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Highlights

• Increased accuracy with WENO high-order discretisation for RANS simulations.

• Improved convergence properties with coupled discretisation of turbulence model.

• WENO 3rd scheme provides best balance between accuracy, robustness and cost.

• Low-mach number algorithm demonstrates improved solutions for low speed flows.
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Abstract

This paper is concerned with the application of k-exact finite volume methods for compressible Reynolds-

Averaged Navier-Stokes computations of flows around aeronautical configurations including the NACA0012,

RAE2822, MDA30P30N, ONERA-M6, CRM and DLR-F11. High-order spatial discretisation is obtained

with the Weighted Essentially Non-Oscillatory and the Monotone-Upstream Central Scheme for Conserva-

tion Laws methods on hybrid unstructured grids in two- and three- dimensions. Schemes of fifth, third

and second order comprise the foundation of the analysis, with main findings suggesting that enhanced

accuracy can be obtained with at least a third-order scheme. Steady state solutions are achieved with the

implicit approximately factored Lower-Upper Symmetric Gauss-Seidel time advancing technique, conver-

gence properties of each scheme are discussed. The Spalart-Allmaras turbulence model is employed where

its discretisation with respect to the high-order framework is assessed. A low-Mach number treatment tech-

nique is studied, where recovery of accuracy in low speed regions is exemplified. Results are compared with

referenced data and discussed in terms of accuracy, grid dependence and computational budget.

1. Introduction

Reynolds-Averaged Navier-Stokes (RANS) methods are likely to remain the high-fidelity Computational

Fluid Dynamics (CFD) modelling approach for the foreseeable future, with second-order discretisation

schemes being the most common numerical methods in industrial CFD codes. Advanced turbulence sim-

ulations such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are prohibited in

terms of computational cost for high Reynolds number flows around or inside complex geometries.
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Considerable research efforts have been spent into the development, implementation and assessment

of high-order finite volume (FV) discretisation schemes for DNS and LES [1, 2]. High-order methods can

achieve at least the same level of accuracy with second-order schemes but using coarser grids [3]. However, the

enhanced efficiency is predominantly demonstrated for canonical cases and simple geometrical configurations.

In the context of the present study concerning unstructured meshes around simple and complex aeronautical

configurations, high-order schemes are referred to spatial discretisation of at least third-order accurate.

In the last decade, accuracy and efficiency considerations were the fundamental drivers for the devel-

opment of high-order numerical schemes. Recent reviews on high-order methods were presented by Huynh

et al. [4] and Wang et al. [5] highlighting the challenges and potential benefits of the methods compared

with production codes. The vast majority of high-order schemes are based on the finite volume and the

discontinuous Galerkin (DG) numerical frameworks. Other methods include the DG spectral element [6, 7]

and hybrid DG/FV methods [8–10]. High-order methods combined with solution adaptive techniques such

as grid refinement and/or order enrichment demonstrate promising results on unstructured grids [11, 12].

The essentially non-oscillatory (ENO) and weighted-ENO (WENO) schemes were originally formulation for

FV methods [13–15] for structured grids [16, 17]. Furthermore, several research groups extended the original

schemes to handle unstructured [18–22] as well as mixed-element unstructured grids [3, 23–26], furthermore

WENO methods are also utilised within the DG framework [27, 28].

WENO schemes have been mainly used for inviscid, laminar and low Reynolds number flows [29, 30].

The grid requirements of high Reynolds number flows combined with low-quality highly skewed geometric

elements poses a considerable robustness challenge for any high-order numerical method. For WENO schemes

the grid sensitivity is mainly due to the inherited spatial extensiveness of the scheme, requiring large stencils

for the reconstruction process. Furthermore, meshes with small neighbouring surface/volume ratio will

benefit more as higher-order approximation of derivatives and gradient will be accurately estimated. The

scheme is less sensitive to individual geometric quality metrics, as opposed to other framework, such as

DG, where high-order grids would be required in order to explore their full potential of the method [31].

High-order spatial representation is a promising field, however for complex configurations often encounter

in external aerodynamics, there is a limited number of tools available for accurate and efficient generation

of high-order, curved meshes.

Numerical convergence and accuracy of CFD simulations can be further compromised by insufficient

grid resolution, numerical dissipation and turbulence modelling issues. Furthermore, low Mach number

effects can become important in near wall regions as well as in flow regions where vortical structures are
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dominant [32, 33]. Numerical methods designed for compressible flows should be assessed for their accuracy

in these flow regions. Slow convergence rates and excessive numerical dissipation are often encountered in

problems encompassing large changes in wave speeds. Local preconditioning methods [34, 35] are popular

techniques to address the stiffness of the resulting non-linear system. However, the computational expense

can be excessive particularly for complex flow phenomena [36] such as unsteadiness, shock-wave-boundary

layer interaction, transition and turbulence, which are often associated with buffet and flutter effects. A

more compact technique with considerable smaller computational overhead was proposed by Thornber et

al. [32] for block-structured grids and was investigated for a broad range of flows in [2]. The method was

also employed in conjunction with implicit time-stepping in [37].

Implementation of high-order methods in conjunction with turbulence models poses additional chal-

lenges with respect to robustness, accuracy and efficiency. High-order discretisation of the turbulence model

transport equations can lead to non-physical (negative) eddy viscosity values, numerical artefacts and slow

convergence rates [38]. Several researchers have documented irregularities attributed to the boundary layer

edge-singularity inherited within wall-distance dependent turbulence models [39].

The development and implementation of the present high-order WENO and MUSCL schemes for un-

structured grids has been presented for inviscid applications in [23]; for laminar, transitional and turbulent

canonical and simple geometrical flows in the framework of Implicit Large Eddy Simulation (ILES) in [3]

using an explicit time stepping technique. Although the utilisation of high-order methods makes more sense

for long-time evolution of unsteady turbulent flow simulations, we explore the benefits that they can offer

in the context of RANS simulations. Since in theory they should be able to provide smaller errors with

respect to grid resolution, hence significant savings in terms of computational time. This paper assesses

both the accuracy and efficiency of second- and third-order variants of the MUSCL scheme in conjunction

with total variation diminishing (TVD) limiter functions as well as third- and fifth-order WENO schemes

on mixed-element unstructured grids for subsonic and transonic flows around single aerofoils; multi-element

aerofoils at high angle incidence; 3D wing; and aircraft configurations at cruise and landing conditions. The

RANS computations have been carried out using an implicit lower-upper symmetric Gauss-Seidel (LU-SGS)

method [40, 41] and the one-equation Spalart-Allmaras (SA) turbulence model [42]. The paper is organized

as follows. Section 2 is dedicated to the governing equations, Section 3 presents the high-order finite volume

framework for unstructured meshes, the MUSCL and WENO methods, the flux treatment, the implicit

time-stepping algorithm and the low-Mach number treatment method. The numerical results obtained for

all the test-cases are presented in Sections 4. The conclusions drawn from the present study are outlined in
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the last section.

2. Governing Equations

The compressible RANS equations with the one-equation Spalart-Allmaras (SA) turbulence model are

written in conservative form as:

@U(x, t)

@t

+r(Fc(U)� Fv(U,rU)) = S(U,rU), (1)

where U is the vector of the conserved mean flow variables and the turbulence model variable, and Fc and

Fv are the inviscid and viscous flux vectors, respectively:
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(2)

In the above equations, ⇢ is the density, u, v, w are the velocity components in x, y and z Cartesian coordi-

nates, respectively. Calorically perfect gas is assumed where the total energy per unit volume is calculated

by E = p/ (� � 1)+(1/2)⇢(u2+v

2+w

2), where p is the pressure, � = 1.4 is the ratio of specific heats for air

at normal atmospheric conditions; ⌫ is the kinematic laminar viscosity and ⌫̃ is the SA turbulent viscosity

working variable. The laminar viscosity is related to the temperature through the Sutherland law:

µ

l

µ0
=

✓
T

T0

◆ 3
2
T0 + S

T + S

, (3)

S is the Sutherland temperature and the subscript 0 denotes a reference state for the corresponding variables.

Unless otherwise stated, the reference values are taken at atmospheric conditions (sea level): dynamic

viscosity µ0 = 1.7894 ⇥ 10�5
kg/(ms); reference temperatures T0 = 288.16K; S = 110.4K; and Prandtl
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number Pr = 0.72. Using the Boussinesq’s approximation the viscous stress tensor ⌧

ij

is defined by

⌧

ij

= (µ
l

+ µ

t

)

✓
@u

i

@x

j

+
@u

j

@x

i

� 2

3

@u

k

@x

k

�

ij

◆
, (4)

where µ

t

is the eddy viscosity, �

ij

is the Kronecker delta and the subscripts i, j, k refer to the Cartesian

coordinate components x = (x, y, z). The work of viscous stresses and heat conduction, ⇥, is given by:
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(5)

Pr

t

is the turbulent Prandtl number; ⌫
t

is the turbulent kinematic viscosity. The SA turbulence working

variable ⌫̃ is related to eddy viscosity µ

t

by:

µ

t

= ⇢⌫̃f
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(⇢⌫̃/µ

l

)3
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l
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v1 = 7.1. (6)

where the component of the source term S of equation (2) are given as:
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⌦ is the vorticity magnitude and
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The closure constants are:

C

b2 = 0.622, C
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b1



2
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, C

w2 = 0.3,

C

b1 = 0.1355, C

w3 = 2.0, � = 2/3,  = 0.41, r
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= 10, P r

t

= 0.9.

(9)

as given in [42].

3. Numerical Framework

The discretisation in a domain ⌦ is achieved by combining conforming arbitrary shaped elements of

volume |V
i

|. Integrating equation (1) over a mesh element using the finite volume formulation the following
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ordinary differential equation is obtained

dU

i

dt

=� 1

|V
i

|

NfX

l=1

NqpX

↵=1

F

n,l
c

(U(x
↵

, t))!
↵

|A
l

|

+
1

|V
i

|

NfX

l=1

NqpX

↵=1

F

n,l
v

(U(x
↵

, t),rU(x
↵

, t))!
↵

|A
l

|+ S

i

,

(10)

where U

i

is the volume averaged conserved variable vector, S
i

is the volume averaged source term vector

within in a volume element i, N

f

is the number of faces per element, N

qp

is the number of quadrature

points used for approximating the surface integrals. Figure 1 illustrates an example of quadrature point

distribution on a aircraft surface mesh; the blue points located near the vertices correspond to quadrature

weight smaller compared with the points located in the midsection coloured in red. |A
l

| is the surface area

of the corresponding face, and ↵ corresponds to different Gaussian integration points x

↵

and weights !

↵

over the face.

Figure 1: Close-up of the surface mesh and the corresponding quadrature points for a WENO third-order scheme, colour codes
according to their corresponding weight value.

The weight and distribution of the quadrature points depend upon the order of the Gaussian quadrature

rule employed, higher integration rule will result in enhanced interface flux approximation. The convective
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and viscous flux tensors are defined as:

F

n,l
c

= F

x
c nx

+ F

y
c ny

+ F

z
c nz

,

F

n,l
v

= F

x
v nx

+ F

y
v ny

+ F

z
v nz

,

(11)

where n

x

, n

y

and n

z

are the Cartesian components of the normal vector on the inter-element surface.

The interface fluxes are computed from the reconstructed solution which is extrapolated at the interface.

The solution is reconstructed from element-averaged data. The following section describe the methodology

adopted for the reconstruction procedure.

3.1. Spatial Discretisation

The main objective of the reconstruction process is to build a high-order polynomial p
i

(x, y, z) of arbitrary

order r, for each considered element V

i

that has the same average as a general quantity U

i

[43]. This can

be formulated as

U

i

=
1

|V
i

|

ˆ
Vi

U(x, y, z) dV =
1

|V
i

|

ˆ
Vi

p

i

(x, y, z) dV. (12)

The reconstruction method is based on the approach of [3, 23], and only the key details are highlighted in this

paper. The reconstruction is carried out in a transformed system of coordinates in order to minimize scaling

effects that appear in stencils consisting of elements of different size as well as to improve the condition

number of the system of equations [3, 23, 44]. The transformation is achieved by decomposing each element

into tetrahedrals. Since a transformation based on shape functions of elements can fail when non-planar faces

are encountered, this also applies to the quadrilateral faces, which need to be decomposed to triangular ones

in order to accurately compute the normal vectors [3]. The reconstruction polynomial at the transformed

element V

0
i

is expanded over local polynomial basis functions labelled as �

k

(⇠, ⌘, ⇣), which are given by:

p(⇠, ⌘, ⇣) =
KX

k=0

a

k

�

k

(⇠, ⌘, ⇣) = U0 +
KX

k=1

a

k

�

k

(⇠, ⌘, ⇣), (13)

where ⇠, ⌘, ⇣ are the coordinates in the reference system, a
k

are the degrees of freedom and the upper index in

the summation of expansion. K is related to the order of the polynomial r by K = 1
6 (r+1)(r+2)(r+3)�1.

It must be stressed that the decomposition to tetrahedrals, is carried out to improve the condition of the

reconstruction matrices only, rather than computing inter-element variables e.g. fluxes, since the use of

prismatic or hexahedral elements for the boundary layer region is beneficial for computing the gradients

with high-accuracy. For computing the degrees of freedom a

k

, a minimum of K elements is required in the

stencil in addition to the target element. Using the minimum possible number of elements in the stencil,

M ⌘ K, may produce ill-conditioned systems, hence using M = 2 ·K improves the robustness of the method
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as described in [23, 44]. A linear least-square method is adopted to enable the system of equations of (13) for

the unknown degrees of freedom a

k

. The final form of the linear system is solve with the QR decomposition

algorithm. Discontinuous solutions are often encounter in external aerodynamics, thus limiting functions

are essential for maintaining numerical stability and suppress any spurious oscillations. Two approaches are

assessed in this work the MUSCL and the WENO schemes.

3.1.1. MUSCL

The MUSCL scheme employed in this work is based on the Barth and Jespersen slope limiter [45].

The design of the scheme requires the minimum and maximum values in the stencil’s neighbourhood, i.e.,

U

min

i

= min(U
i

, U

l

) and U

max

i

= max(U
i

, U

l

), where l = 1, ..L; L is the total number neighbours of element

i. The gradient of a general quantity is defined as rU

i

and is an approximation of the solution gradient inside

the element i. The gradient is computed during the reconstruction process by incorporating information

from the entire central stencil. The scheme is written as

U

i↵

= U

c

i

+ �

i

rU

i

· x
↵

, (14)

where U

c

i

is the value for the general quantity at the element centroid and x
↵

are the coordinates of the

quadrature point. The limiter seeks the minimum value of the slope limiter for all the quadrature points

that satisfy conditions: �

i

= min(�
i,m1 ,�i,m2 , ...�i,M

). Then, the limiting function is applied, composed

by three different states according to the difference of the reconstructed value at the quadrature points of

the considered element U(i,↵), the minimum and maximum values from the neighbours U

l

, and the element

centre value U

i

, yielding:

�

i,↵

=

8
>>>>><

>>>>>:

min

✓
1,

U

max

i

� U

i

U

i,↵

� U

i

◆
, if U

i,↵

� U

i

> 0

min

✓
1,

U

min

i

� U

i

U

i,↵

� U

i

◆
, if U

i,↵

� U

i

< 0

1, if U
i,↵

� U

i

= 0.

(15)

3.1.2. WENO

WENO schemes use a non-linear combination of various reconstruction polynomials, where each poly-

nomial is weighted according to the smoothness of its solution. The polynomials are given by

p

weno

i

=
msX

m=1

!

m

p

m

(⇠, ⌘, ⇣), (16)
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where m

s

is the total number of WENO stencils. Substituting back to equation (13) for p

m

(⇠, ⌘, ⇣), we

obtain the following expression

p

m

(⇠, ⌘, ⇣) =
KX

m=0

a

(m)
k

�

k

(⇠, ⌘, ⇣). (17)

Using the condition that the sum of all weights is unity, yields

p

weno

i

= U0 +
KX

k=1

 
msX

m=0

!

m

a

m

k

!
�

k

(⇠, ⌘, ⇣) ⌘ U0 +
KX

k=1

ã

k

�

k

(⇠, ⌘, ⇣), (18)

where ã

k

are the reconstructed degrees of freedom; and the non-linear weight !

m

as

!

m

=
!̃

m

msP
m=0

!̃

m

where !̃

m

=
�

m

(✏+ I
m

)b
. (19)

The smoothness indicator is given by

I
m

=
X

1|�|r

ˆ

Ẽi

�
D�

p

m

(⇠, ⌘, ⇣)
�2

(d⇠, d⌘, d⇣), (20)

where � is a multi-index, r is the polynomial’s order, �

m

is the linear weight, and D is the derivative

operator. The smoothness indicator is a quadratic function of the degrees of freedom (am
k

) and can be

expressed as a universal mesh-independent oscillation indicator matrix.

The various reconstruction polynomials arise from different sets of stencils that satisfy some geometrical

conditions. The reader is referred to [3, 23, 44], and references therein, for a comprehensive explanation of

the different set of geometrical conditions and WENO characteristic reconstruction.

Additionally for the MUSCL and WENO schemes for ensuring that the pressure and density remain

positive through the reconstruction the positivity condition of [13] is used where the reconstructed values of

density and pressure for each Gaussian quadrature points (↵) must satisfy the following condition:

|⇢
i↵

� ⇢

i

| < 0.8⇢
i

and |p
i↵

� p

i

| < 0.8p
i

. (21)

If the condition (21) is not satisfied for all Gaussian quadrature points then the reconstruction order for the

considered element is reduced by one order until the condition is satisfied.

3.2. Fluxes Approximation

Having reconstructed the element-averaged solutions, the interface fluxes can be evaluated. For the

convective fluxes the Riemann problem is solved with the approximate Harten-Lax-van Leer-Contact (HLLC)

solver as proposed in [46]. The HLLC solver is also employed for the convective part of the turbulence

transport equation when a higher than first-order discretisation of the turbulence variable is adopted. The
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HLLC flux function is given as:

F̂
HLLC

8
>>>>>>><

>>>>>>>:

F̂

�
, if 0  S

�
,

F̂

⇤� = F̂

� + S

�
⇣
Ŵ

⇤� � Ŵ

�
⌘
, if S�  0  S

⇤
,

F̂

⇤+ = F̂

+ + S

+
⇣
Ŵ

⇤+ � Ŵ

+
⌘
, if S⇤  0  S

+
,

F̂

+
, if 0 � S

+
,

(22)

where

Ŵ

⇤± = ⇢

±
✓
S

± � u

±

S

± � S

⇤

◆

2

666666666666664

1

S

⇤

v

±

w

±

E

±

⇢

± (S⇤ � u

±)

✓
S

⇤ + p

±

⇢

± �
S

± � u

±�
◆

⌫̃

⇢

±

3

777777777777775
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Ŵ

⇤± is computed either for the considered element “�”, or for its neighbour “+” and the wave speeds

+S

�
,+S

+
, S

⇤ are approximated by an adaptive iterative procedure as detailed in [46].

The discretisation of the convective turbulence flux term has significant impact on the amount of artificial

dissipation produced by the turbulence model. Disproportional amounts of eddy viscosity are introduced

when there is a severe mismatch between the discretisation of the mean flow and turbulence model equations.

Mispredictions of eddy viscosity production can lead to very small or negative values. Several numerical

experiments were performed in order to establish the most stable and accurate methodology for the discreti-

sation of the turbulence model terms, including the convective component, the turbulence model variable

gradients and source terms which are depended upon the velocity, turbulence model gradients. For second-

order mean flow discretisation, a first-order upwind flux is employed for the turbulence model convective

term and the second-order scheme for all gradients. The convective turbulent flux F̂

⌫̃

c

for a second-order

scheme is computed as

F̂

⌫̃

c

=
1

2

⇥
N
�
(⌫̃)� + (⌫̃)+

�
� |N |

�
(⌫̃)+ � (⌫̃)�

�⇤
, (24)

where (⌫)� and (⌫)+ are the element-centred values of the turbulent eddy viscosity for the considered

element and its direct side neighbour, respectively, with N defined as

N =
1

2

⇥
n

x

�
u

� + u

+
�
+ n

y

�
v

� + v

+
�
+ n

z

�
w

� + w

+
�⇤

, (25)

where u

±, v± , w± are the element-centred values of the Cartesian velocity components.
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For high-order mean flow discretisation it was found that the most stable method with accurate solutions,

is to treat the turbulence convective term through the Riemann solver as shown in equation (23). The

turbulence model variable is reconstructed according to the high-order spatial scheme of the mean flow

equations either with a MUSCL or WENO approach whereas the gradients are estimated with the same

approach as viscous terms. For the evaluation of the viscous fluxes the extrapolated interface variables

U

±
i,a

and their unlimited gradients rU

±
i,a

from the k-exact least square reconstruction of equation (12) are

averaged from two discontinuous states as detailed in [3, 47]. Although, other methods for the evaluation of

the diffusive fluxes such as the one of the generalised Riemann problem of Gassner et al. [48], or the diffusive

flux of direct DG [49, 50] can be applied, the k-order accurate flux is implemented as it easily obtained

through element centred reconstructions and has been applied for various flows problems [47, 51, 52].

This k-exact reconstruction flux approximation has been previously assessed by Ivan and Groth [47] and

it is not susceptible to odd-even decoupling, however the discrete maximum principle is not satisfied and

is influenced by the mesh quality, which agrees with the rule that for finite volume discretisation methods,

accuracy and positivity are conflicting properties. Therefore, for stability purposes, and when dealing with

meshes consisting of non-planar quadrilateral faces, hence poor quality hexahedral, prisms and pyramids,

the least square reconstruction can introduce severe errors in the computation of the viscous flux gradients.

As it has been reported by Diskin et al [53], where extensive tests have been performed for different grid

topologies with high aspect ratio and skewness elements, the Green-Gauss formulation for computing the

viscous terms is much more robust and less sensitive to the quality of the grid element.

In the presence low radius curvature (e.g. leading edge of a wing) highly skewed elements can introduce

large errors when computing their gradients with a least square reconstruction of high-order polynomial.

Therefore, for each element that has an aspect-ratio greater than a threshold value ⇡ 100, we utilise the

Green-Gauss formulation as described in [3], otherwise the least square reconstruction procedure for the

gradients is employed. This condition of gradient approximation is only applicable to the gradients of the

viscous terms. In the convective terms, the least square reconstruction is used both with the MUSCL and

WENO schemes.

3.3. Low-Mach Number Treatment Modification

A low-Mach number modification is employed in the present study for subsonic flows and it follows the

previous work of Thornber et al. [32], where the left and right state of the reconstructed velocities, normal

to the interface are modified in a linear way with respect to the local Mach number. In the case of the local
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speed approaches to zero the arithmetic mean of them is modified in the following manner:

u

⇤
L

=
(1 + ⇣)u

L

+ (1� ⇣)u
R

2
, u

⇤
R

=
(1 + ⇣)u

R

+ (1� ⇣)u
L

2
, (26)

with the function ⇣ being equal to ⇣ = min(1,max(M
L

,M

R

)). The Mach number for the left and right states

are calculated based on the velocity magnitude of all the velocity components independent of the normal

direction in which the flux is computed. This modification is different in nature from a preconditioning step

used for changing the flow variables, since our main motivation is not to relax the restriction in terms of

the time-step size, but rather to increase the resolution at low speed regions, where this modification has

demonstrated increased resolution and accuracy for a wide-range of flow problems [1, 2, 32, 33, 54], can be

utilised with any Riemann solver and without computational overheads.

3.4. Time discretisation

Convergence to steady state solution are obtained with the lower-upper symmetric Gauss-Seidel (LU-

SGS) implicit time integration method in conjunction with local time stepping algorithm. The LU scheme

was introduced by Jameson [55] and it is extensively used for high-Reynolds number flows on unstruc-

tured grids [56–61] in various formulations including WENO and Spectral schemes. Although, alternative

implicit-time stepping methods are introduced for unstructured grids e.g. the Newton-Krylov GMRES

implementations [62], the present time advancement scheme is considered to be robust with efficient par-

allelisation and low computational cost. The LU-SGS scheme with an approximate first-order Jacobian is

considered. Equation (10) can be rewritten in the following semi-discrete form

dU

i

dt

= R

i

, (27)

where R

i

is the right-hand side residual, which should converge to the machine precision. Employing a

first-order backward Euler implicit time stepping scheme, equation (27) takes the following form

dU

n

i

dt

=
U

n+1
i

�U

n

i

dt

= R

n+1
i

. (28)

Linearising in time, equation (28) gives

dU

n

i

dt

= R

n

i

+
@R

n

i

@U

, (29)

where R

i

should be equal to zero, hence equation (29) becomes
✓

I

dt

� @R

n

i

@U

◆
dU

i

= R

n

i

. (30)
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The solution at each element i is updated as Un+1
i

= U

n

i

+dU

i

, where I stands for the identity matrix. The

term @Rn
i

@U is the Jacobian matrix and contains the linearisation of the inviscid and viscous flux vectors as

well as the source terms. For obtaining the quadratic convergence properties of the Newton’s method, the

linearisation of the numerical flux function must be exact. However the formulation of the exact Jacobian

matrices for high-order non-linear schemes such as WENO methods, require excessive memory storage

[41, 63]. Since we are only interested in steady state solutions and in order to simplify the linearisation

of the Jacobian, a first-order approximation of the numerical fluxes is employed, since the matrix of @Rn
i

@U

is identical to the graph of the corresponding unstructured grid. The numerical flux is estimated with the

Rusanov flux function given as

R

i

(U
i

,U

j

, n

ij

) =
1

2

�
F

nij
c,v(U

i

,rU

i

) + F

nij
c,v(U

j

,rU

j

)
�
� 1

2
|�ij

c

+ �

ij

v

| (U
j

�U

i

) , (31)

with the maximum convective and viscous eigenvalue written respectively

�

ij

c

= |V
ij

· n
ij

|+ a

ij

, �

ij

v

=
µ

ij

⇢

ij

|x
j

� x

i

| , (32)

where n

ij

is the normal vector to the element interface, V

ij

is the velocity vector and a

ij

is the speed

of sound. The viscous eigenvalue is approximated by the viscous spectral radius x

j

� x

i

of the element

barycenter. Linearising the Rusanov flux of equation (31) gives the diagonal and off-diagonal components

respectively:

@R

i

@U

i

=
1

2

✓
@F

c,v

@U

i

+ |�ij

c

+ �

ij

v

|I
◆
,

@R

i

@U

j

=
1

2

✓
@F

c,v

@U

j

� |�ij

c

+ �

ij

v

|I
◆
.

(33)

Due to these approximations, the quadratic convergence of the Newton’s method will not be achieved due

to the discrepancy in the resolution of the right- and left-hand sides of equation (30). The resulting linear

system of the form AX = B of equation (30), following the implementation of [58], is solved by a two

step approach, consisting of two sweeps; the forward and backward sweeps are given by the following two

equations upper and lower part, respectively:

(D + L) dU⇤ = R (D + U) dU = DdU

⇤
. (34)
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Where U

⇤ is the intermediate state, the upper, lower and diagonal components of the system of equations

are written as

U =
1

2

✓
@F

c,v

@U

i

� |�ij

c

+ �

ij

v

|I
◆
,

L =
1

2

✓
�@F
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@U

j

� |�ij
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+ �

ij

v

|I
◆
,

D =
I

dt

+

NfX

l=1

1

2

✓
@F

c,v

@U

i

+ |�ij

c

+ �

ij

v

|I
◆
� @S

@U

.

(35)

The implicit scheme has small computational cost per iteration and the only storage requirements arise

from the diagonal of the equation above. The diagonal elements of the matrix must be stored and inverted

directly and the off-diagonal ones are computed at every stage. Hence, the diagonal elements used in the

present study are scalars multiplied by the identity matrix and the off-diagonals are computed according

to equation (33). The number of sweeps per Newton iteration is set to 5 in the present study, based on

the findings of various approaches using the LU-SGS schemes for similar flow problems [56–61]. The source

term S is differentiated with respect to the turbulence model variable only, in order to keep the diagonal

dominance of the system matrix, and the source term Jacobian is restricted to be positive as suggested by

[42], hence
dS
d⌫̃

= C

b1S̃ +
1

�

C

b22 (r⌫̃)� 2C
w1fw

✓
⌫̃

d

2

◆
 0. (36)

Finally, the boundary conditions are also treated implicitly according to Batten et al. [63].

4. Results and Discussion

Computations are performed for three two-dimensional and three three-dimensional external aerody-

namic flows of aeronautical configurations. The MUSCL second- and third-order schemes and the WENO

third- and fifth-order schemes are employed, henceforth labelled as M2, M3, W3 and W5, respectively. The

MUSCL schemes of higher-order of accuracy are not pursued since due to their non-differentiable nature of

the limiters they can not achieve higher-order of accuracy. The W3 scheme has a desirable balance between

accuracy and computational cost, whereas the W5 is significantly more expensive. High-order discretisation

of turbulence model variable in a coupled fashion is extensively assessed and presented for some represen-

tative case. The low-Mach number treatment technique is investigated and the findings are presented with

main focus on flows with regions of low velocity. Three types of boundary conditions are implemented,

no-slip wall for all body surfaces, characteristics based far-field boundary conditions and where appropriate

symmetry conditions. The flow cases are presented in an escalating level in terms of difficulty, complexity
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and overall computational effort. Grid convergence study is performed for all cases excluding the flow over

the DLR-F11 aircraft configuration due to computational budgets available. Grid refinement strategy fol-

lows the simple rule of halving the element size on the wall surface; the strategy is applied in regions of

interest i.e. near boundary layers, shocks and wakes. Computations are performed without wall-functions

thus y+ values are kept to unity.

4.1. NACA-0012

The first case concerns the subsonic turbulent flow around the symmetric NACA-0012 aerofoil at zero

degree incidence. Freestream conditions correspond a Mach number of M1 = 0.3, angle of attack of ↵ = 0�

and a Reynolds number of Re

c

= 1.85⇥106 based on the aerofoil chord length. Five grids are generated, the

grid statistics are shown in table 1. A hyperbolic method is employed for the inflation of the quadrilateral

layer with a constant growth rate of 1.1; figure 2 shows a close-up of the coarse grid topology. The aim

of this test case is to evaluate the benefit of high-order reconstruction methodology for RANS solutions on

fully attached flow over symmetric aerofoils.

Figure 2: Close-up of the coarse grid for the NACA-0012 aerofoil.

With respect to convergence properties the solutions of order smaller than fifth exhibit a residual drop

of at least eight orders of magnitude, where the fifth order solution suggests a plateau at 10�7, this is also

reported by Yang et al in 2009 [17] for the WENO 5th order solution over a wing. The residual trends
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Table 1: Grid properties for the NACA-0012 test case.

Super-Coarse Coarse Medium Fine Super-Fine
Elements 6,257 11,264 20,803 41,710 87,597
Aerofoil points 73 148 299 597 1,193
y+ 1.0 0.8 0.6 0.5 0.5

Figure 3: Residuals for l2 norms of x-momentum for the subsonic flow over the NACA-0012 aerofoil on the fine grid (M1 = 0.3
↵ = 0� and Rec = 1.85⇥ 106).

are depicted in figure 3 where the l

2 norms of x-momentum (⇢u) on the super-fine grid are plotted for

the MUSCL and WENO solutions of second and third, and third and fifth order, respectively. It is worth

mentioning that the convergence rate is similar for all spatial schemes including the conserved variables

and turbulence parameter (⇢, ⇢u, ⇢v, E, µ) up until 5, 000 iterations and no considerable grid dependence is

observed with respect to either the speed or the convergence levels.

In terms of accuracy, the pressure coefficient (C
p

) estimates are shown in figure 4 and compared with the

experimental data obtained from the AGARD report [64]. This case is characterised by a smooth attached

flow throughout the surface of the aerofoil, which is also predicted by the computed solutions, leading to

good agreement with the experiment. There are no apparent differences in the C

p

profiles for all numerical

schemes on the fine grid, however there are variations in the drag prediction.

Figure 5 shows the relative error of coefficient of drag for all numerical schemes and grids, plotted against

the wall-clock time. The relative drag error is computed based on an additional refinement M2 solution,
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Figure 4: Pressure coefficient (Cp) on the fine grid for the NACA-0012 case compared with experiment data [64] (M1 = 0.3
↵ = 0� and Rec = 1.85⇥ 106).

where the indicative wall clock time is based on the computations performed on a intel-i7 3820 four core

processor. Each line corresponds to one numerical scheme for the five grid refinements, starting from the

left hand side with the coarse one. Only WENO predictions can reach lower than 10�4 error levels for

the given grids. W5 solutions demonstrate higher error for the same spatial refinement compared with the

W3, this may be attributed to the higher grid quality requirements of the stencil construction in terms of

smoothness and isotropy for the fifth order scheme compared with the third-order one. Additionally, the

imbalance in the resolution between the left and right hand side of the implicit time-stepping due to the

first-order Jacobian approximation could also be responsible for this behaviour. It has to be noted, that for

the super-coarse and coarse grids the average aspect ratio in the vicinity of the aerofoil surface is around

5, 000.

4.2. RAE-2822

The shock capturing capabilities of the numerical framework are assessed with the two-dimensional

transonic flow around the RAE-2822 supercritical aerofoil. The freestream conditions are based on the wind

tunnel measurements performed in 1979 and presented in the technical report by Cook et al. [65]. Case 6

is investigated where the wind tunnel freestream conditions correspond to a Mach number of M1 = 0.725,
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Figure 5: Relative drag error against wall-clock time in seconds on an i7-3820 processor for the NACA-0012 case (M1 = 0.3
↵ = 0� and Rec = 1.85⇥ 106).

an angle of incidence of ↵ = 2.92� and Reynolds number based on the aerofoil chord of Re

c

= 6.5 ⇥ 106.

Several modifications on the Mach number and angle of attack have been proposed in order to account for

wall interference. The corrected Mach number of M1 = 0.729, angle of attack of ↵ = 2.31� and with the

same Reynolds number are adopted for the current analysis as performed also in [66].

The outer boundary is positioned approximately 100 chord lengths away from the aerofoil to minimize any

artificial reflections from the outer boundary conditions. The flow is characterised by a normal shock on the

upper surface of the aerofoil interacting with the boundary layer, which considerably thickens downstream up

to the end of the trailing edge. To account for the shock-wave boundary layer interaction on the suction side

and benefit of the flexibility of unstructured grids a non-uniform distribution of points is set for the upper

and lower part of the aerofoil. Three hybrid unstructured grids are generated their details are tabulated in

table 2, the meshes are generated based on the o-grid strategy, the coarse grid is shown in figure 6.

High-order discretisation of turbulence model poses robustness and accuracy challenges for the RANS

computations. Negative values of eddy viscosity in the vicinity of the boundary layer edge as well as non-

physical oscillations are often encountered in high Reynolds number flows with high-order approximations

particularly for under-resolved grids [38, 67, 68]. The effect of discretisation of the turbulence parameter for
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Figure 6: Coarse grid for the RAE-2822 case.

Table 2: Grid properties for the RAE-2822 test case.

Coarse Medium Fine
Elements 10,714 23,852 51,294
Upper surface points 85 170 341
Lower surface points 45 90 188
y+ 1.0 0.8 0.6

high-order reconstruction is presented for this case in terms of accuracy and convergence. Figure 7 depicts

the residual histories on the fine grid for the second, third and fifth order schemes, where the coupled (COU)

approach refers to a discretisation of the turbulence parameter according to the type (WENO or MUSCL)

and order of the mean flow variable approximation, whereas the decoupled refers to a discretisation of the

turbulence parameter according to a first order upwind method, shown in equation (24). The residual

histories suggest that for the third and fifth order coupled results, a lower drop than the decoupled ones is

achieved. However, this is not the case for the second order solution, which could be attributed to the non-

differentiable nature of the slope limiter used for the turbulence model variable that in turn influences the

mean flow residuals. The two discretisation approaches differ also on the level of eddy viscosity production,

particularly for the higher-order solutions, this is illustrated in figure 8 for the WENO third order solution
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Figure 7: Residual histories of l2 norm for total energy for the RAE-2822 aerofoil (M1 = 0.729, ↵ = 2.31� and Rec = 6.5⇥106).

on the fine grid.

In terms of accuracy the coupled approach for higher than third order discretisation is shown in figure

9 where the relative drag coefficient is plotted against grid refinement defined as h = 1/
p
Elements. The

benefit of discretising the turbulence parameter according to the mean flow equation method is amplified with

higher grid resolution for the WENO method, where the MUSCL type solution suggest small differences

between the coupled and decoupled approach. This effect is also demonstrated in figure 10, where the

coefficient of pressure on the coarse grid is compared against the fine fifth order solution and the experimental

data of Cook et al. [65]. Henceforth all solutions presented in this work correspond to the coupled method

for higher than second order schemes and only for the second order solutions a decoupled manner is adopted

including the NACA-0012 case.

4.3. MDA 30P-30N

Flow phenomena around high-lift devices are considered challenging for numerical methods and turbu-

lence model discretisation; deployed slat and flap at high angles of attack in combination with low speed,

potential unsteady flow regime, flow separation, laminar/turbulent transition, interaction of aerofoil/wing

elements, streamline curvature, wake in pressure gradient are some of the them. A well established case for
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Figure 8: Eddy viscosity production for the coupled and decoupled approaches on the WENO third order fine grid for the
RAE-2822 aerofoil (M1 = 0.729, ↵ = 2.31� and Rec = 6.5⇥ 106).

assessing the performance and accuracy of the developed numerical framework for flow over high-lift devices

is the McDonnell Douglas three-element configuration at 30P-30N or simply MDA 30P-30N. The freestream

conditions correspond to a Mach number of M1 = 0.2, an angle of incidence of ↵ = 16� and Reynolds

number based on the reference aerofoil chord length of Re

c

= 9 ⇥ 106. The flow around this configuration

has been previously studied experimentally by Spaid [69] and by Rumsey et al [70], where 3D effects are

analysed including CFD simulations, further CFD work is presented in the following papers [71–74].

Three hybrid unstructured grids are generated, labelled as coarse, medium and fine the grid properties

are presented in table 3 where the grid topology is visualised in figure 11 for the medium grid. The grid is

locally refined around the aerofoil elements and the wake.

The flow over the high lift aerofoil is characterised by several low speed regions i.e. at the lower surface

of the slat and inside the slot with the sharp corner cove. Compressible solvers inherently struggle with low

speed flow regions, due to the stiffness of the system of equations, leading to slow convergence rates and
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Figure 9: Relative drag coefficient error for different grid for the RAE-2822 aerofoil (M1 = 0.729, ↵ = 2.31� and Rec =
6.5⇥ 106).

Table 3: Grid proprerties for the MDA-30P-30N aerofoil.

Coarse Medium Fine
Elements 34,184 74,902 192,845
Slat points 90 147 284
Main element points 203 372 667
Flap points 85 140 265
y+ 1.0 0.8 0.6

impaired accuracy. To surpass the accuracy challenge the low-Mach number treatment method presented

in the previous section is investigated. Simulations are performed with the second and third order MUSCL

scheme as well as with the third and fifth order WENO, with and without the low-Mach number (LM)

treatment. The benefit of the low-Mach number treatment in terms of flow structures is most evident in low

speed regions, predicting an accurate representation of the flow, illustrated in figure 13 where Mach number

contours are plotted, overlaid with streamlines on the medium grid W3 solutions. The LM treatment effect

is also mirrored on the increased eddy viscosity production near low velocity regions, depicted in figure 12

where the eddy viscosity is plotted on the medium grid W3 solutions, whereas near the wake, lower amounts

of eddy viscosity are observed.
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Figure 10: Coefficient of pressure (Cp) variations for the coupled and decoupled approaches on the RAE-2822 aerofoil compared
with the experimental data [65] (M1 = 0.729, ↵ = 2.31� and Rec = 6.5⇥ 106).

Figure 11: Medium grid for the MDA 30P-30N multi-element aerofoil

Convergence rates for higher order schemes with low-Mach number treatment don’t exhibit particular

improvement, however for second order not only the rate of convergence is faster but also the plateau is

reached much lower. This trend is amplified for the residuals of the turbulence working variable as exemplified

in figure 14, where the l

2 norms for the SA turbulence working variable ⌫ and energy are plotted against

the total number of iterations for the medium grid second order solutions.

Coefficients of drag and lift are plotted in figures 15 (a) and (b) respectively for all schemes against grid

refinement. All solutions demonstrate monotone trends towards a grid independent solution for both drag
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Figure 12: Contours of eddy viscosity (µt) for the medium grid W3 solutions, MDA 30P-30N aerofoil (M1 = 0.2, ↵ = 16� and
Rec = 9⇥ 106).

Figure 13: Contours of Mach number and streamlines for the medium grid W3 solutions, MDA 30P-30N aerofoil (M1 = 0.2,
↵ = 16� and Rec = 9⇥ 106).

and lift except third and fifth order WENO without low-Mach number treatment on the fine grid. Higher

resolution either by grid or polynomial order results to an increased lift and a decreased drag. The predicted

Cl and Cd values agree well with values reported by other works [74] as well with the experimental lift

coefficient of 4.1 (+/- 0.05) [70]. The advantage of the low-Mach number treatment is demonstrated for the

two outliers mentioned earlier W3 and W5 on the fine grid, without the treatment the solution divergences

and oscillations are observed in the wake which is due to the inherent unsteadiness of the solution at the

flap wake, that the coupling of the turbulence model variable is not sufficient to produce the levels of eddy

viscosity to supress these oscillations. This is again demonstrated when comparing the coefficient of pressure

on the three elements with the M3 and W3 schemes against the experimental values in figure 16.
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Figure 14: Residuals of turbulent variable ⌫ and total energy for the second order solutions with and without low-Mach number
treatment, MDA 30P-30N aerofoil (M1 = 0.2, ↵ = 16� and Rec = 9⇥ 106).

(a) Cl (b) Cd

Figure 15: Lift and drag coefficients against grid points for the MDA 30P-30N aerofoil (M1 = 0.2, ↵ = 16� and Rec = 9⇥106).
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Figure 16: Coefficient of pressure for the coarse grid M3 and W3 solutions compared with experimental data [70], MDA 30P-30N
aerofoil (M1 = 0.2, ↵ = 16� and Rec = 9⇥ 106).

4.4. ONERA-M6

The three dimensional solver capabilities are assessed with the turbulent transonic flow around the

ONERA-M6 wing; freestream conditions are set: Mach number of M1 = 0.84, an angle of attack of

a = 3.06� and a Reynolds number of Re

c

= 11.72 ⇥ 106 based on the mean aerodynamic chord. The

ONERA-M6 is a swept-span wing, with no twist and symmetrical aerofoil section and a rounded tip. Wing

tunnel measurements were conducted by Schmitt and Charpin [75] and pressure data are publicly available

with an error margin for Cp of ±0.02 . The transonic flow is characterised by a pair of �-structured shocks

on the upper surface of the wing where they coincide towards the wing tip.

Figure 17: Grid topologies for the ONERA M6 wing.

Three grids are generated: coarse, medium and fine; triangular elements are used for the wing surface,

projected normal to the wall to generate the prismatic layer followed by tetrahedra for the outer far field.

Grid statistics are presented in table 4, the medium and fine grid are locally refined near the shock location

as presented in figures 17.
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Figure 18: Coefficient of pressure for the W3 and W5 solutions at four spanwise stations compared with experimental data [75]
(M1 = 0.84, ↵ = 3.06� and Rec = 11.72⇥ 106).

Figure 19: Lift and drag coefficients against grid points for the ONERA M6 wing (M1 = 0.84, ↵ = 3.06� and Rec = 11.72⇥106).
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Table 4: Grid properties for the ONERA M6 wing.

Coarse Medium Fine
Elements 1,170,073 1,739,464 3,557,505
Triangles on wing’s surface 38,389 43,720 69,692
y+ 1.0 1.0 0.8

Grid resolution near the shock results in improved accuracy, sharper profiles and smaller discrepancies

when compared with the experimental data [75], this can be depicted from the coefficient of pressure in

figures 18, where the Cp is plotted at four spanwise sections where solutions of the WENO third and fifth

order schemes are plotted for the three grid refinements. By either refining the grid or increasing the order

of the scheme the predicted lift is increased and the drag decreased as shown in figure 18, where the Cl

and Cd is plotted against grid size for all schemes. It is worth noting that higher order schemes (M3,W3

and W5) seem to converge within a narrower Cl and Cd range particularly for the finer grid resolutions,

demonstrating that they reach grid-independent solutions faster than second order schemes.

4.5. CRM

This test case concerns the transonic flow over an aircraft configuration, the NASA Common Research

Model (CRM) at cruise flight conditions. Drag prediction of the CRM model has been the main objective

for the 4th, 5th and 6th drag prediction workshops [76, 77].

Figure 20: Grid configurations for the transonic flow over the CRM model.

Case 1a from the 4th workshop is considered for the current analysis, the CRM configuration includes

wing, body and horizontal stabilizer. The flow is computed at a constant lift of C

l

= 0.5 with error of

±0.001. Wind tunnel measurement are carried out at the National Transonic Facility (NTF) at NASA

Langley. The NTF data are publicly available which include drag polar, the corresponding coefficient of lift
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Figure 21: Continuity residuals and lift histories for the W3 solutions, CRM configuration (M1 = 0.85, Cl = 0.5 and
Rec = 5.0⇥ 106).

and main wing pressure measurements at several spanwise stations. The freestream conditions correspond

to a Mach number of M = 0.85 with a Reynolds number of 5⇥106 based on the reference chord length. Two

grids are employed labelled as coarse and medium consisting of 3.5 and 11.0 million elements respectively,

where the medium represents standard engineering practices; the grid surface distribution is shown in figure

20. The grid is locally refinement on the main wing and horizontal stabilizer.

The computations are initialised with an educated guess on the angle of attack, after the simulation has

converged the angle is extrapolated for the first run and then linearly interpolated until the target lift is

reached within the lift threshold. An example of the computations procedure is shown in figure 21 where the

l

2 norm of continuity and the Cl histories are plotted. A residual drop of at least ten orders of magnitude is

achieved for both grids for the W3 scheme. According to the findings of the two dimensional transonic flow

case RAE-2822 presented in the previous sections, the results with the third order MUSCL reconstruction

did not demonstrate noticeable benefits compared with the second order solutions, in terms of shock location

and forces predictions. Therefore, for the present transonic case the main objective is to assess the WENO

third and fifth order methods and compare them with the industry workhorse-second order upwind solution

as well with reference experimental and CFD data.
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The coefficient of pressure on the CRM configuration is shown in figure 22 and at two representative

spanwise stations on the main wing in figure 23. The third and fifth order profiles are plotted against the

chord-wise length and compared with the NTF pressure measurements [76]. The presence of the shock on

the wing’s suction side is evident for both stations near the wing’s mid-spanwise location. Grid refinement

suggests smaller discrepancies with respect to the shock position (⌘ = 0.60) compared with the experiment

regardless the scheme.

Table 5: Computed Drag for all schemes and grids compared with the average CFD and experimental values [76].

Elements (106) a C

d

�C

d

(counts)
C-M2 3.5 2.395 0.03227 47.6
C-W3 3.5 2.295 0.02962 21.11
C-W5 3.5 2.360 0.02942 19.06
M-M2 11.0 2.210 0.02810 5.89
M-W3 11.0 2.236 0.02742 0.93
M-W5 11.0 2.264 0.02716 3.49

DPW-CFD - 2.340 0.02701 5
DPW-NTF - 3.020 0.02751 -

Forces predictions are summarised in table 6, where for each run the angle of attack for constant lift,

the predicted drag coefficient and the error �C

d

in terms of drag counts with respect to the experiment

[76] are presented. The first apparent observation for the predicted drag is that the standard deviation �

for the fine grid is at least three times smaller than for the one on the coarse grid. Moreover, second order

drag estimates, irrespective of the grid, have at least twice greater � compared with WENO predictions.

Both WENO solutions on the fine grid suggest lower �C

d

than 5 drag counts representing the averaged

CFD predictions of the workshop data [76]. Considering the additional computational cost of the fifth order

scheme and the associated gains in terms of accuracy for the subject test-case, the W3 scheme represents a

more suitable method with a favourable balance between cost and accuracy for these type of configurations.

4.6. DLR-F11

Following the series of computations with the two dimensional high-lift device (MDA 30P-30N), the

flow around the DLR-F11, a full aircraft configuration at landing conditions is computed. According to the

findings from the CRM case, the W3 method was found to be the best compromise in terms of resources/cost,

henceforth, the second and third order schemes would be employed for the DLR-F11 flow problem. In

addition, the effect of the low-Mach number treatment technique is assessed. The increased complexity

of the configuration lies with the flow conditions at high-angles of attack, the geometry itself as well as

the grid size and quality, where high aspect ratio elements (> 10, 000) with non-planar face definition
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Figure 22: Coefficient of pressure on the medium grid W3 solutions, CRM configuration (M1 = 0.85, Cl = 0.5 and Rec =
5.0⇥ 106).

Figure 23: Coefficient of pressure at two spanwise stations (⌘) on the main wing compared with the wind tunnel measurement
[76], CRM configuration (M1 = 0.85, Cl = 0.5 and Rec = 5.0⇥ 106).

are unavoidable. The grid sensitivity is more profound for high-order finite volume spatial methods as

imbalanced sized stencils in the vicinity of sharp corners could lead to deteriorated accuracy even “blow-up”

of the entire simulation process. Therefore, fifth-order solutions are not presented in the paper, converged

solutions were only achieved by p-adaptation, decrease the polynomial order of the spatial reconstruction

scheme near the wall surfaces. P-adaptivity is beyond this work focus as one of the current objectives is to

assess the impact of the numerical schemes in terms of solution accuracy.

Case 1, configuration 2 of the 2nd AIAA high-lift prediction workshop [78] is considered with freestream

conditions corresponding to a Mach number of M1 = 0.175, and angle of attack of a = 16.0� and Reynolds

number of Re

c

= 15.1⇥ 106 based on the mean aerodynamic chord. The computations were performed on

a mixed-element unstructured grid containing approximately 27 million elements shown in figures 24. It
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(a) Cut section of grid (mirrored).

(b) Surface grid on the wing. (c) Adapted grid in the wake.

Figure 24: Grid views for the DLR-F11 configuration.

should be mentioned that the simulated aircraft configuration is a simplified version of the full experimental

configuration that included the slat-track and flap-track fairings and the slat pressure tubes. Simulations

were carried out using the M2, M3 and W3 schemes. Additionally, low-Mach (LM) corrections were employed

to study the reduction of numerical dissipation of the upwind schemes in the very low speed regions.

The employment of low-Mach number correction suggests improved lift predictions, thus also improving

the lift to drag ratio see Table 6. The over-prediction of the drag coefficient compared to the experiment has

been reported in several papers dealing with the same configuration at 16 degrees [79–81]. The discrepancies

between drag predictions and computations have been partially attributed to installations effects of the

model in the wind tunnel [82]. The scatter of the lift coefficient predictions using the M3 and W3 schemes in
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Table 6: Coefficients of lift and drag compared with experimental data [78] and wall-clock time (hours) on 64 cores of Intel
E5-2660 CPUs, DLR-F11 configuration.

Time C

L

C

D

C

L

/C

D

Experiment - 2.6796 0.2755 9.7278
M2 22.1 2.5514 0.3002 8.4984
M2-LM 22.1 2.6572 0.3043 8.7328
M3 26.5 2.5822 0.2993 8.6276
M3-LM 26.5 2.6842 0.3044 8.8171
W3 41.9 2.6197 0.3016 8.6857
W3-LM 41.9 2.6977 0.3047 8.8522

conjunction with the LM correction is 0.54%. This is an indication that the level of uncertainty is reduced

when using higher than second order schemes. In terms of computational cost the M3 method is 20% and

the W3 is 100% more expensive than the second order scheme.

The pressure coefficient at four indicative stations along the half-span wing is shown in figures 25; ⌘ is

the percentage of the half-span length from the root to the wing tip. The suction peak near the wing root

(⌘=28.8%) for the slat and main elements is under-predicted by all schemes; however, the WENO predictions

are in better agreement with the experiment. This is also shown in the close-up plots. Furthermore, the

LM-corrected WENO scheme gives better results near the wing tip (⌘=81.8% and ⌘=89.1%) in the pressure

recovery region of the slat and main-elements.

Although for turbulent flows at high angles of attack of massively separated flow RANS methods experi-

ence difficulties in providing the accurate solutions due to the inherent flow unsteadiness, and unsteady flow

separation and turbulent wakes, in particular, they remain a high-fidelity engineering tool for assessing the

impact of various design configurations. In this context the third order methods can increase the accuracy

of these predictions and reduce the computational cost since coarser grid resolutions could be employed.

5. Conclusions

An investigation of the accuracy and efficiency of high-order k-exact finite volume, MUSCL and WENO

schemes in conjunction with mixed element unstructured grids for RANS computations of aeronautical flows

around simple and complex geometries, is presented. The evident outcome of the investigation lies with the

overall potential increase of accuracy with higher-order discretisation. However, there is a limit on how

much the RANS simulations can benefit from higher-order schemes, since the approximations in terms of

turbulence models employed, implicit-time stepping algorithms, and elements of poor grid quality restricts

the potential benefits of very high-order methods for these simulations. For the fifth-order scheme a greater

sensitivity to grid irregularities and anisotropies is found; in addition, the imbalance between Jacobian
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Figure 25: Pressure coefficient at four stations along the half-span model compared against the wind tunnel measurement data
[78], DLR-F11 configuration (M1 = 0.175, ↵ = 16� and Re = 15.1⇥ 106).

approximations of the implicit time stepping and the spatial-discretisation, and the excessive computational

cost do not justify their applicability for practical industrial-scale RANS simulations. The WENO third-

order method provides the best trade/off in terms of accuracy cost and robustness for most cases. Coupling

the discretisation of turbulence model with the mean flow equations for the WENO reconstruction suggests

improved convergence and accuracy compared with standard practices of lower order methods. Furthermore,

the proposed Low-Mach number treatment technique for compressible solvers, provides enhanced accuracy

irrespective of spatial scheme type or order without additional computational effort. Two-equation models

such as the k-! SST [83] are currently under implementation and will be assessed and compared with the

results of this work. Furthermore, the benefits of using higher-order schemes for RANS simulations, could
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also be useful when dealing with Detached Eddy Simulations (DES) and the discretisation for both RANS

and LES regions being high-order, an aspect that is going to be explored in the near future.
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