001) shows that different time scales influences the dynamic of droplet spreading

on a surface. Zhang et al.|(2008) published its study for inclined spreading.

2.4 Predicting the carrier flow

2.4.1 An example of turbulence modelling

The low-Reynolds k — ¢, k — w SST, v2f and BL-v?/k and RSM LRR (Launder-
Reece-Rodi) RANS turbulence models have been used during this thesis. The
low-Reynolds k — ¢ is one of most common models, with the Launder-Sharma
(Launder & Sharmal, |1974) a variant known as the standard £ — € model. This
model is relatively inaccurate, especially in case of large pressure gradients but
is numerically stable and fast, so is widely used for industrial applications. The
Wilcox k — w is a commonly used two-equation model where one equation solves
the transport of the turbulent kinetic energy and the other one solves the specific
dissipation. The Shear Stress Transport (SST) variant of the k£ —w model developed
by [Menter (1994) switches automatically from a k£ — w formulation near the walls
to the k& — ¢ definition in the bulk flow.

The SST formulation combines: i) a k-w formulation in the inner parts of the
boundary layer which makes this model directly usable in the viscous sub-layer
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and can therefore be used as a Low-Re turbulence model , and ii) a switch to a
k-¢ model in the bulk flow and therefore avoids sensitivity problems encountered
by a k-w formulation due to inlet turbulence properties (ANSYS, 2013a).

In addition to solve the k£ and ¢ transport equations, the v2f-based model
solves two transport equations for 02 and f with v? the streamline-normal com-
ponent of the fluctuations and f an elliptic relaxation function to account for
near-wall anisotropy effects. In this model, £ — € accounts for the isotropic turbu-
lence and ﬁ/ ¢ for the anisotropic contributions.

Low Reynolds versions of the Reynolds Stress model exist. However, the high
Reynolds formulation is most widely encountered.

OpenFOAM (Weller & Tabor, [1998) for instance, only uses log-wall-functions
which are inappropriate for refined walls. FLUENT (ANSYS, |2013a) proposes lin-
ear wall functions alongside log-wall-functions. The wall formulation is modified
in FLUENT from the original formulation of Launder-Reece-Rodi (Launder et al.,
1975) to make it more robust, while OpenFOAM still uses the original formulation.

Wall functions are typically used to avoid sensitivities of the impact of wall
mesh refinement on the computation time.

Large variations of the velocity and turbulent characteristic fields occur next to
the wall. Numerical methods rely on interpolations between computed cell values.
To correctly compute the near-wall fields, various strategies have been proposed.
From Figure 2.15| it can be seen that the estimate of the wall-normal velocity
gradient can change significantly, depending on the first cell approach and can
produce wrong results if the size of the mesh is not carefully defined.
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Figure 2.15: High Reynolds number versus Low Reynolds number wall treatment

It is important to mention that meshes which are too refined next to the walls
often generate erroneous solutions, in particular when using the £ — ¢ formula-
tion, where ¢ grows exponentially at the wall. It is generally recommended that
the smallest cell height at the wall is such that y™ ~ 1. To generate such a mesh,
the wall friction ©* has to be determined. Two methods are commonly used. The
friction velocity scale-based estimation which is the simplest and fastest one, is
based on the near wall gradient, pressure drop, and for the pre-processing part,
on correlations (Blasius (1913) for instance). The second approach is the two
friction velocity scale estimation which tries to take into account turbulence ef-
fects (Code_Saturne), 2015). The first method is more appropriate for a resolved
wall mesh while the latter is best for a wall function-based mesh. Wall resolved
meshes also increase the computational cost and can sometimes add instabilities.
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The commercial ICEM-CFD (ANSYS, |2013b) and the open source SALOME (Sa-
lome, 2015) software were used to generate the meshes. Meshes requiring a first
cell height of 4y = 1 were constructed based on the friction velocity obtained from
the Blasius correlation. Simulated results often showed discrepancies when com-
pared to the Blasius estimates and the first cell height was usually found slightly
below or higher than y© = 1. Other meshes using wall functions were gener-
ated with a first cell centre height around y* = 20, which is the recommended
value when using such approach. Since different meshes were built, they did
not always share the same quality, particularly for the non-orthogonality of the
cells. However, all flow solutions were obtained with necessary correctors: ex-
tended cell least squares for Code_Saturne, standard non-orthogonal correctors
for OpenFOAM and least squares for FLUENT. All the data provided in this thesis
are non-dimensionalised using the friction velocity from the simulation.

2.5 Predicting the particle behaviour

2.5.1 Injection

In Lagrangian point particle simulations, the first point to carefully handle is the
injection. Indeed, it has been shown (Graham & James, |1996) that the injection
is important for both transient and steady state solutions, as it influences the
long-term dispersion coefficient. Moreover, the flow conditions are generally not
uniform throughout the simulation domain. So the fist particle position may place
the droplet in a singular place, which could well determine the whole particle
behaviour. Thus it is recommended to inject particles in a random position of the
inlet section (instead of providing a pattern of injectors). These positions should
be randomized in space and in time. Depending on the inlet section, the random
positions ought to follow some rules:

- do not inject particles too close to the wall; let at least a distance that free fall
particle would travel during two particle characteristic time be the minimum
boundary injection distance.

- compensate for geometric effects; in case of a disk injection area, remember
that the surface grows with the square of the radius: to hold a constant
particle per square meters, one must inject more particles the farther from
the disk centre.

- injecting a steady-sate pattern: sometimes, a concentration field of particles
is expected (preferential accumulation).

- make sure particles are injected with a velocity close to the local flow velocity.
It is advised to also give the injected particle a velocity fluctuation and a
random turbulent iteration time.

- to better simulate the particle flow continuity, particles should be injected
not on a surface, but in the small volume swept by the inlet during a time-
step.
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The (expected) particle concentration is also of great importance to properly
calibrate the injection. Primary because particle interactions vary in case of a
dilute flow compared to a dense or packed flow. Secondly, because the injection
should be done in such way that the particle motion converges towards the target
concentration profile.

A frequent goal one wants to achieve is, similarly to an Eulerian simulation,
to have a predetermined initial volume fraction of the species represented by the
particles at an intake. Doing such thing in an Lagrangian framework is not as
straightforward as it is for an Eulerian simulation. It requires to compute, for each
cell of the inlet, the average droplet mass flux, which depends on the flow velocity
in each cell, on the surface of injection, and on the density function of position
per cell. The latter is uniform in a squared geometry (channel), but quadratic in
a circular shape (pipe). Note that the constant volume fraction profile might not
be the best inlet profile to initialize a flow with, as often particles migrates into
preferential accumulation zones. In case of an LES or a DNS, these effects of
accumulation are often even more present, but often have a more localized aspect
(filaments).

The Lagrangian point particle approach can be unsuitable to simulate a very
large number of particles. A better method could be to use parcels instead of
single particles. The main difference compared to the point particle approach,
is that each parcel carry the informations relative to many particles. With the
parcel approach, the parcel will be tracked by the simulation as if there where
only one particle (in term of mass, effective surface area, etc) but will be carrying
the information of many, allowing to retrieve the necessary informations. This
imposes a set of restrictions to all particles represented by the parcel:

- the parcel carries only particles of the same size

the droplets are travelling in the vicinity of parcel centre

no collisions, no break-up or coalescence inside a parcel (except in some
special cases)

the volume fraction in the cell where several parcels can be, should not
exceed one

The parcel method was used throughout this work and more than 2.5 millions of
parcels representing each thousands of actual droplets have been simulated in a
single domain.

Collisions (and break-up, and other phenomena (de-volatilisation...) can still
be handled by the parcel approach, but even more cautious care should be taken.
The best approach to compute the collisions in that case, would be to evaluate
the Eulerian concentrations and use the expressions available in Section [2.3.3]

Numerical procedure

One shot injection

The most simple way is to inject once a given number of particles. This type
of injection is faster than injecting quasi-continuously particles, but does not
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allow the same sort of studies, Results obtained with this method are generally
less accurate. It is almost impossible to get particle concentration fields or mass
flux data with this method, except through the use of very advanced processing
strategies, extrapolating the missing information from the motion of a limited
amount of particles.

This injection was used to validate the deposition and the particle motion solver,
as well as to reproduce the results Matida et al|(2000). In theses simulations,
10,000 particles were injected in concentric layers over a disk area. Results are
discussed in Chapter [3]

Quasi-continuous injection

The quasi-continuous injection consists in injecting a set of particle every time-
step. Itis called "quasi-continuous" as the discrete time stepping can not allow for
an actual continuous injection. Instead, an approximation is done to inject at a
next time step the cumulated particle number (or mass) that is supposed to have
flown through between the previous time step and the current one. Hence, it can
appear as if a given number of particles are being released at the same time. To
resolve this problem, specific times associated with each individual parcel injected
are given. It is thus possible to attribute a time between two time steps to a parcel.
This is not sufficient to compensate the errors introduced by the discrete aspect of
the simulation. The particle position, velocity and all other associated parameters
should be modified at the start of a new time step.

This sort of injection allows for more data information to be retrieved and
with more precision that with the single burst injection. It becomes possible, for
instance, to measure mass fluxes.

This kind of injection has been used throughout cases performed in industrial
pipes, since the input information was the weight-water content.

Entry effects

If the injection is not realistic enough, or simply because it takes some time and/or
some distance to generate the expected particle dispersion profile, simulations can
suffer from entry effects. These effects could affect the results of concentration
prediction and deposition. These effects decrease farther away from the injection
point. (Picano et al., |2009) propose a criterion to evaluate the final dispersion
state and also to characterize the preferential accumulation, when there is one.
To characterize the preferential dispersion (Picano et al., 2009) propose to divide
the cross-section of a pipe into M equal-area annuli. Thus the criterion is based
on the definition of the entropy:

S(z) = — Z ]]\\[[((j))ln (%8) (2.96)

=1

where V; is the mean particle number within the domain delimited by the annuli
and a distance Az.
When S (z) is constant, the steady state of dispersion is reached.
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Number conservative approach

When applying a number conservative approach, the mass flow rate of water to
be injected (ni,,) and the volume water flow rate (),,) are considered:

My = @y X p X wet (2.97)
Q, = 2w (2.98)
Puw

Table provides the drop number ratio for the number conservative approach
for the small distribution of droplets of sizes 9, 25 and 41 um for a water cut
of 0.25% by weight used in the industrial simulations performed. The results of
these simulations are discussed in Section [3.4l

Table 2.2: Drop number ratio_for the number conservative approach

Drop diameter [pm] ‘ 9 25 41
Drop number ratio ‘ 93.85% 4.76 % 1.39 %

In application to Equation [2.101], .4 = 4.08 x 10° which leads to the distribu-
tion of droplets number per second written in Table [2.3]

Table 2.3: Summary of number conservative approach

Drop diameter [pm] 9 25 41
Drop number per second 3.83 x 10° 1.94 x 108 5.67 x 107
Mass flux [kg - s7'] 1.462 x 1072 1.589 x 107 2.047 x 1073
Volume flux [m? - s7] 1.462 x 107 1.589 x 1076 2.047 x 107
Water volume ratio [%] 29.5 % 31.2 % 39.1 %
Number ratio to smallest number 67.5 3.4 1

These numbers of droplets per second are too high to be injected as such.
Instead, a parcel approach is chosen, where each parcel consists in a group
of physical droplets of same size. It is assumed that a parcel moves through
computational cells in the flow field as the motion of an individual droplet.

For transient simulations, if a time step of 1 x 10™%s is considered, and if at
least one parcel of the smallest droplet number is injected per second, the parcel
number per second for each size can be determined. If the parcel injection is based
on the mass flux (per size) and by parcel per number, OpenFOAM will adapt the
number of particle per parcel to satisfy both conditions.

The resulting droplet distribution is uniformly injected at random positions
(varying in time) from the inlet of the pipe section. This leads to an increase rate
of deposition close to the inlet (entry effects), due to droplets injected too close
from the walls. However, these entry effects are minor and they do not affect
significantly the disperse flow.
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This volume flow rate can be decomposed as a sum of volume fluxes associated
with each particle sizes:

Qw = QQum + Q25um + Q41um (2.99)

Each volume flux can be written as the product of the number of drops injected
per second by the droplet volume:

Qw = Ngum X %um + NQBum X %Ewm + N41um X %llum (2100]

where ”//gum is the volume of one droplet of the considered size.
By introducing the number ratio of each drop size:

Qw =N <p9pm X %um +p25um X %Ewm +p41um X %1um) (2101]

where A" X poum = Noum (idem for all sizes) where py,,,, is the number fraction
for the considered drop size. Equation [2.101| has only one unknown and is easily
solved to find .4". A numerical application of this method can be found in Section



Chapter 3

Results of studies

A five meter long vertical pipe of diameter 0.5 in. has been selected to validate
the deposition model against the experimental results of Liu & Agarwal (1974)
and the simulation carried out by Matida et al.| (2000). The Reynolds number
is Re = 12,970 and the pipe wall is assumed smooth. Simulations have been
performed with the flow conditions described in Table

Table 3.1: Flow conditions for air

Uc 7 [if Re
(m/s) (kg/m?) (m?*/s) (=)
15.66 1.2 1.84107° 12,970

More details of the flow are given later in Section |3.3.1|as part of the pipe flow
scaling-up study. Results of the Lagrangian droplet simulation are presented
below.

3.1 Dispersed flow results

Ten thousand mono-dispersed droplets have been released from the centre of the
inlet section of a vertical pipe with the flow going downwards. This injection has
been repeated for each particle size considered. This number of particles injected
reduces the computational cost of the Lagrangian simulation, without impacting
much the averaged deposition velocity (Lai & Cheng, |2007). For the sake of clarity
and to limit extensive post-processing, only results from three representative drop
sizes are discussed in the following section. The particle-wall interaction is set
to stick: once the distance between the particle centre and the wall is equal to
the particle radius, the particle velocity is set permanently to zero. Furthermore,
there is no re-injection of parcels once a particle deposits. Due to the low number
of parcels and because particles do not bounce on the walls, the number of parcels
decreases with the distance to the injection point. Injecting such a low number of
particles (10,000) in the domain has been motivated by three major points. First,
this allows a direct comparison with the work of [Matida et al.| (2000), who used
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the same number of particles. Secondly, it appeared interesting to establish the
minimum number of parcels to inject from the centre of the inlet section (farthest
distance to the walls) to obtain reliable results (or when the deposition velocity
becomes independent of the number of parcels injected). Finally, based on the
number of parcels injected and their initial location, the resulting concentration
field could be analysed.

3.1.1 Cross-section droplet statistics

The dispersion is a measure of the droplet cloud spreading in the pipe, but could
also be seen as the evolution of the droplet cloud position moments in time and
space. Being able to describe the droplet dispersion renders the prediction of the
droplet concentration field possible and therefore the droplet deposition. Mecha-
nisms primarily important in the droplet isothermal dispersion are the Brownian
motion, the turbulent dispersion and the convective transport. There are sev-
eral ways to describe dispersion, either spatial, temporal or based on a spectral
analysis. The spatial and temporal evolutions of the dispersion are discussed
here.

The positions of the droplets of size 0.5 ym and 7.8 pum and their associated
radial distribution have been evaluated at various axial sections of the pipe. The
objective was to establish a general way of describing the shape of the transient
and steady state dispersion patterns for a large range of droplet sizes. It is impor-
tant to find a universal radial distribution shape, which would be valid to describe
the whole evolution of the dispersion. The evolution of the first three statistical
moments are reported in the next section. Note that if the general expression of
the radial distribution is known and is combined with the reported moment varia-
tions, the droplet concentration field (and resulting deposition) can be determined
at every point in space and time.

The probability for a droplet to be in a radial interval is a random variable. It
can be deduced by counting drops in bins, distributed along the pipe radius.

count |droplets,

droplet bin

o o owm  od PR S © oo
radial distance [m] radial distance [m] radial distance ]

(@ 0.5um near 0.01s dis- (b) 0.5um near 0.1s disper- (c) 0.5um near 0.2s disper-
persion z = 0.14 m sion z = 1.008 m sion x = 2.54 m

Figure 3.1: Spatial evolution of the radial dispersion - 0.5 um droplets
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Figure 3.2: Spatial evolution of the radial dispersion - 7.8 um droplets
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Figure 3.3: Spatial evolution of the radial dispersion - 68.5 ym droplets

Histograms displayed in Figures to were produced by generating a
0.0255 m wide clip of the droplet pathlines and filtering them to keep one point
only per droplet. All early dispersion profiles in these figures are similar, even
though they do not necessarily develop at the same speed. After some time in the
dispersion process, the radial distribution begins to be dependent on the droplet
size.

Three zones are visible when the equilibrium state is reached: i.) a common
dispersion shape, up to 0.005 m, ii.) a drop size dependent shape between 0.005 m
and 0.006 m and iii.) a wall droplet build-up, common to all droplet sizes, but with
various amplitudes. These regions seem consistent with the 3 layers described by
Equation [2.50

No satisfactory universal distribution has been found yet to represent at once
all those states. A more detailed study should be devoted to that purpose only.
A linear combination of several distributions will allow a finer and complete de-
scription of the previously described evolutions. However, such approach has not
been investigated here.

The polar representation of the droplets positions illustrates how a radial dis-
tribution is represented in a disk area. Since 10,000 drops only are injected in
the domain and since they stick to the wall when they reach it, too few of the
68.5 um drops are present near the outlet section of the pipe (most of them de-
posit between 1 and 2 m), rendering the analysis very difficult for droplets of this
size. However, the analysis has been performed for the medium and small drop
sizes considered here. Figure shows the resulting polar representation from
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a profile similar to Figure for the 0.5 pum droplets. The associated droplet
surface concentration is represented by an histogram on Figure 3.5 Similar plots
are obtained for the 7.8 um droplets, see Figures and

10" 1

10" 4

0.000 0.002 0.004 0.006 0.008 0.010
radial distance [m]

droplet surface concentration [drops/m?)

Figure 3.5: Radial surface concentration:

Figure 3.4: 0.5 microns droplets positions
0.5 microns

at the pipe outlet section

droplet sur face concentration [drops/m?)

0.000 0.002 0.004 0.006 0.008 0.010
radial distance [m]

Figure 3.6: 7.8 microns droplets positions Figure 3.7: Radial surface concentration:
at the pipe outlet section 7.8 microns

The histograms on Figures and represent 100 pipe angular sectors of
identical width (annuli areas). Sectors close to the centre of the pipe therefore
have a smaller cross-sectional area than sectors next to the walls. Each vertical
bar represents the number of droplets collected in each annuli sector divided by
the annuli surface. The polar representation is achieved through clipping the
droplets pathlines data one centimetre far from the outlet section and projecting
the mean position of each droplet pathline onto a 2D surface.

In all cases, droplets are mainly concentrated around the centre axis of the
pipe, the concentration decreasing as the annuli area increases from the pipe
center to the wall.

3.1.2 Droplet dispersion

The previous section has described the general aspect of the cloud dispersion, par-
ticularly in its equilibrium state. Measuring the spatial and temporal evolutions
of the radial dispersion moments leads to an estimate of the cloud dispersion.
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The time evolution of the moments (mean radial position of the drops for a given
time), the variance (axial) and the skewness are provided in Figures , and
The continuous lines displayed on these figures represent the exponential
fit curves for the data obtained numerically. A similar general behaviour can be
seen in all plots: a starting transient phase followed by a relatively flat profile. The
spatial evolutions shown in Figures[3.10], [3.11]and[3.13]display a straight pattern,
less noisy than the time profiles. It can be seen that the droplet dispersion needs
some time and some distance to reach an equilibrium state characterized here by
the moments being constant. For the drop sizes investigated, a time of 0.2s and
a distance of about 3m are necessary to get a fully established droplet dispersion.
As expected, the dispersion of the largest droplets require more time to reach an
equilibrium state. Near the end of each time profile, the data oscillate highly. Such
variation is not clearly visible in the spatial distributions. This final de-coherence
can be explained by the lack of particles near the end of the simulation, making
any statistical analysis unreliable at the end of each simulation.
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To match the data plotted from Figure to and create a statistical
model, exponential-based functions can be used; they are represented by plain
lines on the figures. It is supposed that the variance and the mean variation
follow an exponentially growing function A (1 — exp(—t/74)) while the skewness
is assumed to follow a decreasing exponential B exp(—t/75) + C. Such expo-
nential functions can be established, based on the overall shape of the evolution
of the moments (variance, mean variation and skewness) which follow an expo-
nential pattern. Furthermore, intuitively, an exponential law can generally be
used in phenomena where an equilibrium value is asymptotically reached. The
corresponding fitted values of A, B, 74, 7 and C' are written in Table

Table 3.2: Fitting function parameters A, B, T4, T and C

Drop diameter [um]
Moments 0.5 7.8 68.5
. A TA A TA A TA
spatial mean 0.0036 0.22 0.0036 0.257 0.0039 0.53
. . A TA A TA A TA
spatial variance |, oo - 0.23 2.57 x 1070 0.265 2.9 x 10°6 0.57
tial sk B B C B B C B B C
spatial skewness 1.65 0.29  —0.049 1.67 0.35 —0.15 1.73 054 —02
A TA A TA A TA
temporal mean 0.0032 0.012 0.0036 0.017 0.0036 0.034
temporal variance A A A A A A
p 2.36 x 106 0.015 2.8 %1076 0.018 2.45 x 1076 0.03.1
B B C B B C B B C
temporal skewness 1.33 0.015 0.21 1.46 0.022 —0.16 1.43 0.073 —0.34

Figure shows the different existing states of dispersion and deposition for
the injection. In Sector O, the droplet cloud spreads quickly but does not reach the
walls. Sector 1 depicts the region where the spreading has reached the walls, but
is still not fully established. Droplets start depositing, but the rate of deposition
has not yet reached its equilibrium state. Sector 2 represents the region where the
dispersion is established and where a stable deposition velocity can be evaluated.
Sector 3 may exist, depending on the flow settings. This region is present for
the current simulations as all droplets are injected simultaneously and the flow
conditions and droplet sizes allow such deposition. In this region, the droplet
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concentration decreases since most droplets have already deposited. Finally, no
deposition is present in Sector 4, which corresponds to a dry wall regio