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Abstract. Inspired by the high performance of rotary and insect flapping wings capable of 
vertical take-off and landing and hovering (VTOLH), a novel flapping wing rotor (FWR) has 
been developed by combining the above two types of wing motions. The FWR offers an 
alternative configuration for micro air vehicles (MAV) of such high flight performance. Unlike 
the well-studied aerodynamics of rotary and insect-like flapping wing with prescribed wing 
motion, the aerodynamic lift and efficiency of the FWR associated with optimal kinematics of 
motion has not been studied in a systematic manner before. This investigation is therefore 
focused on the FWR optimal kinematic motion in terms of aerodynamic lift and efficiency. 
Aerodynamic analysis is conducted for a FWR model of aspect ratio 3.6 and wing span 200mm 
in a range of kinematic parameters. The analysis is based on a quasi-steady aerodynamic model 
with empirical coefficients and validated by CFD results at Re~3500. For comparison purpose, 
the analysis includes rotary and insect-like flapping wings in hovering status with the FWR at 
an equilibrium rotation speed when the thrust equals to drag. The results show that the rotary 
wing has the greatest power efficiency but the smallest lift coefficient. Whereas the FWR can 
produce the greatest aerodynamic lift with power efficiency between rotary and insect-like 
flapping wings. The results provide a quantified guidance for design option of the three types 
of high performance MAVs together with the optimal kinematics of motion according to flight 
performance requirement. 

Keywords: Bioinspired FWR, MAV, flapping wing, optimal kinematics, aerodynamic 
efficiency. 

1. Introduction 

Micro air vehicles (MAV) with small dimension and low flight speed (Reynolds number: 𝑅𝑒~103) are 
of special interest for both military and civil applications. The standard layouts of existing MAVs 
include the well-studied fixed wing and rotary wing of conventional aircrafts and the flapping wing 
inspired by insects and birds [1]. Despite the various existing layouts, the aerodynamic performance of 
MAVs in low 𝑅𝑒 flight is still a major limitation for a practical design, especially in terms of the lift 
production and power efficiency. In order to extend the current limitations, a novel concept of flapping 
wing rotor (FWR) which combines both the insect flapping wing and man-made rotary wing has been 
proposed by the authors [2]. Like the insect wing and rotary wing, the FWR makes use of gyration of 
the wing with respect to the root to produce a velocity relative to the surrounding air. On the other 
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hand, the FWR wing combines an active vertical flapping and a passive horizontal rotation, which 
leads to a self-balanced equilibrium motion in the horizontal plane, with no reaction torque exerting on 
the body, as opposed to the conventional rotorcraft. This leads to a potential power saving and system 
simplicity. Thus, the novel concept of FWR may be suited for developing MAVs with vertical take-off 
and landing and hovering (VTOLH) capability and operate in complex and risky environments and 
inside buildings [2]. 
For rotary wing and insect flapping wing, the aerodynamic performances at low 𝑅𝑒 (~103) have been 
studied extensively by previous authors [3–7]. Several unsteady aerodynamic mechanisms are found 
to enhance lift for insect wings. In particular, the stable leading edge vortex (LEV) provides the 
majority of lift enhancement (about 80% for angles of attack above 13.5˚, [8]), while rotational 
circulation and added mass effects contribute to the instantaneous peaks at stroke reversals [4]. The 
stability of LEV is crucial for the high lift production of insect wings, and has been addressed with 
particular attention. Ellington et al [5] suggested that the spanwise velocity along the LEV core serves 
to transport vorticity towards wingtip, which stabilizes LEV in a similar manner with conventional 
delta wings. Lim et al [9] with experimental and numerical approach showed that the vortex stretching 
could significantly delay the detachment of the LEV, even when the spanwise flow was weak. In an 
experimental study of unidirectional rotating wing, Lentink and Dickinson [10] found that LEV could 
be stabilized by the centripetal and Coriolis accelerations at low Rossby number (𝑅𝑜, see definition in 
section 2.2), and this effect appears to be independent of 𝑅𝑒 in a wide range (𝑅𝑒=100~14000). 
While the rotary wing and insect flapping wing with their prescribed motions have been studied on 
extensively, the FWR wing aerodynamic behaviours for MAV design has received less study. Wu et al 
[11] used a CFD method to analysis the forces production of FWR at 𝑅𝑒 =350~9000. Their results 
showed that the LEV formed on the wing of FWR stays attached throughout the flapping cycle, which 
provides lift enhancement similar to insect wings. Zhou et al and Guo et al [12,13] in experimental 
and numerical studies found that the aerodynamic performance of FWR varies critically with the 
pitching kinematics of wing motion. By effectively changing the pitch angles in the upstroke and 
downstroke, the FWR will achieve different status for lift and efficiency. Previous experimental 
studies showed that a rotary wing at low 𝑅𝑜 was able to sustain attached LEV [10,14,15]. 
Furthermore, Lentink and Dickinson [10] showed that the rotary wing exhibits higher aerodynamic 
efficiency than insect wings for hovering in a wide range of 𝑅𝑒 (𝑅𝑒=100~14000). Lentink et al [16] 
further argued that the rotary wing may be the most energy efficient layout for insect-sized MAVs. 
Despite these new findings, a practical MAV design is still challenged by the efficiency and lift 
requirements associated with the low 𝑅𝑒 flight. Kinematic strategies to explore the optimal 
performances could provide significant guidance for MAV design in a practical scenario. Therefore, 
the current study is focused on investigating the optimal kinematics for lift and efficiency of the FWR 
wing, and compare with the conventional rotary wing and insect flapping wing motions. 
Experimental and numerical studies showed that the aerodynamic force on a wing operating reciprocal 
flapping and pitching motion could be modelled by a quasi-steady aerodynamic theory [15,17–19]. In 
the current study, a quasi-steady aerodynamic model for the FWR has been built and validated in a 
range of kinematic parameters. In addition to the LEV, the rotational circulation and the added mass 
inertia were taken into account for aerodynamic force modelling. Based on the equilibrium status of 
FWR, the effect of pitch angles and non-dimensional rotation speed for lift production and efficiency 
are analysed. The optimal kinematics of FWR for both lift and efficiency have been determined. 
Further, the aerodynamic performances of FWR are compared with the other two competitive wings 
for MAVs, i.e. the insect flapping wing and rotary wing (RW) capable of VTOLH. For the insect 
flapping wings, comparisons are made with two types of kinematics namely the horizontal flapping 
(HF) and inclined flapping (IF) demonstrated typically by fruitfly and dragonfly respectively. 
In this investigation, a wing model of aspect ratio (AR) 3.6 and 200mm span is taken as example for 
analysis at 𝑅𝑒~3500 (see definition in section 2.2). The kinematics for both FWR and insect wings are 
set in a simple harmonic motion. To determine the optimal kinematics for FWR, the pitch angle of the 
wing varies in the range of <90o. The wing flaps between the angle of ±25o and at frequency ~12Hz. 
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The aerodynamic lift and efficiency at the same 𝑅𝑒 for insect wing and rotary wing are obtained at 
specified parameter range chosen from typical insect data. The results show that the rotary wing has 
the greatest power efficiency but smallest lift coefficient. While the FWR can produce the greatest 
aerodynamic lift with a power efficiency standing between the other two types. The study provides a 
basis for insight into the kinematics strategy and unsteady aerodynamics in low 𝑅𝑒 flight. From the 
results, an MAV design choice from the three types of wings associated with their optimal kinematics 
can be made for either a maximum lift with a specified efficiency or a maximum efficiency with a 
required lift. 

2. FWR model and analysis method 

2.1. FWR coordinate and kinematics 
The coordinate systems used to describe the FWR kinematics of motion are shown in figure 1(a). The 
FWR body is depicted in the figure with the wing detached for clarity. The coordinate systems include 
the inertial frame (x, y, z), the wing-fixed frame (xw, yw, zw), and the intermediate frame of the Euler 
rotations (x′, y′, z′) and (x′′, y′′, z′′). For clarity, the overlapping axes of the intermediate frames x′, y′′ 
and z′′ are omitted. The inertial frame (x, y, z) is attached to the body with the origin ‘o’ at the wing 
root; the wing-fixed frame (xw, yw, zw) is attached to the wing root with the same origin. The rotation 
plane is set in horizontal. The FWR rotation, flapping, and pitching angles are given by 𝜓, 𝜙 and 
𝛼,respectively. The wing motion is described by successive rotation about the y, x′ and z𝑤 axis with 
the corresponding Euler angles (positive anticlockwise). The planar views with respect to each axis 
describing the corresponding Euler angles are shown in figure 1(b). 
 

 
Figure 1. (a) Coordinate systems and rotation angles definitions for the 
FWR wing. (b) The top, back and side view of the Euler angles. 
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Based on the above definition, the angular velocity vector of the FWR wing in the inertial frame can 
be expressed by the time derivative of the three Euler angles �̇�, �̇�, and �̇� and the transformation 
matrixes: 

�⃗⃗� i = [𝜔i  𝜔j  𝜔k]
T = [

0
�̇�
0
] + 𝐑(𝜓) [

�̇�
0
0
] + 𝐑(𝜓)𝐑(𝜙) [

0
0
�̇�
]                            (1) 

where 𝐑(𝜓) and 𝐑(𝜙)are the rotation matrixes of the corresponding Euler angles; [∙]T indicates 
matrix transpose. The angular acceleration vector in the inertial frame �⃗⃗̇� i can be derived by directly 
differentiating the above equation. By combining the three elementary rotations, the transformation 
matrix from inertial frame to the wing-fixed frame is given as: 

𝐑𝐢→𝐰 = 𝐑T(𝛼)𝐑T(𝜙)𝐑T(𝜓)                                                    (2) 
The angular velocity and acceleration vector in the wing-fixed frame is obtained by applying the 
above transformation. For blade element analysis, it is convenient to write down the velocity and 
acceleration of a 2D wing chord due to the gyration of the wing at span-wise location 𝑟. The resultant 
velocity and acceleration vector when expressed in the wing-fixed frame are planar vectors with only 
two nontrivial indices, i.e. the xw and yw components: 

�⃗⃗� (𝑟) = �⃗⃗� × 𝑟 = 𝜔y𝑟𝐞𝐱 − 𝜔x𝑟𝐞𝐲 = [𝑢x  𝑢y  0]
T                     (3a) 

�⃗⃗̇� (𝑟) = �⃗⃗̇� × 𝑟 + �⃗⃗� × (�⃗⃗� × 𝑟 ) = (�̇�y + 𝜔x𝜔z)𝑟𝐞𝐱 + (−�̇�x + 𝜔y𝜔z)𝑟𝐞𝐲 = [�̇�x  �̇�y  0]
T     (3b) 

where 𝐞𝐱, 𝐞𝐲 represent the basis vector of the wing-fixed coordinate system of the 2D wing section; �⃗⃗�  
denote the rotation rate of the wing in the wing-fixed coordinate system, which has 𝜔x, 𝜔y and 𝜔z 
components in the xw, yw and zw axes, respectively; �⃗⃗� (𝑟) and �⃗⃗̇� (𝑟) refers to the velocity and 
acceleration vector of the 2D wing chord at span-wise location 𝑟; 𝑢x, 𝑢y, �̇�x and �̇�y are used to 
represent the components of velocity and acceleration in xw and yw axes, respectively. Based on these 
kinematic parameters, the effective angle of attack (AoA) of the wing at any instantaneous time can be 
determined by inversing the trigonometric function of the velocity ratio: 

 𝛼e = arctan (
𝑢y
𝑢x
)                                                              (4) 

The key feature of the FWR kinematics is the coupled flapping and rotation motion and asymmetric 
pitching at up and downstroke, as shown in figure 2. In these degrees of freedom, the definition of a 
specific function to describe the wing motion varies. However, major properties of the aerodynamic 
performance can be seized by simple harmonic motion [20]. In the current study, the FWR is set in a 
sinusoidal flapping while rotate at a constant speed (�̇� = 𝜓0). The flapping velocity of the wing is 
given by the function: 

�̇� = π𝑓Φcos (2π�̂� + π
2
)                                                  (5a) 

where 𝑓 is the flapping frequency, Φ is the flapping amplitude, �̂� = 𝑓𝑡 is the non-dimensional time. 
The pitching velocity of the wing is set plateaued in the mid-strokes by modifying the sinusoidal 
function: 

�̇� = 2𝑓(𝛼u − 𝛼d){(−1)[2�̂�+0.5] − cos(4π�̂� + [2�̂� − 0.5]π)}                           (5b) 

where αu and αd are the geometric AoA of the wing at mid-upstroke and mid-downstroke. The 
bracket notation [∙] is understood as the floor function giving the greatest bounding integer. 

The resulting kinematics of the wing defined as above is illustrated in figure 2. The tip trajectory of 
the wing shows a coupled flapping and rotation motion. Similar to a dragonfly wing, the pitching is 
asymmetric with different 𝛼u and 𝛼d at up and downstrokes, respectively. 
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Figure 2. The kinematic pattern of the FWR wing. 

2.2. The FWR wing geometry 

The FWR wing used in the current investigation is a thin flat plate of elliptical shape as shown in 
figure 3. The wing has chord-wise cutting edge near the root. The non-dimensional radius of the first, 
second and third area moments �̂�1, �̂�2 and �̂�3 of the wing are defined by: 

�̂�𝑘 = √𝐴𝑅∫ 𝑐(𝑟)𝑟𝑘d𝑟R
0
R𝑘+2

𝑘
, 𝑘 = 1, 2, 3                                                (6) 

where 𝑐(𝑟) is the local chord length, 𝑅 is the wing semi-span, AR=3.6 is the aspect ratio. These are the 
shape parameters for the wing geometry. In order to keep the morphological similarity with insect 
wings, the parameters �̂�1, �̂�2 and �̂�3 are constrained by the numbers 0.45~0.55, 0.5~0.6 and 
0.55~0.65, respectively [21]. In addition, the 𝑅𝑜 is defined by [10]: 

 𝑅𝑜 = 𝑅2
𝑐̅

                                                                     (7) 

where 𝑅2 = �̂�2𝑅 is the radius of the second area moment, and 𝑐̅ = 𝑅
AR is the mean chord length. For 

hovering flight, 𝑅𝑜 is equivalent to AR and is given by the value 𝑅𝑜=2.1 in the current study. The 
geometric parameters of the FWR wing are listed below: 

𝐴𝑅 = 3.6,  𝑅𝑜 = 2.1,  �̂�1 = 0.55,  �̂�2 = 0.59,  �̂�3 = 0.63                                 (8) 

 
Figure 3. Wing geometric definitions in the wing-fixed coordinate system. 

The wing surface starts with a distance zd from the wing root. At span-wise location 𝑟, a wing strip of 
width d𝑟 and chord length 𝑐(𝑟) is shown in the figure; ℎ is the vertical coordinate of the semi-chord of 
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the ellipse. The zw axis of the wing is located in a distance 𝑥pitch from the leading edge (LE), which 
can be expressed as: 

𝑥pitch = (
1
2
+ ℎ̂) 𝑐(𝑟)                                                            (9) 

where ℎ̂ is the non-dimensional local coordinate of the semi-chord: ℎ̂ = ℎ
𝑐(𝑟). For insect flapping wing, 

the pitching axis (zw) is usually considered to locate at around 0.25 chord length [18,22], 
corresponding to ℎ̂ = −0.25. This value is used in the current model for calculation.  

The Reynolds number in the current investigation is defined by: 
𝑅𝑒 = 2Φ𝑓𝑅𝑐̅

𝜈
                                                                  (10) 

where Φ and 𝑓 are the flapping amplitude and frequency, 𝜈 is the kinematic viscosity. For our 
specified  𝑅𝑒 (~3500), the wing semi-span is fixed by the value of 𝑅 = 100 mm while the flapping 
frequency and amplitude varies accordingly in different kinematic cases. 

2.3. FWR aerodynamic model 
Like the insect wing, the unsteady aerodynamic force of FWR is generated by active flapping and 
pitching motion. Unlike the insect wing, the FWR produces an additional self-propelled rotation. The 
quasi-steady aerodynamic model for predicting the aerodynamic forces of insect flapping wings 
[4,19,23] is adapted in the current study for FWR. In this model, the aerodynamic force coefficients 
are updated by an empirical fit of data that include the unsteady effects of the flow. For a 2D spanwise 
strip, the model is expressed in the form with instantaneous force depend only upon the status, velocity 
and acceleration of the wing: 

d𝐹x(𝑟) = {
1
2
ρ|�⃗⃗� (𝑟)|

2
𝐶H(𝛼e)𝑐(𝑟) + (𝜆y𝑢y𝜔z − 𝜆yω𝜔z2)} d𝑟                         (11a) 

d𝐹y(𝑟) = {
1
2
ρ|�⃗⃗� (𝑟)|

2
𝐶V(𝛼e)𝑐(𝑟) + 𝐶rotρ|�⃗⃗� (𝑟)|𝜔z𝑐(𝑟)2 + (−𝜆y�̇�y + 𝜆yω�̇�z)} d𝑟       (11b) 

where |∙| indicates the Euclidean norm; ρ is the air density; 𝛼e is effective AoA of the wing obtained 
by equation (4); 𝑐(𝑟) is the local chord length; 𝐶V(𝛼e) and 𝐶H(𝛼e) are the ‘steady’ force coefficients 
due to wing translation; 𝐶rot is the rotational force coefficient due to wing pitching; 𝜆y and 𝜆yω are the 
added mass coefficients. 

In the above equations, the forces and kinematic parameters are expressed in the wing-fixed frame 
(xw, yw, zw) (see (3a)~(3b) for the definitions of kinematic parameters). Equation (11a) accounts 
for the force parallel to the wing chord with the steady term and the added mass term [17,24]. The 
added mass coefficients 𝜆y and 𝜆yω for a 2D flat plate moving in potential flow are given by 𝜆y =
π
4ρ𝑐(𝑟)

2, 𝜆yω = π
4ρℎ̂𝑐(𝑟)

3. Equation (11b) accounts for the force acting perpendicular to the wing 
chord, with the steady force as the first term, the wing rotation force as the second term and the added 
mass force as the third term. 
The translational force coefficients on a 2D wing section are illustrated in figure 4. Empirical fit of 
experimental data shows that the coefficients in the aerodynamic frame 𝐶 F = [𝐶d, 𝐶l]T obey the 
following trigonometric relation [19,23]: 
 

{
𝐶l = CLmaxsin(2𝛼e)                                         
𝐶d = (

CDmax+CD0
2

) − (CDmax−CD0
2

) cos(2𝛼e)
                                    (12) 

For a particular wing geometry and 𝑅𝑒, the constants CLmax, CDmax, CD0 together with Crot can be 
obtained by empirical fit of experimental data. Sane and Dickinson [17,18] used a model fruitfly 
(Drosophila melanogaster) wing to obtain the coefficients at 𝑅𝑒~100. When the pitching axis of the 
wing was located at 0.25 chord distance, the above coefficients were given by  CLmax = 1.8, CDmax =
3.4 and CD0 = 0.4. While Crot was between 0.5~1.8, which depends on the pitching rate of the wing. 
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In an further study, Lee et al [25] adapted the quasi-steady model to account for the effect of 𝑅𝑜, AR 
and taper ratio of the wing, thus extended the applicability of the model to a wider range of flow 
conditions and wing geometry. For the purpose of the current study, an empirical fit of the quasi-
steady coefficients have been used in our model. The aerodynamic data was obtained by using the 
CFD method for the particular wing geometry (see figure 3), 𝑅𝑜 (=2.1) and 𝑅𝑒 (~3500). The quasi-
steady coefficients by fitting the CFD data are given by CLmax = 1.7, CDmax = 3.24 and CD0 = 0.05. 
Whereas for our current investigation with moderate wing pitching rate, Crot has been taken as 
Crot=1.0 in our model. 

 
Figure 4. Coordinate systems, velocity and forces vectors on a 2D 
wing section (‘o’ indicates the centre of pressure). 

Based on equation (12), the translational force coefficients 𝐶 F = [𝐶H  𝐶V]T are obtained by frame 
transformation: 

[𝐶H𝐶V
] = R(𝛼e) [

𝐶d
𝐶l
]                                                           (13) 

where the transformation matrix 𝐑(𝛼e) is from the aerodynamic frame (xa, ya) to the wing-fixed 
frame (xw, yw). 
The aerodynamic torque d𝜏w (pitch moment about zw axis) of the 2D wing section is obtained by the 
summing the translational torque d𝜏qs, the aerodynamic damping torque d𝜏rd [23,26] and the torque 
d𝜏am due to added mass force: 

d𝜏w(𝑟) = d𝜏qs + d𝜏rd + d𝜏am                                                   (14) 

Each of these terms is calculated by the following equations: 

d𝜏qs = −
1
2
ρ|�⃗⃗� (𝑟)|

2
𝐶V(𝛼e)�̂�cp𝑐2(𝑟)d𝑟                                        (15a)    

d𝜏rd = −
1
2
ρ𝜔z|𝜔z|𝐶rd�̂�rd𝑐4(𝑟)d𝑟                                           (15b)    

d𝜏am = [𝜆y𝑢x𝑢y − 𝜆yω(�̇�y + 𝑢x𝜔z) + 𝜆ω�̇�z]d𝑟                               (15c)    

where 𝐶rd is the rotational damping torque coefficient; 𝑥cp is the non-dimensional chord-wise centre 
of pressure (CP) of the translational force; 𝑥rd is the non-dimensional location of the rotational 
damping force; 𝜆ω is added mass torque coefficient, and is given as: 𝜆ω = [π4ρℎ̂

2 + π
128ρ]𝑐(𝑟)

4 [24]. 
For insect-like flapping wings, 𝑥cp varies linearly with the effective AoA 𝛼e, and is obtained 
empirically by [27]: 

𝑥cp =
0.82
π
|𝛼e| − ℎ̂ − 0.45                                                     (16) 
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The non-dimensional location of rotational damping force 𝑥rd is given by [23,26]: 

𝑥rd =
1
2
ℎ̂4 + 3

4
ℎ̂2 + 1

32
                                                        (17) 

Andersen et al [26] used a rotational damping torque coefficient of 𝐶rd = 2.0 for predicting the 
unsteady aerodynamic force of tumbling cards. Based on experimental study of insect wing, Whitney 
and Wood [23] proposed the coefficient 𝐶rd equal to the maximum drag coefficient CDmax since the 
rotationally induced velocity is normal to the wing. This assumption is used in our current model. 
Based on the 2D aerodynamic forces and torques described above, the 3D force 𝐹 w = [𝐹x  𝐹y  0]

T and 

torque 𝜏 w = [𝜏x  𝜏y  𝜏z]
T of the wing can be obtained by integrating the elementary forces and torques 

along the span R: 

{
 
 

 
 𝐹x;y = ∫ d𝐹x;y

𝑅
𝑟=0 (𝑟)      

𝜏x = −∫ 𝑟d𝐹y(𝑟)
𝑅
𝑟=0      

𝜏y = ∫ 𝑟d𝐹x(𝑟)
𝑅
𝑟=0          

𝜏z = ∫ d𝜏w(𝑟)
𝑅
𝑟=0           

                                                   (18) 

2.4. Power consumption 
For a real FWR wing, the majority of power consumption would come from the power to accelerate 
the wing inertia and the power to overcome the aerodynamic drag. For insect flight, mechanical power 
can be stored in elastic structure (such as the thorax), and released in the subsequent flapping stroke 
[28]. Previous studies showed that for the insect flapping kinematics, the interplay between the wing 
inertia and aerodynamic force has strong implications on the power consumptions [29]. In particular, 
the passive pitching of flapping wing by its own inertia may help to overcome the aerodynamic torque 
which saves energy for insect flight. 
In the current study, we focus on the aerodynamic power of FWR in hovering. The instantaneous 
power is thus obtained directly by the inner product of the angular velocity �⃗⃗�  with the aerodynamic 
torque 𝜏 w: 

𝑃aero = −�⃗⃗� ∙ 𝜏 w                                                           (19) 

where positive value indicates power consumption and negative value indicates power input to the 
system. The time averaged energy cost of the FWR wing over a flapping cycle can be obtained by: 

�̅� = 1
𝑇 ∫ 𝑃aerod𝑡

𝑇
𝑡=0                                                           (20) 

where 𝑇 is the flapping period. 

3. Quasi-steady model validation and discussion 

To validate the aerodynamic model, the aerodynamic lift and rotational moment of FWR at 𝑅𝑒~103 
are compared with the results from CFD method. In this calculation, the FWR wing used the same 
geometry and kinematic parameters as given in the CFD analysis [11]. The lift and rotational moment 
coefficients are defined by: 

𝐶L =  
𝐿

0.5ρ𝑈ref
2 S

                                                            (21a) 

𝐶M = 
𝑀

0.5ρ𝑈ref
2 S𝑐

 ̅                                                         (21b) 

where 𝑈ref = 2Φ𝑓𝑅2 is the mean flapping velocity at the radius of second area moment [30], 𝐿 is the 
instantaneous lift and 𝑀 is the instantaneous rotational moment, S is the wing area. Similarly, the time 
averaged values of the above coefficients  𝐶L̅ and 𝐶M̅ are obtained by using the mean lift force 
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�̅� = ∫ 𝐿d𝑡𝑇
0
𝑇  and mean rotational moment �̅� = ∫ 𝑀d𝑡𝑇

0
𝑇  instead of the instantaneous values (𝐿 and 𝑀) in the 

above equations. 

We chose different kinematic cases varying the flapping amplitude Φ, the geometric AoAs (𝛼u and 
𝛼d), and the periodic ratio of flapping to rotation 𝑛 (defined as the ratio of flapping period 𝑇f to 
rotation period 𝑇r: 𝑛 =

𝑇f
𝑇r

, [11]) for comparison. The kinematic parameters and the resulting mean lift 
and rotational moment coefficients are presented in Table 1. Figure 5 shows the comparison of 
instantaneous lift and rotational moment coefficients ( 𝐶L and 𝐶M). 
 

 
Figure 5. Lift and rotational moment coefficients (𝐶L and 𝐶M) comparisons of the quasi-
steady model and CFD method. 

 
 

Table 1. Time averaged coefficients (𝐶L̅, 𝐶M̅) by quasi-steady model 
and CFD method. 

Kinematic Parameters CFD Results Quasi-steady Results 
Case 
No. Φ 𝑛 𝛼u 𝛼d 𝐶L̅ 𝐶M̅ 𝐶L̅ 𝐶M̅ 

1 20° 0.25 25° 5° 5.11 -2.38 5.06 (-1.0%) -2.42 (1.6%) 
2 30° 0.25 30° 10° 3.27 -1.57 3.32 (1.4%) -1.69 (7.4%) 
3 30° 0.25 30° 0° 2.81 0.77 2.68 (-4.6%) 0.76 (-2.1%) 
4 30° 0.13 25° 5° 1.00 1.33 1.08 (8.6%) 1.42 (6.2%) 
5 70° 0.42 50° -30° 0.92 2.39 1.02 (11.7%) 2.55 (6.8%) 
6 70° 0.33 60° -20° 1.55 1.53 1.70 (9.5%) 1.75 (15%) 
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For the FWR wing, the applicability of the quasi-steady model relies essentially on the stability of 
LEV. This flow structure has been observed on insect wings by both experimental and numerical 
methods. By observing the flow structure of a hawkmoth (Manduca sexta) wing in a typical motion, 
Ellington et al [5] found a strong spanwise flow along the LEV core. Based on this observation, they 
proposed that LEV could be stabilized by the spanwise flow which transports vorticity of the LEV 
towards wingtip, thus delays the shedding of LEV. Lim et al [9] through experimental and numerical 
methods found that the LEV could be stabilized due to vortex stretching even with a weak spanwise 
flow. By examining the LEV dynamics of unidirectional rotating wing with different 𝑅𝑜, Lentink and 
Dickinson [10] found that the LEV could be stabilized at low 𝑅𝑜 by centripetal and Coriolis 
accelerations, which mediates the spanwise flow by the effect of ‘Ekman pumping’ of the boundary 
layer flow. In the numerical study of Wu et al [11] on FWR, a strong spanwise flow on the wing was 
observed, and the LEV on the FWR wing merged with the tip vortex and the trailing edge vortex 
(TEV), forming a vortex ring structure that stayed attached on the wing throughout the flapping cycle. 
These findings suggest that the quasi-steady model is applicable for modelling the aerodynamic forces 
of FWR and other wing motions in low 𝑅𝑜 and low 𝑅𝑒 flight. It is therefore especially useful for quick 
estimations of aerodynamic performances for MAVs. 
For a particular wing, the quasi-steady coefficients as given in section 2.3 are sensitive to the wing 
geometry and flow conditions. Lee et al [14] numerically investigated the effect of 𝑅𝑜 and AR for 
revolving rectangular wings. They found that both 𝑅𝑜 and AR have considerable effect on the vortex 
dynamics and thus the forces production on the wing. In particular, increasing the AR reduces the 
three-dimensional tip effect and is thus beneficial to lift generation, while increasing the 𝑅𝑜 increases 
LEV instability, which is detrimental to lift production. In the current study, the quasi-steady 
coefficients for FWR are obtained by an empirical fit of CFD data for our particular wing geometry, 
𝑅𝑜 and 𝑅𝑒. The results of our model are in good agreement with CFD method in full range of 
investigations. As shown in Figure 5 and Table 1, compared with CFD, the current model yields 
maximum differences in lift and rotational moment coefficients of less than 12% and 15%, 
respectively. 

4. Example analysis and results 

A unique feature of the FWR is that its rotation is passively induced by the thrust of the flapping wing. 
This is different from the prescribed motion of insect wings and conventional rotor blades. 
Consequently, a hovering FWR would reach and stay in an equilibrium rotation speed that the mean 
aerodynamic thrust balances with the drag of the wing. Thus, the rotational moment would average to 
zero (𝐶M̅ = 0) over a flapping circle. In this study, all the calculations are subjected to the equilibrium 
state of FWR. 
Since the kinematics of FWR is combined by steady rotation and reciprocal flapping motion, a non-
dimensional rotation speed 𝜂 is defined to measure the deflection of the effective AoA: 

𝜂 = 𝜓0
2Φ𝑓

                                                                   (22) 
where 𝜓0 is the rotation speed of the wing in horizontal plane. By equation (20), the mean 
aerodynamic power coefficient is defined by: 

 𝐶P̅ =
�̅�

0.5ρ𝑈ref3S
                                                        (23) 

In order to assess the aerodynamic efficiency, the non-dimensional power factor is defined by 
[10,31,32]: 

𝑃f =
𝐶L̅
1.5

𝐶P̅
                                                                  (24) 
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which measures the power efficiency for sustaining a certain amount of weight for different forms of 
flight. In the current investigation, 𝑃f is used for the comparison of power efficiency between FWR, 
RW and insect wings. 
Based on the quasi-steady model, the aerodynamic forces and power of FWR under the equilibrium 
state (𝐶M̅ = 0) are calculated at different geometric AoA measured at mid upstrike (𝛼u) and mid 
downstroke (𝛼d). The parameters range between 𝛼u = 60°~0° and 𝛼d = 0°~ − 30°. In the 
investigated cases, the flapping amplitude Φ is fixed to 50°. The flapping frequency and dimension of 
the wing is determined to match the specified 𝑅𝑒~3500 for the investigation. The resulting non-
dimensional parameters of the FWR (𝐶L̅, 𝐶P̅, 𝑃f and 𝜂) are shown in figure 6. 

 
Figure 6. (a) Contour plots and (b) 3D surface plots the FWR results in the range 𝛼u = 60°~0° 
and 𝛼d = 0°~ − 30°. 

 
As shown in figure 6, the non-dimensional rotation speed of FWR 𝜂 is maximized at small anti-
symmetric AoA in up and downstroke (𝛼u = 9° and 𝛼d = −9°). Along the symmetry lines 𝛼d = −𝛼u, 
nearly no lift is generated (𝐶L̅~0), thus the power factor 𝑃f remains zero. The power coefficient 𝐶P̅ is 
large at small 𝛼u and 𝛼d where the flapping motion forms large effective AoA. In the special case 
when the pitch angle is constantly zero (𝛼u = 𝛼d = 0), Vandenberghe et al [33] showed in experiment 
that the rotation of the wing exhibits supercritical bifurcation, where an inverted von Kármán wake 



12 
 

behind the wing was observed and the wing rotates by the associated thrust. This phenomenon cannot 
be modelled by the current quasi-steady model. 
The results show that the FWR produces high lift coefficient ( 𝐶L̅ > 4.3) when 𝛼d is between −8°~ −
2° and 𝛼u between 13°~24°. The power factor 𝑃f is above 1.6 when 𝛼d = −30°~ − 13° and 
𝛼u = 35°~50°. The resulting maximum values of 𝐶L̅, 𝑃f, 𝐶P̅ and 𝜂 and the associated 𝛼u and 𝛼d are 
listed in Table 2. 
 

Table 2. The maximum �̅�𝐋, 𝑷𝐟, �̅�𝐏 and 𝜼 values and the associated 𝜶𝐮 and 𝜶𝐝. 

Dimensionless 
Parameters 

Maximum 
Values 

Equilibrium  
𝜂 at Maximum 

Values 

𝛼u at 
Maximum 

Values 

𝛼d at 
Maximum 

Values 
�̅�𝐋 4.73 3.33 18° -3° 
𝑷𝐟 1.82 1.94 42° -24° 
�̅�𝐏 17.21 4.40 6° -3° 
𝜼 5.03 5.03 9° -9° 

 
For FWR, the passive rotation speed would deflect the air velocity with respect to the wing which 
changes the instantaneous effective AoA (𝛼e, shown in figure 4). Based on the results obtained from 
figure 6, the instantaneous 𝛼e of the FWR wing at different 𝜂 are shown in figure 7(a). As can be seen, 
the variations of 𝛼e in a flapping cycle follow a similar trend for different 𝜂. In the downstroke, the 
wing forms large 𝛼e thus produces large lift and propelling moment. In upstroke, the wing forms small 
positive 𝛼e thus generates a positive though small lift and anti-rotating moment. Subject to the 
equilibrium condition (𝐶M̅ = 0), the propelling and anti-rotating moments cancel each other over a 
flapping cycle. The resulting AoAs and forces on the FWR wing are illustrated in figure 7(b). 
From figure 7(a), the downstroke 𝛼e changes significantly with the rotation speed (𝜂): a large rotation 
speed (such as 𝜂 = 2.70) produces a small 𝛼e in the downstroke, whereas a small rotation speed 
(𝜂 = 0.99) results in large 𝛼e in the downstroke. In the former case, the variation of  𝛼e in a flapping 
cycle appears to be plateaued by the induced rotation speed, thus the aerodynamic force of FWR tends 
to be dominated by rotation, which is similar to a rotary wing. For the latter case, the wing forms large  
𝛼e in the downstroke, whereas a small 𝛼e in the upstroke. The resulting kinematics is similar to a 
typical insect wing with inclined stroke plane. 
 

 
Figure 7. (a) The FWR effective AoA, 𝛼e in different rotation speed and (b) the corresponding 
velocity and aerodynamic forces. 

5. Aerodynamic force and efficiency comparison of three types of wings 

5.1. Instantaneous force comparison of FWR with insect-like flapping wings 
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In order to study the lift production and flight efficiency of the existing types of wing motions (FWR, 
insect-HF, IF and rotary wing-RW), comparisons are made between these wing kinematics using the 
same wing geometry (see figure 3) and 𝑅𝑒 (~3500). The definition of 𝑅𝑒 for different wings is in the 
same way with FWR by equation (10). However, for the steady rotation of RW, 𝑅𝑒 is defined in the 
usual sense (𝑅𝑒 = 𝑈𝑡�̅�

𝜈 , where 𝑈𝑡 is the wingtip velocity). Similarly, the reference velocity 𝑈𝑟𝑒𝑓 for 
obtaining the forces coefficients of different wings is chosen as the velocity at 𝑅2 (see equation 21). 
For the steady rotation of RW, this velocity is given by 𝑈𝑟𝑒𝑓 = �̇�𝑅2, where �̇� is the rotation speed. 
We first compare the instantaneous aerodynamic force of FWR with the insect flapping wings (HF and 
IF). The kinematic parameters of FWR are chosen by four representative cases of αu = 30°, 60° and 
αd = −10°,−20°, respectively. For insect wings, the kinematic parameters are chosen based on data 
obtained from typical insect flight. In particular, the HF wing is given by: flapping amplitude ΦHF =
150° and 𝛼e = 35° in both up and downstroke [34], while the IF wing is given by: ΦIF = 90°, stroke 
plane inclination angle 𝛽 = 40°, and 𝛼e = 20° and 45° in the up and downstroke, respectively [35]. 
The kinematics for different wing motions are illustrated in figure 8. Figure 9 shows the instantaneous 
lift and rotational moment coefficients for different wings at 𝑅𝑒~3500. The associated mean lift and 
rotational moment coefficients are given in table 3. 
 

 
Figure 8. Kinematic for FWR and insect flapping wings. (a)-HF and FWR, (b)-IF. 

 
The instantaneous lift of FWR is similar with the IF, where the downstroke produces the majority of 
lift while the upstroke contributes small or even negative lift. In contrast, the HF produces equal lift in 
both up and downstroke. Similar to the IF wing, the large 𝛼e of the FWR wing in the downstroke 
would produce significant aerodynamic drag (i.e. aerodynamic force parallel to the flow direction). 
However, a large portion of this drag is contributed to the upward lift due to the vertical flapping 
velocity. Wang [36] proposed that the aerodynamic drag plays important role for insect flight with an 
inclined stroke plane: about three quarters of the weight of a dragonfly was supported by the 
aerodynamic drag. In the above cases of FWR, the drag contribution to the upward lift is between 
5%~55%. 
For both HF and IF, the wing pitches drastically during a flapping cycle. The typical kinematics of 
insect wings gives the pitch angles of Δ𝛼 = 110° and 115° respectively for HF and IF (Δα is defined 
by the difference of the Euler angle 𝛼 at mid-up and downstroke, see figure 1), whereas the Δ𝛼 of the 
FWR wing are between 40°~80°. Insect-like flapping wings change the moving direction at stroke 
reversals, thus the wings need to pitch drastically in order to form a positive 𝛼e in the subsequent 
stroke. However, due to the induced rotation speed of FWR, a positive 𝛼e can be obtained at a much 
smaller pitch angle. We anticipate that the smaller pitch angle of the FWR wing would be desirable for 
MAV structural integrity and actuation system requirements. 
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Figure 9. Instantaneous 𝐶L and 𝐶M of FWR and insect flapping wing. (a)-FWR, (b)-HF and IF. 

 
Table 3. Kinematics and corresponding 𝐶L̅ and 𝐶M̅ of FWR and insect flapping 
wings (HF and IF). 

Kinematic 
Cases 

AoA at mid-upstroke 
𝛼u 

AoA at mid-downstroke 
𝛼d 𝜂 𝐶L̅ 𝐶M̅ 

FWR 

30° -10° 2.57 3.96 0 
30° -20° 2.70 2.12 0 
60° -10° 0.99 2.56 0 
60° -20° 1.18 2.40 0 

HF 𝛼e=35° 𝛼e=35° - 1.99 0 
IF (𝛽 = 40°) 𝛼e=20° 𝛼e=45° - 1.82 1.20 

5.2. Lift and efficiency comparison of three types of wings 
The second comparison is between the optimal lift and efficiency of the three types of wings. In this 
investigation, the kinematic parameters for each wing are specified to vary in a range. The variations 
of the kinematic parameters are chosen to cover the optimal lift and efficiency for the respective 
wings. In particular, the 𝛼u and 𝛼d of FWR are chosen to cover the maximum 𝐶L̅ and 𝑃f given in table 
2; the insect kinematics are chosen to cover the typical motions of insect flight-HF and IF given in 
table 3. For FWR and IF, the calculations are performed by fixing 𝛼u or 𝛼d respectively in two 
different cases. The parametric definitions for this investigation are given in table 4 and figure 10. 
By varying the corresponding parameters (𝛼u or 𝛼d for FWR and IF, 𝛼e for HF and RW), the chosen 
parametric spaces thus represent the boundary performances in terms of 𝐶L̅ and 𝑃f for the respective 
wings. The resulting 𝑃f versus 𝐶L̅ boundaries for the three types of wings are presented in figure 11. 
The arrows in the figure indicate the variations of 𝑃f and 𝐶L̅ with the increase of the associated AoAs. 
The typical kinematic case of insect HF is marked by , and the dragonfly kinematics case is marked 
by▲(see table 3). 
As shown in figure 11, the maximum lift produced by RW is smaller compared with the insect wings 
(HF and IF) and FWR, but the power factor is greater. This indicates that RW is superior in terms of 
aerodynamic efficiency among the three types of wings, which is consistent with previous 
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experimental results [10,16]. The maximum 𝑃f of FWR appears to be slightly smaller than RW, but 
greater than the insect HF and IF wings. This could be due to the deflection of the flow velocity by the 
passive rotation speed. As shown in figure 7, the rotation speed of FWR tends to plateau the 𝛼e of the 
wing in both up and downstroke. Therefore, when combined with a suitable flapping amplitude and 
frequency, the wing of FWR can operate at a relatively constant 𝛼e of high lift to drag ratio, thus 
produces a higher efficiency, which is similar to the RW operating in a constant AoA. 
 

Table 4. Kinematic parameters and optimal kinematics for three types of wing - 
FWR, insect-like wings (HF, IF) and RW 

Kinematic 
Cases 

AoA Range-
Upstroke 

AoA Range-
Downstroke 

Optimal Kinematics for  
𝐶L̅ and 𝑃f 

𝐶L̅ 𝑃f 𝜂 AoA-Up AoA-Down 

FWR 
Opt 𝐶L̅ 𝛼u=3°~60° 𝛼d=-3° 4.73 0.98 3.33 𝛼u=18° 𝛼d=-3° 
Opt 𝑃f 𝛼u=42° 𝛼d=-42°~0° 2.29 1.82 1.94 𝛼u=42° 𝛼d=-24° 

IF 
Opt 𝐶L̅ 𝛼e=20° 𝛼e=0~90° 1.93 0.83 - 𝛼e=20° 𝛼e=60° 
Opt 𝑃f 𝛼e=0~90° 𝛼e=45° 1.77 0.96 - 𝛼e=13° 𝛼e=45° 

HF 
Opt 𝐶L̅ 

𝛼e=0~90° 
2.04 0.90 - 𝛼e=42° 

Opt 𝑃f 1.29 1.56 - 𝛼e=14° 

RW 
Opt 𝐶L̅ 

𝛼e=0~90° 
1.70 1.13 - 𝛼e=45° 

Opt 𝑃f 0.72 2.54 - 𝛼e=12° 
 

 
Figure 10. The AoA variation range for (a-b)-FWR, (c-d)-insect IF wing, (e)-
insect HF wing and (f)-RW. 

 
It is also noted that the maximum lift of FWR is significantly greater than the other wing motions. 
This is mainly due to the additional dynamic pressure provided by the passively induced rotation 
speed. Read et al [37] studied the lift and efficiency of a plunging airfoil operating in the free stream. 
By measuring the fluid forces on the airfoil in a water tank, they found that when the pitching of the 
airfoil is biased by an angle, significant 𝐶L̅ (on the order of 5.5) can be obtained. By using the CFD 
method, Wang et al [38] studied a flapping and simultaneously rotating wing with prescribed rotation 
speed, when the rotation speed is given by a high value, the obtained 𝐶L̅ could be significantly higher, 
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along with a large anti-rotating moment. Compared with the current investigation of FWR, since the 
rotation speed of the wing is induced passively by the aerodynamic thrust, the resulting 𝐶L̅ is within 
5.0 for the specific 𝑅𝑒 (~103). 
For MAV design, our results show that with the same input motion, i.e. flapping frequency and 
amplitude, the FWR will produce significant greater lift than the insect flapping wings and also the 
RW. Therefore, when both vertical lift and aerodynamic efficiency are required for a particular MAV, 
the FWR type of wing motion would be a suitable candidate for the design choices. In addition, the 
efficiency to lift boundary given in figure 11 provides a guidance to select the design configuration 
and suitable kinematic parameters according to the MAV design specifications.  
 

 
Figure 11. Power factor 𝑃f versus mean lift coefficient 𝐶L̅ boundaries for different types of 
wings. 

6. Conclusions 
The bioinspired FWR provides a novel MAV configuration by combining the kinematics of motion of 
rotary and insect-like flapping wings. The FWR rotation is self-propelled in a passive manner by the 
thrust produced from powered flapping wing motion. This special feature offers not only the capability 
of VTOLH, but also enhanced aerodynamic performance and simplified mechanical system. A 
systematic study has been conducted to quantify the FWR performance in terms of aerodynamic lift 
and power efficiency in a range of kinematic and geometric parameters. The quasi-steady aerodynamic 
model validated by CFD provides an efficient method of high accuracy for the investigation. 
In comparison with the conventional rotary and insect-like flapping wings, the FWR can produce 
significantly greater aerodynamic lift coefficient with power efficiency between the other two types of 
wings. The insect-like flapping wings (HF and IF) are of a moderate performance. The rotary wing has 
the greatest power efficiency of 28% and 39% higher than the FWR and insect-like wing (HF) 
respectively. However the corresponding lift coefficient of the rotary wing is only 30% and 53% of the 
other two types of wings respectively. When a rotary wing reaches its maximum lift with 
compromised power efficiency, the insect wing and FWR can offer 17% and more than double higher 
lift respectively in the same level of power efficiency. The FWR offers a significantly broader range of 
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combination of aerodynamic lift and power efficiency with optional kinematics of wing motion. The 
study results provide a quantified guidance for the three types of wing design option together with the 
optimal kinematics of motion according to specified MAV flight performance requirements. 
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