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Abstract 12 

The development of accurate visible and near infrared (vis-NIR) spectroscopy calibration models 13 

for selected soil properties based on mobile measurements is essential for site specific soil 14 

management at fine sampling scale. The objective of the present study was to compare the 15 

mobile and laboratory prediction performance of vis-NIR spectroscopy for total nitrogen (TN), 16 

total carbon (TC) and soil moisture content (MC) of field soil samples based on single field 17 

(SFD), two-field dataset (TFD), UK national dataset (UND) and European continental dataset 18 

(ECD) calibration models developed with linear and nonlinear data mining techniques including 19 

spiking. Fresh soil samples collected from fields in the UK, Czech Republic, Germany, Denmark 20 

and the Netherlands were scanned with a fibre-type vis-NIR spectrophotometer (tec5 21 

Technology for Spectroscopy, Germany), with a spectral range of 305-2200 nm. After dividing 22 

spectra into calibration (75%) and validation (25%) sets, spectra in the calibration set were 23 

subjected to three multivariate calibration models, including the partial least squares regression 24 

(PLSR), multivariate adaptive regression splines (MARS) and support vector machines (SVM), 25 

with leave-one-out cross-validation to establish calibration models of TN, TC and MC. Results 26 

showed that the best model performance in cross-validation was obtained with MARS methods 27 

CATENA, Volume 151, April 2017, Pages 118–129 
DOI:10.1016/j.catena.2016.12.014


Published by Elsevier. This is the Author Accepted Manuscript issued with:Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at http://dx.doi.org/10.1016/j.catena.2016.12.014.  Please refer to any applicable publisher terms of use.




2 

 

for the majority of dataset scales used, whereas the lowest model performance was obtained with 28 

the SFD. The effect of spiking was significant and the best model performance in general term 29 

was obtained when local samples collected from two target fields in the UK were spiked with the 30 

ECD, with coefficients of determination (R
2
) values of 0.96, 0.98 and 0.93, root mean square 31 

error (RMSE) of 0.01, 0.1 and 1.75, and ratio of performance to interquartile distance (RPIQ) of 32 

7.46, 6.57 and 3.98, for TC, TN and MC, respectively. Therefore, these results suggest that ECD 33 

vis-NIR MARS calibration models can be successfully used to predict TN, TC and MC under 34 

both laboratory and mobile measurement conditions.  35 

Keywords: Diffuse reflectance spectroscopy, Spectral library, Soil properties, Data mining, 36 

Spiking.  37 

Introduction  38 

Visible and near-infrared (vis-NIR) diffuse reflectance spectroscopy has attracted increasing 39 

interest among soil scientists in recent times, and has been proposed as a possible method of soil 40 

analysis. It provides higher soil sampling density for mapping purposes compared with 41 

conventional laboratory analysis (Shepherd and Walsh, 2002; Wetterlind et al., 2010). This 42 

technique also allows for in field (in situ) non mobile (Viscarra Rossel and Chen, 2011; Brodský 43 

et al., 2013) and mobile measurement with high soil-sampling resolution (Maleki et al., 2008; 44 

Kuang and Mouazen, 2013). Literature show that Vis-NIR spectroscopy has been used 45 

successfully for modelling and mapping of soil properties, under both mobile and non-mobile 46 

measurement conditions, (i.e., Shibusawa et al., 2001; Mouazen et al., 2005; Kuang and 47 

Mouazen, 2013; Kuang et al., 2015). However, compared to laboratory spectral measurements 48 

that is done under controlled conditions, mobile spectroscopy analyses are affected by 49 
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environmental factors such as ambient light, soil moisture content, soil structure, temperature, 50 

contamination by stones and excessive residues (Mouazen et al., 2007; Stenberg et al., 2010). 51 

One way to overcome these negative influences is by adopting effective spectral data 52 

preprocessing and advanced data mining techniques when developing calibration models for 53 

mobile spectroscopy. 54 

Precision agriculture aims at optimizing management of within field variability for sustainable 55 

increase in land productivity (Bongiovanni and Lowenberg-Deboer, 2004). Variable-rate 56 

fertilizer application, which requires reliable soil information at a high spatial resolution, is 57 

required to achieve this goal (Wetterlind et al., 2010; Mouazen and Kuang, 2016). Successful 58 

implementation of the mobile vis-NIR spectroscopy was reported for sensor based and map-59 

based variable rate phosphorus fertilization (Maleki et al., 2008; Mouazen and Kuang, 2016) and 60 

variable rate N-fertilizer application (Halcro et al., 2013). However, accurate recommendation 61 

maps for variable rate applications will depend on accurate prediction of soil properties with vis-62 

NIR spectroscopy, which can be achieved by minimizing error in reference and spectra 63 

measurements, minimizing influences of ambient conditions and finally by adopting effective 64 

spectra pre-processing and advanced data mining techniques. 65 

In order to gain the full advantage of the use of vis-NIR, different techniques have been applied 66 

to the development of calibration models, such as spiking of samples from target site or dataset 67 

into existing spectral library (Brown, 2007; Sankey et al., 2008; Wetterlind et al., 2010; Kuang 68 

and Mouazen, 2011, 2013; Guerrero et al., 2014). The geographical scale of soil samples 69 

collected was reported to have influence on model performance (Sudduth and Hummel 1996). 70 

This will be especially evident when predicting variations on a small scale (Brown, 2007). 71 

Combining global and local samples by adding a few local ones to a more general soil library 72 
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(spiking) and recalibrating was proposed by Brown (2007) as another way to increase the 73 

accuracy of soil organic carbon (SOC) prediction, as opposed to local-sample calibrations. 74 

Sankey et al. (2008) also reported improved prediction results for clay content, SOC and 75 

inorganic carbon, using the same global calibration set spiked with local samples from three 76 

highly variable landscape study sites in Montana, US, compared with global or local calibrations 77 

alone. Kuang and Mouazen (2013) used spiking technique with different dataset ratios for mobile 78 

vis-NIR modelling at European field scale. They achieved good results using partial least square 79 

regression (PLSR) models for soil moisture content (MC), SOC, and total nitrogen (TN) with 80 

residual prediction deviation (RPD) (calculated as standard deviation of measured soil properties 81 

divided by root mean square error of prediction) of 2.76 to 3.96, 1.88 to 2.38, and 1.96 to 2.52, 82 

respectively. Limited works have been reported on the combined effect of spiking and samples 83 

scale on model predictive performance in soil analysis (Sankey et al., 2008; Guerrero et al., 84 

2010; Wetterlind and Stenberg, 2010; Guerrero et al., 2014), particularly for mobile collected 85 

vis-NIR spectral data, where no reports could be found in the literature.  86 

As a linear multivariate analysis, PLSR is the most commonly used technique for soil spectral 87 

analysis (Conforti et al., 2013, 2015). However, the accuracy of linear-regression techniques in 88 

spectroscopic analysis tends to decrease due to the non-linear nature of the relationship between 89 

spectral data and the dependent variable (Araújo et al., 2014). Data-mining techniques, such as 90 

artificial neural network (ANN) (Mouazen et al., 2010; Kuang et al., 2015), multivariate adaptive 91 

regression splines (MARS) (Bilgili et al., 2010; Nawar et al., 2015) and support-vector machines 92 

(SVM) (Morellos et al., 2016; Nawar et al. 2016), were reported to improve the accuracy of the 93 

calibration models. As a nonlinear method based on the machine learning theory, SVM was 94 

proposed by Vapnik (1998) to be capable of modelling linear and nonlinear relationships and 95 
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solving calibration problems with high performance (Suykens and Vandewalle, 1999). SVM has 96 

been used successfully for modelling soil properties based on reflectance spectroscopy (e.g. 97 

Viscarra Rossel and Behrens, 2010; Vohland et al., 2011; Peng et al., 2014; Nawar et al., 2016), 98 

and has gained extensive application in soil spectroscopy, because of its advantages and high 99 

performance (Viscarra Rossel and Behrens, 2010; Vohland et al., 2011). As nonparametric 100 

method MARS estimates complex nonlinear relationships among independent and dependent 101 

variables (Friedman, 1991), and has been effectively applied in different fields (Luoto and Hjort, 102 

2005; Bilgili et al., 2010; Felicísimo et al., 2012; Samui, 2012) and generally exhibits higher 103 

performance results for modelling soil properties (e.g. Shepherd and Walsh, 2002; Bilgili et al., 104 

2010; Nawar et al., 2016). However, these linear and non-linear modelling methods were not 105 

compared in the literature for soil analyses at different geographical scales including spiking. 106 

This is particularly true for modelling of mobile collected vis-NIR soil spectra. 107 

The aim of this paper was to compare the predictive performance of the vis-NIR spectroscopy of 108 

TN, TC and MC for field samples based on single field, two-field, national and continental 109 

scales, using PLSR and two multivariate data-mining techniques, namely, SVM and MARS. The 110 

calibrations were made using laboratory and mobile collected soil spectra for predicting within-111 

field variation in named soil properties. 112 

2. Materials and methods 113 

2.1. Experimental sites 114 

The experimental wok was carried out in two fields in Yorkshire, UK. Hagg field is located at 115 

Cawood, north Yorkshire with longitudes of -1.172° and -1.166° W, and latitudes of 53.936° and 116 

53.941° N with total area of about 21 ha (Fig. 1). This field is characterised by fosters cooler 117 
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summer conditions with regular rainfall (average annual 600 mm), and the mean air temperatures 118 

range from 1°C to 6°C in winter and from 8°C to 18°C in summer, allowing more consistent 119 

crop growth. The field is cultivated with vegetables crops (leeks, cabbage, carrots and onions). 120 

The soil type is a slightly acidic sandy loam with impeded drainage to the south and eastern 121 

margins of the field. The soil organic matter (SOM) ranges between 0.7 and 1.95% at 0–30 cm 122 

depth. Hessleskew field is located in Sancton, north Yorkshire between longitudes -0.590° and -123 

0.586° W, and latitudes 53.844° and 53.844° N and with total area of about 12 ha (Fig. 1). 124 

Elevations in the area barely reach 212 m above sea level. The annual rainfall and air 125 

temperature are in the same range of the Hagg field. The field is characterised by freely draining 126 

with texture varies between clay loam to clay. The SOM ranges between 0.9 and 2.1%, and it is 127 

cultivated with cereal crops in rotation. 128 

2.1. Mobile soil measurement and collection of soil samples 129 

The mobile measurement system designed and developed by Mouazen (2006) was used to 130 

measure both fields. It consists of a subsoiler, which penetrates the soil to the required depth, 131 

making a trench, whose bottom is smoothened by the downwards forces acting on the subsoiler 132 

(Mouazen et al., 2005). The subsoiler was retrofitted with the optical unit and attached to a 133 

frame. This was mounted onto the three point linkage of the tractor (Mouazen et al., 2005). An 134 

AgroSpec mobile, fibre type, vis–NIR spectrophotometer (Tec5 Technology for Spectroscopy, 135 

Germany) with a measurement range of 305–2200 nm was used to measure soil spectra in 136 

diffuse reflectance mode. The sampling interval of the instrument was 1 nm. A deferential global 137 

positioning system (DGPS) (EZ-Guide 250, Trimble, USA) was used to record the position of 138 

mobile measured spectra with sub-meter accuracy. Each scan consisted of three spectra that were 139 

averaged in one spectrum representing about 1.2 m travel distance. Outlier spectra were visually 140 



7 

 

detected and removed from further analyses. These outlier spectra represented 2.5 and 4% out of 141 

12766 and 14276 soil spectra collected from Hessleskew and Hagg fields, respectively. During 142 

the measurement at each line, 3 or 4 soil samples were collected from the bottom of the trench 143 

and the sampling positions were carefully recorded with a DGPS. The locations of soil samples 144 

were selected to cover the soil variation within both fields. A total of 122 and 149 soil samples 145 

were collected during the mobile measurement form Hessleskew and Hagg fields, respectively 146 

(Fig. 1). Measurements were carried out in 2015 and 2016 for the former and latter fields, 147 

respectively, pulling the sensor at 12 m gap between adjacent transects (Fig. 1). 148 

(Fig. 1) 149 

2.2. Laboratory chemical and optical measurements 150 

Each sample was divided into two parts; one part was dried for 24 h at 105 ºC and the other part 151 

was left fresh (wet). The dried soil sample was analyses for total carbon (TC) according to the 152 

British Standard BS 7755 Section 3.8:1995 using combustion method, which is identical to ISO 153 

10694:1995. Total nitrogen was determined by the Dumas method, where the soil samples are 154 

heated to 900ºC in the presence of oxygen gas as described by British Standard BS EN 13654-155 

2:2001. Soil MC was determined by oven drying of the soil samples at 105 ºC for 24 h. The 156 

precision of standard laboratory analyses for TN, TC, and MC indicated that uncertainties values 157 

(mean values and standard deviations) were 0.35±0.025%, 3.8±0.26%, and 20±1.22%, 158 

respectively.  159 

The fresh part of soil sample was placed in a glass container and mixed well. Three Petri dishes 160 

of 2 cm in diameter and 2 cm deep were used for three replicate measurements. Each soil sample 161 

was then placed into these Petri dishes and pressed gently before levelling with a spatula to 162 
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ensure a smooth surface; and therefore maximum light reflection and a large signal-to-noise ratio 163 

(Mouazen et al., 2005). Soil samples were scanned by the same spectrometer used in the mobile 164 

measurements. A total of ten scans were collected from each replicate, and these were averaged 165 

into one spectrum for each sample. 166 

2.3. Spectra pretreatment 167 

The same pretreatment of soil spectral data was carried out for all soil properties investigated 168 

using R packages (prospectr; https://cran.r-project.org/web/packages/prospectr). First, noise was 169 

removed at both edges of each spectrum and the spectra were cut to 370–1979 nm. Then, the 170 

number of wavelengths was reduced by averaging five successive wavelengths. Maximum 171 

normalization was followed, which is typically used to get all data to approximately the same 172 

scale, or to get a more even distribution of the variances and the average values. Spectra were 173 

then subjected to Savitzky–Golay first derivation (Martens and Naes, 1989) with a second-order 174 

polynomial approximation. Finally, the Savitzky-Golay smoothing was carried out to remove 175 

noise from spectra and to decrease the detrimental effect on the signal-to-noise ratio that 176 

conventional finite-difference derivatives would have. Spectra modification due to the different 177 

pretreatments followed in this study is shown in Fig. 2. 178 

(Fig. 2.)  179 

2.4. Spectral dataset with different scale 180 

The following four different data sets were considered: 181 

1- Single-field dataset (SFD; n=122 for Hessleskew and 149 for Hagg), where samples from one 182 

field either Hessleskew or Hagg fields were used.  183 

2- Two-field dataset (TFD; n=271), where samples from both fields were merged into one 184 
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dataset;  185 

3- UK national dataset (UND; n=89), where samples collected from four fields in the UK were 186 

used; and 187 

4- European continental dataset (ECD; n=529), where samples from sixteen fields collected from 188 

five European countries were used. These included samples from Germany (two fields), 189 

Denmark (five fields), the Netherlands (one field), Czech Republic (four fields) and the UK (four 190 

fields), where 151, 147, 43, 99, and 89 samples were collected, respectively (Kuang and 191 

Mouazen, 2011, 2013).  192 

Spiking was used to introduce the local variability of the two experimental fields into the 193 

existing data sets (e.g., UND and ECD). A total of 85 and 110 samples were spiked from the 194 

Hessleskew and Hagg fields, respectively, into the UND and ECD. After spiking, the total 195 

number of samples for UND and ECD used to develop calibration models were 174 and 614, and 196 

199 and 639, for Hessleskew and Hagg fields, respectively. A principal component analysis 197 

(PCA), was performed on 724 samples of the ECD including the two experimental fields of the 198 

current studies to explore similarity between different groups of soil samples.  199 

2.5. Development of calibration models 200 

The four datasets discussed above were subjected to PLS, MARS and SVM analyses with the 201 

leave-one-out cross validation using R software (R Core Team, 2013), which resulted in four 202 

groups of models for each modelling technique for each soil property, e.g., for SFD, TFD, UND 203 

and ECD. Before running the analysis the entire dataset of each target field (Hesseleskew or 204 

Hagg) was divided into 75% for calibration, and 25% for prediction. This was done for both the 205 

laboratory and mobile collected soil spectra. The 75% soil samples were also spiked into the 206 



10 

 

UND and ECD. The same prediction samples (25%) were used for both laboratory and mobile 207 

validation of obtained results of the four models for each soil property. 208 

PLSR is a popular multivariate regression method that has a good capacity for estimating 209 

attributes resulting from the spectral characteristics of the soil (Vasques et al., 2008; Song et al., 210 

2013; Yu et al., 2016). To determine the optimal number of latent factors, leave-one-out cross-211 

validation (LOOCV) was used (Efron and Tibshirani, 1993) to prevent over- or under-fitting the 212 

data, which may produce models with poor performance. The root mean squared error of cross 213 

validation (RMSECV) of the predictions and the coefficient of determination (R2) were 214 

ascertained to identify the optimal cross-validated calibration model. Generally, a model with the 215 

highest cross-validated R2 value and lowest RMSECV value was selected. 216 

SVM is a kernel-based learning method originated from statistical learning theory (Vapnik 217 

1995). Kernel-based learning methods use an implicit mapping of the input data into a high 218 

dimensional feature space defined by a kernel function (Karatzoglou and Feinerer, 2010). The ε-219 

SVM-Regression (ε-SVMR) uses training data to obtain a model represented as a so-called ε-220 

insensitive loss function, which maps independent data with maximum ε deviation from 221 

dependent training data. Error within the predetermined distance ε from the true value is ignored, 222 

error greater than ε is penalised (Vohland et al. 2011). In consequence, the model reduces the 223 

complexity of the training data to a significant subset of so-called support vectors. In the current 224 

study, the SVM models were developed using libsvm algorithm with ε-SVM and radial basis 225 

function (RBF) kernel using e1071 package in R (Meyer et al., 2015). The optimal parameters of 226 

SVM (cost, epsilon, gam(γ) and sig2(σ2)) were adopted to regulate the models. For each 227 

combination of cost, gam(γ) and sig2(σ2) parameters, the root mean square error of cross-228 

validation (RMSECV) was calculated, and the optimum parameters were selected to produce 229 
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smaller RMSECV. The leave-one-out cross validation (LOOCV) was used for the validation 230 

process.  231 

MARS is data mining technique developed by Friedman (1991). MARS was applied as a 232 

regression method in several disciplines (Shepherd and Walsh, 2002; Bilgili et al., 2010; Nawar 233 

et al., 2015) and was generally reported to show better performance than others traditional 234 

statistical methods for soil analysis based on vis-NIR spectra (Nawar et al., 2016). The MARS 235 

analysis uses basis functions to model the predictor and response variables (Hastie et al., 2009). 236 

To construct the basis functions, MARS splits the data into sub-regions (splines) with different 237 

interval ending knots where the regression coefficients change and fits the data in each sub-238 

region by using a set of adaptive piecewise linear regressions. These basis functions are 239 

subsequently used as new predictor variables for modelling purposes. Each basis function may 240 

contain nonlinear and variable interaction factors of the second and third order as well as linear 241 

combinations. To measure lack of fit, avoid over-fitting, and improve prediction, the redundant 242 

basis functions are removed one at a time using a backward stepwise procedure. Additional basis 243 

functions in the model provide greater flexibility but also add complexity. However, MARS 244 

attempts to minimise model complexity by selecting the optimal model based on the lowest 245 

generalised cross-validation value. 246 

In order to evaluate the model performance for the prediction of named soil properties three 247 

statistical parameters were used: R2, root mean square error (RMSE) and the ratio of the 248 

performance to interquartile distance (RPIQ) (Bellon-Maurel et al., 2010) defined as fellow: 249 

𝑅𝑃𝐼𝑄 =  𝐼𝑄
𝑅𝑀𝑆𝐸 

where IQ is the difference between the third and first quartiles (IQ = Q3-Q1). 250 
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Arbitrary groups have been used for simplification of interpretation: (1) excellent models (RPIQ 251 

>2.5), (2) very good models (2.5 > RPIQ > 2.0), (3) good model (2.0 > RPIQ > 1.7), fair (RPIQ 252 

1.7 > RPIQ > 1.4), and very poor model (RPIQ<1.4). This classification was adopted in this 253 

study to compare between different models in cross-validation and in laboratory and mobile 254 

prediction. 255 

3. Results 256 

3.1 Laboratory measured soil properties and spectral datasets 257 

The results of the descriptive statistical analyses for soil parameters are shown in Table 1. For 258 

Hessleskew field, the TN is low, with a mean value of 0.25%, whereas the mean values of TC 259 

and MC ranges from 2.121% to 18.9%, respectively. In the Hagg field, the TN is also low, with a 260 

mean value of 19.21%. TC is smaller than that of Hessleskew field, ranging between 1.34% and 261 

3.18%, whereas MC was higher than that in Hessleskew, ranging between 11.53% and 24.64% 262 

(Table 1). The small range of laboratory analysis values of the studied soil properties indicates 263 

these fields are not the ideal case study fields. This small soil variability within both fields may 264 

be reduced the prediction capability of the established calibration models (Kuang and Mouazen, 265 

2011). 266 

(Table 1)  267 

The PC similarity maps of principal component (PC) 1 and PC2 shows clear separation between 268 

different groups of samples collected from the five European countries. A clear overlap of the 269 

two study field spectra with those of the UND collected can be observed (Fig. 3), explain the 270 

effect of geographical origin on soil samples on vis-NIR spectroscopy analysis for soil 271 

properties. 272 
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(Fig. 3)  273 

3.2. Performance of calibration models in cross-validation 274 

The calibration methods considered in this study provide different prediction accuracies of TN, 275 

TC and MC. Tables 2 and 3 summarise the cross-validation results for calibration models 276 

developed with different datasets. Figures (4 and 5) illustrate the performance of prediction 277 

models in terms of RPIQ for Hessleskew and Hagg field, respectively. Cross-validation results 278 

indicate that MARS has over-performed SVM and PLSR for modelling three studied soil 279 

properties in cross-validation, followed, successively by SVM and PLSR, which is the least 280 

performing method. Among MARS models, the best results for TN is obtained with ECD with 281 

R2 = 0.96, RMSECV = 0.01%, and RPIQ = 7.46 for Hagg field (Table 3), and R2 = 0.96, 282 

RMSECV = 0.01%, and RPIQ = 7.41 for Hessleskew field (Table 2). The best results for TC are 283 

achieved using a MARS model developed with the ECD in both Hagg field (R2 = 0.98, 284 

RMSECV = 0.10% and RPIQ = 6.57) and Hesselskew field (R2 = 0.98, RMSECV = 0.06% and 285 

RPIQ = 4.87). Similar model performance to those of TN and TC is also observed for MC, with 286 

the best results in cross-validation were calculated for the MARS models developed with the 287 

TFD (not with ECD as for TN and TC) for the Hagg field (R2 = 0.93, RMSE = 0.53% and RPIQ 288 

= 5.15) and Hessleskew field (R2 = 0.92, RMSECV = 0.53% and RPIQ = 5.11).  289 

3.3. Performance of calibration models for laboratory prediction 290 

The developed calibration models were validated using laboratory scanned spectra of the 291 

prediction sets. Tables 2 and 3 summarise the accuracy of the laboratory prediction for the 292 

studied soil properties at the different calibration scales. The cross-validation results show 293 

considerably better results than those obtained for laboratory predictions. Among the studied 294 

modelling techniques, MARS models generally provide the best results for the studied soil 295 
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properties. For TN, the best performance is obtained with MARS using the ECD dataset with R2 296 

= 0.87, RMSE = 0.03%, and RPIQ = 5.21 for Hessleskew field (Table 2; Fig. 4), and R2 = 0.77, 297 

RMSE = 0.03%, and RPIQ = 3.57 for Hagg field (Table 3; Fig. 5). PLSR-SFD based modelling 298 

has resulted in the least appreciable results for TN in Hessleskew field (R
2 

= 0.50, RMSE = 299 

0.01%, and RPIQ = 1.21), followed by SVM with SFD (R2 = 0.51, RMSE = 0.01%, and RPIQ = 300 

1.41, as shown in Table 2). However, SVM showed better performances for predicting TN for 301 

TFD, UND and ECD, compared to PLSR using the corresponding datasets. For Hagg field, the 302 

worst results are obtained with PLSR-SFD based modelling (R2 = 0.54, RMSE = 0.02%, and 303 

RPIQ = 2.36, Table 3). Again SVM over-performed PLSR models, but under-performed MARS 304 

models (Tables 2 and 3). 305 

The best results for TC laboratory prediction are achieved using the MARS model based on the 306 

ECD (R2 = 0.88, RMSE = 0.19% and RPIQ = 5.94) for Hessleskew field, as well as for Hagg 307 

field (R2 = 0.85, RMSE = 0.46% and RPIQ = 4.34). The lowest prediction performance is 308 

obtained with PLSR models particularly for the TFD in Hagg field and Hessleskew field with R2, 309 

RMSE, and RPIQ of 0.52 and 0.57, 0.24% and 0.23, and 1.95 and 1.98, respectively (Tables 2 310 

and 3). SVM models show the same trend as for the cross-validation where it outperform PLSR 311 

for all datasets in both fields, and the best results are obtained with TFD in Hagg field (R2 = 0.89, 312 

RMSE = 0.14% and RPIQ = 3.26) and with ECD in Hessleskew field (R2 = 0.79, RMSE = 0.25% 313 

and RPIQ = 3.19). 314 

Results for MC show a similar trend to those of TN and TC, as the best performing prediction is 315 

obtained with the MARS models based on the TFD (not with the ECD, as for TC and TN) in 316 

both fields. The worst performing models are for PLSR with TFD in Hessleskew field (R2 = 317 

0.48, RMSE = 1.38% and RPIQ = 1.69) and ECD in Hagg field (R2 = 0.57, RMSE = 1.72% and 318 
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RPIQ = 2.26). SVM generates acceptable results, with the best model accuracy obtained with 319 

ECD in Hagg field (R2 = 0.77, RMSE = 1.72% and RPIQ = 3.0), and the lowest accuracy 320 

obtained with SFD in Hessleskew field (R2 = 0.53, RMSE = 1.32% and RPIQ = 0.90) (Table 2). 321 

Similar trend to that of the cross-validation can be concluded for the laboratory prediction. For 322 

example, MARS has over-performed SVM and PLSR for the three studied soil properties 323 

followed, respectively by SVM and PLSR, which is the least performing method. The only 324 

exception is for MC, where depending on the dataset, SVM over-performed PLSR in two cases 325 

only out of four. Here, it is not necessary the case that the ECD models outperformed 326 

corresponding models developed with the other three datasets.  327 

3.4. Performance of calibration models for mobile prediction 328 

The mobile collected spectra were used to predict soil TN, TC and MC using the calibration 329 

models developed in advance, as explained above. The laboratory reference measurement values 330 

were compared with the mobile predicted concentration values at the same positions. Tables 2 331 

and 3 summarise the accuracy of the mobile measurement for the studied soil properties at the 332 

different-scale datasets.  333 

For TN, the best results are obtained with MARS, followed by SVM and PLSR, respectively, 334 

which is similar for the trends in cross-validation and laboratory prediction. The highest MARS 335 

model performance is resulted with the ECD dataset with R2 = 0.79, RMSE = 0.02%, and RPIQ 336 

= 3.26 for Hessleskew field (Table 2; Fig. 4), and R2 = 0.73, RMSE = 0.03%, and RPIQ = 3.16 337 

for Hagg field (Table 3; Fig. 5). The least acceptable results are produced by SVM using SFD of 338 

Hessleskew field (R2 = 0.48, RMSE = 0.02%, and RPIQ = 1.17), followed by PLSR-SFD for the 339 

Hagg field (R2 = 0.49, RMSE = 0.03%, and RPIQ = 1.96, Table 3). However, SVM show a good 340 
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performance for predicting TN with TFD and less evident with UND, for both fields, 341 

outperforming PLSR for both datasets. 342 

Like for TN, the best results for TC are achieved using the MARS-ECD model for Hagg field 343 

(R2 = 0.81, RMSE = 0.29% and RPIQ = 4.33) and Hessleskew field (R
2 

= 0.81, RMSE = 0.31% 344 

and RPIQ = 3.57). The mobile perdition of PLSR models are of lower degree of accuracy 345 

particularly for SFD of Hagg field with R
2
, RMSE, and RPIQ of 0.50, 0.23%, and 1.97, 346 

respectively, which is comparable to the results of SVM-SFD (Table 3). The best results for 347 

SVM are obtained with ECD, which is a similar trend to that in the cross-validation modelling. 348 

Generally MARS models provided considerably better performance in mobile prediction than 349 

both SVM and PLSR, which performed almost equally. The one exception is when the UND is 350 

used, with which both PLSR and SVM performed better than TC. 351 

The mobile prediction of MC follows the same trend of the cross-validation, as the best results 352 

are obtained with MARS for seven out of eight cases in both fields (Tables 2 and 3). The best 353 

mobile prediction performance is resulted from the MARS-ECD modelling in Hessleskew field 354 

(R2 = 0.73, RMSE = 1.91% and RPIQD = 1.94) and MARS-UND in Hagg field (R2 = 0.72, 355 

RMSE = 1.91% and RPIQ = 2.58). The results of PLSR-TFD model of Hessleskew field are the 356 

least accurate over all models (R2 = 0.48, RMSE = 1.36% and RPIQ = 1.58). Depending on the 357 

data set used, SVM generated slightly better results than PLSR with RPIQ values ranging 358 

between 1.76 and 2.19 for Hagg field (Fig. 5), and 1.32 and 2.66 for the Hessleskew field (Fig. 359 

4). 360 

In the majority of models, MARS has over-performed SVM and PLSR for the three studied soil 361 

properties in mobile prediction, followed, respectively by SVM and PLSR, which is the least 362 
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performing method. The only exception is for MC, where depending on the dataset, SVM over-363 

performed PLSR in three cases out of four.  364 

(Table 2)  365 

(Table 3)  366 

3.5. Analysis of uncertainty versus RMSE 367 

To investigate the accuracy and quality of results obtained with laboratory prediction, we 368 

compared the RMSE with uncertainty calculated for standard laboratory chemical analyses (Figs. 369 

6 and 7). The majority of models result in smaller RMSE than the uncertainty (0.35±0.025%, 370 

3.8±0.26%, and 20±1.22% for TN, TC, and MC, respectively). This is indeed the case in for 371 

Hessleskew field, particularly for TN and TC with MARS and SVM (Fig. 6), whereas RMSE 372 

becomes larger than the uncertainty level for MC when the three modelling techniques are 373 

applied for the UND and ECD datasets. Similarly in Hagg field, RMSE is larger than the 374 

uncertainty level for not only MC but also TN and TC, for both the UND and ECD datasets (Fig. 375 

7). 376 

 (Fig. 4)  377 

(Fig. 5)  378 

 379 

4. Discussion 380 

4.1. Comparison performance of modelling techniques 381 

This study compared the performance of the MARS, SVM and PLSR models for the prediction 382 

of TC, TN and MC based on different datasets. The variations in RPIQ and RMSE values 383 
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obtained from models in cross-validation, laboratory and mobile prediction are shown in Tables 384 

2 and 3. MARS models have over-performed SVM and PLSR for modelling the three studied 385 

soil properties in cross-validation, laboratory and mobile prediction. Examining the values of 386 

RPIQ in cross-validation, laboratory and online prediction, respectively, of MARS models 387 

allows confirming that the predictive performance of the MARS model in this study was high. 388 

This result is in line with results reported by Nawar et al. (2016) for non-mobile measurement, 389 

who found that MARS performed SVM and PLSR. Based on the adapted RPIQ groups, models 390 

in laboratory prediction show excellent accuracy for TN and TC, but only good for MC, whereas 391 

the accuracy of mobile prediction are excellent, very good and good for TN, TC and MC, 392 

respectively. Laboratory and mobile predictions of TN and TC are better than those obtained by 393 

other researchers for PLSR models (e.g. Kuang and Mouazen, 2011, 2013) (R2 = 0.75–0.93 and 394 

0.74–0.89; RMSE = 0.03–0.06% and 0.7–1.1%, for TN, and TC, respectively), while for MC the 395 

results of Kuang and Mouazen (2013) were better (RMSE = 0.32–0.74% and 0.36–0.84% for 396 

laboratory and online predictions, respectively. This is because the MARS modelling technique 397 

typically yields better results when a nonlinear relationship between reflectance and 398 

concentration exists, whereas the PLSR model fits only linear relationships (Brown et al., 2006; 399 

Mouazen et al., 2010; Viscarra Rossel and Behrens, 2010; Nawar et al., 2016).  400 

Generally, after MARS SVM was the best performing method in cross-validation for the three 401 

studied soil properties. This was not always the case for laboratory and mobile prediction, where 402 

depending on the dataset PLSR overperformed SVM and even MARS (Tables 2 and 3). These 403 

results are supported by the findings of Viscarra Rossel and Behrens (2010), who showed that 404 

SVM provided more robust predictions of soil organic carbon than PLSR models. Similarly, and 405 

Nawar et al. (2016) also showed that the non-linear nature of SVM let to a better results than 406 
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PLSR. Morellos et al. (2016) also found SVM to overperform two linear methods, namely, PLSR 407 

and principal component regression for modelling OC, TN and MC. This is because SVM is a 408 

non-linear and flexible method, capable to model complex, non-linear and linear relationships 409 

between variables (Viscarra Rossel and Behrens 2010). However, in the current work we prove 410 

this to be the case for mobile prediction too. 411 

Although the results of PLSR models showed the weakest performance among the three models 412 

in cross-validation, SVM and PLSR performed equally in the laboratory and mobile prediction 413 

depending on the data set. This was especially the case with the Hagg field. At the Hessleskew 414 

field, the variation in concentrations of studied soil properties was slightly higher (Table 1) than 415 

that in the Hagg field. This resulted in slightly higher not only RPIQ and R2 values but also 416 

RMSE values, which is in line with findings of Kuang and Mouazen (2011).  417 

The small prediction datasets used in the current work (37 and 39 for Hessleskew and Hagg 418 

fields, respectively), might have affected the prediction performance in the laboratory and mobile 419 

predictions, as a small data set size was reported to lead to various counterintuitive and 420 

unfamiliar side effects, which can significantly impact the validation results and lead to a very 421 

poor performance (Klement et al., 2008).  422 

Model performance for TN and TC in cross-validation, laboratory and mobile prediction 423 

behaved differently from models for MC. It is interesting and rather odd to observe that TC and 424 

TN models to overperform MC model, which is not a typical finding in vis-NIR spectroscopy for 425 

soil analyses, as MC used to over-perform all other soil properties models (Kuang and Mouazen, 426 

2013; Mouazen et al., 2010; Morellos et al., 2016). No other reason could be found for the odd 427 

MC prediction behaviours except that the current field were of stony soils that might contributed 428 
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to the error of MC laboratory measurement with the drying method. 429 

Based on Figs. 6 and 7, we observed that relatively small values of RMSE for TN and TC, 430 

having large range of concentrations, indicate unbiased predictions. In addition, the majority of 431 

RMSE values lie within the uncertainties levels with an average deviation < 5% for TN and TC 432 

and 6.35% for MC. These deviations are much smaller for MARS compared to PLSR, indicating 433 

good prediction performance of MARS models for both the laboratory and mobile predictions. 434 

(Fig. 6) 435 

(Fig. 7)  436 

4.2. Influence of geographical scale on Models’ performance  437 

The dataset (scale) has shown to have a considerable effluence on the performance of calibration 438 

and prediction of TN, TC, and MC. Spiking local samples in the UND and ECD libraries almost 439 

always improved the model performance, particularly in cross-validation, compared with those 440 

obtained using the SFD and TFD (Tables 2 and 3), which is in agreement with the results 441 

presented by Brown (2007) and Sankey et al. (2008), although the current work is based on a 442 

smaller scale datasets of a smaller variability. The improvement was mainly expressed as an 443 

increase in R2 and RPIQ values, but a decrease in RMSE (Tables 2 and 3). This finding is in 444 

agreement with Brown (2007) findings, who reported a great reduction in RMSE for predictions 445 

of SOC in upland soil samples from a catchment in Uganda, by adding local samples to a global 446 

library. Furthermore, it is also in line with the findings of Kuang and Mouazen (2013) that 447 

spiking local soil samples into ECD datasets proved to be an efficient way to improve the 448 

prediction accuracy of target field samples.  449 
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Examining the RPIQ values obtained with different dataset suggest that spiking of laboratory 450 

scanned spectra into UND and ECD is a successful strategy to obtain accurate mobile predictions 451 

of soil properties. Figs. 4 and 5 and Tables (2 and 3) illustrate how spiking coupled with MARS 452 

have led to the highest mobile prediction performance compared to PLSR and SVM, particularly 453 

at ECD scale, for which RPIQ values were of good to very good values according to the adopted 454 

RPIQ groups. Compared to published results of spiking of a ECD with target field samples 455 

obtained with PLSR analyses (Kuang and Mouazen, 2013) for TN (RPD = 1.96–2.52), OC (RPD 456 

= 1.88–2.38), and MC (RPD = 2.76–3.96), comparable results with slight improvements were 457 

obtained in the current work for mobile MARS-ECD prediction, only for TN and TC. Compared 458 

with artificial neural network (ANN)-ECD (nonlinear) model performance for the mobile 459 

prediction of SOC reported by Kuang et al. (2015), slight improved results can be observed with 460 

MARS-ECD obtained in the current work (RPIQ for TC = 3.57 – 4.33), as RPD values reported 461 

by Kuang et al. (2015) were improved from 1.93 for PLSR analysis to 2.28, for ANN. 462 

Furthermore, the current results outperform those obtained by other researchers (Pietrzykowski 463 

and Chodak, 2014) for TN based on non-mobile measurement and PLSR analysis only (RPIQ = 464 

2.34), and combined PLSR with genetic algorithm (RPIQ = 4.12; Ludwig et al., 2017). This is 465 

also true for TC based on PLSR (RPIQ = 31.3; Sarkhot et al., 2011) and SVM and PLSR (RPIQ 466 

= 2.03 and 2.59, respectively; Wijewardane et al., 2016). This is at least a step forward the 467 

current work have shown that there will be always an opportunity to improve the mobile 468 

prediction performance by adopting new data mining techniques (e.g., MARS in the current 469 

work). Considering the narrow variation range of soil properties in the two measured fields 470 

(Table 1), the concept of spiking a general dataset with samples from measured target field 471 

seems to be a successful calibration procedure for mobile vis–NIR measurement of soil TN, TC 472 
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and MC. The alternative concept to spiking would be to collect a sufficient number of soil 473 

samples from a target site (e.g. SFD or TFD) and produce calibration models for mobile 474 

prediction of soil properties as proposed by Mouazen et al. (2007). In this concept, one should be 475 

lucky to encounter sufficient spatial variability in the target site, to enable establishing 476 

calibration models (Guerrero et al., 2010; Wetterlind et al., 2010). This concept is definitely 477 

more expensive than the spiking, as a much larger number of soil samples should be collected 478 

from a site (> 5 sample per ha, or > 100 samples per field), compared to spiking, where 479 

depending of the spatial variability only few samples (e.g., 1–2 sample per ha) would be 480 

sufficient to account for the specific soil variability of the target site. Kuang and Mouazen (2012) 481 

suggested that among different sample number datasets studied (e.g., 25, 50, 75 and 100 482 

samples), the number of soil samples should be chosen according to the accuracy required, 483 

although 50 soil samples was considered appropriate to establish calibration models of TN, SOC 484 

and MC. This is correct assuming that considerable spatial variability exists in the dataset to 485 

enable correlation between soil spectra and target soil properties to be established, which is not 486 

the case for all fields where for some fields variability could be very small. Therefore, spiked 487 

ECD calibration models with target field specific samples are successful prediction tools for 488 

mobile vis–NIR spectroscopy sensing of the studied soil properties. 489 

Similar to the mobile prediction, spiking of the ECD in particular seems to provide the best 490 

prediction performance for laboratory scanned (non-mobile) soil spectra. Spiking local (target 491 

site) soil samples into global or ECD models for non-mobile calibrations proved to be an 492 

efficient approach to improve the prediction accuracy of a target field for some soil constituents 493 

(Shepherd and Walsh, 2002; Janik et al., 2007; Waiser et al., 2007; Minasny et al., 2009; 494 

Viscarra Rossel et al., 2009; Wetterlind and Stenberg, 2010; Guerrero et al., 2010; Kuang and 495 
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Mouazen, 2013).  496 

In line with findings of Kuang and Mouazen (2011), it is believed that a fundamental factor that 497 

leads to improved model performance (in both mobile and laboratory predications) is the wide 498 

range of variability of TN, TC, MC which can be secured with the ECD. Stenberg et al. (2010) 499 

reported that the model performance depends on to a large extent on variability encountered in 500 

the dataset, including soil types, which is the case in the ECD of the current work. This may be 501 

attributed to the fact that different soil types can have considerably different physical and 502 

chemical characteristics influencing soil spectra, which is attributed to differences in the parent 503 

materials. Thus, with large soil heterogeneity, regression can be more successful and this may 504 

influence the model accuracy. The high performance for estimating the soil properties in the 505 

current research obtained with MARS may be attributed to the wide range of variation of the 506 

large-scale dataset (ECD), shown in Table 1. 507 

In the present study, spiked UND and ECD models did not result in substantially lower RMSE 508 

values compared with the results obtained with when using local calibrations alone (e.g., SFD 509 

and TFD). This corresponds to the small and variable differences for TN, TC and MC between 510 

the calibrations with the spiked UND and ECD libraries, and the local-only samples, which is in 511 

agreement with observations found by Brown (2007). Moreover, these results were consistent 512 

with the observations for TN, OC, and MC made by Kuang and Mouazen (2013), who obtained 513 

substantially better predictions for some sites using the ECD library spiked with local samples, 514 

compared with using only local samples. These authors confirmed that although higher R2 and 515 

RPD values can be obtained with spiked ECD calibration models, higher RMSE values should 516 

be expected. 517 
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 518 

5. Conclusions  519 

In this study, the partial least squares regression (PLSR), support vector machine (SVM) and 520 

multivariate adaptive regression splines (MARS) methods were compared for the laboratory 521 

(non-mobile) and mobile prediction of soil total nitrogen (TN), total carbon (TC) and moisture 522 

content (MC) in two fields (e.g., Hessleskew and Hagg) using four different datasets of different 523 

geographical scales. Generally, the accuracy of the PLSR, SVM and MARS models varied in 524 

accordance with variations in the calibration scales. Results showed the majority of the non-525 

linear calibration methods (particularly MARS) to outperform the linear PLSR in cross-526 

validation modelling. However, PLSR provided acceptable accuracy for the prediction of the 527 

studied soil properties. The most important finding was that in general results of cross-validation 528 

to improve with increasing the scale of the data set from one field dataset (SFD), to two fields 529 

(TFD), and finally spiking with large data set collected from some fields in the UK (UND), and 530 

from several fields in Europe (ECD). However, the validation of model performance in 531 

prediction does not necessarily follow the same trend. Higher prediction results were observed 532 

for the individual and two-field data set as compared to the large EU data set. Another interesting 533 

finding was that the two-field data set resulted in skewness of predicted values towards the field 534 

with high concentration of a given soil property. 535 

The ECD calibrations seem to be the best option for mobile predictions of the studied soil 536 

parameters as compared to field or field scale. The ECD calibrations based on 529 samples 537 

outperformed UND (89 samples), TFD (234 samples) and the SFD (122 and 149 for Hessleskew 538 

and Hagg, respectively) models for TN, TC and MC at both fields. The potential for good 539 

calibration was obtained particularly for TC and TN. There was a tendency for better predictions 540 
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when spiking the ECD dataset compared to spiking the UND dataset, particularly for TN and 541 

TC.  542 

The predictive models for estimating TN, TC and MC may become more accurate through the 543 

selection of an optimal data set to spike with UND and ECD libraries. Future research should 544 

focus on the potential for integration of data-mining techniques with the optimal spiked libraries 545 

for improving the prediction accuracy at different scales. We believe that these estimation 546 

models should be subjected to further examination and optimisation prior to their broad 547 

application in soil TN, TC and MC modelling and mapping. 548 
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