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Abstract 

Simulation of horizontal oil-water flow with matched density and medium viscosity ratio 

(    ⁄ =18.8) in several different flow regimes (core annular flow, oil plugs/bubbles in water and 

dispersed flow) was performed  with the CFD package FLUENT in this study. The volume of 

fluid (VOF) multiphase flow modeling method in conjunction with the SST k-ω scheme was 

applied to simulate the oil-water flow. The influences of the turbulence schemes and wall 

contact angles on the simulation results were investigated for a core annular flow (CAF) case. 

The SST k-ω turbulence scheme with turbulence damping at the interface gives better 

predictions than the standard k-ε and RNG k-ε models for the case under consideration. The 

flow regime of density-matched oil-water flow with medium viscosity ratio, or more generally 

speaking, the flow regime of fluids where the surface tension is playing a prevailing role is 

sensitive to the wall contact angle. Simulation results were compared with experimental 

counterparts. Satisfactory agreement in the prediction of flow patterns were obtained for CAF 

and oil plugs/bubbles in water. The simulation results also demonstrated some detailed flow 

characteristics of CAF with relatively low-viscosity oil (oil viscosity one order higher than the 

water viscosity in the present study compared to the extensively studied CAF with oil viscosity 

being two to three orders higher than the water viscosity). Different from the velocity profiles of 

high-viscosity oil CAF where there is sharp change in the velocity gradient at the phase 

interface with velocity across the oil core being roughly flat, there is no sharp change in the 

velocity gradient at the phase interface for CAF with relatively low-viscosity oil.  
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Symbols used 

  [m2 ] cross-sectional area of the pipe 

iA  [m-1] interface area density 

   [m2 ] cross-sectional area occupied by water 

B  [-] turbulence damping factor, 10 

  [m] internal pipe diameter 

    [m] hydraulic diameter of the water phase 

ZD  [kg m-2s-2] cross-diffusion term in the specific dissipation rate equation 

F [kg m-2s-2] external body force per unit volume 

  [m s-2] gravitational acceleration 

kG  [kg m-1s-3] production of turbulent kinetic energy  

ZG  [kg m-2s-2] generation term of the turbulence specific dissipation rate 

   [-] water holdup 

  [-] turbulence intensity 

  [m2 s-2] kinetic energy of turbulence 

m [-] empirical coefficient in the model of turbulent flow velocity profile 

n [m-1] surface normal vector 

n̂  [m-1] unit surface normal vector 

wln̂  [m-1] unit vector normal to the wall 

p [N m-2] pressure 

r  [m] radial position 

R  [m] radius of pipe 

ZS  [kg m-2s-2] source term for reduction of the destruction term in the specific 

dissipation rate equation 
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t [s] time 

wlt̂  [m-1] unit vector tangential to the wall 

u [m s-1] velocity 

U [m s-1] average velocity 

Um [m s-1] mixture average velocity 

Umax [m s-1] mixture maximum velocity 

Uso [m s-1] superficial oil velocity 

Usw [m s-1] superficial water velocity 

z [m] longitudinal position from the junction 

kY  [kg m-1s-3] dissipation of turbulent kinetic energy  

ZY  [kg m-2s-2] dissipation term for the turbulence specific dissipation rate 

 

Greek letters 

  [-] volume fraction 

  [-] closure coefficient in turbulence damping term, 0.075 

wlT  [°] angle between the wall and the tangent to the interface at the wall 

  [m-1] interface curvature 

  [kg m-1s-1] molecular viscosity 

   [kg m-1s-1]  turbulent viscosity 

  [kg m-3] density 

  [N m-1] surface tension coefficient  

   [-] Prandtl number for  kinetic energy equation 

   [-] Prandtl number for specific dissipation rate equation 

  [-] interface area density 

  [s-1 ] specific dissipation rate 

ZZ  [s-1 ] additional specific dissipation rate term in the interface turbulence 

damping model 

   [m] grid size in the interface region 
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Subscripts 

  [-] interface 

  [-] kinetic energy equation 

o [-] oil 

q [-] phase index 

t [-] turbulence 

w [-] water 

wl [-] wall 

  [-] specific dissipation rate equation 

 

1. Introduction 

Flows of two immiscible liquids are encountered in a diverse range of processes, and 

particularly in the petroleum industry, where oil and water are often produced and transported 

together. During the concurrent flow of oil and water in a pipe, the deformable interface of the 

two fluids can attain a variety of characteristic configurations known as flow regimes. Accurate 

prediction of oil-water flow characteristics such as the flow regime, water holdup, and pressure 

gradient is of importance for engineering design and operation.  

Computational fluid dynamics (CFD) is a useful tool which can give insight and foresight of 

flow behaviors. It is becoming increasingly popular with advancement of the computer 

technology. Some dedicated in-house CFD codes have been developed in order to investigate 

the stability of CAF flows. Ooms et al. (1984) numerically modelled highly viscous oil CAF by 

assuming the oil core being solid. The model was based on the hydrodynamic lubrication theory 

and numerically solved with the shape of the wave being empirical input. Bai et al. (1996) 

conducted numerical calculation of laminar CAF of liquids with same density under assumptions 

of axisymmetric interfacial waves and a solid oil core. Ko et al. (2002) extended the numerical 

simulation of Bai et al. (1996) to turbulent case by adopting the SST k-ω model. Li and Renardy 

(2000) developed a semi-implicit VOF solver to study vertical core annular flow at low Reynolds 

number. Amongst many theoretical findings from the aforementioned studies is the importance 
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of interfacial waves in the levitation of the core. It is noted that all the aforementioned studies 

focus on high-viscosity oil CAF (oil viscosity 2 to 3 orders higher than the water viscosity) and 

most of the models assume that the high-viscosity oil core being solid-like to simplify the 

mathematical description of the CAF. CAF is with relatively low-viscosity oil has received little 

attention. For low-viscosity oil-water flow, CAF would develop when densities of fluids are 

matched. In density-matched CAF with relatively low-viscosity oil, some interesting flow 

characteristics different from the extensively studies high-viscosity oil CAF would show as the 

influence of gravitational force disappear, the viscous force is not as dominant as in high-

viscosity oil-water flow, while at the same time the interfacial tension and/or the inertia play 

more prevailing roles depending on the flow conditions. The flow characteristics of density-

matched CAF with relatively low-viscosity oil has not been sufficiently discussed.   

In engineering applications, the commercial CFD packages are gaining increasing popularity. 

The general CFD codes ease the heavy work on coding and could provide reasonable results if 

the simulations are appropriately set up.  A good understanding on the CFD models and 

numerical theories is essential to perform CFD simulations correctly. In addition, investigations 

on the suitability of the general built-in models to particular problems are required. One of the 

most important decisions that have to be made in any numerical study of fluid flow is the choice 

of the turbulence model as it bears a substantial effect on the accuracy of the result. A large 

number of studies in the literature have reported assessment of different turbulence models for 

single phase flow, particularly in the areas of aerodynamics (e.g., Menter, 1994; Bardina et al., 

1997; Walsh and Leong, 2004; Cheng-Hu et al., 2005; Zhai et al., 2007; Baxevanou and 

Fidaros, 2008; El-Behery and Hamed, 2011; Sagol et al., 2012; Heschl et al.,2013). However, 

few studies have been conducted to investigate the effectivity of various turbulence models in 

simulating two-phase pipeline flow. Banerjee and Isaac (2003) evaluated three turbulence 

models, including the standard k-ε, the RNG k-ε and the Reynolds stress model, in conjunction 

with the volume of fluid (VOF) multiphase flow model with FLUENT in predicting stratified gas-

liquid flow. They found that the RNG k-ε model provided better predictions. Vallée et al. (2008) 

used the SST k-ω model to simulate gas-liquid slug flow in conjunction with the inhomogeneous 

multiphase model with CFX; the interface turbulence damping function was applied for the SST 
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k-ω model. A very good qualitative agreement between calculation and experiment was 

demonstrated. Walvelar et al. (2009) simulated dispersed oil-water pipeline flow with FLUENT. 

The Eulerian-Eulerian method and the standard k-ε turbulence model were used. The predicted 

results were satisfactory at high mixture velocity, while at low mixture velocity, the authors 

observed notable discrepancy to the data. Burlutskiy and Turangan (2015) investigated 

dispersed oil in water in a vertical pipe using a steady Euler-Lagrange model and a k-ε 

turbulence model implemented in FLUENT. The predictions for pressure drop were satisfactory 

at high mixture velocity, and the authors highlighted the importance of the shear-lift force on 

their prediction. With respect to core annular flow that is a subject of the present work, 

simulations have been performed with the VOF model for flow through various line 

configurations. Ghosh et al. (2010) numerically simulated downward CAF (oil-to-water viscosity 

ratio 220) in a small and short vertical pipe (I.D.=0.012 m, pipe length=0.48 m). The standard k-

ε turbulence scheme was used for turbulent flow conditions. A good agreement was shown 

between calculation and experiment. The simulation results showed an abrupt change in the 

radial velocity gradient at the phase interface with velocity across the oil core being roughly flat. 

Though the calculated liquid hold-up showed little variation at a specific distance downstream 

(22 times the pipe diameter), the velocity profiles still showed variation at that specific distance 

downstream, indicating the calculated flow is unlikely fully developed in the simulations 

described above. Ghosh et al. (2011) further performed simulations of CAF (oil-to-water 

viscosity ratio 220) in a vertical U bend with the same CFD models as used in their previous 

study (Ghosh et al., 2010). The simulation results showed a satisfactory agreement with 

experiments concerning liquid distributions. Core annular flow through sudden contraction and 

expansion were investigated in Kaushik et al. (2012). The authors also applied the standard k-ε 

turbulence scheme for turbulent annulus flow. The authors observed that an increase in the 

superficial velocity of the annulus prevents from fouling. Jiang et al. (2014) also investigated 

CAF through a U bend configuration with the Eulerian-Eulerian approach and compared 

simulation results with that from VOF approach reported by Ghosh et al. (2010). The study 

showed that there is no major discrepancy between the two approaches.  
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In general, applications of the VOF modeling of liquid-liquid two-phase flow in the literature 

as introduced above concern simulations of a particular flow regime within the category of 

separated flow, such as stratified flow, slug flow or core annular flow. For turbulent liquid-liquid 

flow, the standard k-ε turbulence scheme is popularly used without evaluation of different 

turbulence models. Also, most of the existing CFD studies on liquid-liquid pipeline flow in the 

literature as reviewed above seldom give attention to the selection of wall contact angle. In 

addition, CAF with relatively low viscosity has received little attention though high-viscosity oil 

CAF has been extensively studied. The aim of the current work is to examine the capability of 

the VOF model to simulate horizontal oil-water two-phase flow with matched density and 

medium viscosity ratio under flow rates corresponding to different flow patterns, namely, core 

annular flow, oil plugs in water, oil bubbles in water, and dispersed flow. One the one hand, this 

study includes investigation on effectiveness of several turbulent models as well as the 

influence of the wall contact angle for the simulation of oil-water pipeline flow when the 

interfacial tension and/or the inertia play more prevailing roles. On the other hand, the flow 

characteristics of CAF with relatively low-viscosity oil (16.8 cP) is highlighted based on the 

simulation results. In the present study, we utilized the commercial CFD package FLUETN to 

perform the simulations. The validation was achieved via the acknowledged experimental work 

of Charles et al. (1961). A literature survey shows that this is the only experimental study on oil-

water pipeline flow with matched density and medium viscosity ratio in the literature. The paper 

is structured as follows. Descriptions of the CFD models and the simulation setup are presented 

in Section 2. The simulation results and discussion are presented in Section 3. Conclusions are 

summarized in Section 4.  

2. CFD model and simulation setup 

2.1 Mathematical model description 

2.1.1 VOF model 

In the VOF model, a single set of conservation equations is shared by the phases. 

Considering an isothermal system with no mass transfer and no phase change, the 

conservation equations are: 
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Mass equation: 
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The interface between the water phase (primary) and the oil phase (secondary) is tracked by 

solving the conservation equation for the volume fraction of the secondary phase (oil),  oD   
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The volume fraction of the primary phase (water) is determined by the constraint 

1 � ow DD  (4) 

The phase volume fraction has a value of 0 or 1 when a control volume is entirely filled with oil 

or water, and a value between 0 and 1 if an interface is present in the control volume.  

Material properties in the transport equations are determined by the presence of the 

component phases in each control volume. Considering ideal mixtures, i.e., the mixture has a 

volume equal to the sum of the volumes of the individual components, the density of the oil-

water mixture in each cell is 

wwoo UDUDU � (5) 

There is no universal theory for the calculation of the viscosity of mixture from viscosities of 

individual components. The simplified linear combination is used for the calculation of the 

mixture viscosity 

PDPDP woo �  (6) 

The term F  in the momentum equation stands for the contribution of surface tension. The 

continuum surface force (CSF) model proposed by Brackbill et al. (1992) was used. It is 

dependent on the surface tension coefficient, V , and the curvature of the interface, N  
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The curvature, N , is defined in terms of the divergence of the unit normal, n̂   

n̂�� N  (8) 
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nn   (9) 

where n  is the surface normal, defined as the gradient of the volume fraction of the oil phase,

oD  

oD� n  (10) 

The effect of wall adhesion at fluids interfaces in contact with rigid boundaries is modelled 

within the framework of the CSF model. The unit surface normal at the live cell next to the wall 

is replaced by the following equation, which is the so-called dynamic boundary condition, 

resulting in adjustment of the curvature of the surface near the wall: 

wlwlwlwl TT sinˆcosˆˆ tnn �  (11) 

where wln̂  and wlt̂  are the unit vectors normal and tangential to the wall, respectively. The 

contact angle, wlT , is the angle between the wall and the tangent to the interface at the wall.  

2.1.2 SST k-ω turbulence model 

The choice of turbulence model is crucial for turbulent two-phase flow modeling. The family 

of k-ε models is very popular for industrial applications due to its good convergence rate and 

relatively low memory requirement. The large number of examples in the literature also 

contributes to its popularity. Another family of two-equation eddy viscosity models is k-ω models. 

The shear stress transport (SST) k-ω scheme utilizes the original k-ω model of Wilcox (1998) in 

the inner region of the boundary layer and switches to the standard k-ε model in the outer 

region of the boundary layer and in free shear flows. It has been reported that turbulence 

damping at the interface is necessary to predict correct pressure losses and phase holdups 

(Egorov, 2004; Vallée et al., 2008; Lo and Tomasello, 2010). As turbulence damping at the 

interface can be included in the SST k-ω turbulence model in FLUENT, the SST k-ω model was 

used in the present study. 

The governing equations of the SST k-ω model are: 

Turbulent kinetic energy: � � � � kk
k

t YGkk
t
k

��¸
¸
¹

·
¨
¨
©

§
��¸̧

¹

·
¨̈
©

§
��� ���

w
w

V
P

PUU u  (12) 



10 

Specific dissipation rate: 

� � � � ZZZ
Z

Z
V
P

PZUZU DYG
t

t ���¸
¸
¹

·
¨
¨
©

§
��¸̧

¹

·
¨̈
©

§
��� ���

w
w u

 (13) 

where kG , 
ZG  represent the generation of k  and Z , respectively; kY , ZY  represent the 

dissipation of k  and Z , respectively; ZD represents the cross-diffusion term; tP  represents 

the turbulent viscosity, 
Z
UP k

t  . More information on the formulation for these quantities can 

be found in Wilcox (1988), Menter (1994) or Fluent theory guide (2012).  

When the turbulence damping option is activated in FLUENT, an additional source term first 

suggested by Egorov (2004) is added to the ω-equation for reduction of the destruction term. 

This additional source term is expressed as 

2
ZZ ZEUii nAS '  (14) 
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iiiA DD � 2  (16) 

where iA  represents an interface area density that activates the correction term in the vicinity 

of the interface only ( iA =0 outside the interface region); iD  is the volume fraction of phase i ; 

n'  is the grid size in the interface region; E  is a closure coefficient, E =0.075; B is a 

damping factor which can be specified, the default value is 10. This additional source term is 

mesh size dependent (through n' ). The tunable parameter B is an empirical coefficient which 

was obtained through numerical experiments (Egorov, 2004).  

The popular k-ε models were also tested in this study to investigate the effectiveness of 

turbulence models. The formulation of different k-ε models can be found in Fluent theory guide 

(2012). 

2.2 Physical problem description 

The facility for the numerical study is depicted in Fig. 1. The pipe diameter, d, is 0.026 m, the 

length downstream of the junction is 4 m (154 d), and the length of each branch of the junction 

is 0.2 m. Fig. 2 shows a partial view of the mesh at the water inlet. The mesh is progressively 
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finer near the pipe wall. A mesh independence study was conducted to ensure the integrity of 

the solution from the mesh resolution. The final mesh used for the present simulations consists 

of about 1.2 million cells.  

2.3 Boundary and initial conditions 

The outlet pressure was applied at the outlet; a gauge pressure of zero, i.e., the atmospheric 

pressure, was specified at the outlet. No-slip boundary condition was imposed at the wall. The 

wall contact angle in the wall adhesion modeling (see Eq. 11) was specified as a boundary 

condition. A contact angle of 175° was used in the present study; different contact angles have 

been tested as discussed in the following section 3.2. Velocity inlet boundary was set up at the 

inlets. For the purpose of saving computation time, instead of using a uniform velocity and a 

longer pipe length to achieve fully developed single phase flow before the junction, the 

developed velocity profiles of single phase oil and water were coded and loaded into the solver 

to make sure the fluids are fully developed before the junction. As the viscosity of the oil used in 

the present study is 16.8 cP, the single oil flow introduced is always laminar with Reynolds 

number lower than 2 000. The single water flow is either laminar or turbulent depending on the 

Reynolds number. The velocity profiles for single phase laminar flow and turbulent flow are: 

Laminar flow: ¸̧
¹

·
¨̈
©

§
� 2

2

12)(
R
rUrf  (17) 

Turbulent flow: 
� �� � m

R
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m
mmrf

1/

2 1
2

121)( ¸
¹
·

¨
©
§ �

��
  (18) 

where U represents the average velocity, r  the radial position in the circular section, R  the 

radius of the pipe. For the velocity profile of turbulent flow, m is an empirical coefficient 

determined from the range of Reynolds number (see Schlichting, 1979).  

Apart from the velocity, the turbulence intensity and hydraulic diameter were specified when 

the turbulence model was used. The turbulence intensity at the core of a fully-developed duct 

flow is estimated through 

             (19) 
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2.4. Solution setup  

Calculations were conducted with flow conditions from experiments of Charles et al. (1961). 

Five flow regimes, namely water drops in oil, core annular flow, oil plugs in water, oil bubbles in 

water, and oil drops in water, are covered. No stratified flow was observed as carbon 

tetrachloride was used to alter the density of oil to match that of water in the experiments of the 

above authors.  

Material properties were set up the same as those in the experiments: both oil and water 

have a density of 998 kg m-3; the viscosity of oil is 16.8 cP and the viscosity of water is 0.894 

cP; the interfacial tension is 0.045 N m-1.  

The problem was solved as a transient flow. The explicit VOF scheme was used. Whether 

the flow was solved as laminar flow or turbulent flow depends on the flow conditions. The water 

flow rates determine whether the turbulence model would be activated or not since the oil phase 

is laminar due to its relatively high viscosity. For core annular flow, the Reynolds number of the 

annular water film can be calculated as 

           
  

 (20) 

       
       (21) 

      
  

 (22) 

where     represents the hydraulic diameter,    the film average velocity,    the cross-

sectional area occupied by water (      ),    the water holdup (      ⁄ ,   the cross-

sectional area of the pipe),     the superficial water velocity. Substituting Eqs. (21) and (22) into 

Eq. (20) yields 

               
  

 (23) 

In the present study, the flow was solved as laminar when           . Laminar condition was 

applied for three cases with    =778 and SST k-ω turbulence model was applied for seven 

cases with     of 6331 and 14271. 

The simulation domain was initialized with the water inlet flow conditions. The pressure-

based segregated algorithm was used to solve the transport equations. The PRESTO! 

(pressure staggering option) scheme was used for the pressure interpolation. The SIMPLE 
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(semi-implicit method for pressure linked equations) scheme was used for the pressure-velocity 

coupling. First-order upwind spatial discretization scheme for momentum equation was applied 

first and switched to second-order upwind scheme after convergence could be easily achieved 

after some time of run. The Geo-Reconstruct scheme was used to determine the interface 

shape. A smaller time step in the magnitude of 10-5 s was used first to obtain convergence and 

later increased to the magnitude between10-4  and 10-3 s at which the global Courant number 

was around 0.6~0.8. Convergence was judged based on transport equation residuals; absolute 

criteria were set at    10-6 for the transport equations. Average static pressures and water 

volume fractions at various cross sections were monitored. Each simulation case was run until 

the monitored values have reached a stable solution for enough sampling time. With 32 

processors of 2 nodes (each node has two eight-core 2.6GHz Xeon CPUs and 64GB RAM) 

from a cluster used for each case, the CPU time used was around 2 to 5 days for a simulation 

time of around 25 s.  

3. Results and discussion 

3.1 Influence of turbulence scheme 

An investigation of two-equation turbulence models has been conducted with the standard k-

ε, RNG k-ε and SST k-ω with and without turbulence damping in conjunction with the VOF 

model to simulate oil-water flow for Case 9 (Usw=0.55 m s-1, and Uso=0.55 m s-1). The enhanced 

wall treatment is applied for the two k-ε models. In all simulations, the near wall grids have a y+ 

<5.  

Flow patterns predicted from the VOF model in conjunction with different turbulence schemes 

are displayed in Fig. 3. As illustrated in the color map, the red represents the oil phase ( oD =1), 

the blue represents the water phase ( oD =0), while the other colors in between represent the 

cells containing the interface where the volume fraction of the oil phase varies (0< oD <1). For all 

the following figures in this paper which illustrate the distribution of phases, the color map 

shown in Fig.3 applies. The corresponding experimental flow regime can be found in Fig. 7 with 

the mark of ‘9-exp.’. It is demonstrated that the VOF model with different turbulence schemes all 

successfully predict core annular flow. With regard to the pressure gradient, the standard k-ε, 

RNG k-ε and SST k-ω without turbulence damping all predict higher values than the 
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experimental measured value, with relative errors of +21%, +19%, and +16% respectively. A 

closer prediction with relative error of -11% is given from the SST k-ω scheme with the 

turbulence damping function activated. 

Cross-sectional turbulence characteristics obtained from different turbulence schemes are 

shown in Fig. 4. Turbulence properties calculated with the standard k-ε and RNG k-ε schemes 

are similar. The magnitudes of turbulence characteristics from these schemes exhibit 

comparable intensities. The magnitudes of turbulence properties calculated with the SST k-ω 

scheme without turbulence damping are slightly smaller than those predicted with the k-ε 

schemes, but still they are of same order. The cross-sectional distributions calculated with the 

SST k-ω scheme with the turbulence damping activated differ from those obtained with all the 

other three schemes, especially in the region near the interface of the oil and water. The 

turbulence intensity distribution matches the phase distribution, and similarly for the turbulent 

viscosity and effective viscosity. The magnitudes of turbulence characteristics obtained are 

nearly one order lower than those obtained with other schemes (the standard k-ε, RNG k-ε, and 

SST k-ω scheme without turbulence damping). The lower turbulence intensity from the SST k-ω 

model with turbulence damping is attributed to the additional source term (Eq. (14)) added to 

the ω-equation. Compared to the case calculated with SST k-ω scheme without turbulence 

damping, the calculated ω from the same scheme with turbulence damping is higher, leading to 

a lower turbulent viscosity (
Z
UP k

t | ). When no special treatment of turbulence at the interface 

is included, the turbulent viscosities from the standard k-ε and RNG k-ε models are thought to 

be over predicted, which leads to the overestimated pressure gradients. The results confirm that 

including the turbulence damping at the interface can improve the quantitative prediction of 

turbulence models as reported by Vallée et al. (2008) and Lo and Tomasello (2010). 

 

3.2 Influence of wall contact angle 

Fig. 5 illustrates three scenarios of which an oil drop is surrounded by water on a solid 

surface. On a water-wet surface, the oil drop beads up, minimizing its contact with the solid (see 

Fig. 5 (a)). On an oil-wet surface, the oil drop spreads, resulting in a contact angle of about 180º 
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(see Fig. 5 (c)). When the condition is neither strongly water-wetting nor oil-wetting, the balance 

of forces in the oil/water/solid system will result in a contact angle,  , between the fluids at the 

solid surface (see Fig. 5 (b)). When the force balance is out of equilibrium, the contact line will 

move towards its equilibrium position. The contact line motion induces an apparent dynamic 

(time-dependent) contact angle (Van Mourik et al., 2005). For liquid moving quickly over a 

surface, the contact angle can be altered from its value at rest. 

An option to specify a wall adhesion angle in conjunction with the surface tension model is 

available in the VOF model (see Eq. (11)). The input can be either a static value or dynamic 

contact angle defined with UDF (User Defined Functions). The modeling of dynamic contact 

angle is not well established yet. Existing models are empirically based and most of the 

experiments only cover small Capillary numbers (Ca<0.03), thus the models based on those 

experiments are not generally valid (Van Mourik et al., 2005). A constant wall contact angle was 

used and tested in this study. It is worth remarking that the contact angle that the fluid is 

assumed to make with the wall is used to adjust the surface normal in cells near the wall. This 

so-called dynamic boundary condition results in the adjustment of the curvature of the surface 

near the wall. A constant contact angle does not mean that the liquid at the boundary will not 

move. The liquid will move towards its equilibrium position induced by a pressure correction 

each time step.  

As no oil fouling on the pipe was observed in the experiments of Charles et al. (1961), 

indicating rare oil contact with the wall, an angle close to 180° is thought to be appropriate. 

Simulation runs were conducted to investigate the sensitivity of the simulation results to the wall 

contact angles for the cases studied in the present study. For an experimental core annular flow 

under flow conditions of Usw=0.03 m s-1, and Uso=0.15 m s-1, simulations were performed with 

wall contact angles of 5°, 60°, 90°, 120°, 150°, and 175°, respectively.  

Fig. 6 shows the contours of oil volume fractions from simulations with the different wall 

contact angles.  The flow regime of water-core in annular oil is predicted with a very small wall 

contact angle of 5° (i.e., strongly oil-wetting wall). Dispersed water plugs/bubbles in continuous 

oil is predicted with a contact angles of 60°. An intermittent flow regime featured with water 

plugs/bubbles inside water alternating with partial contact of water plugs/bubbles with the pipe 
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wall is predicted for a contact angle of 90°, and the flow regime develops into one characterized 

with dual-continuous streams moving forward spirally for a wall contact angle of 120°. The flow 

regime of oil-core in annular water flow is predicted with large wall contact angles of 150° and 

175° (i.e., strongly water-wetting wall). The experimental flow regime is core annular flow 

(referring the sub-image marked with ‘3-exp.’ in Fig. 7). As anticipated, a large wall contact 

angle which indicates strong water-wetting wall is demonstrated to give good prediction for the 

case under consideration. A contact angle of 175° was used in the following simulations.  

The above simulations demonstrate the sensitivity of the simulation results to the wall 

contact angles for the case under consideration, i.e., oil-water flow with matched density and 

medium viscosity ratio (    ⁄ =18.8). The simulation results under different wall contact angles 

are thought to be reasonable. For the case under consideration, the flow is largely influenced by 

the interfacial tension as the influence of the gravity disappear due to matched density and the 

influence of the viscous force is not significant. It is noted that the influence of the interfacial 

tension would be reduced when the oil viscosity is significantly higher than the water viscosity 

(i.e., high Capillary numbers,      
 ). This can explain the fact that core annular flow has 

been observed to be the dominant flow regime in either hydrophobic or hydrophilic pipelines 

(e.g., McKibben et al., 2000a and 2000b; Al-Awadi, 2011; Sridhar et al., 2011; and Shi and 

Yeung, 2016). Another interesting aspect from the above simulation results is the predicted flow 

regimes of swirling oil and water streams before the formation of core annular flow. This kind of 

phase configuration has been observed in experiments on high-viscosity oil-water flow by Al-

Awadi (2011).   

3.3 Comparison of simulation results with experimental data 

A comparison of experimental and predicted flow patterns is displayed in Fig. 7. The flow 

map and the illustrations of experimental flow patterns are adapted from Charles et al. (1961); 

for cases 6, 8 and 10, illustrations of the experimental flow patterns are not available. The 

results show that the flow patterns predicted from the CFD models are in good agreement with 

experimental flow patterns for core annular flow, oil plugs in water and oil bubbles in water. 

However, concerning dispersed flow (droplets of one phase in another), a clear disagreement 

between phase configurations is shown. The inaccuracy of the VOF approach in modeling 
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dispersed flow is due to the fact that the interface length scales are becoming much smaller 

than the computational grid size, thus the interface cannot be correctly captured. The 

computational grid scale along the flow direction is around 2.5 mm in this study. The sizes of 

visible small drops in experiments should also be around the magnitude of millimeter. A finer 

grid is essential to capture such small dispersed drops with the VOF model in a 4m long pipe, 

which implies much more expensive computation. The Mixture model, Eulerian-Eulerian, or 

Euler-Lagrange schemes are normally used for dispersed flow simulation (e.g., Walvelar et al., 

2009; Burlutskiy and Turangan, 2015). The VOF model is more suitable for modeling immiscible 

fluids with interface length scale comparable or larger to the pipe diameter.  

Table 1 shows comparison of pressure gradients and in situ water holdups obtained from 

experiments with their corresponding CFD predictions for core annular flow, oil plugs in water 

and oil bubbles in water flow. Dispersed flow cases are not included given the deficiency of 

qualitative predictions. Quantitative agreement between predictions and experiments varied by 

as much as 30% for the pressure gradient and 14% for the holdup. It should be noted that for 

Case 3 where the largest discrepancy of the pressure gradient is shown, the uncertainty in the 

measured pressure gradient (from 34 to 41 Pa m-1) suggests that the validation of this case 

cannot be evaluated accurately.  

3.4 Characterization of core annular flow 

Analysis of fully established flows can begin when statistically steady solutions are reached. 

To that end, face average pressures of various sections along the pipe are monitored. Fig. 8 

shows monitored average pressure at different positions along the pipe after the intersection 

(z=0) for two annular flow cases. As shown, statistically steady solutions are reached after some 

simulation time depending on flow conditions.  

Fig. 9 shows the flow development of annular flow after a T-shaped junction. It illustrates the 

migration of oil into the central part of the pipe (core flow) and in the meantime, evacuating 

water to peripheral regions of the pipe to form the annulus flow. Fig. 9 also shows that when the 

water coming through one branch of the junction becomes turbulent, there is unsteady variation 

on phase distribution just after the junction and the amplitude of the variation is gradually 

reduced downstream.  
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To investigate the flow characteristics of fully established annular flow, phase distributions 

and dimensionless velocity profiles at different positions downstream the junction are illustrated 

in Fig. 10. The laminar case in Fig. 10 (a) shows a perfect CAF with established velocity profile 

at a distance of 20d downstream the junction. For turbulent cases shown in Fig. 10 (b) and (c), 

the volume fraction of the oil phase varies along the flow direction, reflecting the fluctuation of 

the oil core. For the cases under consideration, the two-phase flow can be regarded as fully 

developed beyond a distance of 40 times the pipe diameter from the junction where the Umax/Um 

is almost constant. The velocity profile of fully developed core annular flow in Fig. 10 is different 

from that of the single phase flow. For the laminar CAF case shown in Fig. 10 (a), the velocity 

profile is radically different from the parabolic velocity distribution of single phase laminar flow. 

The velocity gradient of the water ring near the pipe wall becomes greater while the velocity 

distribution of the oil core in the middle of the tube is much flatter. For single phase laminar flow 

Umax/Um=2 while it is shown that Umax/Um=1.26 for the laminar core annular flow under 

consideration. For turbulent cases shown in Fig. 10 (b) and (c), the velocity distribution of 

annular flow is similar to that of turbulent single phase flow in general. There is no obvious 

sharp change in the velocity gradient at the interface, this is different from the velocity profiles of 

high-viscosity oil CAF where there is sharp change in the velocity gradient at the phase 

interface with velocity across the oil core being roughly flat (Ghosh et al., 2010; Shi, 2015). The 

core annular flow studied in the present study has an oil viscosity of 16.8 cP. When the oil 

viscosity is much higher than the water viscosity, it is more likely that the oil core has a flatter 

velocity distribution. The assumption that the oil core flows inside the water as a rigid body has 

been used in some analytical studies of CAF with high viscosity ratio (see Ooms et al,1984; Bai 

et al., 1996; Ko et al., 2002; Ooms et al., 2012). The simulation results show that the oil core of 

CAF cannot be treated as a rigid body when the oil viscosity is just one order higher than the 

water viscosity.  

Fig. 11 shows turbulent kinetic energy along the vertical line on the symmetry plane of 

various cross-sections of developed turbulent CAF which corresponds to the phase and velocity 

distributions in Fig. 10 (b) and (c). The turbulent kinetic energy is the mean kinetic energy per 

unit mass associated with eddies in turbulent flow which indicates the turbulence strength. The 
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distributions of turbulent kinetic energy are reasonable in Fig. 11. It is indicated that the 

turbulence strength is low in the central part of pipe where the oil core flows. The oil viscosity for 

these cases is 16.8 cP; with this viscosity, the oil alone would flow in the pipe as laminar flow. 

Also, the turbulence strength is low at the pipe wall and the interface of oil and water due to 

turbulence damping effect from the pipe wall and the oil phase. The highest turbulent kinetic 

energy locates in the annular water layer close to the pipe wall. Comparing Fig. 11 (a) and (b), it 

shows that the turbulence strength in the annular water layer is increased with increase of the 

water flow rate. 

4. Conclusions 

Simulations of horizontal oil-water flow in different flow patterns including core annular flow, 

oil plugs/bubbles in water, and dispersed flow were performed with the CFD package FLUENT. 

The following conclusions can be withdrawn from the study:  

x The VOF model in conjunction with the SST k-ω scheme with turbulence damping activated 

for turbulent flow is capable to predict the flow structures of core annular flow and oil 

plugs/bubbles in water. Quantitative agreement between predictions and experiments are 

achieved with relative errors within 30% for the pressure gradient and 14% for the holdup. 

The VOF approach is not an ideal choice for modeling dispersed flow (droplets of one 

phase in another) as the interface length scales tend to become smaller than the 

computational grid sizes.  

x The wall contact angle can significantly affect the phase configurations of density-matched 

oil-water flow with medium viscosity ratio, or more generally speaking, fluids where the 

surface tension is playing a prevailing role. To obtain reasonable prediction for two-phase 

flow where the surface tension is playing a prevailing role, knowledge of the wall wettability 

and/or wall contact angle is of importance to set up CFD models appropriately.  

x Detailed flow characteristics of density-matched CAF with relatively low-viscosity oil (16.8 

cP) are shown. There is no sharp change in the velocity gradient at the phase interface for 

CAF with relatively low-viscosity oil (oil viscosity one order higher than the water viscosity). 

This is different from the velocity profiles of high-viscosity oil CAF(oil viscosity two to three 

orders higher than the water viscosity).  
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Figure and Table Captions 

Fig. 1. Geometry for oil-water flow simulation. 

Fig. 2. Mesh of partial geometry (the water inlet part). 
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Fig. 3. Predicted flow patterns with the VOF model together with different turbulence schemes -  

(a) Standard k-ε; (b) RNG k-ε; (c) SST k-ω without turbulence damping; (d) SST k-ω with 

turbulence damping. The red represents oil and the blue represents water. 

Fig. 4. Cross-sectional turbulence characteristics from different turbulence schemes - (a) 

Standard k-ε; (b) RNG k-ε; (c) SST k-ω without turbulence damping; (d) SST k-ω with 

turbulence damping.  

Fig. 5. Illustration of wall wettability and wall contact angle. (a) Strongly water-wetting; (b) 

moderately water-wetting; (c) strongly oil wetting. 

Fig. 6. Calculated flow patterns from simulations with the different wall contact angles - (a) 5°; 

(b) 60°;  (c) 90°; (d) 120°; (e) 150°; (f) 175°. The red represents oil and the blue represents 

water. 

Fig. 7. Comparison of experimental and CFD predicted flow patterns. Illustrations of 

experimental flow patterns are adapted from Charles et al. (1961); the black represents water 

and the white with dots inside represents oil. Illustrations of flow patterns from simulation are 

contours of oil volume fraction of developed flow; the red represents oil and the blue represents 

water. 

Fig. 8. Monitored face average pressure with simulation time. (a) Case 3, Resw=778; (b) Case 9, 

Resw=14 271. 

Fig. 9. Flow development of core annular flow after a T-shaped junction. (a) Case 3, Resw=778; 

(b) Case 6, Resw=6 331; (c) Case 9, Resw=14 271. 

Fig. 10. Dimensionless phase distribution and velocity profiles at different distances 

downstream the junction. (a) Case 3, Resw=778; (b) Case 6, Resw=6 331; (c) Case 9, Resw=14 

271. 

Fig. 11. Turbulent kinetic energy distribution of developed turbulent CAF. (a) Case 6, Resw=6 

331; (b) Case 9, Resw=14 271. 

Table 1. Comparison of experimental and CFD predicted pressure gradients and in situ water 

holdups.  

 Case Pressure gradient (Pa m-1) In situ water holdup 
Exp. CFD Error Exp. CFD Error 
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Oil bubbles in water 1 10.2 9.95 -2.5% 0.7 0.677 -3.3% 

 4 37.4 46.3 23.9% 0.849 0.857 0.9% 

Oil plugs in water 2 15.3 18.8 22.9% 0.39 0.338 -13.6% 

 5 86.6 110.5 27.6% 0.543 0.599 10.2% 

 8 295.5 286.5 -3.0% 0.694 0.746 0.5% 

Core annular flow 3 34 ~41 26.3 -29.9% * 0.249 0.273 9.5% 

 6 244.5 198.1 -19.0% 0.403 0.445 10.4% 

 9 482.2 427.0 -11.4% 0.557 0.604 8.5% 

* The average experimental pressure gradient, 37.5 Pa m-1 , is used for the calculation 
of the relative error  
 

Highlights: 

x Several different turbulent models for simulating liquid-liquid flow with 

density-matched and medium viscosity ratio in several different flow 

regimes were investigated; the results demonstrated that the SST k-ω 

scheme with the interface turbulence damping option activated provides 

better results. 

x The influence of wall contact angels for simulating density-matched oil-

water flow with medium viscosity ratio (or more generally speaking, fluids 

where the surface tension is playing a prevailing role) was investigated; 

the results showed that the wall contact angle can significantly affect the 

phase configurations for the case investigated and highlighted the 

importance of selecting appropriate wall contact angles for simulating 

liquid-liquid flow in which the surface tension is dominant. 
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x CAF with relatively low-viscosity oil (oil viscosity just one order higher 

than the water viscosity) has not been discussed sufficiently in the 

literature. The simulation results showed that different from the velocity 

profiles of high-viscosity oil CAF where there is sharp change in the 

velocity gradient at the phase interface with velocity across the oil core 

being roughly flat, there is no sharp change in the velocity gradient at the 

phase interface for CAF with relatively low-viscosity oil.  
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