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Abstract: Maintenance management and engineering practice has progressed to adopt approaches which 
aim to reach maintenance decisions not by means of pre-specified plans and recommendations but 
increasingly on the basis of best contextually relevant available information and knowledge, all 
considered against stated objectives. Different methods for automating event detection, diagnostics and 
prognostics have been proposed, which may achieve very high performance when appropriately adapted 
and tuned to serve the needs of well defined tasks. However, the scope of such solutions is often narrow 
and more generic solutions without human - contributed intervention and knowledge are hard to achieve. 
Appropriate integration of such user-driven contextualisation of such solutions is therefore sought. This 
paper presents a conceptual framework of integrating automated detection and diagnostics and human 
contributed knowledge in a single architecture. This is instantiated by an e-maintenance platform 
comprising tools for both lower level information fusion as well as for handling higher level knowledge. 
Well structured maintenance relationships, such as those present in a typical FMECA study, as well as on 
the job human contributed compact knowledge are exploited to this end. A case study presenting the 
actual workflow of the process in an industrial setting is employed to pilot test the approach.  

Keywords: e-maintenance, information fusion, human-centred maintenance, event detection, diagnostics 

�

1. INTRODUCTION 

Maintenance management and engineering practice has 
progressed to adopt approaches which aim to reach 
maintenance decisions not by means of pre-specified plans 
and recommendations but increasingly on the basis of best 
contextually relevant and available information and 
knowledge, all considered against stated objectives. The need 
for contextual relevance is emphasised by both the high 
variability of the circumstances upon which decisions must 
be taken, as well as by the nature, the different requirements 
and roles of the various actors, which play a role in the 
decision making process {El Kadiri, 2016 #1}. The 
availability of information refers to data originating within an 
organisation, such as operational, tactical and strategic 
enterprise data, to data related to the wider production, 
supply/logistics, customer and overall service chains, but also 
to external data, which may vary from market and financial 
data to normative and legislative requirements or even to 
specific environment data. Relevant information may be 
composed by historical data, current evidence and future 
forecasts and predictions, carrying a varying degree of 
uncertainty. Knowledge may refer to best available and often 
structured domain knowledge, which is an essential element 
in making available data contextually relevant. Typical 
examples of how such knowledge is represented in industrial 
maintenance include physics-based and simulation models, 
Fault Modes Effects (and Criticality) Analysis 

(FMEA/FMECA) studies, domain ontologies, and diagnostic 
rules, including Fault Tree Analysis (FTA).  

The aforementioned direct or indirect knowledge formalisms 
may not carry a uniform degree of validity across all 
application cases. For example, recorded monitoring data 
may carry a varying level of accuracy and uncertainty, even 
when originating from exactly the same sources, depending 
on the time context of their acquisition, processing and 
recording. Furthermore, the availability of all potentially 
contextually relevant information and knowledge may also be 
characterised by time-dependence and can range from poor to 
high availability for different time periods. What is to be 
understood is that in any case decisions need to be reached on 
the basis of the best available information and knowledge, 
but the way these decisions are reached and even the outcome 
of a decision making process cannot be assumed to be always 
the same, even for cases that appear to fall under identical 
circumstances but may yet need to be considered differently 
due to variations in certain contextually relevant factors.  

There are many ways in which maintenance engineering and 
management can account for the different underlying 
circumstances upon which to reach decisions. The way in 
which disparate sources of information can be combined to 
support the decision making process is often termed to as 
information fusion. Different layers of data processing 
involve data of different nature. Low-level information fusion 
typically aims to produce a synthesis of data and evidence 
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gathered by field measurements, such as sensor readings, 
typically referred to as sensor fusion. It is typically an 
automated process without user involvement and has been 
long studied in the literature (Crowley and Demazeau, 1993). 
At a higher abstraction layer, information fusion is mostly 
concerned with knowledge entities synthesis and terms such 
as High-Level Information Fusion (HLIF) are relevant there 
(Blasch et al., 2012). In hierarchical representations there can 
be multiple layers of information fusion, starting from the 
synthesis of low-level features, moving to the integration of 
higher-level features, all the way up to synthesis of more 
abstract concepts and knowledge entities. The increasing 
penetration of Internet of Things technologies and the 
explosive growth of data generation processes has driven 
research towards context-based information fused, in an 
effort to ground information fusion to contextual relevance 
(Snidaro et al., 2015).  

In maintenance engineering and management, focusing on 
condition monitoring, the fusion of low to medium - level 
information can for example be concerned with fusing 
measured signal features, historical data and data from 
equipment providers libraries (Esteban et al., 2005). Even for 
this low-level synthesis the task complexity can vary from 
single sensor readings on a single component to readings of 
multiple physical quantities from multiple components and 
assets in geographically disparate sites. In higher level 
information fusion the information to be integrated is more 
abstract and may refer to higher level features, symptoms and 
fault modes, thus it concerns semantically enriched content, 
with the JDL multi-level fusion model being highly 
applicable (Bevilacqua et al., 2015).  

While the fusion of information across multiple sources has 
been an active target for research over very long time, one 
particular aspect of integration, that of integrating human 
contributed knowledge originating from the field with 
collected data but also with other available structured 
knowledge, has only started to become the focus of more in 
depth studies, following the increasing penetration of 
collaborative and socially enabled applications, which were 
brought by the shift to Web 2.0 technologies (El Kadiri et al., 
2016). Most efforts to deal with the integration of human-
contributed information target to manage human 
observations, often referred to as soft readings (Snidaro et al., 
2015). However, the nature of human observations is 
typically more abstract and distinctively dissimilar to that of 
sensor readings. During operations, inspections or 
maintenance tasks, technical staff may observe patterns of 
equipment behaviour which they can describe in relatively 
vague terms. Such observations are often not recorded and 
even if they do in terms of textual notes and reports, they are 
not taken into account in a structured computational manner. 
On the other hand, efficient event detection, diagnostics and 
prognostics techniques have been developed and applied in 
maintenance practice but they are typically over-specified 
and applicable to a very narrow range of monitoring tasks, or 
when of generic nature, they may lack sufficient grounding 
not only to the specific problem of interest but also to the 
underlying circumstances of the monitoring task. Providing a 
valid contextual reference for better tailoring them to the task 

in hand would be desirable but not easy to achieve, as the 
overall context space may be particularly wide, especially for 
technical systems and assets of significant complexity.  

This paper argues that fusing human-contributed knowledge, 
with automated data processing techniques, such as those 
typically employed in event detection and diagnostics, with 
the support of a sound underlying knowledge construct can 
constitute a viable path towards customisable and adaptive 
condition monitoring. An e-maintenance platform with 
maintenance support tools applicable to both the operational, 
as well as tactical level (Pistofidis et al., 2012) offers the 
basis upon which to pilot test the concept of bridging lower-
level automated data processing (Katsouros et al., 2015) with 
semantically enriched entities, such as those available in a 
typical Failure Modes, Effects and Criticality Analytics 
(FMECA) studies (Pistofidis et al., 2016) to drive context-
adaptive maintenance services and support (Papathanasiou et 
al., 2014; Pistofidis and Emmanouilidis, 2013). The 
information processing cycle includes data acquisition, date 
pre-processing and feature extraction, application of event 
detection and diagnostics algorithms, as well computer-
supported FMECA knowledge management and integration 
and management of human contributed observations and 
knowledge. The rest of the paper is structured as follows. 
Section 2 presents the overall e-maintenance platform. 
Section 3 outlines the integrated detection and diagnostics 
approaches. The model and tool for integrating human-
contributed knowledge is presented in section 4. A case study 
employed to pilot the information fusion processing cycle is 
presented in section 5. The final section summarises the main 
outcomes of the work, its limitations and provides pointers 
for further research.  

2. ARCHITECTURE AND FUSION CONTEXT 

The main enabling information and communication 
technologies (ICT) for e-maintenance are web-based and 
semantic maintenance, context-adaptive computing, internet 
of things (IoT) and smart sensing technologies, including 
smart data processing and analytics for detection, diagnostics 
and prognostics, often ported down to the level of smart 
sensing with wired and wireless sensors, appropriately design 
to make it possible also to offer relevant services over the 
cloud. An e-maintenance architecture has been developed 
that seeks to employ such technologies to vertically integrate 
data and processes from the shop floor up to the level of 
maintenance management (Papathanasiou et al., 2014; 
Pistofidis and Emmanouilidis, 2013) (Figure 1). At the lower 
level the architecture’s main functional block is that of a 
smart node in a wireless sensor network (WSN) 
infrastructure, carrying sensor embedded maintenance 
intelligence. Data acquisition, initial processing and 
transmission is handled by the Sense-MI module and is 
developed on top of the WSN operating system (OS) and 
middleware. Further pre-processing for analysing the sensor 
readings at the sensor board is undertaken by the SENSE-
PRE module. The actual embedded detection and diagnostics 
functionality is performed by the SENSE-MI-DETECT 
module. A common data model, adopting a subset of the 
MIMOSA schema with some extensions is unifying data 



 
 

     

 

exchange between lower layer and higher layer components, 
such as the intelligent maintenance advisor (IMA), 
undertaking maintenance support services. IMA exploits data 
and knowledge to export services via context-adaptive 
interfaces to web or mobile clients. Contextualised-support is 
offered to users via an e-support and training component 
(WCTP) (Papathanasiou et al., 2014). Knowledge 
management and fusion services are offered through the 
FMECA-IMA module (Pistofidis et al., 2016). Finally, 
following processing by the condition monitoring modules 
and the FMECA-IMA and WCTP services, the outcome of 
the recommendation services is fed through the IMA-Planner, 
which is interfaced with a Computerised Maintenance 
Management System (CMMS) to prioritise planning.  

Many approaches can be adopted for automated detection and 
diagnosis. Two typical scenarios are (i) to detect when 
observed behaviour deviates from expected or known 
behaviour (detection) (ii) to assign the monitored condition to 
one or more known condition (diagnosis). In the first case, 
observed signal and/or features characteristics are compared 
against recorded ones or are fused through models which 
model the known or expected patterns of behaviour. These 
two cases are handled by the SENSE-MI-DETECT module 
which performs event detection (Katsouros et al., 2015) and 
assigns cases that fall under previously known patterns to 
conditions, including Fault Modes (diagnosis).  
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Fig. 1. e Maintenance architecture 

There are typically two further scenarios to consider: (i1) 
there is a mostly complete record of historical data which 
cover the expected behaviour or there exists a model which 
captures most aspects of expected behaviour (i2) only limited 
historical data or a narrow scope model are available at most, 
which only partially capture the observation space of the 
expected behaviour. Clearly scenario (i1) is unrealistic in 
most practical monitoring situations. Therefore a realistic 
application case would focus on scenario (i2). The data 
processing workflow would go as follows. Measurements can 
be assigned to known or unknown status. Those assigned to 
known status can be further processed and classified to one 
of the known classes (conditions or Failure Modes). Those 
identified as deviating significantly from the known patterns 
may correspond to one of the already modelled conditions, to 
a condition for which the previously available data cover 
only part of the observation space, to a condition which has 
not been mapped against observation data at all, or even to a 
new condition which was not recorded for example in an 
FMECA study (Emmanouilidis et al., 2006). In this scenario 
human expert contribution is sought to (a) assign detected 
unknown data to known conditions (b) analyse the situation 
and identify a new condition to be included in the knowledge 
pool (Figure 2). Lower level information fusion is performed 
by SENSE PRE and SENSE MI DETECT modules. The first 

undertakes signal pre-processing and fusion at the features 
level. The second performs fusion for detection and diagnosis 
tasks. The low-level information fusion which handles 
features extracted from measurements taken from different 
locations, components and assets is not the focus of this 
paper and has been studied substantially in the literature. For 
this we employ algorithms earlier reported (Katsouros et al., 
2015) with some extensions briefly outlined in the next 
section. The interest in this paper is in the integration of 
human contributed knowledge and automated data and signal 
processing for detection and diagnosis. Higher level 
information fusion is performed by IMA-FMECA, wherein 
human contributed knowledge is recorded and fused to drive 
recommendations or refine/extent existing knowledge 
(Pistofidis et al., 2016). In this setting the concept of context 
can be employed to enable information fusion and drive 
adaptation, that is to support the delivery of relevant data and 
services to the apparent context of each service request. In 
mobile asset and maintenance management, context can fall 
under different categories, namely user, social, environment, 
system and service context. IMA-FMECA and WCTP were 
designed and developed having this view of context 
modeling in order to offer context-adaptive services 
(Papathanasiou et al., 2014; Pistofidis et al., 2016).   
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3. AUTOMATED DETECTION AND DIAGNOSIS 

The SENSE-MI-DETECT module implements event 
detection for asset condition monitoring by embedding 
relevant algorithms in a WSN node. It involves data 
processing on a sliding window of measurements and when 
cases are identified as falling under 'known' patterns, the node 
is capable of assigning each case to pre-specified classes 
(conditions). Two basic approaches were developed for event 
detection. The first one is applied on the raw signal and 
determines state changes by examining the statistical 
properties of the signal via the so called Martingale 
framework (Ho and Weschsler, 2010). The second approach 
implements outlier detection via Gaussian multivariate 
distribution modelling applied on extracted signal features 
(Katsouros et al., 2015). The Gaussian approach to detection 
is extended to diagnosis so that for each set of extracted 
features both a novelty vector for outlier detection, as well as 
a distance vector for classification are calculated. The 
difference is that now it is not the distance of the extracted 
features from the overall batch of data which is of concern, 
but the different distances calculated over each set of data 
belonging to a pool of approved data for each Fault Mode. 
Specifically, if k is the d-dimensional mean vector of the k-
th class for a d-dimensional data set 

, and  be its     
d × d co-variance matrix. Τhe (i, j) th entry of the covariance 
matrix is equal to the covariance between the ith and the jth 
dimensions. The probability distribution f(xk) for a d-
dimensional data point k of the k-th class can be modelled 
with the Gaussian distribution: 

 

where  denotes the determinant of the covariance matrix. 
The term in the exponent is proportional to the Mahalanobis 
distance between the data point k and the mean k of the 
available representative data of class k and therefore each 
data can be assigned to the nearest class c:  

   
The embedded implementation is described in more detail in 
(Katsouros et al., 2015). It performs: (a) data acquisition, 
including sampling and storage management; (b) data pre-
processing, namely the extraction of key signal features upon 
which to base the detection decision; and (c) the final 
detection algorithms, now extended to diagnosis tasks. All 
parameters and results from each functional block are also 
exposed as network variables to a ZigBee or 6LoWPAN 
networking infrastructure. The system has been implemented 
over 3 different sensor node hardware platforms, namely the 
TelosB/TinyOS platform, the NXP Jennic platform over its 
own API and over the Contiki OS, as well as for the 
PrismaSense development kit platform and API, using 
ZigBee, 6LoWPAN and raw ΙΕΕΕ802.15.4 protocol stacks. 

4. FUSING HUMAN INPUT AS LINKED KNOWLEDGE 

Fusing structured domain knowledge with human-contributed 
field knowledge in industrial maintenance has been the 
primary target of the IMA-FMECA module. The underlying 
concept is that maintenance metadata are valuable knowledge 
units which enable the definition, instantiation and 
integration of relationships between maintenance knowledge 
entities. Starting from a well established maintenance 
knowledge construct, namely FMECA, the tool implements a 
knowledge enrichment and validation loop via engaging field 
personnel. To make this really applicable to shop floor 
practice, staff interaction with the system is kept minimal, 
facilitated with adaptive, touch-friendly interfaces and 
consisting of mostly simple interaction mechanisms for 
confirming and voting relevant to firmly established 
knowledge entities, such as fault modes, observations, 
symptoms etc. In this way, both 'soft sensor readings', ie. 
human observations, as well as metadata relevant to the 
maintenance entities and concepts are collected, managed and 
fused. Overall, the system enables active involvement of 
maintenance staff in enriching maintenance knowledge, 
making it a valuable tool for improving asset lifecycle 
management and is implemented with cloud-oriented 
technologies (Node.js, JSON, MongoDB NoSQL, HTML-5, 



 
 

     

 

CSS-3.3 and Javascript)(Pistofidis et al., 2016). Furthermore, 
it enables an instantiation of the "Failure Context", which 
stands as the combined knowledge about a specific failure 
mode, enriched with time-relevant feedback regarding the 
event circumstances obtained from maintenance practice.  

6. CASE STUDY 

A case study was carried out in a manufacturing industry that 
delivers complete lift solutions to pilot test the concepts of 
information fusion. It involved industrial personnel and three 
different assets, namely an Electrical Testing Lift facility, a 
Service (operational) Hydraulic Lift and an Air Compressor. 
These were assets that fall under different categories. The 
first is a testing facility for a key company products, aimed at 
global markets with installation based on high storey 
buildings, and is considered a tesbed for product 
customisation, thus a case of one of a kind asset. The second 
is a typical case of a company's product aimed at domestic 
installation and as such more representative of case of an 
asset with a very wide installation base, but still accepting 
some customisation. Finally, the third is a case of general 
purpose machinery, very often met in industry.  

The key research question we wanted to test were "How can 
we include both low level and high level information fusion in 
a single case of vertically integrating monitoring and 
maintenance support tools in industrial practice?".  

The low level information fusion is performed entirely in the 
embedded system on the sensor node (SENSE-MI PRE and 
SENSE-MI-DETECT modules) (Figure 3), while higher level 
fusion is undertaken by IMA-FMECA. To illustrate the 
process we present an example of the piloting workflow on 
the hydraulic lift case (Figure 4). The steps are as follows: 

1. Initial FMECA knowledge for the lift filled in the system.  

2. Distinct noise is observed inside the lift cabin by a staff 
member. The system does not contain an adequate FMECA 
entry for this. The employee uses the system to "tag" the lift 
with an "issue" (denoting something irregular observed), 
adding  a textual note describing the noise.  

3. Signal data are fused by SENSE-MI-PRE and SENSE-ME 
DETECT identifies an unknown event.  

4. An engineer tags the lift with an issue and a textual note 
describing the observed vibration, similar to (2).  

5. Two days later, another engineer felt a tremble in the 
cabin, feeling poor movement of the cabin on the guides. The 
corresponding FMECA events were tagged as confirmed.  

6. A maintenance expert is alerted by the system which fuses 
the lower level event (3) with the higher level information 
from (2), (4) and (5) and hypothesises a problem with the 
roller wheels and asks for inspection. The inspection 
confirms that due to the lifts' glass exterior and exposure to 
sun-heat and dust, dirt on the roller wheels damaged their 
rubber. The FMECA events were as confirmed by the expert.  

6. The maintenance supervisor, aided by the system to fuse 
the information by (2)-(6), issues a maintenance action to 
replace the wheels.  

7. The wheels were replaced at the next scheduled 
maintenance, 6 days later. Thanks to the fused information, 
the team was ready and all necessary parts for the 
replacement were timely available.  

8. The monitoring system now measures lower vibration.   

9. An expert issues an observation tag to note that the system 
record of step 3 was a typical case of worn rubber on roller 
wheels and the state of step 8 is normal operation. In the 
future these will become exemplars in the monitoring system 
for event detection. This is another case of where higher level 
fusion is fed to lower level to increase the "knowledge 
capacity" of the diagnostics system.  

The above example offers evidence of the ability of the 
system to aid fusion of lower with higher level information.  

 

Fig. 3. Embedded event detection and diagnosis 

7. CONCLUSIONS 

This paper discussed issues relevant to higher and lower level 
information fusion in diagnosis and introduced a conceptual 
framework for performing such a synthesis. The concept is 
implemented via an e-maintenance platform, comprising 
tools for lower (monitoring) and higher (maintenance 
support) level maintenance services. The system workflow is 
currently limited to human intervention required to close the 
loop between event detection and diagnostics and needs to be 
further piloted in broader and more extensive applications. 
Although the system implementation employs technologies 
which facilitate scaling up, making it applicable to cloud 
porting, more research effort is needed to implement this 
porting ensuring computational, security and robustness 
concerns are addressed.  
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Fig. 4. Case study fusion workflow (Pistofidis et al., 2016) 
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