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Executive Summary 

The aim of this thesis is to provide an investigation toward a rigorous derivation of a stable 

and consistent numerical method based on the established Smoothed Particle 

Hydrodynamics method. The method should be suitable for modelling the large 

deformation transient response of fluids and solids, the interests of the Crashworthiness, 

Impact and Structural Mechanics group (CISM) at Cranfield University. 

A literature review of the current state of the art of the SPH method finds that the 

conventional SPH equations are not derived in a rigorous way, often the equations are 

manipulated into a mathematically equivalent form in order to preserve conservation of 

linear momentum, which often leads to different results; the reasons for this are unknown 

and it is not fully understood how each particular form of the discrete equations effects the 

solution in terms of stability, accuracy and convergence. This leads to specific objectives 

being defined which underpin the overall aim of the thesis. 

The first objective is to develop an understanding of the SPH method and the 

implementation used at Cranfield University, this is done through a capability study which 

demonstrates the coupled SPH-FE method and a number of relevant improvements to the 

MCM code including the addition of a turbulence model and the modification of the SPH 

contact algorithm to model lateral forces between materials. This is demonstrated through 

the implementation of a friction model, which suggests that the contact algorithm is 

suitable for resolving lateral forces based on the relative velocity between materials, with 

the potential for coupling with a structural FE model. 

The second objective focuses on the consistency between the discrete continuity equation 

and the momentum equation. The discrete forms of the governing equations do not 

correctly mimic their continuous counterparts for the conventional SPH forms of the 

equations; this is due to the discrete continuity equation not properly conserving volume, 

which is implied by the momentum equation in continuous form. A correction is applied to 

the momentum equation which accounts for the effect of this loss of volume in the 

calculation; the effect of this correction is tested for its impact on the stability properties of 

the method, with results suggesting that the source of the instability lies elsewhere. 
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The third objective focuses on the accuracy and consistency of the SPH method; the 

literature review concludes that the conventional form of the SPH equations cannot 

properly replicate the gradient of a constant, non-zero field. However the discrete analogue 

of the continuous equations implies that this is done correctly, the implications of this not 

being well understood. A form of the governing equations is derived rigorously which 

naturally removes any error that arises due to this incorrect gradient approximation, and 

the implementation is tested on the effect on numerical stability. The results suggest that 

the modified method is stable for the test cases that are selected, a stability analysis is 

performed which provides a region of stability for the modified SPH form. 

The final objective looks toward the finite element method (FEM) for potential 

improvements to the method. Mixed element methods are commonly used in FEM and 

allow more than one field variable to be interpolated independently of one another, this 

can be used to alleviate problems that are subject to volumetric locking and the problems 

associated with the under integration of elements, which can be viewed as analogous to the 

issues that appear with particle methods. For those reasons, the mixed element approach is 

identified as a potential route toward achieving the overall aim. A mixed SPH form is 

developed based on the Hu-Washizu principle, which is tested against the same benchmark 

tests for stability used throughout the thesis, concluding that the independent interpolation 

of field variables does not stabilise the method for the particular test case used, and for the 

particular mixed form that was identified. 

Keywords: Mixed Methods, Hu-Washizu, Background Stress, Conservation of Volume, 

Friction modelling, Contact 
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Structure of the Thesis 

This thesis consists of nine main chapters. The first three are introductory, followed by the 

main discussion and results in the next six sections.  

Chapter One – Introduction 

The first chapter introduces the aims and objectives of this work. The SPH method is 

introduced by literature review describes the evolution of the method and current areas of 

research.  

Chapter Two – SPH Theory 

The mathematical theory of the SPH method is described and the discrete continuity and 

momentum equations are derived in full. The time integration scheme used in the MCM 

(Meshless Continuum Mechanics) code is described. 

Chapter Three – Outstanding Issues 

An in depth literature review is presented here which focuses on the issues associated with 

the SPH method and the attempts that have been made to address them.  

Chapter Four – Capability Study of the SPH Method 

The current capability of the SPH method is demonstrated in a series of test problems, the 

impact of a rigid cylinder on water and the response of a solid plate subjected to loading 

from underwater explosions. The details of a turbulence model are described an 

implemented in the MCM code which adds functionality and extends the current modelling 

capability. 

Chapter Five – Modelling Lateral Contact Forces in SPH  

The contact algorithm is adapted to model lateral forces between two SPH materials; the 

algorithm is implemented and verified for several test cases, opening up potential for lateral 

forces to be resolved in a full FSI problem. 
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Chapter Six – Correcting for Loss of Mass Continuity 

A possible source of error in the SPH framework is identified and corrected in this chapter, 

which to date has not been done in SPH in this way. The continuous derivation of the 

governing equations demonstrates that the conventional SPH equations do not properly 

mimic the properties of their continuous counterparts; the effect of the correction on the 

numerical stability is investigated and discussed. 

Chapter Seven – Corrections on Interpolation Errors in SPH 

An artefact of the SPH kernel interpolation method is identified and discussed in this 

chapter, an alternative set of SPH equations is derived rigorously and tested against several 

problems for the effect on numerical stability, conclusions are made and a stability analysis 

of the new set of equations is presented. 

Chapter Eight – Mixed Methods in SPH 

The mixed element method is identified as a potential route toward improving stability 

properties of the SPH method. In this chapter the mixed element method is discussed as is 

it applied in the finite element method, leading to an equivalent SPH implementation which 

is tested for its effect on numerical stability. 

Chapter Nine – Conclusions and Future Work 

A final discussion and recommendations for future work are presented here. 

 

  



vii 

 

Acknowledgements 

I would like express my gratitude to my supervisor, Dr James Campbell, for his invaluable 

advice throughout the duration of this research project, and especially for his 

understanding and patience over the final write-up period. I also recognise that this 

research project was part funded by the EU SMAES project without which, this research 

would not have been possible. Further thanks go to the staff within the Crashworthiness, 

Impact & Structural Mechanics group at Cranfield University, in particular Professor Rade 

Vignjevic, for his ideas and advice over the last three years. 

Without the support and encouragement of my wife, Nas, and my parents, I would never 

have been able to get through the last three years. Thank you. 

 



 

viii 

 

  



 

ix 

 

Table of Contents 

Executive Summary ......................................................................................................................... iii 

Structure of the Thesis ..................................................................................................................... v 

Acknowledgements ......................................................................................................................... vii 

Table of Contents ............................................................................................................................ ix 

List of Figures ................................................................................................................................. xiii 

Nomenclature ................................................................................................................................ xvii 

1 Introduction .................................................................................................................................... 1 

1.1 Background ............................................................................................................................. 1 

1.2 Smoothed Particle Hydrodynamics ..................................................................................... 2 

1.3 Aim ........................................................................................................................................... 3 

1.4 Objectives ................................................................................................................................ 5 

1.4.1 Develop Understanding of the SPH method ..............................................................5 

1.4.2 Investigate the Discrete Continuity Equation and its Effect on Stability ...............5 

1.4.3 Investigation into Errors in the Gradient Approximation in SPH ..........................6 

1.4.4 Investigate the Compatibility of FEM Solutions with SPH ......................................6 

1.5 Summary of Chapter One ..................................................................................................... 6 

2 SPH Theory .................................................................................................................................... 7 

2.1 Approximations of Functions and their Derivatives ........................................................ 7 

2.2 Governing Equations .......................................................................................................... 10 

2.2.1 Mass Continuity ............................................................................................................ 10 

2.2.2 Derivation of Mass Continuity Equation ................................................................. 11 

2.2.3 Derivation of  Momentum Conservation Equation................................................ 12 

2.2.4 Mass Continuity Equation in SPH Form .................................................................. 13 

2.2.5 Momentum Equation in SPH Form.......................................................................... 14 

2.2.6 Kernel Properties ......................................................................................................... 15 

2.2.7 Consistency and Completeness .................................................................................. 16 

2.3 Structure of the SPH code .................................................................................................. 17 

2.3.1 Central Difference Time Integration Algorithm ..................................................... 18 

2.4 Summary of Chapter Two .................................................................................................. 20 

3 Outstanding Issues ...................................................................................................................... 21 

3.1 Convergence, Consistency and Stability ........................................................................... 21 

3.2 Stability of the SPH Method .............................................................................................. 22 

3.3 Benchmark Tests Cases for Numerical Stability ............................................................. 26 

3.3.1 Swegle Test .................................................................................................................... 26 

3.3.2 2D Plane Strain Elastic Impact .................................................................................. 28 

3.4 Motivation for Further Research ....................................................................................... 31 

3.5 A Rigorously Derived SPH Framework ........................................................................... 31 

3.6 Density Approximation in SPH ......................................................................................... 32 

3.7 Comparison of FE and SPH .............................................................................................. 33 

3.8 Summary of Chapter Three ................................................................................................ 35 

4 Capability Study of the SPH method ........................................................................................ 37 

4.1 Introduction .......................................................................................................................... 37 



 

x 

 

4.2 Mixed Kernel Interpolations .............................................................................................. 37 

4.2.1 Mixed Velocity - Stress form ...................................................................................... 39 

4.2.2 Results ............................................................................................................................ 40 

4.3 Mixed Pressure - Stress ....................................................................................................... 41 

4.3.1 Results ............................................................................................................................ 42 

4.4 Vertical Impact of a Cylinder on Water ............................................................................ 42 

4.4.1 Introduction .................................................................................................................. 42 

4.4.2 Results ............................................................................................................................ 43 

4.4.3 Discussion ..................................................................................................................... 44 

4.5 Impact of a Spherical Body on Water ............................................................................... 45 

4.5.1 Introduction .................................................................................................................. 45 

4.5.2 Results ............................................................................................................................ 46 

4.5.3 Discussion ..................................................................................................................... 47 

4.6 Underwater Blast Test ......................................................................................................... 48 

4.6.1 Introduction .................................................................................................................. 48 

4.6.2 2D Simulations ............................................................................................................. 48 

4.6.3 2D Results ..................................................................................................................... 49 

4.6.4 Discussion ..................................................................................................................... 49 

4.6.5 3D Simulations ............................................................................................................. 50 

4.6.6 Results ............................................................................................................................ 52 

4.6.7 Discussion ..................................................................................................................... 54 

4.7 Turbulence Modelling ......................................................................................................... 54 

4.7.1 Introduction .................................................................................................................. 54 

4.7.2 k − ε  Model and RANS Equations .......................................................................... 55 

4.7.3 SPH RANS Equations ................................................................................................. 59 

4.7.4 Implementation ............................................................................................................ 61 

4.7.5 Verification .................................................................................................................... 62 

4.7.6 Discussion ..................................................................................................................... 69 

4.8 Summary of Chapter Four .................................................................................................. 69 

5 Modelling Lateral Contact Forces in SPH ............................................................................... 71 

5.1 Introduction .......................................................................................................................... 71 

5.2 A Penalty Stiffness Contact Algorithm ............................................................................. 72 

5.3 A Friction - Contact Algorithm ......................................................................................... 73 

5.4 Implementation .................................................................................................................... 74 

5.4.1 LS-DYNA Friction Model .......................................................................................... 75 

5.4.2 SPH Implementation ................................................................................................... 76 

5.5 Numerical Results ................................................................................................................ 76 

5.5.1 2D Block Sliding on an Flat Plane ............................................................................. 77 

5.5.2 Results ............................................................................................................................ 80 

5.5.3 3D Metal Forging ......................................................................................................... 85 

5.5.4 Results ............................................................................................................................ 87 

5.6 Conclusions ......................................................................................................................... 109 

6 Correcting for Loss of Mass Continuity ................................................................................. 111 

6.1 Introduction ........................................................................................................................ 111 



 

xi 

 

6.2 Density Approximation ..................................................................................................... 113 

6.3 Additional Terms in the Momentum Equation ............................................................. 113 

6.4 SPH Implementation ......................................................................................................... 114 

6.5 Numerical Results .............................................................................................................. 116 

6.5.1 Swegle Test .................................................................................................................. 116 

6.5.2 2D Plane Strain Elastic Impact ................................................................................ 116 

6.6 Conclusions ......................................................................................................................... 117 

7 Corrections on Interpolation Errors in SPH ......................................................................... 119 

7.1 Introduction ........................................................................................................................ 119 

7.2 Numerical Examples in 1D .............................................................................................. 120 

7.3 A Modified SPH Form ...................................................................................................... 122 

7.3.1 Conservation of Linear Momentum ........................................................................ 124 

7.3.2 Von Neumann Stability Analysis (Evenly Spaced Particles) ................................ 125 

7.3.3 Von Neumann Stability Analysis (Unevenly Spaced Particles) ........................... 129 

7.3.4 Analogy to the SPH Momentum Equation ............................................................ 129 

7.3.5 Summary ...................................................................................................................... 130 

7.4 SPH Implementation ......................................................................................................... 130 

7.4.1 Swegle Test .................................................................................................................. 131 

7.4.2 2D Plane Strain Impact ............................................................................................. 131 

7.4.3 Optimal Implementation ........................................................................................... 132 

7.4.4 Numerical Results ...................................................................................................... 133 

7.5 Conclusions ......................................................................................................................... 134 

8 Mixed Methods in SPH ............................................................................................................ 137 

8.1 Hourglass Modes in FEM ................................................................................................. 137 

8.2 Hu-Washizu Mixed Form ................................................................................................. 139 

8.3 Solution Procedure ............................................................................................................ 143 

8.3.1 1D Finite Element Example ..................................................................................... 143 

8.4 A Mixed SPH Framework ................................................................................................ 146 

8.4.1 Solution Procedure ..................................................................................................... 148 

8.4.2 Discussion ................................................................................................................... 150 

8.5 Strong Form of Hu-Washizu in an SPH Framework ................................................... 152 

8.5.1 Assumed Rate of Deformation ................................................................................ 152 

8.5.2 Assumed stress ............................................................................................................ 153 

8.5.3 Solution procedure ..................................................................................................... 154 

8.6 Implementation .................................................................................................................. 155 

8.6.1 Verification .................................................................................................................. 156 

8.6.2 Numerical Results ...................................................................................................... 158 

8.7 Conclusions ......................................................................................................................... 159 

9 Conclusions ................................................................................................................................ 161 

9.1 Discussion ........................................................................................................................... 161 

9.2 Future Work ........................................................................................................................ 165 

10 References ................................................................................................................................. 167 

11 Appendix ................................................................................................................................... 175 

11.1 .Hu-Washizu Derivation ................................................................................................. 175 



 

xii 

 

11.2 Mixed form of virtual power .......................................................................................... 177 

11.3 Finite Element Discretisation of the Hu-Washizu equations .................................... 180 

11.4 SPH Code Background Stress ........................................................................................ 184 

11.5 SPH Code – Hu Washizu ............................................................................................... 185 

11.6 SPH Code – Friction Contact ........................................................................................ 193 

 

 

  



 

xiii 

 

List of Figures 

Figure 2-1 Deformation of a Continuum Body ......................................................................... 10 

Figure 2-1 - Circle of influence in 2D SPH................................................................................. 16 

Figure 3-1 – Stability Regime for the Cubic B-Spline Kernel .................................................. 25 

Figure 3-2 Swegle Test for Body Under Initial Tensile Stress ................................................. 27 

Figure 3-3 Kinetic Energy vs. Time for Various Levels of Initial Stress ................................ 27 

Figure 3-4 Close Up of Total Lagrange Solutions in Swegle Test ........................................... 28 

Figure 3-5 Kinetic Energy (Log Scale) vs. Time ........................................................................ 28 

Figure 3-6 - Basic SPH Solution (left) and Total Lagrange Solution (right) .......................... 30 

Figure 3-7 Kinetic Energy vs. Time for 2D Plane Strain Problem.......................................... 30 

Figure 4-1 – Quadratic Spline and its derivatives ....................................................................... 38 

Figure 4-2 – Cubic Spline and its derivatives .............................................................................. 39 

Figure 4-3 – Quintic Spline and its derivatives ........................................................................... 39 

Figure 4-4 – Mixed kernel types for the velocity and stress interpolations ............................ 40 

Figure 4-5 - Mixed kernel types for the velocity and stress interpolations (log scale) .......... 40 

Figure 4-6 – Mixed kernel types for the deviatoric and hydrostatic parts of the stress tensor
 ................................................................................................................................................... 42 

Figure 4-7 Geometry of cylinder impact problem ..................................................................... 43 

Figure 4-8 - Average pressure acting on the cylinder after impact at time zero .................... 44 

Figure 4-9- Dimensions of the Orion capsule, Source: [59] ..................................................... 45 

Figure 4-10 - FE-SPH Problem Setup for 3D Sphere Impact ................................................. 46 

Figure 4-11 - Acceleration time history for sphere impact after impact at time zero ........... 47 

Figure 4-12 Model of the SPH and FE Parts after initial Impact ............................................ 47 

Figure 4-13 - SPH problem setup for 2D underwater blast problem ..................................... 49 

Figure 4-14 - Peak pressures plotted against standoff distance and compared with 
theoretical results from [61] for varying number of particles across the width of the 
domain ..................................................................................................................................... 49 

Figure 4-15 - Model Set-up for Underwater Blast, a Short Time after Detonation .............. 51 

Figure 4-16 - Deformation of Steel Plate after Blast Loading .................................................. 52 

Figure 4-17 - The coupled problem, before (left) and after (right) deformation of the steel 
plate has occurred ................................................................................................................... 52 



 

xiv 

 

Figure 4-18 - Time history plot of the central deflection of the steel plate for various 
explosive quantities ................................................................................................................ 53 

Figure 4-19 – Approximate central deflection of the steel plate for various explosive 
quantities .................................................................................................................................. 54 

Figure 4-20 - 2D Dam-break setup .............................................................................................. 63 

Figure 4-21 -Position of the wave front for different initial conditions for turbulent kinetic 
energy – k................................................................................................................................. 63 

Figure 4-22 Schematic showing the position of the wave front for the dam break test case
 ................................................................................................................................................... 64 

Figure 4-23 - Comparison of SPH and Volume of Fluid method, time history of turbulent 
kinetic energy at a fixed point in the domain ..................................................................... 65 

Figure 4-24 – Effect of turbulence on the dam-break problem .............................................. 67 

Figure 5-1 - Contact forces between two SPH bodies .............................................................. 72 

Figure 5-2 Plane tangential to normal contact force between two SPH bodies .................... 74 

Figure 5-3 - Sliding block on an inclined plane .......................................................................... 78 

Figure 5-4 – Analytic result for displacement vs. time for a range of friction co-efficients, 
slippage angle shown as dotted line ..................................................................................... 79 

Figure 5-5 - Analytic result for velocity vs. time for a range of friction co-efficients, 
slippage angle shown as dotted line ..................................................................................... 79 

Figure 5-6 - Analytic result for acceleration vs. time for a range of friction co-efficients, 
slippage angle shown as dotted line ..................................................................................... 80 

Figure 5-7 Load Curve for Horizontal Component of Acceleration ...................................... 81 

Figure 5-8 Load curve for Vertical Component of Acceleration ............................................. 82 

Figure 5-9 – SPH vs. Analytical velocity for various particle spacings for μ = 0 ................. 82 

Figure 5-10 - SPH vs. Analytical velocity for various particle spacings for μ = 0.2 ............ 83 

Figure 5-11 - SPH vs. Analytical velocity for various particle spacings for μ = 0.4 ............ 83 

Figure 5-12 - SPH vs. Analytical velocity for various particle spacings for μ = 0.6 ............ 83 

Figure 5-13 - SPH vs. Analytical velocity for various particle spacings for μ = 0.8 ............ 84 

Figure 5-14 - SPH vs. Analytical velocity for various particle spacings for μ = 1.0 ............ 84 

Figure 5-15 Contact between the sliding block and plate at time t=0.7 ................................. 85 

Figure 5-16 Contact between the sliding block and plate at time t=0.8 ................................. 85 

Figure 5-17 Contact between the sliding block and plate at time t=0.9 ................................. 85 

Figure 5-18 – Schematic for 3D metal forging problem ........................................................... 86 

Figure 5-19 – Height reduction vs. material deformation for μ = 0.0 ................................... 89 

file:///F:/corrections/MUNRO_THESIS_CORRECTED_FINAL.docx%23_Toc459889791


 

xv 

 

Figure 5-20 - Height reduction vs. material deformation for μ = 0.1 ................................... 90 

Figure 5-21 - Height reduction vs. material deformation for μ = 0.2 ................................... 91 

Figure 5-22 - Height reduction vs. material deformation for μ = 0.3 ................................... 92 

Figure 5-23 - Height reduction vs. material deformation for μ = 0.4 ................................... 93 

Figure 5-24 - Height reduction vs. material deformation for μ = 0.5 ................................... 94 

Figure 5-25 - Height reduction vs. material deformation for μ = 0.6 ................................... 95 

Figure 5-26 – Ratio of forging force for μ = 0.1 to frictionless forging forc ....................... 96 

Figure 5-27 – Forging force for  μ = 0.1 .................................................................................... 96 

Figure 5-28 - Ratio of forging force for μ = 0.2 to frictionless forging force ...................... 97 

Figure 5-29 - Forging force for μ = 0.2 ..................................................................................... 97 

Figure 5-30 - Ratio of forging force for μ = 0.3 to frictionless forging force ...................... 98 

Figure 5-31 - Forging force for μ = 0.3 ..................................................................................... 98 

Figure 5-32Ratio of forging force for μ=0.4 to frictionless forging force ............................. 99 

Figure 5-33 - Forging force for μ = 0.4 ..................................................................................... 99 

Figure 5-34 - Ratio of forging force for μ = 0.5 to frictionless forging force .................... 100 

Figure 5-35 - Forging force for μ = 0.5 ................................................................................... 100 

Figure 5-36 - Ratio of forging force for μ = 0.6 to frictionless forging force .................... 101 

Figure 5-37 - Forging force for μ = 0.6 ................................................................................... 101 

Figure 5-38 – Ratio of top radius to barrelled mid radius for μ = 0.0 ................................. 102 

Figure 5-39 - Ratio of top radius to initial top radius for μ = 0.0 ........................................ 102 

Figure 5-40 - Ratio of top radius to barrelled mid radius for μ = 0.1 ................................. 103 

Figure 5-41 - Ratio of top radius to initial top radius for μ = 0.1 ........................................ 103 

Figure 5-42 - Ratio of top radius to barrelled mid radius for μ = 0.2 ................................. 104 

Figure 5-43 - Ratio of top radius to initial top radius for μ = 0.2 ........................................ 104 

Figure 5-44 - Ratio of top radius to barrelled mid radius for μ = 0.3 ................................. 105 

Figure 5-45 - Ratio of top radius to initial top radius for μ = 0.3 ........................................ 105 

Figure 5-46 - Ratio of top radius to barrelled mid radius for μ = 0.4 ................................. 106 

Figure 5-47 - Ratio of top radius to initial top radius for μ = 0.4 ........................................ 106 

Figure 5-48 - Ratio of top radius to barrelled mid radius for μ = 0.5 ................................. 107 

file:///F:/corrections/MUNRO_THESIS_CORRECTED_FINAL.docx%23_Toc459889792
file:///F:/corrections/MUNRO_THESIS_CORRECTED_FINAL.docx%23_Toc459889793
file:///F:/corrections/MUNRO_THESIS_CORRECTED_FINAL.docx%23_Toc459889794
file:///F:/corrections/MUNRO_THESIS_CORRECTED_FINAL.docx%23_Toc459889795
file:///F:/corrections/MUNRO_THESIS_CORRECTED_FINAL.docx%23_Toc459889796
file:///F:/corrections/MUNRO_THESIS_CORRECTED_FINAL.docx%23_Toc459889797


 

xvi 

 

Figure 5-49 - Ratio of top radius to initial top radius for μ = 0.5 ........................................ 107 

Figure 5-50 - Ratio of top radius to barrelled mid radius for μ = 0.6 ................................. 108 

Figure 5-51 - Ratio of top radius to initial top radius for μ = 0.6 ........................................ 108 

Figure 6-1 Phasing regime for acceleration, velocity, and acceleration, (source: [80]) ........ 112 

Figure 6-3 Swegle Test Case for Various Levels of Stress, Basic SPH vs. SPH with 
Continuity Correction .......................................................................................................... 116 

Figure 6-4 2D Plane Strain Problem, Elastic Impact at 2m/s ............................................... 116 

Figure 7-1 SPH Approximation of Constant Functions with Regularly Spaced Particles . 120 

Figure 7-2 SPH Approximation of Constant Functions with Irregularly Spaced Particles 121 

Figure 7-3 SPH Approximation of the Gradient of a Constant Functions with Regularly 
Spaced Particles .................................................................................................................... 121 

Figure 7-4 SPH Approximation of the Gradient of a Constant Functions with Irregularly 
Spaced Particles .................................................................................................................... 121 

Figure 7-5 Domain of influence for 1D example..................................................................... 127 

Figure 7-6– The modified momentum equation exhibits stable behaviour under 
compression and tension ..................................................................................................... 131 

Figure 7-7- Modified SPH showing stable behaviour when all boundaries are constrained.
 ................................................................................................................................................. 132 

Figure 7-8 - Swegle Test for the Modified SPH Form ............................................................ 133 

Figure 7-9 - 2D Plane Strain Problem using SPH Form Based on Stability Criterion ....... 134 

Figure 8-1 - Flow chart a displacement based analysis ............................................................ 141 

Figure 8-2 – Hu Washizu virtual power strong and weak links between variables ............. 142 

Figure 8-3 Configuration of 2-Node Rod Element ................................................................. 144 

Figure 8-4 - Verification of the mixed element solution method for the Swegle problem 157 

Figure 8-5 Assumed values calculated from the quadratic spline kernel .............................. 158 

Figure 8-6 Assumed values calculated from the quintic spline kernel .................................. 158 

 

  



 

xvii 

 

Nomenclature𝑊𝑖𝑗 – Kernel function centred at position 𝑖 and evaluated at position 𝑗 

∇𝑊𝑖𝑗 – Spatial derivative of kernel function 

𝑛𝑝  – Total number of particles in domain 

𝑛𝑛𝑏𝑟  – Number of neighbouring particles 

𝜎 – Cauchy stress  

𝐷 – Rate of deformation 

𝑣 – Velocity 

𝑢 – Displacement 

̅  - Overbar: Averaged or mean value 

̃  - tilda: Fluctuation from mean 

𝑝 – Pressure 

𝑚 – Mass 

𝜌 – Density 

𝐸 – Internal energy 

𝜃(𝑡) – Angle as a function of time 

𝜇 - Coefficient of friction 

𝑓𝑐 – Contact force between two materials 

𝑓𝑓 – Friction contact force between two materials 

𝜉 – Spatial co-ordinates 

𝛿 – Dirac delta function 

Ω – Volume 

Γ – Surface 

∇ ∙ () – Divergence operator 

D

𝐷𝑡
  - Material derivative 

ℎ - Smoothing length 

ε̇ – Strain rate 

�̇� – Deviatoric stress rate 

∆t – Timestep 

𝑐 – Speed of sound 

N – Finite element shape function 

∆p – Particle spacing 

b – Body force 

𝑑𝑖𝑚 – Dimensions 

  





 

1 

 

1 Introduction 

1.1 Background 

Over the last few decades, a great deal of effort has been directed towards the development 

of new computational tools for engineering analysis and the improvement of the existing 

methods. It is clear how valuable computer models have become to the engineering 

industry, and has led to many engineers using numerical models in conjunction, or even 

instead of experimental models. 

The great advances in computing now mean that the restrictions on memory that would 

prevent large models from being run only a few years ago are no longer a problem, 

meaning that very complex problems can in theory be solved. However it is crucial to be 

able to understand the numerical methods that are used for each particular problem and 

the underlying assumptions that go with them. 

Historically fluids and structures would be treated separately, the structure would be 

analysed using a finite element model, with various assumptions made regarding the load, 

and similarly the behaviour of fluid would be understood through CFD models. This 

eventually led to a separate class of methods used for problems classed as ‘fluid structure 

interaction’ allowing transient analysis of a structures response to external loading from a 

particular fluid, for example, loading from water on the bottom of an aircraft when it 

ditches, or perhaps high velocity impacts such as bird-strike where heavy damage to aircraft 

engines are caused by birds during flight or take off. A great number of these problems 

exist many with important engineering application. 

The particular focus of this research is on the numerical modelling of the transient non-

linear response of a structure subject to fluid loading. This work is conducted in the 

Crashworthiness, Impact & Structural Mechanics (CISM) group at Cranfield University and 

some of their areas of interest include aircraft ditching, bird-strike, high velocity impacts 

and underwater blast cases  

In this range of problems the primary goal is to determine the structural response of the 

material in question, a popular numerical tool for this problem is finite element analysis 

(FEA). However in order for an accurate prediction of structural loads, the fluid must also 
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be modelled accurately. This is the primary motivation in the study of smoothed particle 

hydrodynamics (SPH), a technique that can be easily coupled with finite element methods 

(FEM) in order to solve fluid structure interaction problems. This method has its 

advantages and disadvantages which will be explored in chapter three, but it is generally 

agreed that the improvement of this numerical tool could lead to great benefits to the 

engineering industry and enable a much wider class of problem to be addressed, through an 

improved fluid model, leading to more accurate structural load predictions. 

1.2 Smoothed Particle Hydrodynamics 

Smoothed particle hydrodynamics (SPH) is a method for approximating the solutions to 

partial differential equations. Although the underlying method is appropriate to 

approximate any given function and its derivative, it is assumed that when we are 

discussing SPH, the approximation of partial differential equations will refer to the 

equations governing the continuity of mass and momentum. 

The key difference between these mesh free methods and CFD methods such as finite 

difference, finite volume and finite element is that there is no need to provide connectivity 

between computational nodes by means of a grid/mesh.  

In the finite difference method adjacent nodal points in a structured grid are used to 

evaluate the function gradient at a point, which is then used to advance the solution, 

similarly in the finite volume method the integral equations are discretised in order to find 

cell averaged values leading to flux calculations and so on, different again is the finite 

element method where the objective is to find the coefficient of some shape function, 

which can then be used to evaluate displacements at certain points within the material. 

SPH however does not rely on a structured grid or even on any grid connectivity at all for 

that matter, the gradients are calculated point wise using neighbouring points and an 

approximating function (similar to the finite element shape function) which is defined over 

some smoothing length, this allows a Lagrangian type of approach where the field variables 

are carried along with the particles as they are moved, which, due to the lack of a structured 

grid is particularly useful for problems involving large deformations 
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The motivation for using such methods comes from the problems that are inherent from a 

method that requires a grid, such as problems with free surface flows, deformable 

boundaries and moving interfaces as well as the modelling of large deformations and 

complex mesh generation. 

SPH is in fact one of the oldest of the mesh free methods, beginning in the 70’s when it 

was developed in order to solve astrophysical problems [1]. Since its inception SPH has 

been extended into many other areas, including fluid structure interaction, free-surface 

flows& explosions.  

Extensions of the SPH method in fluid flow include multiphase flow [2] and flow through 

porous media [3]. SPH was extended to problems involving material strength by adapting 

the method to work with the full stress tensor, first in two dimensions [4] and later in three 

dimensions [5]  

Turbulence modelling techniques have been successfully extended to SPH in the form of 

Reynolds averaged, one & two equation models [6] [7], [8] [9] as well as attempts at large 

eddy simulations [10]. Extensive work on turbulence modelling in SPH has been published 

by Violeau [11]. 

The large effort involved in the research of SPH has uncovered a number of shortfalls of 

the method. Detailed analyses of SPH [12] have drawn attention to instabilities that 

develop under tension. Issues have been found with consistency and accuracy, which have 

since been addressed by kernel correction and normalization [13].  

However there remains a number of details of the SPH method which are still not well 

understood by researchers, often the problems that are observed in the method are fixed 

through heuristic means, applying fixes or patches which appear to resolve problems when 

in fact they are simply covering up the root cause without identifying them. A detailed 

literature review of these topics in particular is presented in chapter three. 

1.3 Aim  

The aim of this thesis is to provide an investigation toward a rigorous derivation of a stable 

and consistent numerical method based on the established Smoothed Particle 

Hydrodynamics method. 
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The method should be suitable for modelling the large deformation transient response of 

fluids and solids, the interests of the Crashworthiness, Impact and Structural Mechanics 

group (CISM) at Cranfield University. Specific types of problem include bird-strike, high-

velocity impact, aircraft ditching and the response of structures subject to loading from 

underwater explosion. For these types of problems, the correct treatment of the fluid 

behaviour is required in order to predict the structural loads. 

The focus of this thesis therefore is on fluid behaviour using the SPH model, suitable for 

coupling with a structural finite element model. 

Any changes to the underlying SPH method should be based on sound mathematical or 

physical principles and avoid the addition of heuristic fixes wherever possible. Any changes 

should be practical to implement and use, i.e. any increase in computation time should not 

render the method impractical and any assumptions made should be fully understood. 
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1.4 Objectives 

A literature review (see chapter three) identifies that numerical stability properties of the 

SPH method are not fully understood despite receiving significant attention over recent 

years. Stability is essential in any numerical method and is identified as the main focus of 

research in this thesis and underpins the aim of the thesis discussed in §1.3. Given the main 

focus of the thesis, the following objectives are defined: 

1.4.1 Develop Understanding of the SPH method 

Review the current capability of the SPH method and provide a series of relevant 

improvements to the SPH code at Cranfield University (MCM), this develops a deep 

understanding of the SPH method and the MCM implementation setting a foundation for 

the remainder of the project. 

a) Capability Study - Demonstrate the current capability of the SPH method to 

model fluid structure interaction problems with the coupled SPH-FE method. 

b) Turbulence Modelling - Implement and verify the 𝑘 − 휀 two equation turbulence 

model in and SPH framework. 

c) Modelling Lateral Contact Forces – The contact algorithm currently implemented 

in SPH allows normal contact forces between materials; the objective is to 

determine whether this contact algorithm is also suitable for resolving lateral forces 

between materials, using a friction model as the validation method. 

1.4.2 Investigate the Discrete Continuity Equation and its Effect on Stability 

A study of the SPH method is undertaken in chapter seven identifying an error in the 

discrete equations which means that the discrete equations no longer mimic the properties 

of their continuous counterparts properly. 

There may be a link between the conservation properties of the discrete SPH momentum 

equation and stability. The study of these corrections on stability will form the basis of this 

objective. 
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One specific choice of correction will be identified and implemented in an SPH 

framework; the new method will then be tested for the effect on stability using two 

benchmark test cases. 

1.4.3 Investigation into Errors in the Gradient Approximation in SPH 

Some forms of the SPH equation appear to produce more accurate results than others, so 

far with no reasonable explanation. Also, the most popular forms of the SPH equations 

have not yet been derived rigorously and rely on certain assumptions for instance that the 

gradient of a constant function can be approximated correctly. The objective is to 

investigate the impact of these assumptions towards developing a stable and rigorously 

derived set of SPH equations. 

One modified form of the SPH momentum equation will be derived, implemented and 

tested, this will be backed up by stability analysis to understand of the stability properties of 

the new modified SPH momentum equation. 

1.4.4 Investigate the Compatibility of FEM Solutions with SPH 

The finite element method (FEM) has become well established after much research effort, 

a number of issues with FEM appear to have analogies with those associated with SPH.  

The use of mixed element methods have a number of benefits, in particular volumetric 

locking can be avoided in incompressible or nearly incompressible problems, avoiding the 

use of under integrating elements and hence hourglass modes.  Mixed methods can be 

developed in many different ways, the objective is to identify one particular mixed form 

which can then be implemented in an SPH framework and tested for the effect on 

numerical stability. 

1.5 Summary of Chapter One 

The background of the SPH method has been presented in this chapter and the main aim 

of this research project has been identified; Specific objectives have been defined in order 

to meet this aim. In chapter two, the mathematical theory of the SPH method will be 

presented. 
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2 SPH Theory 

In this section the SPH equations will be derived in full. The SPH method is based on the 

approximation of a continuous function which is achieved through a continuous 

approximation of the Dirac delta function. This approximation is then discretised an 

applied to the governing equations of motion, i.e. mass continuity and momentum. 

SPH involves a discretization using a set of points, which hold no particular connectivity 

with each other, if the objective is to estimate the value of a function, 𝑓(𝑥) at a particular 

point then this is achieved by taking a weighted average over neighbouring points. Details 

of this function approximation are given in §2.1. 

2.1 Approximations of Functions and their Derivatives 

First the Dirac delta function is defined as: 

δ(x) =  {
+∞,
0,

 
𝑥=0
𝑥≠0

 
 (2.1) 

This function will also satisfy the following property: 

∫ δ(x)𝑑𝑥 = 1
+∞

−∞

 (2.2) 

This can now be used to return the exact value of a particular function at a point: 

∫ 𝑓(𝑥)𝛿(𝑥)𝑑𝑥 = 𝑓(0)
+∞

−∞

 (2.3) 

When integrated the product of a function with the Dirac delta returns the value of the 

function at the point where the Dirac delta is singular. 

The Dirac delta also satisfies the sifting property: 

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑥′)𝑑𝑥 = 𝑓(𝑥′)
+∞

−∞

 (2.4) 

Since 𝛿(𝑥 − 𝑥′) = 1 when 𝑥 = 𝑥′, the reverse is also true: 
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∫ 𝑓(𝑥′)𝛿(𝑥 − 𝑥′)𝑑𝑥 = 𝑓(𝑥)
+∞

−∞

 (2.5) 

It is this concept that forms the basis for the SPH method, we can now say: 

∫ 𝑓(𝑥′)𝑊(𝑥 − 𝑥′)𝑑Ω ≈ 𝑓(𝑥)

Ω

 (2.6) 

Where in the above the Dirac delta has been replaced with a smoothing function, 𝑊 and 

the integration is now performed over a volume Ω. Note in the (2.6) that the function is 

still in continuous form, but the function is approximated. 

If the above equation is now discretized: 

∑𝑓𝑗(𝑥)𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)𝑑Ω = 〈𝑓𝑖(𝑥)〉

𝑁

𝑗

 (2.7) 

Where the triangular brackets from now on represent an SPH interpolation of a function, 𝑗 

is the index over the neighbouring interpolation points over which the average is taken, and 

𝑖 denotes the point at which we are looking for an approximate solution. The total number 

of points in the domain is denoted by 𝑁. 

The same process can be performed but now replacing the function 𝑓(𝑥) in (2.6) with its 

derivative 
𝜕𝑓(𝑥)

𝜕𝑥
 which results in: 

∫  
𝜕𝑓(𝑥′)

𝜕𝑥
𝑊(𝑥 − 𝑥′)𝑑Ω ≈

𝜕𝑓(𝑥)

𝜕𝑥
Ω

 (2.8) 

However since the derivative of the function is unknown, some extra manipulation is 

required, (2.8) can be re-written as:: 
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∫
𝜕

𝜕𝑥
𝑓(𝑥′)𝑊(𝑥 − 𝑥′)𝑑Ω = ∫

𝜕

𝜕𝑥
(𝑓(𝑥′)𝑊(𝑥 − 𝑥′))

ΩΩ

𝑑Ω

− ∫ 𝑓(𝑥′)
𝜕

𝜕𝑥
𝑊(𝑥 − 𝑥′)

Ω

𝑑Ω 

(2.9) 

Divergence theorem can then be used to express the volume integral (first term on the 

right hand side in (2.9)) as a surface integral. 

∫
𝜕

𝜕𝑥
𝑓(𝑥′)𝑊(𝑥 − 𝑥′)𝑑Ω = ∫(𝑓(𝑥′)𝑊(𝑥 − 𝑥′)) ∙ �̂�

∂ΩΩ

− ∫ 𝑓(𝑥′)
𝜕

𝜕𝑥
𝑊(𝑥 − 𝑥′)

Ω

 𝑑Ω 

(2.10) 

Where �̂� is the unit vector normal to the surface. 

The surface integral can be neglected since the assumption is made that the kernel function 

is zero on its boundary (compact support). 

𝜕

𝜕𝑥
𝑓(𝑥) ≈ −∫ 𝑓(𝑥′)

𝜕

𝜕𝑥
𝑊(𝑥 − 𝑥′)

Ω

 𝑑Ω (2.11) 

Replacing the integral and kernel with their discrete counterparts: 

−∑𝑓𝑗 ∙ ∇𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)𝑑Ω = 〈∇𝑓𝑖(𝑥)〉

𝑁

𝑗

 (2.12) 

Resulting in an expression where the approximation for the derivative of a function can be 

calculated by the product of the function at the neighbouring points and the derivative of 

the smoothing function. 
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2.2 Governing Equations 

The preceding approximation for a function and its derivative can now be applied directly 

to the governing equations of motion, i.e. Mass and momentum. In this section the 

governing equations of mass and momentum will be derived and then discretised into SPH 

form. 

2.2.1 Mass Continuity 

The motion of a continuum body (Figure 2-1) is described through kinematic relations, the 

displacement of a material point within a continuum body ℬ can be described by the 

difference between its current position and original position 

𝑢(𝑋, 𝑡) = 𝜑(𝑋, 𝑡) − 𝑋 (2.13) 

Where 𝜑(𝑋, 𝑡) is the mapping between the original configuration and the current 

configuration, and the capital 𝑋 denotes the reference configuration. ℬ possesses a mass, 

m, which is a measure of the amount of material contained in the body. The continuum 

mechanics approach is to assume that this mass is distributed continuously, with no 

discontinuities within a single material body. Mass can be described as a conserved quantity 

that cannot be created or destroyed, if a closed system is considered, the mass remains 

constant within some bounded region, but the volume is able to change. 

 

Figure 2-1 Deformation of a Continuum Body 
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2.2.2 Derivation of Mass Continuity Equation 

The derivation of the continuous continuity equation in Eulerian form will now be 

presented 

Firstly the mass is written as an integral of density over an infinitesimal volume, where its 

rate of change in time will be written; 

𝑑

𝑑𝑡
∫ 𝜌 𝑑𝑉

Ω

 (2.14) 

Reynolds transport theorem then allows the time derivative to be moved to the inside of 

the integral. 

𝑑

𝑑𝑡
∫ 𝜌 𝑑𝑉 = ∫

𝜕

𝜕𝑡
𝜌 𝑑𝑉 + ∫ (𝑣 ∙ �̂�)𝜌 𝑑𝑆

∂Ω(t)Ω(t)Ω(t)

 (2.15) 

Divergence theorem is then applied, allowing the flux of mass through the surface to be 

associated with its behaviour within the volume.  

∫ (𝑣 ∙ �̂�)𝜌 𝑑𝑆

∂Ω(t)

= ∫ 𝜌(∇ ∙ 𝑣) 𝑑𝑉

Ω(t)

 (2.16) 

𝑑

𝑑𝑡
∫ 𝜌 𝑑𝑉 = ∫

𝜕

𝜕𝑡
𝜌 𝑑𝑉 + ∫ 𝜌(∇ ∙ 𝑣) 𝑑𝑉

Ω(t)

 

Ω(t)Ω(t)

 (2.17) 

Conservation of mass requires that the mass remains unchanged throughout the motion of 

Ω, therefore  

𝑑

𝑑𝑡
∫ 𝜌 𝑑𝑉 = ∫

𝜕

𝜕𝑡
𝜌 𝑑𝑉 + ∫ ∇ ∙ (𝜌𝑣)𝑑𝑉 = 0

Ω(t)Ω(t)Ω(t)

 (2.18) 

The volume in the expression above is arbitrary and therefore the integral can be removed 

since all terms can be considered to be point-wise equal. 
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𝐷𝜌

𝐷𝑡
 = −𝜌(∇ ∙ 𝑣) (2.19) 

The material derivative 
𝐷𝜌

𝐷𝑡
 is equal to. 

𝐷𝜌

𝐷𝑡
 =

𝜕𝜌

𝜕𝑡
+ 𝑣 ∙ ∇𝜌 (2.20) 

2.2.3 Derivation of  Momentum Conservation Equation 

A similar process is followed to derive the conservation of momentum. 

Writing the time rate of change of the total momentum within a [closed] volume as: 

𝑑

𝑑𝑡
∫ 𝜌𝑣

Ω

 𝑑𝑉 (2.21) 

Applying Reynolds transport theorem in order to bring the integral to the outside, 

𝑑

𝑑𝑡
∫ 𝜌𝑣

Ω

 𝑑𝑉 = ∫
𝜕

𝜕𝑡
Ω

𝜌𝑣 + ∫(𝑣 ∙ �̂�)𝜌𝑣 𝑑𝑆

𝜕Ω

 (2.22) 

Then using divergence theorem to change the surface integral to a volume integral, 

∫(𝑣 ∙ �̂�)𝜌𝑣 𝑑𝑆

𝜕Ω

= ∫ 𝜌𝑣(∇ ∙ 𝑣)

Ω

 𝑑𝑉 (2.23) 

This provides an expression which can then be balanced with the forces acting on the 

surface. 

Newton’s second law tells us that a change in momentum is due to a force acting on the 

body. We assume that the Cauchy stress represents the traction forces. 

𝑑

𝑑𝑡
∫ 𝜌𝑣

Ω

 𝑑𝑉 = ∫(𝜎 ∙ �̂�)

∂Ω

 𝑑𝑆 (2.24) 

Therefore, after making further use of divergence theorem 
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∫
𝜕

𝜕𝑡
Ω

𝜌𝑣 𝑑𝑉 + ∫ 𝜌𝑣(∇ ∙ 𝑣)𝑑𝑉 = ∫ ∇ ∙ 𝜎

Ω

 𝑑𝑉

Ω

 (2.25) 

Which can be considered point wise equal, leading to: 

𝜕

𝜕𝑡
𝜌𝑣 + 𝜌𝑣(∇ ∙ 𝑣) = ∇ ∙ 𝜎 (2.26) 

Expanding the first term on the left hand side and re-arranging: 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑣 ∙ ∇𝑣) + 𝑣 (

𝜕𝜌

𝜕𝑡
+ 𝜌(∇ ∙ 𝑣)) = ∇ ∙ 𝜎 (2.27) 

The second term on the left hand side can be neglected assuming the mass continuity 

equation holds exactly (2.19), 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑣 ∙ ∇𝑣) = ∇ ∙ 𝜎 (2.28) 

Finally writing the left hand side as the material derivative: 

𝜌 (
𝐷𝑣

𝐷𝑡
) = ∇ ∙ 𝜎 (2.29) 

 

2.2.4 Mass Continuity Equation in SPH Form 

Starting from the mass continuity equation written in continuous form (2.19) 

𝐷𝜌

𝐷𝑡
= −𝜌(∇ ∙ 𝒗) (2.30) 

Integrating each side and multiplying by the kernel function 

∫
𝐷𝜌

𝐷𝑡
Ω

𝑊(𝑥 − 𝑥′, ℎ) = −∫ 𝜌∇ ∙ 𝒗𝑊(𝑥 − 𝑥′, ℎ)

Ω

 (2.31) 

In the next step we wish to move the divergence operator over to the kernel function, but 

first, as an intermediate step we will write: 
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𝜕𝑓

𝜕𝑥
=
1

𝜙
(
𝜕(𝜙𝑓)

𝜕𝑥
− 𝑓

𝜕𝜙

𝜕𝑥
) (2.32) 

f and 𝜙 here are arbitrary and differentiable functions of x, putting the above in SPH: 

〈
𝜕𝑓𝑖
𝜕𝑥
〉 =  

1

𝜙𝑖
∑(𝜙𝑗𝑓𝑗)∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗
−

𝑛𝑝

𝑗

1

𝜙𝑖
𝑓𝑖∑𝜙𝑗∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (2.33) 

Now, if f is set as the velocity and 𝜙 is set to 1, we arrive at: 

〈
𝐷𝜌

𝐷𝑡
〉 = −𝜌𝑖∑𝒗𝑗∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗
−

𝑛𝑝

𝑗

𝒗𝑖∑∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (2.34) 

Simplifying (2.34): 

〈
𝐷𝜌

𝐷𝑡
〉 = −𝜌𝑖∑(𝒗𝑗 − 𝒗𝑖)∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (2.35) 

It is clear to see from the derivation above that 𝑓
𝜕𝜙

𝜕𝑥
= 0 when 𝜙 = 1, and hence 

𝒗𝑖 ∑ ∇𝑊𝑖𝑗
𝑚𝑗

𝜌𝑗

𝑛𝑝
𝑗 ≈ 0, when the particle distribution is uniform.  However, including this 

term ensures that divergence vanishes when the velocity field is constant. For non-uniform 

particle distributions this is not necessarily true, this will be covered in detail in chapter 

seven. 

2.2.5 Momentum Equation in SPH Form 

Starting with the Cauchy momentum equation (2.19): 

𝜌
𝐷𝑣

𝐷𝑡
= ∇ ∙ 𝜎 (2.36) 

Similar steps can be followed to those deriving mass continuity: 

𝐷𝑣

𝐷𝑡
=
∇ ∙ 𝜎

𝜌
 (2.37) 

Using the quotient rule 



 

15 

 

𝐷𝑣

𝐷𝑡
= ∇ ∙ (

𝜎

𝜌
) + 𝜎 ∙ (

∇𝜌

𝜌2
) (2.38) 

Integrating each side and multiplying by the kernel function, then linearizing the second 

term on the right hand side: 

∫
𝐷𝑣

𝐷𝑡
Ω

𝑊(𝑥 − 𝑥′, ℎ) = ∫ ∇ ∙ (
𝜎

𝜌
)𝑊(𝑥 − 𝑥′, ℎ)

Ω

+ (
𝜎

𝜌2
) ∫ ∇𝜌𝑊(𝑥 − 𝑥′, ℎ)

Ω

 (2.39) 

Writing in SPH form and moving the derivatives over to the kernel function: 

〈
𝐷𝑣

𝐷𝑡
〉 = −∑

𝜎𝑗

𝜌𝑗
∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

−
𝜎𝑖
𝜌𝑖2

∑𝜌𝑗𝛻𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (2.40) 

Simplifying (2.40): 

〈
𝐷𝑣

𝐷𝑡
〉 = −∑𝑚𝑗 (

𝜎𝑗

𝜌𝑗2
+
𝜎𝑖
𝜌𝑖2
)

𝑛𝑝

𝑗

𝛻𝑊𝑖𝑗 (2.41) 

2.2.6 Kernel Properties 

After the equations are written in SPH form, an interpolating function must be chosen, 

various properties must be satisfied (see [14]) but the most popular choice is a cubic spline 

kernel. The smoothing length is normally chosen to be around 1.3 times the particle 

spacing, which has been shown mainly through trial and error to produce good results. The 

kernel properties mean that only the particles within the neighbourhood of the central 

particle need to be considered in the calculation, see Figure 2-2. 
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Figure 2-2 - Circle of influence in 2D SPH 

 

2.2.7 Consistency and Completeness 

If the following conditions are satisfied: 

∫ 𝑊(𝑥)𝑑𝑥 = 1

𝐷

 
(2.42) 

∫ 𝑥𝑗𝑊(𝑥)𝑑𝑥 = 0

𝐷

, 0 ≤ 𝑗 ≤ 𝑘 
(2.43) 

 

Then the approximation is said to be of order 𝑘, and 〈𝑓(𝑥)〉 will conincide with 𝑓(𝑥) for 

polynomials of order less than 𝑘, When using the standard truncated Gaussian type kernels 

the approximation only hold for 𝑘 less than or equal to one. This condition is commonly 

called consistency or completeness condition often used interchangeably. 

This led to a correction being applied to the kernel functions as well as the gradient 

operator to ensure that these conditions are met and that the patch test is passed which is 

not the case for the conventional SPH method. A full derivation of the method 

implemented in the MCM code can be found in [13].  
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2.3 Structure of the SPH code 

Now that the main equations have been presented, it is useful to understand how a 

solution is achieved using the SPH method, the semi discrete equations derived above now 

require an appropriate time integration scheme, in the MCM code, the central difference 

(Leapfrog) method is used.. The SPH interpolation is performed at two instances, once on 

the velocities to calculate the rate of deformation, which is then used to update the density, 

then once again on the stress tensor in the approximation of the particle acceleration which 

is in turn used to evolve the velocities and positions. Only the SPH part of the code is 

described, although it is noted that the method can be coupled with the finite element 

method through the use of a contact algorithm [15]. 
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2.3.1 Central Difference Time Integration Algorithm 

At the beginning of the time integration loop, the positions and time are known at time n, 

velocity and time-step size are held half a time-step back. The Cauchy stress, density, 

pressure and internal energy are known at the previous time n-1. 

𝑥𝑛, 𝑣𝑛−
1
2, 𝑡𝑛, ∆𝑡𝑛−

1
2, 𝜎𝑛−1, 𝜌𝑛−1, 𝑃𝑛−1, 𝐸𝑛−1 

1. Calculate strain rate    

In the first step, the positions are pushed back by half a time-step in order to calculate the 

strain rate from the velocities, resulting in a strain rate (or rate of deformation at a half 

time-step back. 

𝑥𝑛−
1
2 = 𝑥𝑛 −

1

2
𝑣𝑛−

1
2∆𝑡𝑛−

1
2 

휀̇𝑛−
1
2 = 𝑓(𝑣𝑛−

1
2, 𝑥𝑛−

1
2) 

2. Update density     

The time rate of change of density can be calculated from the rate of deformation, and 

hence the density can be updated to the current time. 

�̇�𝑛−
1
2 = 𝑓(휀̇𝑛−

1
2) 

𝜌𝑛 = 𝜌𝑛−1 + �̇�𝑛−
1
2∆𝑡𝑛−

1
2 

3. Update strength model    

The deviatoric stress rate can now be calculated using a constitutive relation, performed of 

the strain rate, the stress can then be updated to the current time. Objectivity is satisfied by 

means of the Jaumann rate of the Cauchy stress. 

�̇�𝑛−
1
2 = 𝑓(휀̇𝑛−

1
2) 

𝑠𝑛 = 𝑠𝑛−1 + �̇�𝑛−
1
2∆𝑡𝑛−

1
2 
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4. Update speed of sound. 

The speed of sound is then calculated using the pressure and internal energy at the 

previous time.  

𝑐 = 𝑓(𝑃𝑛−1, 𝐸𝑛−1) 

The new time-step can now be calculated from the sound speed. 

∆𝑡
𝑐𝑟𝑖𝑡

𝑛−
1
2 = 𝑓(𝑐𝑛−1, 𝑙𝑐𝑟𝑖𝑡

𝑛 ) 

5. Pressure and Internal energy 

The next step is to update the pressure and internal energy, this is done in an implicit 

calculation, the pressure at time n is calculated from the internal energy and the density, the 

pressure is then pushed back by half a step and used to calculate an increment in internal 

energy, which is then updated to the current time. 

𝑃𝑛 = 𝑓(𝐸𝑛, 𝜌𝑛) 

𝑃𝑛−
1
2 =

1

2
(𝑃𝑛−1 + 𝑃𝑛) 

�̇�𝑛−
1
2 = 𝑓(𝑃𝑛−

1
2, �̇�𝑛−

1
2, 휀̇𝑛−

1
2) 

𝐸𝑛 = 𝐸𝑛−1 + �̇�𝑛−
1
2∆𝑡𝑛−

1
2 

6. Solve Momentum equation 

The momentum equation can now be solved to give an acceleration term at time n. 

𝑎𝑛 = 𝑓(𝜎𝑛, 𝜌𝑛) 

At this point the variables can be outputted or the computation terminated if the desired 

time has been reached, if not the calculation continues 

𝑥𝑛, 𝑣𝑛−
1
2, 𝑡𝑛, ∆𝑡𝑛−

1
2, 𝜎𝑛, 𝜌𝑛, 𝑃𝑛, 𝐸𝑛 
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7. Calculate new time-step and update problem time. 

∆𝑡𝑛+
1
2 = 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 × ∆𝑡

𝑐𝑟𝑖𝑡

𝑛+
1
2 

𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡𝑛+
1
2 

8. Update velocities. 

The velocity is updated to a half time-step ahead using the acceleration term and the 

current time-step 

𝑣𝑛+
1
2⁄ = 𝑣𝑛−

1
2⁄ + 𝑎𝑛∆𝑡𝑛 

∆𝑡𝑛 =
1

2
(∆𝑡𝑛−

1
2 + 𝑎𝑛∆𝑡𝑛) 

9. Update positions. 

Finally the positions can be updated using the updated velocities and time-steps.  

𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+
1
2∆𝑡𝑛+

1
2 

At the end of the integration loop the positions are known at the new problem time 

whereas the velocities are held a half time-step ahead as is standard practice in a central 

difference scheme. 

𝑥𝑛+1, 𝑣𝑛+
1
2, 𝑡𝑛+1, ∆𝑡𝑛+

1
2, 𝜎𝑛, 𝜌𝑛, 𝑃𝑛, 𝐸𝑛 

𝑛 = 𝑛 + 1 

2.4 Summary of Chapter Two 

The details of the SPH method have been presented and the derivations for the discrete 

equations of mass and momentum are given. The time stepping scheme used in the MCM 

code to advance the solution is described. 
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3 Outstanding Issues 

As discussed in chapter two, the SPH method has showed promise as it has developed over 

the last few decades, however it has still not become the industry standard in numerical 

modelling. The reason for this is that there are still a number of unanswered questions over 

the underlying method, which must be addressed.  

This chapter provides a literature review of the various attempts at addressing the issues 

with the SPH method. First, the most important aspects common to numerical methods 

are introduced, convergence, consistency and stability. A literature review discusses these 

aspects as they are related to the SPH method, which provides the main motivation for 

directing effort towards achieving stability in the SPH method throughout the thesis. 

3.1 Convergence, Consistency and Stability 

A numerical method is said to converge if the approximate solution tends towards the 

exact solution as the resolution of the numerical model is increased. It is considered an 

essential property of any numerical scheme that is to be used in engineering analysis, 

detailed discussions of convergence can be found in many texts on numerical methods [16] 

[17] [18]. In SPH the choice of kernel type is important for convergence since less 

expensive kernels can in turn allow more particles to be included in the neighbourhood 

[19], however it becomes clear that achieving convergence is dependent on more that the 

method of interpolation used in the calculation.  

Generally it is assumed that sufficient conditions for convergence are achieved when the 

total number of particles tends toward infinity 𝑁𝑃 → ∞, and the smoothing length tends 

to zero ℎ → 0, allowing the number of neighbouring particles 𝑛𝑛𝑏𝑟 to remain fixed. 

However this has been shown in [20] that this is not the case, and it is also necessary to 

increase the numbers of neighbours 𝑛𝑛𝑏𝑟 → ∞ in order to achieve the conditions 

necessary for convergence. Leaving the number of neighbours fixed whilst changing the 

smoothing length and the total number of particles introduces and error which does not 

vanish as 𝑁𝑃 → ∞ and ℎ → 0. It is also concluded in [20] that fixing the number of 

particles within the neighbourhood as the total number of particles is increased indicates an 

inconsistent scheme and leads to slow convergence rates. 
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The Lax equivalence theorem states that a consistent numerical scheme converges if and 

only if it is stable [21]. Consistency is also related to the accuracy of the method since for a 

numerical method to be consistent it must have an order of accuracy greater than zero [22].  

Accuracy is the conventional SPH method is severely affected by particle disorder and 

lacks consistency, this manifests as errors in the force calculation which directly affects the 

rate of convergence, occurring especially in shear flows [19] Simple ideas to combat these 

errors such as increasing the number of particles in the neighbourhood have shown to be 

insufficient in solving these problems [19].  

The problems of consistency and accuracy have been addressed by a number of authors, 

[23] [24], resulting in an SPH method with first order consistency achieved by 

renormalization of the smoothing terms, this also led to variants of the SPH method being 

developed which allow restoration of consistency or arbitrary order by means of a 

correction function. These methods include the element free Galerkin method [25] [26], 

the reproducing kernel particle method [27] and mesh-less local Petrov-Galerkin method 

[28]. Consistency has also been investigated in [29] where the truncation terms in the 

Taylor expansion were examined, showing that only the first order consistent 

approximation has acceptable convergence properties in the approximation of the first 

derivative. Convergence of various SPH schemes in one dimension was studied by [30], 

using first order consistent schemes with uniform and non-uniform particle distributions, 

providing estimates of the approximation error in both cases. 

This leaves stability as the main property which must be satisfied in order to achieve 

convergence. Although stability of the SPH method has attracted significant interest at 

Cranfield University resulting in a number of PhD thesis [31] [32] [33] [34] and research 

papers [24] [35] and reviews [36], stability is still not fully understood, and remains a major 

topic of interest for researchers. 

3.2 Stability of the SPH Method 

Within the area of stability, a number of inter related issues arise, such as the tensile 

instability or particle pairing, zero energy modes, as well as issues with time stepping 

common to all explicit time integration methods, where stability is conditional on time-step 

size.  
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The un-physical clumping together or pairing or particles can be treated successfully by 

careful choice of interpolating kernel [37], however the same treatment does not work for 

the tensile instability, showing that different problems can manifest themselves in similar 

ways even though the underlying cause is quite different.  

Tensile instability is named after the state in which it most often occurs, although it is 

possible, but less likely for it to occur during compression. The normal occurrence of the 

instability is when, during tension, not enough stress is developed between the particles at 

close distances which results in an unphysical clumping of the particles, this can look 

similar to mechanical fracture but has no physical meaning and can occur when modelling 

perfectly elastic materials.  

The SPH method has been written in a total Lagrange formulation [35], which successfully 

removes the instability and restoring linear completeness and first order consistency, 

effectively correcting the main shortcomings of SPH. The Total Lagrange form also 

preserves homogeneity and isotropy of space through Noethers theorem [38] . The total 

Lagrange form involves a pullback to the reference configuration, this means that the 

neighbourhood of particles does not change throughout the calculation, therefore a search 

for neighbouring particles is not required at each time-step, meaning a less computationally 

expensive solution overall. 

These improvements do come at a price however; It becomes impossible to model very 

large deformations, such as would occur in wave breaking or high velocity impact, which is 

a major advantage of the conventional form, this is down to the total Lagrange method 

using a fixed neighbourhood of particles throughout the computation. 

Non collocated SPH was investigated by Dyka [39] as a treatment for the tensile instability 

in 1D, Belytschko further investigated instabilities in SPH separating the instability into two 

parts, the rank deficiency of the discrete equations and the distortion of the material 

instability [40]. The latter is the source of the tensile instability; in this case he used a 

Lagrangian kernel with the additional quadrature points, where stress is calculated. This 

method removes both of the instabilities that he defined. The stress point method was later 

extended to two dimensions [24]. The drawback here however is that extension to three 

dimensions is particularly challenging due to the difficulty in maintaining a full 
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neighbourhood of particles, particularly for violent fluid motion in which large 

deformations occur. [24] states that it cannot be guaranteed that in 2D and 3D simulations 

that when the stress points are moved with an interpolated velocity that there will be a 

sufficient number of particles of the correct type within the neighbourhood. 

Monaghan [41] also attempted to remove the tensile instability by adding an artificial stress 

to the momentum calculation when the particles begin to move too close to each other, 

whilst producing a better looking result which removes particle pairing the method lacks 

physical meaning and is heuristic in nature, however he does note that the instability is 

especially visible in materials which use an equation of state which allow a negative 

pressures, although it can also occur in gases where only a positive pressure is possible. The 

artificial stress correction was later expanded to elastic problems by the same author [42], 

with further investigations made in PhD theses at Cranfield University [31]. 

Hicks writes that the instability can be removed through a shifting of the kernel properties 

in order to change the sign of its second derivative [43], which is important in the stability 

criteria presented by Swegle [12] who also addressed the problem by using conservative 

smoothing to control the instability growth [44] [45]. The authors did note however that 

smoothing in this fashion can smooth out more of the small wave length structures than is 

desired, although this method does still produce better results than the artificial viscosity 

method in many cases. 

Morris [46] makes an important and interesting point that the tensile instability occurs 

when using a momentum equation of a type that conserves momentum exactly; performing 

stability analyses for a number of different forms of the momentum equation he notes that 

a form that is based on a pressure difference provides a stable solution. He also finds that 

increasing the order of the kernel towards Gaussian will generally improve stability. 

Other attempts have been made to solve the tensile instability problem, notably Morris 

experimented with various interpolating kernels, which proved successful in some 

situations [46], Libersky [4] used conservative smoothing which involved the addition of 

dissipative terms to the solution, which was only successful in a number of specific cases. 

Chen [47] developed a corrective smoothed particle method (CSPM), which utilised stress 

points and artificial viscosity to improve stability for 2D plane stress problems. 
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The first study into tensile instability was published by Swegle [12] in which the instability 

was related to a negative pressure in combination with the sign of the second derivative of 

the kernel, which provides the stability criteria relating the sign of the stress to the second 

derivative of the kernel (see (3.1) and figure 3-1),. Von Neumann stability analyses have 

been performed by a number of authors including Balsara [48], Ferrarri [49], Swegle [12], 

and Gourma [32]. Balsara suggests limiting the smoothing length to the inter-particle 

distance [48], and Ferrari shows that the conventional method is unconditionally unstable. 

Form (3.1) of the momentum equation is stable; however this formulation is only 

applicable to fluids and does not deal with the full stress tensor as well as lacking a rigorous 

derivation. 

〈
𝑑𝑣

𝑑𝑡
〉𝑖 = −∑𝑚𝑗

𝑝𝑗 − 𝑝𝑖

𝜌𝑖𝜌𝑗
∇𝑊𝑖𝑗

𝑛𝑝

𝑗=1

 
 (3.1) 

 

𝑊′′𝜎 > 0  (3.2) 

 

Figure 3-1 – Stability Regime for the Cubic B-Spline Kernel 
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3.3 Benchmark Tests Cases for Numerical Stability 

Throughout this thesis a number of numerical tests cases will be used to determine the 

effect of various modifications to the SPH method on the stability properties of the 

method. The first test case is taken from [12] and is referred to throughout the thesis using 

the authors name, the Swegle test. 

3.3.1 Swegle Test  

The test involves a body which is subjected to a uniform initial stress [12], either 

compressive or tensile, displacement boundary conditions ensure that the particles near to 

the boundary remain stationary and the initial stress is not relieved. The tests are achieved 

using the standard B-Spline kernel and no artificial viscosity is included in the calculation. 

A velocity perturbation of 10E-10 km/s is applied to a single particle at the centre of the 

body. A compressive stress exhibits no particle motion, however if the initial stress is 

tensile, unphysical particle motion is observed, the particle begin to clump together and 

tend to oscillate around single points. The uniform density is lost and the instability causes 

a sharp spike in the kinetic energy. The deformation of the particles in the Swegle test is 

demonstrated in Figure 3-2. The kinetic energy is plotted against time in figure 3-3 Figure 

3-5, showing the influence of the initial stress levels on the instability growth. The Total 

Lagrange solution [35] provides a stable solution to the problem (Figure 3-4) where the 

kinetic energy oscillates close to zero due purely to numerical error.  The details of the 

calculation and the material properties are given in table 1 

Number of particles 625 

Density  1g/cm3 

Smoothing Length 0.12cm 

Total Mass 6.25g 

Material Type Fluid 

Equation of State Linear Polynomial 

Time-step Size 0.03𝜇𝑠 

Dimensions 2.4cm x2.4cm 
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Table 1 - Properties for the Swegle Test 

 

Figure 3-2 Swegle Test for Body Under Initial Tensile Stress 

 

Figure 3-3 Kinetic Energy vs. Time for Various Levels of Initial Stress 
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Figure 3-4 Close Up of Total Lagrange Solutions in Swegle Test 

 

Figure 3-5 Kinetic Energy (Log Scale) vs. Time 

3.3.2 2D Plane Strain Elastic Impact 

The second test case involves the purely elastic impact of two solid bodies at a relative 

velocity of 20m/s. The bodies are modelled with a uniform distribution of SPH particles, 

when the impact occurs a compressive wave travels along the length of the body, when the 

compression is relieved the body then goes into tension. With no damping this transition 
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between compression and tension will continue indefinitely as is shown in the analytical 

solution (Figure 3-7). The total Lagrange solution is stable and subject only to numerical 

damping, the basic SPH solution however breaks down when the problem goes into 

tension as shown in Figure 3-7 and the solution becomes meaningless due to the 

unphysical deformation that occurs, the manifestation of the instability is again shown as 

clumping of particles (Figure 3-6). The material is chosen to be rubber since the material 

properties allow a relatively large time-step size to be used, (compared to something like 

steel for example), the properties used in the calculation are given in Table 2. The analytical 

solution is calculated using the elastic wave speed (3.3) and the initial kinetic energy (3.4) 

𝑐𝑠𝑜𝑙𝑖𝑑 = √
𝐸(1 − 𝜐)

𝜌(1 + 𝜐)(1 − 2𝜐)
 

 (3.3) 

 

𝐸𝑘 =
1

2
𝑚𝑣2  (3.4) 

  

Number of particles 3200 

Density  1200kg/m3 

Smoothing Length 0.03cm 

Total Mass 1200kg 

Material Type Elastic 

Young’s Modulus 1.5E+06 Pa 

Poissons Ration 0.49 

Dimensions 1mx2m (each body is 
1mx1m) 

Table 2 Properties for the 2D Plane Strain Problem 
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Figure 3-6 - Basic SPH Solution (left) and Total Lagrange Solution (right) 

 

Figure 3-7 Kinetic Energy vs. Time for 2D Plane Strain Problem 
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3.4 Motivation for Further Research 

Although much effort has been directed toward the study of the stability properties of 

SPH, the solutions generally involve the solution to a numerical problem rather than the 

physical process, although such attempts are successful in supressing the instability they are 

not considered to address the root cause in a rigorous way. The addition of stabilising 

terms are also not based on a rigorous derivation of the governing equation, an example is 

the artificial stress, hence the name. 

Therefore there are still areas which are not well understood, these areas form the 

motivation for further study in the later chapters, and are introduced in §3.5.  

3.5 A Rigorously Derived SPH Framework 

The SPH equations can be derived in a number of ways, it is well known [50] that some 

formulations work better than other in certain circumstances  independent of the choice of 

interpolating kernel, the basic equations generally involve a heuristic modification in order 

to preserve conservation properties or to improve accuracy. For example, the most 

common form of the momentum equation (2.41) is modified in order to maintain 

symmetry between particle pairs [51] by adding a constant 𝜎𝑖 onto the stress term; ensuring 

that the forces exerted between two particles are equal and opposite, which is required in 

order to preserve conservation of linear momentum [52]. 

A number of derivations and implementations are possible for the SPH equations, various 

implementations have been tested in [53] concluding that the form of artificial viscosity 

implemented is of primary importance. 

It is unknown what underlying assumptions are being made by these manipulations. As 

noted in §3.2, some form of the momentum equation show benefits for stability [46] but 

still lack a rigorous derivation. 

The relationship between stability and conservation in SPH is not understood [36]. Lax-

Wendroff theorem states that a conservative numerical scheme will converge toward a 

weak solution of the conservation law (if it does indeed converge), which potentially links 

conservation with stability and the other numerical properties discussed in §3.1. The 

summation form (3.5) of the density calculation does conserve mass exactly, however it is 
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normally beneficial to approximate the continuity equation directly (3.6), especially when 

contact between two materials occurs 

3.6 Density Approximation in SPH 

The approximation of density in the SPH method can be achieved in a number of ways, 

one method is to simply perform a summation over the masses of all particles within the 

neighbourhood. 

〈𝜌〉𝑖 = ∑(𝑚𝑗)

𝑛𝑛𝑏𝑟

𝑗

𝑊𝑖𝑗 (3.5) 

Which satisfies continuity requirements both locally and globally, a second method is to 

discretize the mass continuity equation which gives a rate form of the density, the SPH 

form is: 

〈
𝜕𝜌

𝜕𝑡
〉𝑖 = ∑(𝑣𝑗 − 𝑣𝑖)

𝑛𝑛𝑏𝑟

𝑗

∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗
 (3.6) 

The advantage of (3.5)is that volume is conserved exactly, and is simplistic in nature since 

it gives a direct approximation for the particle density. However the main downside is that 

material density can become overly smoothed, especially in a case involving material 

discontinuities or even free surface flows where the density will drop towards the surface 

of the fluid, [54] [55], leading to oscillations on the surface due to the resulting pressure 

[55] This often leads to (3.6) being used instead, in this case the initial particle density can 

be set at the start of the calculation and will only change when relative motion between the 

particles occurs. 

The SPH continuity equation however does not conserve mass exactly, or actually it is 

more correct to say that it is volume that is not conserved since the particle mass is 

normally assumed to stay constant throughout the calculation. The continuity equation also 

involves a modification to ensure that the gradient vanishes for a uniform velocity field, 

whereby the following relation is discretized rather than the function itself. 

𝜕𝑓

𝜕𝑥
=
1

𝜙
(
𝜕(𝑓𝜙)

𝜕𝑥
− 𝑓

𝜕𝜙

𝜕𝑥
) (3.7) 
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Vignjevic [50] presented a set of SPH equations making the assumption of a moving co-

ordinate system ((3.8) and (3.9)), which shows that by making the assumption of a moving 

referential coordinate system and a moving control volume, as opposed to the fixed 

referential coordinate system and fixed reference frame which is assumed by the 

conventional SPH method, a set of equations can be rigorously derived. This provides an 

explanation of the extra terms in the continuity equation It is also shown in [50] that this 

new set of equations gives similar results to those achieved using the conventional method. 

The SPH equations in a moving coordinate system are given in (3.8) and (3.9) 

〈
𝜕𝜌𝑖
𝜕𝑡
〉 =∑

2𝜌𝑗 − 𝜌𝑖

𝜌𝑗
𝑚𝑗(𝑣𝑗 − 𝑣𝑖)∇𝑊𝑖𝑗

𝑛𝑝

𝑗=1

 

 (3.8) 

〈
𝜕𝒗𝑖
𝜕𝑡
〉 =∑

𝑚𝑗

𝜌𝑗
(𝒗𝑗 − 𝒗𝑖)(𝒗𝑅 ∙ ∇𝑊𝑖𝑗) −

𝑛𝑝

𝑗

1

𝜌𝑖
∑(𝛔𝑖 + 𝛔𝑗)∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 

 (3.9) 

The SPH momentum equation is known to perform better when mathematical 

manipulations are made during the derivation, which essentially involves multiplying the 

function by an arbitrary function and discretizing, which can be done in such a way that 

guarantees that Newton’s third law is met locally. Again, there is a lack of rigour involved 

in this approach as the discretization will depend upon the choice of test function.  

Morris [46] writes that the tensile instability is especially likely to occur when a form of the 

momentum equations is used that conserves momentum exactly, which again highlights 

that the role of conservation is not well understood. 

3.7 Comparison of FE and SPH 

It is useful to compare various aspects of the SPH method to the finite element method 

(FEM), although there are fundamental differences in the methods, the finite element 

method is generally considered well established and is the industry standard for many 

engineering applications. Several analogies can be made between problems that arise in 

SPH with those in FEM which have received attention in the past. This comparison can 

potentially provide potential solutions to SPH issues if adapted correctly. 
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The conventional finite element method is a grid based method of solving partial 

differential equations based on the weak formulation of the governing equations, the finite 

element method makes use of a shape function to interpolate between a set of discrete 

points, analogies can be made between the shape functions and the interpolating kernel 

used in the SPH method [56]: 

𝑁𝑗(𝑥) = 𝑊(𝑥 − 𝑥𝑗 , ℎ)
𝑚𝑗

𝜌𝑗
 

 3.10) 

Detailed texts on the finite element method are widely available and include [57] covering 

general topics related to the method and [58], [59] which specifically focus on the explicit 

method.  

Some issues that arise in the finite element include volumetric and shear locking, which are 

the terms used when the displacements calculated by FEM are much smaller than they 

should be, shear locking occurs when elements are subject to bending, and volumetric 

locking commonly occurs in incompressible problems. Locking will occur when elements 

are fully integrated, and can be dealt with by using under-integrated where the element is 

integrated using only a single point. However under integration in turn can produce 

hourglass modes which are spurious modes of deformation which produce zero strain 

energy. There is an analogy between hourglass modes in FEM and zero energy modes in 

SPH [14]. 

Hourglass modes can be treated in a number of ways, one possible treatment is through the 

use of mixed elements, allowing the element to be fully integrated without being subject to 

volumetric or shear locking. Mixed element method involves the independent interpolation 

of two or more field variables and is covered in depth in chapter 8 as well as in the 

literature [57] [59] [60]. 
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3.8 Summary of Chapter Three 

A literature review is presented on the issues that are currently outstanding in the SPH 

method, which require further research effort. Firstly the form of the SPH equations that is 

most often used in SPH implementations does not come from a rigorous derivation, 

meaning the underlying assumptions are not well understood. It is also not understood as 

to whether these underlying assumptions are related to the problems that occur with 

numerical stability. 
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4 Capability Study of the SPH method 

4.1 Introduction 

This chapter is presented in order to demonstrate the capability of the SPH method to 

solve the class of problems of particular interest as discussed in chapter one. Specifically 

these problems involve contact between a solid material and a fluid, which is achieved 

through the use of a coupled SPH-FE method where by solid structures are modelled using 

FEM and the fluid is modelled using SPH.  

4.2 Mixed Kernel Interpolations 

Referring to the structure of the SPH algorithm (see §2.3.1) we see that an SPH 

interpolation is performed at two instances, once on the velocity to update the density, and 

then again on the stress in the calculation of the acceleration. An initial study into the 

capability of the SPH method looks at whether using a combination of interpolating 

kernels can improve the solution. Three kernel functions are chosen, each interpolating 

function having its particular advantages, the functions are summarised in Table 3, where 

the value 𝑞 =
|𝑥|

ℎ
. 

Cubic Kernel (Figure 4-2) – This is the standard and most popular choice of kernel 

function, shown to provide good results in most instances. 

Then it is intuitive then to choose one kernel of higher order than the standard choice, and 

one of lower order, perhaps the most obvious choice here is: 

Quadratic Kernel  (Figure 4-1) – This kernel always has a positive second derivative 

which could be useful when dealing with stability criteria. 

Quintic (Wendland) Kernel (Figure 4-3) – Again this higher order kernel has shown 

improved accuracy in a number of cases. 
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Spline 

type 
𝑊(𝑟, ℎ) 

𝜕𝑊(𝑟, ℎ)

𝜕𝑟
 

𝛼𝐷 

2D 3D 

Quadratic 𝛼𝐷 [
3

16
𝑞2 −

3

4
𝑞 +

3

4
]    0 ≤ 𝑞 ≤ 2  𝛼𝐷 [

3

8
𝑞 −

3

4
]     0 ≤ 𝑞 ≤ 2 

2

𝜋ℎ2
 

5

4𝜋ℎ3
 

Cubic 𝛼𝐷

{
 
 

 
 1 −

3

2
𝑞2 +

3

4
𝑞3     0 ≤ 𝑞 ≤ 1

1

4
(2 − 𝑞)3               1 < 𝑞 ≤ 2

0                                         𝑞 > 2

 𝛼𝐷

{
 
 

 
 −3𝑞 +

9

4
𝑞2            0 ≤ 𝑞 ≤ 1

−3

4
(2 − 𝑞)2            1 < 𝑞 ≤ 2

0                                       𝑞 > 2

 
10

7𝜋ℎ2
 

1

𝜋ℎ3
 

Quintic 𝛼𝐷 (1 −
𝑞

2
)
4

(2𝑞 + 1)   0 ≤ 𝑞 ≤ 2 

𝛼𝐷 (−2(1 −
𝑞

2
)
3
(2𝑞 + 1) +

2 (1 −
𝑞

2
)
4

)    0 ≤ 𝑞 ≤ 2  

7

4𝜋ℎ2
 

21

16𝜋ℎ3
 

Table 3- Summary of Kernel functions and their Derivatives 

 

Figure 4-1 – Quadratic Spline and its derivatives 
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Figure 4-2 – Cubic Spline and its derivatives 

 

Figure 4-3 – Quintic Spline and its derivatives 

4.2.1 Mixed Velocity - Stress form 

When investigating the use of mixed interpolating kernels it makes sense to conduct some 

simple tests, which are straightforward in SPH, since the SPH interpolation takes place at 

two instances as described before, it is possible to try a different interpolating function at 

each stage, here the three SPH kernel are tested in various combinations using the Swegle 

test, introduced in chapter three 
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4.2.2 Results 

In this initial investigation no combination of interpolating kernels acts to remove the 

instability, so it therefore seems sensible to look towards other application of mixed kernels 

within the SPH method. 

 

Figure 4-4 – Mixed kernel types for the velocity and stress interpolations 

 

Figure 4-5 - Mixed kernel types for the velocity and stress interpolations (log scale) 
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4.3 Mixed Pressure - Stress 

The stress tensor can be split into a hydrostatic pressure term and a deviatoric stress term, 

or normal stresses and shear stresses in solid mechanics terms. it is possible to interpolate 

these parts separately and then combine them in order to update the particle positions. The 

justification for this comes from the fact that the stability relies on the second derivative of 

the interpolating kernel, it may therefore be possible to use a suitable interpolation for the 

pressure, causing the particle motion to remain physical, but to model the effect of the 

deviatoric stress differently. 

The hydrostatic part of the stress tensor can be written as  

[
−𝑃 0 0
0 −𝑃 0
0 0 −𝑃

] (4.1) 

Where 𝑃 is the hydrostatic pressure, i.e. the average of the three normal stresses: 

𝑃 = −𝜎𝐻𝑌𝐷 = −
𝜎11 + 𝜎22 + 𝜎33

3
 (4.2) 

The deviatoric stress is now what’s left after subtracting the hydrostatic stress: 

𝜎′ = 𝜎 − 𝜎𝐻𝑌𝐷 (4.3) 

So the three dimensional stress tensor can be written in two parts as: 

 

𝝈 = [

𝜎11 − 𝑃 𝜎12 𝜎13
𝜎21 𝜎22 − 𝑃 𝜎23
𝜎31 𝜎32 𝜎33 − 𝑃

] − [
𝑃 0 0
0 𝑃 0
0 0 𝑃

] (4.4) 

Which now means 

𝜎′ = ∇ ∙ 𝝈 = (∇ ∙ 𝝈′) + (∇ ∙ 𝑷) (4.5) 

Which can be then discretised in the usual way, ending up with: 
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〈
𝐷𝑣

𝐷𝑡
〉 = (∑−𝑚𝑗 (

𝜎𝑗
′

𝜌𝑗2
+
𝜎𝑗
′

𝜌𝑖2
)

𝑛𝑝

𝑗

𝛻𝑊𝑖𝑗
𝐷𝐸𝑉 −∑−𝑚𝑗 (

𝑃𝑗

𝜌𝑗2
+
𝑃𝑖
𝜌𝑖2
)

𝑛𝑝

𝑗

𝛻𝑊𝑖𝑗
𝐻𝑌𝐷) (4.6) 

Where in (4.6) a distinction has been made between the SPH kernel function in each case, 

showing that it would be possible to use a different kernel for each part, producing another 

form of mixed SPH method. 

4.3.1 Results 

The graph below shows various kernel variations for the deviatoric and hydrostatic parts of 

the stress tensor using the elastic impact problem introduced in chapter three, it clearly 

shows that any combination still results in an unstable solution. 

 

Figure 4-6 – Mixed kernel types for the deviatoric and hydrostatic parts of the stress tensor 

4.4 Vertical Impact of a Cylinder on Water 

4.4.1 Introduction 

This investigation focuses on the coupled FE-SPH method applied to the hydrodynamic 

impact of a long rigid cylinder on a large water pool as described in [61], the cylinder has a 

radius of 20.96cm and the impact velocity is a constant 7.38m/s. This has been modelled as 
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a 2D problem in SPH and the average pressure on the rigid cylinder is calculated and 

compared with that of the experiment. 

The geometry used in the simulations is shown Figure 4-7. 

 

 

Figure 4-7 Geometry of cylinder impact problem 

The rigid cylinder is constructed from shell elements and the water domain is created using 

SPH particles, three different particle spacing’s have been tested: 

Spacing (m) 
Particles across 

cylinder diameter 
Time taken to travel 

distance ∆𝑝 at 7.38m/s 

0.005 41 6.78E-04 

0.00375 55 5.08E-04 

0.0025 83 3.39E-04 

Table 1 - Relationship between particle spacing and diameter of the cylinder 

4.4.2 Results 

The average pressure is calculated by dividing the total force on the cylinder by the 

projected area of the cylinder and plotted against time, the time zero is defined as the time 

at which the cylinder has travelled a distance equal to that between the water and the 

closest point on the cylinder body, for the SPH results a pressure is detected before the 
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cylinder has reached the water, this is due to the contact being detected within a distance of 

twice the smoothing length. 

 

Figure 4-8 - Average pressure acting on the cylinder after impact at time zero 

 

4.4.3 Discussion 

The peak pressure is predicted accurately in all cases, suggesting that particle spacing does 

not affect the peak pressure acting on the cylinder to a large degree. The results show 

convergence as the particle spacing decreases, however the resolution required in order to 

match the experimental results is high, requiring over 80 particles across the diameter of 

the cylinder. The results of this investigation are promising and therefore the next step is to 

extend the problem to three dimensions. 
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4.5 Impact of a Spherical Body on Water 

4.5.1 Introduction 

In this study, the impact of the Orion space capsule on water is simplified and modelled as 

a complete sphere that hits the surface of the water. The time histories of accelerations are 

compared to those recorded in an explicit finite element simulation. See [62] The 

dimensions of the space capsule are shown below along with the dimensions of the sphere 

used in the SPH simulations. 

 

Figure 4-9- Dimensions of the Orion capsule, Source: [62] 

Centre of gravity location (m) Moment of inertia (kg/m2) 

X= -0.0652 Ixx= 19363.91  

Y= 3.404 Iyy= 23622.199 

Z= 0.0127 Izz= 20829.95 

Table 2. Inertial properties of the sphere 

The mass of the space capsule is 7348kg, which is the same mass used for the complete 

sphere, also the same properties are used for centre of gravity and moments of inertia as 

[62]above. 
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Figure 4-10 - FE-SPH Problem Setup for 3D Sphere Impact 

Referring to the 2d simulations, a particle distance equating to around 40 particles across 

the diameter of the cylinder was enough to properly predict the peak force acting on the 

surface. The same is assumed for the 3d case to begin with and the inter particle distance is 

chosen as 0.3125m. This is approximately equal to the size of each element on the surface 

of the sphere.  

4.5.2 Results 

The graph above shows the acceleration, in g’s for the finite element simulation as well as 

basic SPH and basic SPH with gravity applied to the water. The peak acceleration is not 

predicted accurately in the SPH simulation. 
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Figure 4-11 - Acceleration time history for sphere impact after impact at time zero 

 

Figure 4-12 Model of the SPH and FE Parts after initial Impact 

4.5.3 Discussion 

The promising results seen in the 2D experiments have not been reproduced in 3D and 

SPH does not provide a close match to the experiment. The reason for the poor accuracy is 

unknown and requires further investigation.  
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4.6 Underwater Blast Test 

4.6.1 Introduction 

The objective of this study is to demonstrate the capability of the coupled SPH-FE method 

to predict the structural response of a material subjected to loading from underwater blast, 

this requires the proper calculation of the high pressure gradients in the water as the blast 

propagates through the domain, and for contact forces to be properly resolved between the 

fluid and the plate, eventually this has potential to lead to more complex studies such as the 

modelling of composite sandwich panels subjected to blast [63]. Here we investigate the 

modelling of the explosive blast and how accurately the peak pressures can be 

approximated. An accurate prediction of the blast pressure and consequently the structural 

loads would allow the more complicated composite case to be considered. 

4.6.2 2D Simulations 

[64] gives the equation for peak pressure reached in an underwater explosion as a function 

of standoff distance and weight of the explosive charge, the equation is: 

𝑃 = 𝐾(
𝑊

1
3⁄

𝑅
)

𝛼

 (4.7) 

Where 𝑅 is the standoff distance is metres and 𝑊 is the weight of the explosive in kg. K 

and 𝛼 are constants determined by the type of explosive, for TNT they are 52.4 and 1.13 

respectively. 

The explosion in SPH is simulated without modelling the charge directly and instead a large 

amount of internal energy is concentrated in a small number of particles resulting in a blast 

wave. The material is water and a Gruneisen equation of state is used to handle the shock 

wave. According to [65] the total energy of detonation for TNT is 7.403 KJ/cc. This is 

equivalent to 7403 J/cc = 7.403E+09 J/m3. 

The SPH explosion is simulated in 2D using 9800 particles in a 0.15mx0.15m domain with 

symmetry planes surrounding the box, the explosive charge is in the bottom left corner, in 

the case where only an initial energy is specified, it is the same particles that are used. 
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Figure 4-13 - SPH problem setup for 2D underwater blast problem 

The SPH Results are shown in Figure 4-14, the pressure value comes from the pressure 

interpolated around a point, and choosing the maximum pressure that occurs up to a given 

time, so since we are dealing with shocks some accuracy might be lost through the 

interpolation. Figure 4-14shows the blast simulated without directly modelling the charge 

and a standoff distance of up to 15cm, initial internal energy is 5.9E+09 J/m3. 

4.6.3 2D Results 

 

Figure 4-14 - Peak pressures plotted against standoff distance and compared with theoretical results from 

[64] for varying number of particles across the width of the domain 

4.6.4 Discussion 

The peak pressures obtained in the 2D become more consistent with the theoretical results 

as the stand-off distance increases, this can be expected in this kind of simulation since the 

sharp rise in pressure immediately next to the blast location requires a much finer 
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resolution in order to resolve the peak pressure correctly, since the peak pressure are 

obtained through an SPH interpolation at the specific points, it is particularly difficult to 

capture the sharp gradient toward the peak. However this test does suggest that it is 

possible to predict peak pressures to a reasonable degree as long as the point of interest is 

not too close to the blast location. 

 

4.6.5 3D Simulations 

The problem is extended into 3 dimensions, the properties for the test are based on the 

experiment in [66], in which a steel plate is subjected to loading from underwater 

explosions and the central deflection of the steel plate is measured. The properties used to 

simulate the steel plate are given in table 4 

Density 7800 kg/m3 

Material model Kinematic/Isotropic Elastic 

Plastic 

Yield Stress 3.0E+08 

Youngs Modulus 2.1E+11 

Poissons ratio 0.3 

Tangent Modulus  1.0E+08 

Table 4 - Material Properties used in the Simulations 

To simulate the blast in 3D, a domain was created with dimensions 25cm x 30cm x 30cm. 

This is smaller than the real domain size used in the experiment. The standoff distance 

remains 15cm. The water is modelled using SPH particles and this time a plate of steel is 

modelled using FE shells. 

a) 150,000 SPH particles .7800 shell elements for the plate (spacing approx. 0.003m). 

b) The blast is modelled by assigning a higher internal energy to a cube of 8 SPH 

particles, 15 cm way from the surface of the plate. 

c) Gravity is applied to the water. 
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d) Contact between the plate and the water is via repulsive force. 

e) Thickness of the steel plate is 0.004m 

f) According to the experiment, the explosive used has an energy content of 1240 

kcal/kg. This equals 5,188,160 J/kg. [66] 

g) For this example the explosive quantity used is 0.005kg, therefore has an energy 

content of 25940.8 J. 

In the SPH simulation the energy was assigned for each of the 8 particles as additional 

particle information, an energy content of 3242.6 J for each particle. The complete model 

set-up is shown in figure 4-15, where half the domain is transparent to show the centre of 

the blast location, figure 4-16, shows a typical response of the steel plate after the blast 

loading. 

 

Figure 4-15 - Model Set-up for Underwater Blast, a Short Time after Detonation 
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Figure 4-16 - Deformation of Steel Plate after Blast Loading 

 

4.6.6 Results 

 

Figure 4-17 - The coupled problem, before (left) and after (right) deformation of the steel plate has 

occurred 
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The experiment provides the deformation at the centre of the plate caused by the blast, see 

Table 5. 

 

Explosive quantity (g) Central deflection (mm) 

5 12 

10 23 

15 27 

20 32 

30 42 

40 50 

50 58 

60 65 

70 72 

80 rupture 

Table 5 - Central Deflection of the Steel Plate for a Range of Explosive Quantities 

 

Figure 4-18 - Time history plot of the central deflection of the steel plate for various explosive quantities 
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Figure 4-19 – Approximate central deflection of the steel plate for various explosive quantities 

4.6.7 Discussion 

Figure 4-18 shows the time history plots of the central deflection of the plate, for various 

quantities of explosive, these central deflections are then plotted against the experimental 

result in figure 4-19. SPH tends to under predict the central deflection, which becomes 

more pronounced as the explosive quantity is increased, however the correct trend is seen 

and the results are encouraging. Further studies should look at a higher particle resolution 

in order to understand the convergence of the problem. 

 

4.7 Turbulence Modelling 

4.7.1 Introduction 

So far the current capability of the SPH method has been demonstrated in this chapter 

through a series of test problems, the remaining objectives require an in depth knowledge 

of both the SPH method and the implementation at Cranfield University (MCM), therefore 

the remainder of this chapter focuses on the development of a relevant improvement to 

the MCM code in order to achieve the level of understanding required to address the rest 

of the objectives discussed in chapter one. 

The implementation of a turbulence model is an obvious choice, having already been 

developed in SPH form but not currently part of the MCM code. Turbulence will always 
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come into the discussion of fluid motion and is considered a critical aspect of fluid 

modelling. Therefore it is considered that this project will provide an improvement to the 

code that may also be relevant for future applications. 

Various turbulence models have been successfully implemented with SPH with good 

results including Monaghan [6] who devised a turbulence model specifically for SPH. The 

success of the particular turbulence model depends largely on the type of problem. For 

free-surface flows, López, Marivela and Garrote [67] used the 𝑘 − 휀 model to simulate the 

hydraulic jump problem, achieving good results but at a computation time that is almost 

doubled compared to that of basic SPH. Violeau and Issa [7] used a number of one and 

two equation models including 𝑘 − 휀, explicit algebraic Reynolds stress model (EARSM) 

and LES. Again satisfactory results were achieved for the collapse of a water column, the 

author of [7] advises that the standard 𝑘 − 휀 is appropriate for practical environmental and 

industrial applications, however also states that it may be inappropriate for very complex 

free-surface flows. It is also stated that LES can be very computationally expensive when 

used with SPH. 

Another problem that has been investigated using the 𝑘 − 휀 turbulence model is that of the 

breaking wave [8] the results of which matched well with experimental data. 

The conclusions made by the above authors imply that the 𝑘 − 휀 turbulence model is the 

best choice of model to implement in the MCM program. The 𝑘 − 휀 model has been 

shown to perform well in free shear problems [68]where the pressure gradients are small, 

making it a good choice of turbulence model for the MCM code, given that SPH is 

particularly useful for modelling free surface flows.The 𝑘 − 휀 has been well validated with 

SPH and also produces good results in many practical applications as well as being fairly 

simplistic, although it would be sensible to take into account the conclusions made by 

Violeau and Issa [7] when considering very complex free surface flows where the 

distortions are very large. 

4.7.2  𝑘 − 휀  Model and RANS Equations 

This turbulence model is a “two equation” model, which means that two extra transport 

equations are introduced in order to represent the turbulent properties of the flow, which 

can then be used to close the RANS equations. In this case the new transported variables 
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are the turbulent kinetic energy k which determines the energy in the turbulence. The other 

quantity, 휀 determines the scale of the turbulence.  

For a turbulent flow, the RANS equations separate the average and the fluctuating parts of 

the flow quantity, e.g. v, by way of Reynolds decomposition: 

𝑣(𝒙, 𝒕) = �̅�(𝒙, 𝒕) + 𝑣′(𝒙, 𝑡) (4.8) 

Where �̅� represents the mean and the 𝑣′ represents the fluctuation and 𝒙 = (𝑥, 𝑦, 𝑧) 

Starting with the incompressible momentum equation, without any body-force term 

𝒗𝑡 + 𝒗 ∙ 𝛻𝒗 = −
1

𝜌
𝛻𝑃 + 𝑣∆𝒗 (4.9) 

Substituting the velocity and pressure quantities with the sum of mean and fluctuating parts 

as in (1) 

(�̅� + 𝒗′)𝑡 + (�̅� + 𝒗
′) ∙ 𝛻(�̅� + 𝒗′) = −

1

𝜌
𝛻(�̅� + 𝑷′) + 𝑣∆(�̅� + 𝒗′) 

 

(4.10) 

Expanding the dot product terms 

 

(�̅� + 𝒗′)𝑡 + �̅� ∙ 𝛻�̅� + �̅� ∙ 𝛻𝒗
′ + 𝒗′ ∙ 𝛻�̅� + 𝒗′ ∙ 𝛻𝒗′

= −
1

𝜌
𝛻(�̅� + 𝑷′) + 𝑣∆(�̅� + 𝒗′) 

(4.11) 

 

Then taking averages of all terms 

(�̅� + 𝒗′)𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + �̅� ∙ 𝛻�̅�̅̅ ̅̅ ̅̅ ̅̅ + �̅� ∙ 𝛻𝒗′̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝒗′ ∙ 𝛻�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝒗′ ∙ 𝛻𝒗′̅̅ ̅̅ ̅̅ ̅̅ ̅

= −𝛻(�̅� + 𝑷′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑣∆(�̅� + 𝒗′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
(4.12) 
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Then using the following relations: 

(�̅� + 𝒗′)𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (�̅�)̅̅̅̅̅ + 𝒗𝑡′̅̅ ̅̅  (4.13) 

 

(�̅�)̅̅̅̅̅̅̅̅̅̅ = �̅� (4.14) 

 

𝒗𝑡′̅̅ ̅̅ = 0 (4.15) 

 

�̅� ∙ 𝛻𝒗′̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 (4.16) 

 

𝒗′ ∙ 𝛻�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 (4.17) 

 

�̅� ∙ 𝛻�̅�̅̅ ̅̅ ̅̅ ̅̅ = �̅� ∙ 𝛻�̅� 

 

(4.18) 

The RANS momentum equation can finally be simplified to 

 

�̅�𝒕 + �̅� ∙ 𝛻�̅� = −
1

𝜌
𝛻�̅� + 𝑣∆�̅� − ∇𝒗′𝒗′̅̅ ̅̅ ̅ 

 

(4.19) 

Which also can be written as in Violeau and Issa, [7] as: 

 

𝐷�̅�

𝐷𝑡
= −

1

𝜌
𝛻�̅� + 𝑣∆�̅� +

1

𝜌
∇ ∙ (𝜌𝑹) 

 

(4.20) 
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where 𝜌 = density; t = time; u = velocity; P = pressure; g = gravitational acceleration; 𝜈= 

kinematic viscosity of laminar flow and 𝑹= Reynolds stress: 

𝑹 = (

𝒗1′𝒗1′̅̅ ̅̅ ̅̅ ̅̅ 𝒗1′𝒗2′̅̅ ̅̅ ̅̅ ̅̅ 𝒗1′𝒗3′̅̅ ̅̅ ̅̅ ̅̅

𝒗1′𝒗2′̅̅ ̅̅ ̅̅ ̅̅ 𝒗2′𝒗2′̅̅ ̅̅ ̅̅ ̅̅ 𝒗2′𝒗3′̅̅ ̅̅ ̅̅ ̅̅

𝒗1′𝒗3′̅̅ ̅̅ ̅̅ ̅̅ 𝒗2′𝒗3′̅̅ ̅̅ ̅̅ ̅̅ 𝒗3′𝒗3′̅̅ ̅̅ ̅̅ ̅̅
) 

 

(4.21) 

Assuming the Reynolds stress is modelled through the traditional Boussinesq eddy viscosity 

assumption. 

𝑅 =
2

3
𝑘𝑰 − 2𝜈𝑇𝑆 (4.22) 

Where R =
𝑣′𝑣′̅̅ ̅̅ ̅̅

2
 , S is the mean rate of strain and 𝜈𝑇 is the eddy viscosity. 

The relationship between turbulent viscosity, turbulent kinetic energy, 𝑘 and turbulent 

dissipation rate 휀, is established such that: 

𝜐𝑇 = 𝑐𝑑
𝑘2

휀
 (4.23) 

The rate of change of 𝑘 and 휀 is given by the following equations, governing the diffusion 

transport, and production of turbulent kinetic energy: 

𝐷𝑘

𝐷𝑡
= 𝑃 − 휀 + ∇ ∙ [(𝜈 +

𝜈𝑇
𝜎𝑘
) ∇k ] (4.24) 

 

𝐷휀

𝐷𝑡
= ∇ ∙ (

𝜈𝑇
𝜎𝜀
∇ε) + 𝑐1𝜀

휀

𝑘
𝑃𝑘 − 𝑐2𝜀

휀2

𝑘
  (4.25) 

 

𝑃𝑘 = 𝜈𝑇 [2 (
𝜕𝑢

𝜕𝑥
)
2

+ 2(
𝜕𝑣

𝜕𝑦
)
2

+ 2(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)
2

]  (4.26) 

Note that in (4.26), 𝑢 and 𝑣 now refer to the 𝑥 and 𝑦 components of the velocity vector. 
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4.7.3 SPH RANS Equations 

Again, following Violeau and Issa, [7], the SPH equation for momentum in RANS form 

can be written as: 

𝑑�̅�𝑎
𝑑𝑡

= −∑𝑚𝑏

𝑏

(
�̅�𝑎
𝜌𝑎2
+
�̅�𝑏

𝜌𝑏
2 −

𝜇𝑇𝑜𝑡𝑎𝑙,𝑎 + 𝜇𝑇𝑜𝑡𝑎𝑙,𝑏
𝜌𝑎𝜌𝑏

�̅�𝑎𝑏

𝑟𝑎𝑏
2 𝒓𝑎𝑏 ∙) ∇𝑎𝑊𝑎𝑏 (4.27) 

Where; 

𝜇𝑇𝑜𝑡𝑎𝑙,𝑎 = 𝜌𝑎(𝜐𝑎 + 𝜐𝑇,𝑎) 

𝜇𝑇,𝑎 = 𝜌𝑎𝐶𝜇
𝑘𝑎
2

휀𝑎
 

𝑃 = −𝑹:𝑺 = −𝑅𝑖𝑗𝑆𝑖𝑗 

𝑃 = 𝜐𝑇𝑆
2 

𝑆 = √2𝑺: 𝑺 

𝑆 being the scalar mean rate of strain. 

The Reynolds averaged pressure, �̅� can still be estimated from the usual equation of state. 

But k and 휀 will need to be calculated at each time step: 

𝑑𝑘𝑎
𝑑𝑡

= 𝑃𝑎 − 휀𝑎 −∑𝑚𝑏

𝑏

𝜇𝑘,𝑎 + 𝜇𝑘,𝑏
𝜌𝑎𝜌𝑏

𝑘𝑎𝑏

𝑟𝑎𝑏
2 𝒓𝑎𝑏 ∙ ∇𝑎𝑊𝑎𝑏 (4.28) 

 

𝑑휀𝑎
𝑑𝑡

=
휀𝑎
𝑘𝑎
(𝐶𝜀,1𝑃𝑎 − 𝐶𝜀,2휀𝑎) +∑𝑚𝑏

𝑏

𝜇𝜀,𝑎 + 𝜇𝜀,𝑏
𝜌𝑎𝜌𝑏

휀𝑎𝑏

𝑟𝑎𝑏
2 𝒓𝑎𝑏 ∙ ∇𝑎𝑊𝑎𝑏 

 

(4.29) 

Where;  
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𝜇𝑘,𝑎 = 𝜇𝑎 +
𝜇𝑇,𝑎
𝜎𝑘

 (4.30) 

 

𝜇𝜀,𝑎 = 𝜇𝑎 +
𝜇𝑇,𝑎
𝜎𝜀

 (4.31) 

And 𝐶𝜀,1, 𝐶𝜀,2, 𝐶𝜇, 𝜎𝜀 , 𝜎𝑘 are constants and 𝜇𝑎 is the dynamic viscosity. 
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4.7.4 Implementation 

The main changes to the procedure will be in the momentum equation, viscosity terms are 

evaluated between particles, for example averaged flow quantity �̅�𝑎𝑏 therefore changes will 

be made to the momentum equation. 

Also only moving fluid particles will be considered capable of becoming turbulent, other 

particles will be evaluated in the normal way (basic SPH). 
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4.7.5 Verification 

The aim here is to verify that the implementation of the turbulence model, this means that 

we must show with high confidence that the model is built properly is accordance with the 

mathematical specifications. Note that the concern is not yet to validate the model, i.e. to 

show that physically meaningful results are achievable. 

The verification procedure should normally involve a thorough debugging of the code, 

some investigations performed in order to make this process easier involve comparison of 

some of the turbulent quantities with those from other accurate methods. Therefore it 

becomes easier to see where errors in the implementation are present. Some of these tests 

are presented below. 

The test case used is that of a 2D dam-break problem, which involves a column of water 

which is suddenly released or exposed to gravity, the problem involves a complex free 

surface flow involving wave breaking and highly turbulent flow. The problem is well 

studied both experimentally and with CFD, a schematic of the problem is shown below. 

Other test problems have been used to validate and verify turbulence models such as the 

hydraulic jump problem with results widely available in literature [69], [70], [71]however 

many such problems require inflow or periodic boundary conditions which at the time of 

writing this thesis were not available in the MCM code. The dam break problem was 

chosen as an alternative test case which exhibits similar free shear flow, which as discussed 

in §4.7.1 provides a problem well suited to the 𝑘 − 휀 model. 

To model this problem in SPH, symmetry planes are used to model the solid walls and the 

water column is made up of 10,000 SPH particles with a smoothing length of 1.3 times the 

particle distance, the density of the water is assumed to be 1000kg/m3. The Murnagan 

equation of state is used [72] and the fluid is considered weakly compressible. 
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Figure 4-20 - 2D Dam-break setup 

 

Figure 4-21 -Position of the wave front for different initial conditions for turbulent kinetic energy – k 

A simple comparison of the effect that the initial conditions have on the speed at which the 

column of water collapses can be seen in Figure 4-21. If the initial value of turbulent kinetic 

energy is increased, then this has the effect of slowing the progression of the water, the 

measurement here is taken at the position of the maximum horizontal displacement of the 

wave, i.e. the position of the dotted line in Figure 4-22. The effect of the turbulence model 

on the free surface can be seen in Figure 4-24. 
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Figure 4-22 Schematic showing the position of the wave front for the dam break test case 

Although the initial values for k are not necessarily providing physically meaningful results, 

the test is only to see the effect on the simulation, however this effect can be interpreted as 

follows; the turbulent viscosity is directly dependant on the value of k. Therefore a higher 

turbulent viscosity will slow the flow down, mimicking the effect of a higher viscosity close 

to the wall. 

This first simple test shows that the turbulence model is having the correct effect on the 

flow, however we wish to further increase confidence in the mathematical soundness of the 

implementation. Next an investigation was carried out which compared the turbulent 

values directly with those from an alternative method, namely volume of fluid. This 

method is considered to be accurate when used for a transient fluid problem. Therefore if 

the turbulence model in the SPH code can be seen to produce the same effect, then we can 

be sure that the implementation is correct. 

The dam-break problem was solved using the volume of fluid method in Fluent, the 

dimensions of the domain were the same as in the SPH model, The Fluent model is 

assumed to provide a realistic solution to the dambreak problem. Similar problems have 

been modelled in Fluent and validated, including using the volume of fluid method coupled 

with the k epsilon turbulence model [73]. 

First, however it is important to understand the differences between the two methods in 

order to know whether it would be reasonable to expect identical results. The most 

fundamental difference between the two methods is that the volume of fluid method 

(VOF) belongs to the class of Eulerian method characterised by a fixed grid. SPH however 

x 

y 
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as discussed in previous section is a mesh-less method, therefore to compare the two 

methods is difficult, in particular it is difficult to identify a particular point. 

With this being said, although it may be unreasonable to expect identical results, the trend 

at least should be similar, this way we can see if the turbulence model is acting as it should. 

We can expect turbulent kinetic energy to be dissipated slowly as the flow slows down after 

the initial effect of the dam breaking, also a sharp increase should be seen after the fluids 

impact with the wall. 

 

Figure 4-23 - Comparison of SPH and Volume of Fluid method, time history of turbulent kinetic energy at 

a fixed point in the domain 

Figure 4-23 shows a comparison between an SPH simulation and a solution obtained using 

the volume of fluid method in Fluent, in this test a point was chosen just above the floor at 

y = 0.1 in the centre of the box (x=2) here the values for turbulent kinetic energy were 

tracked through time. The aim here is to make a quantitative verification of the turbulence 

model, however it is important to note the difficulties in making such a comparison 

between two different methods. 

The main problems lie in choosing the same point for the interpolation in both types of 

simulation, the VOF method taking an Eulerian approach and SPH, Lagrangian. Also since 
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the flow would be slightly different in each simulation is it impossible to say that we are 

tracking the same point of the flow. 

Nevertheless, despite these issues it is encouraging to see that the slope of the SPH 

approximations fit to a reasonable extent with that of the VOF results. The SPH results to 

exhibit a lot of noise (which is expected in SPH simulations) and greatly overestimate the 

peak in kinetic energy seen at around 2.1 seconds, although overall it can be seen that the 

two simulations behave in roughly the same manner. 

One important point to note when analysing these results is the noisiness that can be seen 

in the SPH solution, in particular the spike in turbulent kinetic energy at around 2 seconds, 

this could potentially be caused by interpolation errors at the particular point that was 

measured, which could potentially be large due to the highly non-uniform particle 

distribution at this point in the calculated due to the violent crashing of the wave after 

impact with the wall. This ‘noise’ is something that is typical in SPH solutions and the 

turbulence model is not the cause, possible fixes such as XSPH can be used to smooth the 

solution if necessary. 

A qualitative comparison is shown in Figure 4-24 and Error! Reference source not 

found. which shows significant breakup of the particles in the conventional SPH case. The 

similarities between the VOF model and the k − ε  SPH model are clear, and confirm that 

the addition of the turbulence model to the SPH code does produce improved results. 
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Figure 4-24 – Effect of turbulence on the dam-break problem, Basic SPH vs. 𝑘 − 휀 SPH 
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Figure 4-25 Effect of turbulence on the dam-break problem, VOF (Fluent)  vs. 𝑘 − 휀 SPH 
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4.7.6 Discussion 

An important and relevant improvement is implemented in an SPH framework, serving to 

build an in depth knowledge of the SPH method and the MCM code. The turbulence 

model is implemented and tested for the dam-break problem, providing results that are 

consistent with the presence of turbulence, the model is verified against results from 

FLUENT using the volume of fluid method, showing the same trends in the magnitude of 

the turbulent kinetic energy, although the SPH results show much more noise, which is 

expected from the method and is not due to the turbulence model. 

4.8 Summary of Chapter Four 

The current capability of the SPH method as a solution to engineering problems has been 

demonstrated in a number of test cases which show how the SPH method can be coupled 

with FEM for a full fluid structure interaction solver. Furthermore, a relevant improvement 

to the MCM code has been implemented and tested allowing wider class of problem to be 

investigated. 
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5 Modelling Lateral Contact Forces in SPH 

5.1 Introduction 

Real world problems in engineering will more often than not involve the interaction 

between two or more different materials or objects, this could be a solid material 

interacting with a fluid such as a pipe flow scenario, or two solid materials interacting such 

as in metal forging or machining. It is clear therefore that the ability to model the forces 

that develop between different materials is an important part of any engineering analysis 

code. 

Previous work at Cranfield University [74] [15] [75] led to the development of a contact 

algorithm which resolves the forces between two SPH materials, this SPH-SPH contact 

algorithm is fundamental to the coupled approach which allows contact forces to be 

resolved between FE and SPH materials, by allowing the SPH particle to interact with all 

the FE nodes in its support radius, meaning the SPH particle spacing can be larger than the 

FE spacing between nodes, which is not the case for previous contact algorithms using 

surface to surface type contact. 

The SPH-SPH contact algorithm as it stands only calculates the normal force between two 

bodies and does not account for lateral forces, some lateral forces do develop since the 

algorithm is dependent on the relative particle spacing of the two surfaces, this erroneous 

force should tend to zero as the spacing is refined. 

The calculation of lateral forces between materials allows for a wider class of problem to be 

solved, for example high speed fluid flow produces shear forces against the wall, and strong 

frictional forces develop in machining applications. 

The question is raised as to whether the contact algorithm currently implemented in MCM 

[15], is also suitable for resolving lateral forces between materials based on their relative 

velocities and coupling with a FE structural model. The development of a contact 

algorithm for the modelling of friction forces is identified as an appropriate method for 

answering this question. 
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5.2 A Penalty Stiffness Contact Algorithm 

SPH is commonly coupled with FEM to allow reaction forces to be resolved between fluid 

and structure. [76], [77] and has been applied to problems such as high velocity impact [78] 

[79], as well as bird-strike [80]  and aircraft ditching [81]. The foundation for the contact 

algorithm developed at Cranfield university [82], comes from first resolving contact 

between two SPH bodies [74] [15] [83]. In this work a penalty stiffness approach (in which 

contact is represented by linear springs between particles. Therefore stiffness here is 

referring to spring stiffness) is modified [15] to allow for friction forces, which to date is 

not found in any of the literature. The method remains the same in the calculation of 

interpenetration and of the normal contact force between two surfaces, once the contact 

force is calculated it is then rotation into the tangential plane and scaled according to a 

friction force algorithm. In this work the method is verified in 2D and then used to 

investigate a more complex and challenging 3D problem on steel forging. 

.  

Figure 5-1 - Contact forces between two SPH bodies 

Contact between two bodies in SPH has received significant attention in recent years and 

was first addressed properly through the use of a penalty force to enforce contact 

conditions between materials [74] [75] , Figure 5-1. This formulation worked in 1D and 

2D, although zero energy modes were often excited during impact. Later by the same 

authors, a frictionless contact algorithm was developed [15], whereby contact was imposed 

through the use of a contact potential when detected. 

The latter approach is based on the repulsive force developed by Monaghan [84] and is the 

method used throughout this chapter for materials in contact; for a full derivation of the 
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contact force see [85]. The fact that a body force can be described as the gradient of a 

potential [86] is the basis for this type of contact force and is applied in the same way. 

5.3 A Friction - Contact Algorithm 

This contact force has successful been applied in SPH but at present does not account for 

frictional forces between materials. The direction of the friction force is defined as the 

being on the plane normal to the resultant contact force vector, and in a direction opposite 

from the relative velocity of the two materials. 

The direction of the frictional force can be calculated as follows given the resultant contact 

force vector and a vector of relative velocity 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 and 𝑣𝐴𝐵 . The direction of friction is 

found by taking the projection of the relative velocity onto the plane that is orthogonal to 

the contact force (see Figure 5-2). This can be done by removing the part of the velocity 

vector that is orthogonal to the plane.  

The orthogonal vector to the plane is simply  𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 which is known, the component of 

𝑣𝐴𝐵 which lies in the direction of 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is 

𝑓𝑐(𝑓𝑐 ∙ 𝑣𝐴𝐵)

‖𝑓𝑐‖
 

(5.1) 

This can then be subtracted from 𝑣𝐴𝐵 to give the direction of the frictional force 

𝑣𝐴𝐵 −
𝑓𝑐(𝑓𝑐 ∙ 𝑣𝐴𝐵)

‖𝑓𝑐‖
 

(5.2) 

This can be rearranged slightly to give a more convenient form, which is called the triple 

cross product 

𝑣𝐴𝐵‖𝑓𝑐‖ − 𝑓𝑐(𝑓𝑐 ∙ 𝑣𝐴𝐵) = 𝑣𝐴𝐵(𝑓𝑐 ∙ 𝑓𝑐) − 𝑓𝑐(𝑓𝑐 ∙ 𝑣𝐴𝐵) = 𝑓𝑐 × (𝑓𝑐 × 𝑣𝐴𝐵) (5.3) 
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Figure 5-2 Plane tangential to normal contact force between two SPH bodies 

The calculation to find the direction of the tangential force, i.e. orthogonal to the normal 

force and opposite to the direction of relative motion of the two bodies, is: 

𝑓
𝑐
× (𝑓

𝑐
× 𝑣𝑟)

‖𝑣𝑟‖
=
𝑓
𝑐
(𝑓

𝑐
∙ 𝑣𝑟) − 𝑣𝑟(𝑓𝑐 ∙ 𝑓𝑐)

‖𝑣𝑟‖
 (5.4) 

Where 𝑓
𝑐
 is the normal force and 𝑣𝑟 is the relative velocity vector, and ‖𝑣𝑟‖ is the magnitude 

of the relative velocity vector. 

5.4 Implementation 

The use of friction models in solid mechanics is well understood and a number of friction 

models have been developed with varying complexity, many FEM friction models are 

based on the Coulomb formulation. 

A friction model must have the capability to resolve friction forces of two bodies in relative 

motion as well as when there is no relative motion, therefore two coefficients of friction 

are defined; 

The static coefficient of friction – The coefficient of friction at rest, governing the force 

required for relative motion to occur. 

The coefficient of kinetic friction – governs the force generated between two bodies in 

relative motion. 

In practice the coefficient of friction at rest is often higher than that of kinetic friction; 

however for simplicity the same value is used in both cases in the SPH model, choosing the 
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same parameters in the LS-DYNA models ensures consistency between the problems 

being tested. 

This method is adopted from the LS-DYNA approach, it prevents a frictional force being 

applied that would cause the body to begin moving when it should remain still due to static 

friction. 

5.4.1 LS-DYNA Friction Model 

As stated above the LS-DYNA friction model is based on a Coulomb formulation, which 

is well understood and used widely in numerical codes, it will therefore form a basis for the 

SPH model and allow tests to be run against FE models to compare the way in which the 

models work. 

The LS-DYNA friction model is described by the following steps: 

1. Firstly the yield force is calculated  

𝐹𝑦 = 𝜇|𝑓𝑛| 

Where 𝐹𝑦 is the yield force, 𝜇 is the coefficient of friction and 𝑓𝑛 is the normal contact 

force, the physical meaning of this is the maximum force that can develop between the 

two surfaces before slippage occurs. 

2. Next the incremental movement of the slave node is calculated. 

∆𝑒 = 𝑟𝑛+1(𝜉𝑐
𝑛+1, 𝜂𝑐

𝑛+1) − 𝑟𝑛+1(𝜉𝑐
𝑛, 𝜂𝑐

𝑛) 

3. Where ∆𝑒 is the incremental movement, (𝜉𝑐 , 𝜂𝑐 ) are the coordinates of the slave 

node at the contact point at time 𝑛 or 𝑛 + 1 and 𝑟 is the displacement. 

4. The trial force is then updated 

𝑓∗ = 𝑓𝑛 − 𝑘Δ𝑒 

Where 𝑘 is the interface stiffness, the term 𝑘Δ𝑒 is the force required to produce the 

incremental movement Δ𝑒, therefore 𝑓∗ now represents the force required to bring the 

relative movement to rest over a single time-step. 

5. The friction force is then updated for the next time-step 

 

𝑓𝑛+1 = 𝑓∗ if |𝑓∗| ≤ 𝐹𝑦 
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𝑓𝑛+1 =
𝐹𝑦𝑓

∗

|𝑓∗|
 if |𝑓∗| > 𝐹𝑦 

 

This step prevents slippage occurring in the wrong direction, and accounts for the 

frictional forces which occur when the objects are at rest. 

5.4.2 SPH Implementation 

The SPH implementation follows the same methodology, and is equivalent to the LS-

DYNA model, since the mass is assumed to be constant the acceleration is used rather 

than the force, this then allows the acceleration to be updated after the contribution from 

the normal force has been applied. The only other difference is in step 2, which replaces 

steps 2 and 3 in the LS-DYNA implementation, but has the same physical meaning. 

1. Calculate the yield force 

𝐴𝑦 = 𝜇|𝑎𝑛| 

 

2. The trial force is calculated, the relative velocity in the direction of slippage (i.e. 

perpendicular to the normal force and in the direction of the frictional force) is 

represented by the term 𝑣𝑟 ∙ 𝑎
𝑛 

 

Dividing this term by the time-step results in the acceleration that will bring the 

relative motion to zero over that time-step. 

𝑎∗ =
𝑣𝑟 ∙ 𝑎

𝑛

∆𝑡
 

 

3. The friction force is then updated for the next time-step 

𝑎𝑛+1 = 𝑎∗ if |𝑎∗| ≤ 𝐴𝑦 

𝑎𝑛+1 =
𝐴𝑦𝑎

∗

|𝑎∗|
 if |𝑎∗| > 𝐴𝑦𝑎

𝑛+1 =
𝐴𝑦𝑎

∗

|𝑎∗|
 if |𝑎∗| > 𝐴𝑦 

 

5.5 Numerical Results 

To test the friction model the total Lagrange formulation is chosen for the SPH solver, the 

total Lagrange formulation is discussed in chapter three. This choice reduces uncertainties 
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in the SPH results, since the method is stable and well understood, see the discussion on 

stability of the Eulerian method in chapter three. Therefore conclusions can be made 

purely on the validity of the friction model and whether it correctly mimics the behaviour 

of the LS-DYNA implementation. 

Two test cases are identified; the first is a 2D example which demonstrates how the friction 

model works for two bodies at rest, in the transition to relative motion. 

The second case is a 3D metal forging problem, which is a complex real world problem in 

which strong frictional forces develop between the machining tools and a metal billet. 

5.5.1 2D Block Sliding on an Flat Plane 

To test the friction model, a simple problem in 2D is modelled and compared against an 

analytical solution. A block is placed at rest on a flat plane, which is then inclined gradually 

over time. This is a suitable problem to examine the transition between the frictional forces 

produced between the two bodies at rest and in relative motion, since the block remains at 

rest until the incline on the plane reaches a critical angle at which time the block begins to 

slide. The velocity of the block can be recorded and compared with the analytical solution 

For a block starting at rest on a flat plate which is inclined from 0 to 45 degrees over a 

period of one second. For friction coefficients ranging from 0 (frictionless) to 1, the 

analytical functions for displacement, velocity and acceleration are plotted in Figure 5-4 - 

Figure 5-6. The dotted line indicates the angle at which the block begins to slide. The same 

coefficient of friction is used for both the static and the dynamic regimes. The schematic is 

shown in Figure 5-3 
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Figure 5-3 - Sliding block on an inclined plane 

 

The angle of the incline changes linearly with time, the normal component of the 

acceleration can be expressed as in (5.5), noting than a linear increase in the angle does not 

equate to a linear acceleration. 

9.81 ∙ 𝑐𝑜𝑠(𝜃(𝑡)) − 9.81 ∙ 𝜇 ∙ 𝑐𝑜𝑠(𝜃(𝑡)) (5.5) 

The velocity at a particular angle of inclination can then be written directly by integrating 

the expression for acceleration between an angle of zero and the angle of interest. 

∫ [9.81 ∙ 𝑐𝑜𝑠(𝜃(𝑡)) − 9.81 ∙ 𝜇 ∙ 𝑐𝑜𝑠(𝜃(𝑡))]
𝜃0

0

𝑑𝜃

= (−9.81 ∙ 𝑠𝑖𝑛(𝜃(𝑡)) + 9.81 ∙ 𝜇 ∙ 𝑠𝑖𝑛(𝜃(𝑡)) + 𝐶)|
0

𝜃0

= (−9.81 ∙ 𝑠𝑖𝑛(𝜃(𝑡)) + 9.81 ∙ 𝜇 ∙ 𝑠𝑖𝑛(𝜃(𝑡))) 

(5.6) 

  

The angle of friction at rest (i.e. the angle which when exceeded, causes the block to slip 

and relative motion to develop between the block and the plate) can be found by equating 

the normal force and the frictional force:  
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9.81 ∙ 𝑐𝑜𝑠(𝜃(𝑡)) = 9.81 ∙ 𝜇 ∙ 𝑠𝑖𝑛(𝜃(𝑡)) (5.7) 

𝑡𝑎𝑛−1(𝜇) = 𝜃𝑠 (5.8) 

Which shows the angle at rest is only dependant on the coefficient of friction. 

This shows that for a friction coefficient of one the angle of friction at rest is 45 degrees 

and hence the line remains flat in Figure 5-4 to Figure 5-6. 

 

Figure 5-4 – Analytic result for displacement vs. time for a range of friction co-efficients, slippage angle 

shown as dotted line 

 

Figure 5-5 - Analytic result for velocity vs. time for a range of friction co-efficients, slippage angle shown 

as dotted line 
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Figure 5-6 - Analytic result for acceleration vs. time for a range of friction co-efficients, slippage angle 

shown as dotted line 

5.5.2  Results 

The slipping block is performed in SPH with the block and the plate defined as the 

separate materials, the block is essentially rigid. The numerical model is made up of a flat 

plate and a smaller block, the block and plate are both made up of SPH particles and use 

the same particle spacing. The tilting of the plate is simulated by applying a body force to 

the block which changes over time; displacement boundary conditions are applied to the 

plate to prevent any movement. The thickness of the plate is made up of three rows of 

SPH particles which ensure that the neighbourhood of contact particles is full; therefore 

the thickness of the plate varies with particle spacing. The test properties are described in 

table 6 the material properties are identical for the block and the plate. 
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Density 7800 kg/m3 

Particle spacing 0.005m, 0.0025m, 0.00125m, 

0.000625m 

Smoothing length  0.00650m, 0.00325m, 

0.001625m, 0.0008125m 

Youngs Modulus 2.1E+11 

Poissons ratio 0.3 

Length of Plate  0.5m 

Formulation Total Lagrange 

Table 6 - Properties for the Numerical Tests for Friction 

A load curve is applied to the block which mimics the tilting of the plate from flat to 45 

degrees over the period of 1 seconds, the acceleration in the horizontal and vertical 

direction is shown in  figure 5-7 and figure 5-8. 

 

Figure 5-7 Load Curve for Horizontal Component of Acceleration 
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Figure 5-8 Load curve for Vertical Component of Acceleration 

The most straightforward comparison can be made by comparing the velocity of the block 

to the analytical solution. The velocity is calculated from the total momentum of all 

particles that make up the block. The time at which slippage should occur is displayed as a 

dotted line in the figure 5-10 to figure 5-13. 

 

Figure 5-9 – SPH vs. Analytical velocity for various particle spacings for 𝜇 = 0 
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Figure 5-10 - SPH vs. Analytical velocity for various particle spacings for 𝜇 = 0.2 

 

Figure 5-11 - SPH vs. Analytical velocity for various particle spacings for 𝜇 = 0.4 

 

Figure 5-12 - SPH vs. Analytical velocity for various particle spacings for 𝜇 = 0.6 
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Figure 5-13 - SPH vs. Analytical velocity for various particle spacings for 𝜇 = 0.8 

 

 

Figure 5-14 - SPH vs. Analytical velocity for various particle spacings for 𝜇 = 1.0 

The is a small degree of slippage when the block should remain at rest, for context, the 𝜇 =

1.0 case should not slip at all but moves by about 1cm over the one second period. This 

indicates that an improved model for the initial stick could be developed, however this is 

left for further work as the main interest is for friction occurring when bodies are in 

relative motion. 

Also, the velocity begins to fluctuate as the particle spacing is refined, this appears to be 

because the block begins to tilt forward more in the refined cases resulting in some motion 

in the normal direction which then corrects itself producing a ‘bouncing’ effect, see  Figure 

5-15 to Figure 5-17. 
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Figure 5-15 Contact between the sliding block and plate at time t=0.7 

 

Figure 5-16 Contact between the sliding block and plate at time t=0.8 

 

Figure 5-17 Contact between the sliding block and plate at time t=0.9 

 

5.5.3 3D Metal Forging 

The forging problem has been identified as a test problem since it allows the friction model 

to be tested independently of other model features since the barrelling effect (shown in 

Figure 5-18) that is described in this section occurs as a direct consequence of the frictional 

forces that develop between the machining parts and the cylindrical billet. 

Forging is a manufacturing process involving the shaping of metal using localised 

compressive forces. From a computational standpoint this is complex problem involving a 

number of challenges, large deformations occur as the metal is compressed, and heat 

transfer and friction become significant factors governing the success of the computation. 

In this work the goal is to investigate the suitability of the SPH friction algorithm for such 

problems. More detail on the forging process and simulation can be found in [87]. The 

particular problem of interest here is the upsetting of a steel billet. 
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Figure 5-18 – Schematic for 3D metal forging problem 

As the cylinder is compressed a barrelling effect is observed, which is caused by frictional 

forces at the contact surfaces. The greater the friction, the more barrelling is seen, a 

perfectly frictionless surface would allow the cylinder to maintain a uniform diameter 

throughout the forging process. 
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Material properties 

Density 7800 kg/m3 

Young’s Modulus 2.1E+11 Pa 

Poissons Ratio 0.3 

Yield Stress 2.5E+08 Pa 

Tangent Modulus 2.1E+10 

Material Type Kinematic/Isotropic Elastic Plastic 

Table 7 – Material properties for steel used in the simulation 

SPH Properties 

Particles 6680 (Quarter of the cylinder) 

Smoothing Length 0.005m 

Formulation Total Lagrange 

Table 8 – SPH options used for the 3D forging simulation 

 

The material properties selected are typical of steel, although a large variety of metals can 

be used in forging and machining, the materials in this case are considered to be 

representative of the type of materials used. The real world problem will generally involve 

heat transfer as well as deformation of the materials, for simplicity only elastic / plastic 

deformation is considered, the main reason for this being that the interest of in the testing 

of the friction model, so it is desirable to introduce as few uncertainties as possible into the 

testing procedure. 

5.5.4  Results 

The deformation of the cylinder is measured at specific points relating to the reduction in 

the height of the cylinder, the mid radius and the top radius are measured, which is 

consistent with analysis of metal forging problems. The total forging force is plotted along 
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with a percentage difference between that forging force with friction and that without 

friction, the rationale being that the forging force grows so rapidly that observing the 

forging force alone does not demonstrate the differences between the SPH and FEM 

results properly. 

Also the force required to deform the cylinder is recorded and compared to the same force 

that would be required if friction was not present, this method shows the direct 

consequence of friction in the forging process with regards to the extra force that is 

required, in real world terms this is important since the limits of the machinery as well as 

lubrication methods must be well understood. The forging force is also plotted directly for 

the SPH and FEM models, although because the growth rate is so large more can be learnt 

from the plots of the force ratios, however these plots do provide an understanding of the 

magnitude of the forces involved, again this is important when assessing the limits of the 

machinery that is used. 
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Figure 5-19 – Height reduction vs. material deformation for 𝜇 = 0.0 
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Figure 5-20 - Height reduction vs. material deformation for 𝜇 = 0.1 
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Figure 5-21 - Height reduction vs. material deformation for 𝜇 = 0.2 
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Figure 5-22 - Height reduction vs. material deformation for 𝜇 = 0.3 
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Figure 5-23 - Height reduction vs. material deformation for 𝜇 = 0.4 
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Figure 5-24 - Height reduction vs. material deformation for 𝜇 = 0.5 
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Figure 5-25 - Height reduction vs. material deformation for 𝜇 = 0.6 
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Figure 5-26 – Ratio of forging force for 𝜇 = 0.1 to frictionless forging forc 

 

Figure 5-27 – Forging force for  𝜇 = 0.1 
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Figure 5-28 - Ratio of forging force for 𝜇 = 0.2 to frictionless forging force 

 

Figure 5-29 - Forging force for 𝜇 = 0.2 
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Figure 5-30 - Ratio of forging force for 𝜇 = 0.3 to frictionless forging force 

 

Figure 5-31 - Forging force for 𝜇 = 0.3 
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Figure 5-32Ratio of forging force for μ=0.4 to frictionless forging force 

 

Figure 5-33 - Forging force for 𝜇 = 0.4 
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Figure 5-34 - Ratio of forging force for 𝜇 = 0.5 to frictionless forging force 

 

Figure 5-35 - Forging force for 𝜇 = 0.5 
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Figure 5-36 - Ratio of forging force for 𝜇 = 0.6 to frictionless forging force 

 

Figure 5-37 - Forging force for 𝜇 = 0.6 
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Figure 5-38 – Ratio of top radius to barrelled mid radius for 𝜇 = 0.0 

 

 

Figure 5-39 - Ratio of top radius to initial top radius for 𝜇 = 0.0 
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Figure 5-40 - Ratio of top radius to barrelled mid radius for 𝜇 = 0.1 

 

Figure 5-41 - Ratio of top radius to initial top radius for 𝜇 = 0.1 
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Figure 5-42 - Ratio of top radius to barrelled mid radius for 𝜇 = 0.2 

 

Figure 5-43 - Ratio of top radius to initial top radius for 𝜇 = 0.2 
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Figure 5-44 - Ratio of top radius to barrelled mid radius for 𝜇 = 0.3 

 

Figure 5-45 - Ratio of top radius to initial top radius for 𝜇 = 0.3 
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Figure 5-46 - Ratio of top radius to barrelled mid radius for 𝜇 = 0.4 

 

Figure 5-47 - Ratio of top radius to initial top radius for 𝜇 = 0.4 
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Figure 5-48 - Ratio of top radius to barrelled mid radius for 𝜇 = 0.5 

 

Figure 5-49 - Ratio of top radius to initial top radius for 𝜇 = 0.5 
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Figure 5-50 - Ratio of top radius to barrelled mid radius for 𝜇 = 0.6 

 

Figure 5-51 - Ratio of top radius to initial top radius for 𝜇 = 0.6 
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5.6 Conclusions 

The test cases presented in this chapter clearly verify the contact friction algorithm that is 

implemented in an SPH framework. Analytical results in 2D can be matched with good 

accuracy. In 3D the forging example performs less well but the contribution of the friction 

algorithm is clearly seen. The differences are thought to be down to the numerical methods 

in question rather than solely down to differences in the modelling of friction. The tests 

would benefit from an analytical solution to compare to, some of which are available but 

often simplified in terms of the friction coefficient. 

This chapter completes the final part of the objective defined in chapter one, §1.4.1, 

resulting in a relevant and novel improvement to the SPH method which to date is not to 

be found in literature. The completion of this objective sets a strong foundation for further 

research concentrating on the remaining objectives. 
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6 Correcting for Loss of Mass Continuity 

6.1 Introduction 

The tensile instability as described in chapter three is essentially the manifestation of either 

an incorrect approximation of the acceleration via the momentum equation, or an incorrect 

approximation of density via the interpolation of the velocity gradient. These errors could 

in turn come from errors in other parts of the calculation such as the kinematic relations or 

the constitutive model. Therefore one type of solution is to make appropriate corrections 

to account for these errors, but the other more fundamental problem is to identify the 

original source of the error. This process of heuristic solutions is reviewed in chapter three. 

A key calculation in the SPH calculation is the approximation of density through the SPH 

continuity equation, this then feeds into other parts of the calculation such as the 

calculation of the pressure, the central difference algorithm used in the MCM code is 

described in chapter two. 

In this chapter a possible source of error is identified in the discrete form of the continuity 

equation, which when fixed will mimic the continuous form more closely. The objective of 

this chapter is to provide an investigation into the effect of this correction on the stability 

properties of the SPH method. 

The influence of conservative properties on the stability and convergence of a numerical 

scheme is investigated and builds on the review provided in chapter three, the correction 

method developed in this chapter has not yet been studied in and SPH framework.  

Figure 6-1 shows a common representation of the phasing of displacement, velocity and 

acceleration, which are said to be 90o out of phase with one another, in other words 

displacement is at a maximum or minimum when there is no velocity, and velocity is at a 

maximum when there is no acceleration. In SPH these field variables are calculated 

sequentially in the explicit central difference scheme, which is described step by step in 

chapter one. The acceleration is calculated by solving the momentum equation via SPH 

interpolation, the velocity is then updated, followed by the particle positions. Therefore the 

field variables are strongly linked, suggesting that error in the calculation of one of these 

field variables, left uncorrected, could lead to unstable growth. 
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Corrections to the method will often correct one of the three phases, for example 

Monaghan’s artificial stress [41] [42] is added to the momentum equation which corrects 

the approximation of the particle acceleration, this then will follow through to the velocity 

and displacement, the XSPH variant [84] effects the movement of the particle at the 

displacement phase but does not directly affect the velocity and acceleration. Conservative 

smoothing involves a smoothing of the velocity, density and internal energy fields [23] [44]. 

Clearly there are many instances in the calculation where attempts can be made to supress 

the instability, which as was discussed in chapter three, does not necessarily address the 

root cause of the problem. 

In this chapter, one potential source of error in the calculation is identified, leading towards 

a modified set of equations being developed, which is then tested against the benchmark 

test for tensile instability as was introduced in chapter three. 

As discussed in chapter three, the SPH form of the continuity equation does not conserve 

volume exactly. The calculation involves finding the gradient of the velocity field, related to 

the strain rate or rate of deformation. This means the error is in the velocity phase (strain is 

related to displacement and therefore strain rate is phased with the velocity). It has been 

identified that corrections can be made to account effect of this error. The stability 

properties of the correction can then be investigated.  

 

Figure 6-1 Phasing regime for acceleration, velocity, and acceleration, (source: [88]) 
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6.2 Density Approximation 

The governing equations (momentum and continuity) were stated in chapter two along 

with their discrete counterparts in SPH form. The continuity equation is typically used to 

approximate the density and evolve it in time. However the density can also be calculated 

directly, by simply performing a kernel weighted (SPH) average of the masses over the 

neighbouring particles. This method is widely used in SPH codes due to its simplicity and 

since this approximation preserves volume both locally and globally, however a drawback 

of this approach is that material discontinuities become overly smoothed [54], [89], so 

therefore although the SPH form of the continuity equation does not conserve volume 

exactly (mass is inherently conserved since it is assumed constant for each particle), it is 

often more desirable to use this form (see discussion in chapter three)  

Although the form of the momentum equation, as derived in §2.2.5, is well known to 

produce more accurate results than simpler forms, it has been understood that 

discretisation’s that conserve momentum exactly are more likely to exhibit instabilities [46]. 

This leads to a rationale for investigating improvements in this area, is it possible to 

maintain conservation properties but improve stability. Similarly, is it possible to do the 

same with mass continuity, can the desirable properties of the discrete continuity equation 

be maintained but without allowing conservation of mass to be violated. 

6.3 Additional Terms in the Momentum Equation 

In chapter two, the governing equations of mass continuity and momentum were derived 

in full, from these derivations a potential source of error is identified which is neglected in 

the conventional SPH equations. If the continuity equation is met exactly, then equation 

(2.19) also holds exactly, however if the opposite is true, then for momentum to be 

conserved an extra term must be added, in-fact the equation is now (2.27) or in terms of 

the material derivative: 

𝜌 (
𝐷𝑣

𝐷𝑡
) = ∇ ∙ 𝜎 − 𝑣 (

𝜕𝜌

𝜕𝑡
+ 𝜌(∇ ∙ 𝑣)) (6.1) 
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The equation above basically states that momentum must be corrected with the 

discrepancy in the mass calculation. Clearly the two terms, 
𝜕𝜌

𝜕𝑡
 and  𝜌(∇ ∙ 𝑣) as stated before 

are equal in continuous form but to make the correction in the SPH method this term must 

be implemented carefully in order to ensure that the discrete equations correctly mimic the 

continuous form. 

6.4 SPH Implementation 

The SPH implementation of the correction term outlined above will make use of both 

forms of density estimation, Summation form (6.3) and the continuity approximation (6.2), 

as well as a simple backward difference formula. 

〈
𝜕𝜌

𝜕𝑡
〉𝑖 = ∑(𝑣𝑗 − 𝑣𝑖)

𝑛𝑛𝑏𝑟

𝑗

∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗
 (6.2) 

 

〈𝜌〉𝑖 = ∑(𝑚𝑗)

𝑛𝑛𝑏𝑟

𝑗

𝑊𝑖𝑗 (6.3) 

 

𝜕〈𝜌〉𝑖
𝜕𝑡

=
〈𝜌〉𝑖

𝑛
− 〈𝜌〉𝑖

𝑛−1

∆𝑡
 

(6.4) 

 

With these definitions it is possible to re-write the SPH momentum equation to account 

for the extra terms 

〈
𝐷𝑣𝑖
𝐷𝑡
〉 =∑𝑚𝑗 (

𝜎𝑖

𝜌𝑖
2 +

𝜎𝑗

𝜌𝑗
2)∇𝑊𝑖𝑗 − 𝑣𝑖 (

𝜕〈𝜌𝑖〉

𝜕𝑡
+ 𝜌𝑖 〈

𝜕𝜌

𝜕𝑡
〉𝑖)

𝑛𝑝

𝑗

 (6.5) 

 

In (6.5) all variable are at time n, except for the density at n-1 which is contained within the 

backwards difference formula. 
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There are clearly many ways to account for this extra term, however this implementation is 

considered the most simple and straightforward to implement, noting that the backwards 

difference formula is inherently stable. 
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6.5 Numerical Results 

Two benchmark tests are used to test the SPH implementation of (6.5), the tests are 

described in chapter three, and identical parameters are used to achieve the results in this 

section. The Swegle test provides a basic test for stability and the second problem tests 

both stability and whether the correction to the continuity affects mechanical response. 

6.5.1 Swegle Test 

 

Figure 6-2 Swegle Test Case for Various Levels of Stress, Basic SPH vs. SPH with Continuity Correction 

6.5.2 2D Plane Strain Elastic Impact 

 

Figure 6-3 2D Plane Strain Problem, Elastic Impact at 2m/s 
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6.6 Conclusions 

A potential source of error was identified in the discrete continuity equation, which meant 

that the discrete SPH form does not correctly mimic the behaviours of the continuous 

form; a correction term was added to the momentum equation to account for this, whilst 

still allowing the SPH continuity equation to be used to evolve the density. A number of 

different implementations would be possible but only one is implemented and tested in the 

MCM code. The test cases show that the effect of the correction term is very small, for the 

Swegle test this is because the different forms of the density calculation give very similar 

results; however it clearly does have a small effect but not enough to significantly affect the 

growth rate of the instability. Similar results are seen with the 2D plane strain problem, the 

mechanical behaviour of the problem is not affected and only a small difference is 

observed in the kinetic energy. A possible reason for the effect of the correction term being 

so small is that the growth rate is related to the level of background stress in the problem 

[44], however the correction term is only a function of density and velocity.  

In summary, the objective defined in §1.4.2 has been completed, in which the question was 

raised as to whether stability is related to the properties of conservation and continuity, 

after the current study is completed the conclusion can be made that; for the selected test 

cases, and the specific choice of discrete equation implemented, there does not appear to 

be a significant improvement in the stability properties of the SPH method. 

  



 

118 

 

  



 

119 

 

7 Corrections on Interpolation Errors in SPH 

7.1 Introduction 

It is well understood that the conventional form of SPH suffers from issues regarding 

consistency and accuracy as discussed in chapter three; in particular the conventional SPH 

method cannot approximate the gradient of a constant non-zero field. Therefore it can be 

said that the discrete approximation of the governing equations does not properly mimic 

the properties of the continuous equations.  

〈
𝐷𝑣

𝐷𝑡
〉 = −∑𝑚𝑗 (

𝜎𝑗

𝜌𝑗2
+
𝜎𝑖
𝜌𝑖2
)

𝑛𝑝

𝑗

𝛻𝑊𝑖𝑗 
(7.1) 

The common form of the SPH momentum equation is shown again here (7.1) and for a 

derivation refer to chapter two. This form of the momentum equation is reliant of the 

approximation of the gradient of a constant field, which approximated correctly should 

always be zero. It is not understood properly why this form of the momentum equation 

often yields better results, for a full discussion see chapter three. 

Equation (7.1) includes the following term (7.2):  

∑(
𝜎𝑖
𝜌𝑖2
)

𝑛𝑝

𝑗

𝛻𝑊𝑖𝑗 = (
𝜎𝑖
𝜌𝑖2
)∑𝜙𝛻𝑊𝑖𝑗

𝑛𝑝

𝑗

 (7.2) 

Where 𝜙 is an arbitrary constant. 

This term should equate to zero, this is true if the particle are distributed evenly, however if 

they are not then it is observed that an erroneous gradient field results from the calculation. 

In the case of the momentum equation this erroneous gradient field is scaled by the term 

outside the summation  
𝜎𝑖

𝜌𝑖
2. Therefore the approximation of the divergence of the stress is 

now a function of the magnitude of the stress as well as the gradient, which is not 

physically correct. In other words, in the continuous momentum equation, the choice of 𝜙 

is not important since its gradient will always yield zero. It has been noted in [90] that the 

choice of this constant function 𝜙 in the discrete SPH equations is not yet fully 

understood, since a form of the SPH equations derived rigorously does not exist. 
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This issue is identified a potentially route towards the development of a stable SPH method 

and understanding the source of the current issues surrounding stability that occur in the 

SPH method. In chapter three it was noted that Swegle [12], found that the growth of the 

instability was dependant on the magnitude of the stress in the problem. It appears that a 

link exists between the conclusions of Swegle and the erroneous gradient field that occurs 

due to SPH approximation of a gradient of a constant field, i.e. the error that is introduced 

by (7.1). 

The objective therefore is to provide an investigation into the effect of (7.1) on the stability 

of the SPH method, leading toward a rigorous derivation of the SPH equations, and in 

improved understanding of any stability criteria. 

7.2 Numerical Examples in 1D 

An example of the effect of an irregular particle distribution on gradient field is 

demonstrated in Figure 7-1 to Figure 7-4 which depicts a simple 1D SPH approximation of 

constant fields and the effect of (7.2) on the interpolation of a gradient. 

 

Figure 7-1 SPH Approximation of Constant Functions with Regularly Spaced Particles 
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Figure 7-2 SPH Approximation of Constant Functions with Irregularly Spaced Particles 

 

Figure 7-3 SPH Approximation of the Gradient of a Constant Functions with Regularly Spaced Particles 

 

Figure 7-4 SPH Approximation of the Gradient of a Constant Functions with Irregularly Spaced Particles 
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These examples (Figure 7-1 to Figure 7-4) demonstrate the effect of a non-uniform particle 

distribution has on the calculation of the gradient field. When the spacing of the particles is 

even the function and its gradient are calculated correctly except at boundaries due to an 

incomplete neighbourhood. When the particles are perturbed slightly however, errors 

develop and the solution begins to oscillate, this effect increases as the value of the 

constant, 𝜙 is increased. 

The remainder of this chapter focuses on minimising the error in this calculation and 

investigating the impact on stability. 

7.3 A Modified SPH Form 

In this section the SPH momentum equation is derived in such a way that the calculation is 

not dependent on the magnitude of the stress field, and therefore the error introduced by 

the approximation of the constant part of the equations will not arise, this modified form 

of the governing equations is then implemented in the MCM code and assessed on its 

effect on the stability of the method. 

Starting from the continuous momentum equation 

𝐷𝑣

𝐷𝑡
=
∇ ∙ 𝜎

𝜌
 (7.3) 

Integrate over the volume and multiply by a smoothing function 

∫
𝐷𝑣

𝐷𝑡
𝑊(𝑥 − 𝑥′, ℎ)

Ω

= ∫
∇ ∙ 𝜎

𝜌
Ω

𝑊(𝑥 − 𝑥′, ℎ)𝑑Ω (7.4) 

Integrate by parts and disregard boundary terms 

〈
𝐷𝑣

𝐷𝑡
〉 = − ∫

𝜎

𝜌
Ω

∙ ∇𝑊(𝑥 − 𝑥′, ℎ)𝑑Ω (7.5) 

Write as SPH particle summation 
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〈
𝐷𝑣

𝐷𝑡
〉 = − ∑ 𝑚𝑗

𝜎𝑗

𝜌𝑗
2

𝑛𝑛𝑏𝑟

𝑗

∙ ∇𝑊𝑖𝑗 
(7.6) 

Split 
𝜎𝑗

𝜌𝑗
2 into its mean and fluctuating parts. 

〈
𝐷𝑣

𝐷𝑡
〉 = − ∑ 𝑚𝑗 [(

𝜎𝑗

𝜌𝑗2
)

̅̅ ̅̅ ̅̅ ̅
+ (

𝜎𝑗

𝜌𝑗2
)

̃
]

𝑛𝑛𝑏𝑟

𝑗

∙ ∇𝑊𝑖𝑗 
(7.7) 

The mean part is constant over the neighbourhood and therefore has no gradient.  

〈
𝐷𝑣

𝐷𝑡
〉 = − ∑ 𝑚𝑗 (

𝜎𝑗

𝜌𝑗2
)

̃𝑛𝑛𝑏𝑟

𝑗

∙ ∇𝑊𝑖𝑗 
(7.8) 

Therefore it should be sufficient to only interpolate the fluctuating part, however this value 

is not known directly and must be calculated: 

𝜎𝑗

𝜌𝑗
2 − (

𝜎𝑖
𝜌𝑖2
)

̅̅ ̅̅ ̅̅
= (

𝜎𝑗

𝜌𝑗2
)

̃
 (7.9) 

Leaving: 

〈
𝐷𝑣

𝐷𝑡
〉 = − ∑ 𝑚𝑗 [

𝜎𝑗

𝜌𝑗
2 − (

𝜎𝑖
𝜌𝑖2
)

̅̅ ̅̅ ̅̅
]

𝑛𝑛𝑏𝑟

𝑗

∙ ∇𝑊𝑖𝑗 
(7.10) 

Where (
𝜎𝑖

𝜌𝑖
2)

̅̅ ̅̅ ̅̅
 is the averaged portion of this term, this leaves a choice in the averaging 

procedure, the most simple option would be to use the un-weighted average over the 

neighbourhood with its centre at particle 𝑖 . 

(
𝜎𝑗

𝜌𝑗
2)

̃
 is the fluctuating portion of the term. This essentially means that the error brought 

about by the interpolation of the mean part of the stress is removed; effectively this should 

provide an approximation equivalent to using a regular particle distribution. 
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7.3.1 Conservation of Linear Momentum 

In order to conserve linear momentum, symmetry must be preserved between particle pairs 

(see §3.5 ). In other words for a particle pair, the forces between them must be equal and 

opposite. 

For a pressure difference form of the momentum equation, taking a single particle pair and 

multiplying through by the mass as  𝐹 = 𝑚𝑎. 

𝐹𝑖𝑗 = −𝑚𝑖𝑚𝑗 [
𝜎𝑗

𝜌𝑗
2 −

𝜎𝑖

𝜌𝑖
2] ∙ ∇𝑊𝑖𝑗 (7.11) 

Exchanging the 𝑖 and 𝑗 components must produce an equal and opposite force to conserve 

linear momentum, such that: 

−𝐹𝑖𝑗 = 𝐹𝑗𝑖 = 𝑚𝑖𝑚𝑗 [
𝜎𝑗

𝜌𝑗
2 −

𝜎𝑖

𝜌𝑖
2] ∙ ∇𝑊𝑖𝑗 (7.12) 

Starting with (7.11) and swapping the components: 

𝐹𝑗𝑖 = −𝑚𝑗𝑚𝑖 [
𝜎𝑖

𝜌𝑖
2 −

𝜎𝑗

𝜌𝑗
2] ∙ ∇𝑊𝑗𝑖 

(7.13) 

 

Re-arranging gives: 

−𝑚𝑖𝑚𝑗 [−
𝜎𝑗

𝜌𝑗
2 +

𝜎𝑖

𝜌𝑖
2] ∙ ∇𝑊𝑗𝑖 

(7.14) 

Due to the anti-symmetric kernel gradient, ∇𝑊𝑖𝑗 = −∇𝑊𝑗𝑖: 

𝑚𝑖𝑚𝑗 [
𝜎𝑗

𝜌𝑗
2 −

𝜎𝑖

𝜌𝑖
2] ∙ ∇𝑊𝑖𝑗 (7.15) 

As required to show symmetry between particle pairs. Therefore assuming that 
𝜎𝑖

𝜌𝑖
2 is a 

reasonable choice of (
𝜎𝑖

𝜌𝑖
2)

̅̅ ̅̅ ̅̅
 in (7.10), linear momentum is conserved.  
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7.3.2 Von Neumann Stability Analysis (Evenly Spaced Particles) 

As mentioned previously, a number of stability analyses have been performed by various 

authors, including Von Neumann type analyses in 1D  [12], [32], [49], [48]. The authors 

come to similar conclusions on the stability criteria and suggest optimal ranges for the 

smoothing length. Due to the relative simplicity, the stability analysis in this section will 

follow the analysis of Ferrari [49], who concludes that the conventional SPH method is 

unconditionally unstable. 

𝐷𝑣

𝐷𝑡
=
∇ ∙ 𝜎

𝜌
 (7.16) 

A similar procedure is followed here, now adopting a modified SPH approximation: 

Considering the one dimensional linear advection equation 

𝜕𝑢

𝜕𝑡
+
𝜕𝑓

𝜕𝜉
= 0 (7.17) 

 

𝑓(𝑢) = 𝑎𝑢 (7.18) 

Where 𝑎 is some constant. 

The SPH approximation of the derivative of a function can be written 

∇𝑓(𝜉𝑖) =∑(𝑓�̃�)∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (7.19) 

The gradient approximation of the function is only dependant on the fluctuation from the 

mean value of the field variable. 

Applying the SPH approximation at a point  𝜉𝑖 and advancing in time using an explicit 

forward Euler scheme 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+∑(𝑓𝑗

𝑛)𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

= 0 (7.20) 
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Leading to: 

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 − 𝑎∆𝑡∑(𝑓𝑗
𝑛)∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (7.21) 

 

Assuming for the moment that the particles are distributed evenly, the usual Von Neumann 

method is followed, considering the following trial solution 

𝑢 = 𝑢(𝑡𝑛, 𝜉) = 𝑢𝑖
𝑛𝑒𝐼(𝐾𝜉) 

Where 𝑘 is the wavenumber 

(7.22) 

𝑘 =
𝜙

Δ𝜉
 (7.23) 

The modulus of the amplification factor is defined as 

|�̂�𝑓| = |
𝑢𝑖
𝑛+1

𝑢𝑖
𝑛 | (7.24) 

Which for a stable solution procedure must remain less than one at all times. 

|�̂�𝑓| ≤ 1 (7.25) 

Substituting the trial solution into (7.21) and applying Von Neumann analysis we obtain 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛𝑒𝐼(𝐾𝜉𝑖)

∆𝑡
= ∑ (𝑢𝑖

𝑛𝑒𝐼(𝐾𝜉𝑗))∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗

 (7.26) 

Re-arranging gives: 

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + ∆𝑡∑(𝑢𝑖
𝑛𝑒𝐼(𝐾𝜉𝑗))∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (7.27) 

Dividing through by 𝑢𝑖
𝑛: 
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𝑢𝑖
𝑛+1

𝑢𝑖
𝑛 = 1 + ∆𝑡∑(

𝑢𝑖
𝑛𝑒𝐼(𝐾𝜉𝑗)

𝑢𝑖
𝑛𝑒𝐼(𝐾𝜉𝑖)

)∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (7.28) 

Simplifying: 

𝑢𝑖
𝑛+1

𝑢𝑖
𝑛 = 1 + ∆𝑡∑(𝑒𝐼𝐾(𝜉𝑗−𝜉𝑖))∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗

 (7.29) 

Now, assuming that the particles are distributed evenly, the summation is performed in 

pairs as per Figure 7-5 and equation (7.30) 

 

Figure 7-5 Domain of influence for 1D example 

 

𝑢𝑖
𝑛+1

𝑢𝑖
𝑛 = 1 + ∆𝑡 [ ∑ (𝑒𝐼𝐾(𝜉𝑗−𝜉𝑖))∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟/2

𝑗=1

+ ∑ (𝑒𝐼𝐾(𝜉𝑘−𝜉𝑖))∇𝑊𝑖𝑘

𝑚𝑘

𝜌𝑘

𝑛𝑛𝑏𝑟/2

𝑘=1

] 

 

(7.30) 

Noting that (𝜉𝑗 − 𝜉𝑖) = −(𝜉𝑘 − 𝜉𝑖) and ∇𝑊𝑖𝑘
𝑚𝑘

𝜌𝑘
= −∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗
 assuming equally spaced 

particles, the summation can be performed over only one half of the domain. 

𝑢𝑖
𝑛+1 = 1 + ∆𝑡 [ ∑ (𝑒𝐼𝐾(𝜉𝑗−𝜉𝑖) − 𝑒−𝐼𝐾(𝜉𝑗−𝜉𝑖))∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟/2

𝑗=1

] 

 

(7.31) 

𝑒𝐼𝐾(𝜉𝑗−𝜉𝑖) − 𝑒−𝐼𝐾(𝜉𝑗−𝜉𝑖) = 2𝑖𝑠𝑖𝑛 (𝐾(𝜉𝑗 − 𝜉𝑖)) (7.32) 

Leaving 
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𝑢𝑖
𝑛+1 = 1 + 2∆𝑡 [ ∑ (𝑖𝑠𝑖𝑛(𝐾(𝜉𝑗 − 𝜉𝑖)) ∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟/2

𝑗=1

] (7.33) 

Referring back to (7.24) and (7.25), the following condition must hold so that the error 

does not grow unbounded as time advances. 

|1 + 2∆𝑡 [ ∑ (𝑖𝑠𝑖𝑛(𝐾(𝜉𝑗 − 𝜉𝑖)) ∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟/2

𝑗=1

]| < 1 

 

(7.34) 

−1 ≤ 1 + 2∆𝑡 [ ∑ (𝑖𝑠𝑖𝑛(𝐾(𝜉𝑗 − 𝜉𝑖)) ∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟/2

𝑗=1

] ≤ 1 (7.35) 

The term inside the summation in (7.35) is purely imaginary, since the bounds of the 

inequality are real numbers, the only way the inequality can be true is if 

 

𝑖𝑠𝑖𝑛(𝐾(𝜉𝑗 − 𝜉𝑖)) = 0 (7.36) 

Which will be true if 

𝑠𝑖𝑛 (𝐾(𝜉𝑗 − 𝜉𝑖)) = 0 (7.37) 

Which will be true only when the term inside the brackets is a multiple of 𝜋 (since 

sin(𝑁𝜋) = 0 , ∀𝑁) 

The point at which the error term will grow the quickest is when the wavelength is 

shortest. The wavenumber, 𝐾 =
2𝜋

𝜆
, where 𝜆 is the wavelength; the shortest possible 

wavelength that can be resolved numerically is twice the particle spacing 2(𝜉𝑗 − 𝜉𝑖)    

𝐾(𝜉𝑗 − 𝜉𝑖) =
2𝜋(𝜉𝑗 − 𝜉𝑖)

2(𝜉𝑗 − 𝜉𝑖)
= 𝜋 (7.38) 
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Therefore as long as the particle spacing is chosen such that 
𝜆

2
≤ (𝜉𝑗 − 𝜉𝑖) then the system 

is stable. 

7.3.3 Von Neumann Stability Analysis (Unevenly Spaced Particles) 

Now suppose that the particles are not positioned randomly, the stability regime will look 

the same as above but with the additional term 

−1 ≤

[
 
 
 

1 + 2∆𝑡

(

 ∑ (𝑖𝑠𝑖𝑛(𝐾(𝜉𝑗 − 𝜉𝑖)) ∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟
2

𝑗=1
)

 

]
 
 
 

− [∑ ∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗=1

] ≤ 1 (7.39) 

 

In which the term that arises from the particle disorder must be removed as per (7.10) ; 

The approximation of a gradient of a constant function. Assume the stability criterion for 

the first term is satisfied, and only the additional term needs to be examined: 

−1 ≤ −[∑ ∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗=1

] ≤ 1 (7.40) 

Taking the absolute value of (7.40): 

0 ≤ |∑ ∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗=1

| ≤ 1 (7.41) 

7.3.4 Analogy to the SPH Momentum Equation 

The stability criteria for this term can be summarised as follows; 

If (7.41) holds, the error term is small enough so that the solution does not grow 

unbounded in time, and the modified form of the SPH equations can be used to 

approximate the gradient.  (7.1) 

If (7.41) does not holds, the error term will cause unstable growth as time advances, and 

the modified SPH form is not appropriate. 
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7.3.5 Summary 

The SPH momentum equation has been derived rigorously which results in a form that 

does not introduce additional error terms into the solution, correctly mimicking the 

continuous form of the governing equations, a Von Neumann stability analysis 

demonstrated that the conventional SPH is only stable when certain criteria are met, 

relating to the particle spacing, when this criteria is not met the modified form derived in 

this chapter must be used to prevent the solution from developing errors that grow 

unbounded as time advances. 

7.4 SPH Implementation 

The test cases introduced in chapter three are used here to examine the stability properties 

of the new modified SPH equation derived in this chapter, firstly (7.10) is implemented and 

the stability regime is ignored for the initial tests. 

The modified form of the momentum equation is defined as : 

〈
𝐷𝑣

𝐷𝑡
〉 = − ∑ 𝑚𝑗 [

𝜎𝑗

𝜌𝑗
2 − (

𝜎𝑖
𝜌𝑖2
)

̅̅ ̅̅ ̅̅
]

𝑛𝑛𝑏𝑟

𝑗

∙ ∇𝑊𝑖𝑗 
(7.42) 

Where the term averaged term is initially defined as the un-weighted average over the 

neighbourhood of the term (
𝜎𝑖

𝜌𝑖
2)

̅̅ ̅̅ ̅̅
. This is calculated using 

(
𝜎𝑖
𝜌𝑖2
)

̅̅ ̅̅ ̅̅
=

1

𝑛𝑛𝑏𝑟 + 1
[∑

𝜎𝑖

𝜌𝑖
2 +

𝜎𝑖

𝜌𝑖
2

𝑛𝑛𝑏𝑟

𝑗=1

] (7.43) 

Note that the summation is divided by the number of neighbouring particles plus one, this 

is because the average over the field is also dependant on the 𝑖 particle itself. 

The first problem used to investigate the new set of equations is the test developed by 

Swegle [12] which was introduced in chapter three, in which a 2D domain of hydrostatic 

fluid is initially in tension, that is to say its relative volume is greater than one. A particle is 

then given a very small perturbation which should not excite any particle motion, however 

for the basic SPH form; the instability develops and exhibits an unphysical particle motion.  
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7.4.1 Swegle Test 

As usual, the instability growth is examined via the growth of kinetic energy in the domain. 

 

Figure 7-6– The modified momentum equation exhibits stable behaviour under compression and tension 

In the simple test case demonstrated above, the use of a modified momentum equation 

removes the instability from the problem, no unphysical particle motion is observed and 

the kinetic energy mimics the stable total Lagrange solution.  

7.4.2 2D Plane Strain Impact 

The second test case, also introduced in chapter three, for the 2D plane strain problem of 

the impact of two elastic blocks, is investigated in order to assert whether the mechanics of 

a problem can be preserved using this modified implementation 

The initial test breaks down soon after the problem begins to advance in time, closer 

examination shows it is the free boundaries that are first to exhibit unstable behaviour, this 

result is consistent with the stability criterion (7.41), since the incomplete domain at the 

boundary causes this term to grow. This result is also consistent with momentum equations 

based on a pressure difference form, since for a for a uniform stress field it relies on the 

stress contribution for the 𝑖 and 𝑗 particles cancelling out, so that the gradient of a uniform 

stress field is calculated correctly, at the boundaries this is not possible. 
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This was not observed in the Swegle test case since the boundaries are made up of 

constrained SPH particles, so the domain of influence in the SPH interpolation is always 

complete for the region of interest. 

The results in Figure 7-7 show the outcome of a slightly modified test case, where 

symmetry planes are defined to surround the two elastic blocks, essentially now the 

problem is a 2d semi-infinite bar. It is clear now from Figure 6 that the modified SPH form 

is stable when the stability criterion (7.41) is met. 

 

Figure 7-7- Modified SPH showing stable behaviour when all boundaries are constrained. 

7.4.3 Optimal Implementation 

Although the modified form of the SPH equation are stable under certain regimes, it is a 

severe restriction if the method breaks down at free boundaries, therefore an 

implementation is tested based on the stability criterion (7.41). If this criterion is met, then 

the modified form (7.10) is used to calculate acceleration, however if the criterion is not 

met, the standard form (7.1) is used instead. Typically this will mean the modified form is 

used throughout the domain and the standard form will be used at boundaries, although 

this does not mean that the position of free boundaries needs to be defined, only the value 

of the term: 

|∑ ∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗=1

| (7.44) 
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The value of the term (7.41) is used to determine the point at which the switch occurs 

between the conventional SPH momentum equation and the modified form derived in this 

chapter. It is assumed that it is appropriate to represent the averaged term (
𝜎𝑖

𝜌𝑖
2)

̅̅ ̅̅ ̅̅
  simply by 

the value at the 𝑖 particle itself, i.e. (
𝜎𝑖

𝜌𝑖
2)

̅̅ ̅̅ ̅̅
≈

𝜎𝑖

𝜌𝑖
2, thus preserving symmetry and conserving 

linear momentum, see §7.3.1 

7.4.4 Numerical Results 

A quick re-run of the Swegle test confirms that the solution is still stable when a switch is 

in place between the two forms of the momentum equation. The 2D plane strain problem 

is then repeated as described in chapter three, where the boundaries are the top and 

bottom of the domain are left free, the solution appears not to exhibit any unstable growth 

in time, and mimics the total Lagrange solution closely. 

 

Figure 7-8 - Swegle Test for the Modified SPH Form 
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Figure 7-9 - 2D Plane Strain Problem using SPH Form Based on Stability Criterion 

7.5 Conclusions 

For the test problems identified in chapter three, the Swegle test and the 2D plane strain 

problem, the modified SPH form appears not to cause unstable growth in the solution for 

the parameters tested in this chapter. These results suggest that the instability could be 

directly related to the magnitude of the background stress as Swegle [12] also concluded; 

this in turn suggests that this instability is related to the choice of 𝜙 in (7.2), and since the 

conventional SPH form is unable to approximate a constant gradient field correctly for 

particles that are not spaced evenly. The error term that arises due to this erroneous 

gradient approximation has been studied and a modified SPH form has been derived 

rigorously which naturally removes this error term and a stability criterion is provided 

which also confirm that a stable solution requires a relatively regular particle distribution 

for this modified SPH. An optimal solution appears to require a switch between this 

modified form and the standard form, however the stability properties of the standard 

form are still not well understood, but for the problems tested it seems to be adequate 

when the stability criterion of the modified SPH form is not met which is mainly at free 

boundaries. 

Objective §1.4.3 is addressed here, resulting in an improved understanding of the 

assumptions that are made in the standard derivations of the SPH momentum equation. To 

summarise, the derivation in §2.2.5 relies on the correct approximation of a constant 
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function, in certain circumstances it is appropriate to remove the error of this 

approximation as per the stability criterion (7.44), which can be achieved naturally through 

use of the modified SPH momentum equation derived in this chapter.  
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8 Mixed Methods in SPH 

As outlined in chapter three, the use of mixed element methods can lead to significantly 

improved results in finite element methods, and can alleviate a number of issues with the 

basic formulations. There is a question as to whether mixed element methods can offer 

advantages when adapted to work in an SPH framework. 

Firstly, the background of the mixed method and the reasons for using these methods in 

the finite element approach will be discussed. 

Mixed element methods were first established in the 1960’s and used to describe a finite 

element method in which both stress and displacement fields are treated as primary or 

independent variables [91], as opposed to only displacements as in the classical finite 

element method. In general, mixed element methods have shown a significant 

improvement over displacement based methods in a number of scenarios; Improved 

approximations of pressure have been observed [92] [93], and improved modelling of fluids 

has been achieved using a mixed pressure-displacement form of the finite element methods 

[94]. Studies of stability of mixed methods have been published [91] showing that stability 

can be achieved even for elements of low order, which leads to the most common reasons 

for the use of mixed element methods, which is avoid the hourglass modes that are 

common in finite element methods when using a displacement based  approach in 

conjunction with under-integrated elements. Detailed analyses of mixed methods have 

been published in [95]. 

8.1 Hourglass Modes in FEM 

Volumetric locking is used to describe the situation in which the displacements are under 

predicted by large factors [59], which occurs because of the use of fully integrated elements. 

Volumetric locking is often observed for incompressible or nearly incompressible 

materials. Shear locking on the other hand will occur when elements are subject to bending, 

and the stiffness of the structure is significantly over predicted, again displacements 

becoming significantly under-predicted. 

The over-estimation of stiffness in these problems that exhibit locking can generally be 

avoided by the reducing the number of integration points in the element. This method can 
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reduce the accuracy of the solution but does avoid the locking problems that can prevent 

convergence. 

The use of under-integrated elements however can lead to hourglass modes where the 

stiffness matrix becomes zero [96], leading to unphysical motion under zero strain. 

Analogies can be made between hourglass modes in FEM and zero-energy type instabilities 

in SPH [14]. 

Reviews of hourglass modes along with detailed descriptions of locking phenomena can be 

found in most books on finite element theory, in particular [57] [59]. 

Mixed element technology can be used to avoid hourglass modes by allowing the elements 

to be fully integrated, whilst also avoiding problems with locking. An example of how the 

mixed element method can be used in FEM is provided in a simple example in §8.3.1 

The advantages of mixed element methods in FEM in constructing stable elements lead to 

the method being identified as a potential route towards a stable SPH method if the same 

methods can be adapted successfully into an SPH framework. 

The tensile instability is not yet fully understood but can be thought of as an error arising 

from the constitutive relationship resulting in an erroneous pressure, this leads on to a 

further question; can the constitutive relation be adapted to remove the instability but at 

the same time preserving the proper mechanics of the problem in question. The use of 

mixed element methods provides a potential route whereby the strong links between the 

dependant variables are weakened. 

SPH offers flexibility in the way that variables are interpolated, a wide number of 

interpolating functions are available all with their strengths and weaknesses, and it has 

already been shown that using different interpolating functions in for the strain and stress 

calculations provides limited improvements. It is therefore logical to investigate possible 

corrections to the various interpolations. Corrections during the phase of acceleration such 

as Monaghans repulsive force [41] only appear to work in very limited situations. 

Corrections could be also made during the displacement and velocity phases of the 

problem, given that they are 90 degrees out of phase with one another, it could well mean 

that calculations in the velocity of displacement phases are driving the growth of the 

instability. One possible route would be to add artificial corrections such as artificial 
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viscosity, however since we are interested in more rigorous solutions, the mixed element 

methods may provide a solution whereby the links between the variables are weakened and 

therefore removing the source of the instability before it propagates through the solution in 

time. 

8.2 Hu-Washizu Mixed Form 

 

The Hu-Washizu principle is traditionally used to develop mixed finite element method, in 

which more than one field variable is interpolated independently of the others. The 

principle is named after the authors and was originally developed in 1955 [97] [98]. 

The Hu-Washizu principle provides the foundation of what is the most general of mixed 

methods, in which displacements, strains and stresses are evaluated independently of one 

another. The strong form of the equations contains the kinetic equations, i.e. the 

momentum equation, boundary conditions, the strain-displacement relation, and the 

constitutive relation.  

The form presented in this chapter is written in terms of the rate of deformation and is the 

formulation found in [59], derived from the principle of virtual power. This form is well 

suited to non-linear problems where the strain rate is used conventionally rather than the 

strain; this explicit form is well suited to the SPH implementation.   

The weak form of the Hu-Washizu principle implies the following governing equations, 

written in strong form: 

𝜌�̇�𝑖 − 𝜎𝑖𝑗,𝑗 − 𝜌𝑏𝑖 = 0 in Ω (8.1) 

 

⟦𝜎𝑖𝑗𝑛𝑗⟧ = 0 on Γ (8.2) 

 

𝑡�̅� − 𝜎𝑖𝑗𝑛𝑗 =  0 on Γ (8.3) 
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𝐷𝑖𝑗(𝒗) − �̅�𝑖𝑗 = 0 in Ω (8.4) 

 

𝜎𝑖𝑗(�̅�) − 𝜎𝑖𝑗 = 0 in Ω (8.5) 

Where these equations refer to: the conservation of momentum (8.1), interior continuity 

conditions (8.2), traction boundary conditions (8.3), strain displacement equation (8.4), and 

constitutive equation (8.5).  

The full derivation of these equations starting from the weak form of the Hu-Washizu 

principle is given in the Appendix. 

The over bar in the equations (8.4) and (8.5) shows that the variable is evaluated 

independently. In the above equations this means that the assumed rate of deformation and 

assumed stress are interpolated independently of the velocity field. 𝐷𝑖𝑗(𝒗) and 𝜎𝑖𝑗(�̅�) are 

the rate of deformation and stress tensor evaluated from the velocity field via the strain 

displacement and constitutive equations. 

Figure 8-1 shows the relationship between the various field variables for a conventional 

displacement based analysis, each variable is calculated in turn, for example the nodal 

velocities are used to calculate the rate of deformation through the kinematic relations, this 

is then passed into the constitutive law to give a stress measure, which is then used in the 

equation for momentum balance in order to find the nodal accelerations. This is much the 

same as the explicit scheme used in typical SPH implementations (see §2.3.1). 

Figure 8-2 shows how the variables are linked when the rate of deformation and the stress 

are evaluated independently of one another, now there is only a weak link between them, 

enforced by the conditions (8.4) and (8.5). The rate of deformation calculated from the 

nodal velocities is now equal to an assumed or interpolated rate of deformation; this 

assumption weakens the strong links between the nodal velocities and the strain rate. The 

same can be said of the stress and the constitutive relation. 
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Figure 8-1 - Flow chart a displacement based analysis 
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Figure 8-2 – Hu Washizu virtual power strong and weak links between variables 

The main difference in the two approaches is the addition of (8.4) and eq. (8.5) i.e. the 

constraints that now act on the rate of deformation and the stress. The remainder of this 

chapter will focus on the development of an SPH method which incorporates these 

additional constraints. 

There are two potential routes that will be investigated, the discretisation of either the 

strong or the weak form. Discretising the strong form is the standard SPH approach and 

the method that was demonstrated in earlier in chapter two for the governing equations of 

mass and momentum, discretising the weak form is the method that is commonly applied 

in finite element methods. 

Weak form – The equation is no longer required to hold absolutely and only has weak 

solutions with respect to some test function, this could mean that the equation is not 

required to hold at every point but only in an averaged or integral sense. 
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Strong form – The equation must hold at every point in the domain 

8.3 Solution Procedure 

In this section the weak form of the Hu-Washizu principle in written in SPH form, we see 

that this provides a complex set of equations and hence, a complicated implementation. 

Firstly the weak form will be discretised, using the finite element approach, which then in 

turn can be transformed in an SPH form using analogies for the FEM shape functions [56].  

For a full description and derivation of the virtual power equations see [59], which results 

the the following equations being defined (a full derivation is also given in the appendix): 

{�̃�𝐶
𝑒} = ∫ (𝑵𝐷)

𝑇{𝝈(�̅�)}𝑑Ω 
Ω𝑒

 (8.6) 

 

�̃�𝑒 = ∫ 𝑵𝜎
𝑇𝑩𝑑Ω 

Ω𝑒

 (8.7) 

 

𝑮𝑒 = ∫ 𝑵𝜎
𝑇𝑵𝑫𝑑Ω 

Ω𝑒

 (8.8) 

 

𝑵 is the element shape function with its subscript representing the interpolating function 

for either the stress tensor 𝝈, or the rate of deformation. �̅� is the rate of deformation 

tensor, with the over-bar representing an assumed or interpolated value. 𝑩 is the strain 

displacement matrix and 𝑑Ω represents an infinitesimal volume element. Ω𝑒 indicates the 

volume element itself. 

8.3.1 1D Finite Element Example 

The mixed element method is demonstrated in the following example which is taken from 

[59]. 
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Figure 8-3 Configuration of 2-Node Rod Element 

 

To understand how the mixed method works in the finite element method, a simple 

example is presented: 

Consider a two-node rod element, with the following properties: 

Linear velocity 

Constant velocity strain & stress 

Area – A, length, l 

The components of interest are the nodal velocity 𝑣𝑥(𝜉, 𝑡), the rate of 

deformation, 𝐷𝑥𝑥(𝜉, 𝑡) and the stress 𝜎𝑥𝑥(𝜉, 𝑡). Where: 

𝜉 =
𝑥

𝑙
= 𝑋 = 𝑙0 (8.9) 

The linear approximations for velocity, rate of deformation, and stress are: 

𝑣𝑥(𝜉, 𝑡) = [1 − 𝜉, 𝜉] {
𝑣𝑥1(𝑡)

𝑣𝑥2(𝑡)
} = 𝑵�̇�𝒆 (8.10) 

 

�̅�𝑥𝑥 = [1, 𝜉] {
𝛼1
𝛼2
} = 𝑵𝑫𝜶 (8.11) 
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𝜎𝑥𝑥 = [1, 𝜉] {
𝛽1
𝛽2
} = 𝑵𝝈𝜷 (8.12) 

 

Where 𝛼 and 𝛽, are unknowns. Next, writing the B Matrix as: 

𝐵 =
𝜕

𝜕𝑥
[𝑁] =

𝜕

𝜕𝑥
[1 − 𝜉, 𝜉] =

1

𝑙
[−1,  1] (8.13) 

Writing  �̃� (8.7) and 𝐺 matrices (8.8) 

�̃� = ∫ 𝑵𝜎
𝑇𝑩𝑑Ω = ∫ {

1
𝜉
}

1

0

 
1

𝑙Ω𝑒

 [−1,  1]𝐴𝑙𝑑𝜉 =
𝐴

2
[
−2 +2
−1 +1

] (8.14) 

𝐺 = ∫ 𝑵𝜎
𝑇𝑵𝑫𝑑Ω = ∫ {

1
𝜉
}

1

0

 
Ω𝑒

 [1,  𝜉]𝐴𝑙𝑑𝜉 =
𝐴𝑙

6
[
6 3
3 2

]   (8.15) 

Inverting G: 

(
𝐴𝑙

6
[
6 3
3 2

])
−1

=
2

𝐴𝑙
[
2 −3
−3 6

]   (8.16) 

𝛼 can then be calculated from: 

𝛼 = 𝐺−1�̃��̇�  (8.17) 

 

𝛼 = {
𝛼1
𝛼2
} =

𝐴

2
[
−2 +2
−1 +1

]
2

𝐴𝑙
[
2 −3
−3 6

] {
𝑣𝑥1
𝑣𝑥2

}   (8.18) 

Now �̅�𝑥𝑥 , the assumed rate of deformation can be calculated: 

�̅�𝑥𝑥 = [1, 𝜉] {
𝛼1
𝛼2
} = 𝑵𝑫𝜶 (8.19) 

𝝈𝒙𝒙(�̅�𝑥𝑥) can then be calculated through a constitutive relation; allowing the assumed 

stress to be calculated by first finding  𝛽. 

�̃� = ∫ {
1
𝜉
}

𝛺

𝝈𝒙𝒙(�̅�𝑥𝑥)d𝜴 
(8.20) 
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𝛽 = 𝐺−1�̃� =
2

𝐴𝑙
[
2 −3
−3 6

]∫ {
1
𝜉
}

𝛺

𝝈𝒙𝒙(�̅�𝑥𝑥)d𝜴 (8.21) 

Finally the internal force can be calculated 

𝑓𝑖𝑛𝑡 = �̃�𝑇𝛽 =
𝐴

2
[
−2 +2
−1 +1

]
2

𝐴𝑙
[
2 −3
−3 6

]∫ {
1
𝜉
}

𝛺

𝝈𝒙𝒙(�̅�𝑥𝑥)d𝜴

=
1

𝑙
[
−1 0
+1 0

]∫ {
1
𝜉
}

𝛺

𝝈𝒙𝒙(�̅�𝑥𝑥)d𝜴 

(8.22) 

If stress is constant: 

{
𝑓𝑥1
𝑓𝑥2
} = A𝜎𝑥𝑥 {

−1
+1
} (8.23) 

This completes the example. 

8.4 A Mixed SPH Framework 

An SPH framework for the mixed formulation will now be developed from (8.6), (8.7), and 

(8.8). 

This first requires the assumed rate of deformation, and assumed stresses to be defined; 

this will be done in the same way as in the finite element example: 

�̅�𝑖𝑗 = 𝑵𝑫𝜶 (8.24) 

𝜎𝑖𝑗 = 𝑵𝝈𝜷 (8.25) 

The subscripts in (8.24) and (8.25) represent the different shape functions that are used to 

interpolate the rate of deformation and the stress.  

The element shape functions can be replaced by the SPH kernel function such that: 

𝑵 =∑𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗=1

 (8.26) 
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𝑩 =∑∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗=1

 (8.27) 

 

Therefore (8.6), (8.7) and (8.8) can be written respectively as 

∫ ∑𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗=1

 {𝝈(�̅�)} 𝑑Ω 
Ω𝑒

 (8.28) 

 

∫ ∑𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗=1

∑ ∇𝑊𝑖𝑘

𝑚𝑘

𝜌𝑘

𝑛𝑝

𝑘=1

𝑑Ω 
Ω𝑒

 (8.29) 

 

∫ ∑𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗=1

∑𝑊𝑖𝑘

𝑚𝑘

𝜌𝑘

𝑛𝑝

𝑘=1

𝑑Ω 
Ω𝑒

 (8.30) 

 

(8.24) and (8.25)can then be written: 

�̅�𝑖 = ∑ 𝛼𝑗

𝑛𝑛𝑏𝑟

𝑗=1

𝑚𝑗

𝜌𝑗
 (8.31) 

𝜎𝑖 = ∑ 𝛽𝑗

𝑛𝑛𝑏𝑟

𝑗=1

𝑚𝑗

𝜌𝑗
 (8.32) 

The product of two summation terms in (8.29) and (8.30) can be written simply as a double 

summation, and the volume integral can approximation by a summation over the entire 

particle domain. i.e. (8.28) and (8.30) can be re-written: 

�̃� =∑[∑{𝝈(�̅�)}𝑊
𝑖𝑗

𝑛𝑝

𝑗=1

 
𝑚𝑗

𝜌𝑗
]

𝑛𝑝

𝑖=1

𝑚𝑖

𝜌𝑖
 (8.33) 



 

148 

 

 

�̃� =∑[∑∑𝑊𝑖𝑘

𝑛𝑝

𝑘=1

 ∇𝑊𝑖𝑗

𝑛𝑝

𝑗=1

 
𝑚𝑘

𝜌𝑘

𝑚𝑗

𝜌𝑗
]

𝑛𝑝

𝑖=1

𝑚𝑖

𝜌𝑖
 (8.34) 

 

𝑮 =∑[∑∑𝑊𝑖𝑘

𝑛𝑝

𝑘=1

 𝑊𝑖𝑗

𝑛𝑝

𝑗=1

 
𝑚𝑘

𝜌𝑘

𝑚𝑗

𝜌𝑗
]

𝑛𝑝

𝑖=1

𝑚𝑖

𝜌𝑖
 (8.35) 

 

8.4.1 Solution Procedure 

Now the SPH equations are established, a solution can be obtained. 

Step one – Compute the assumed rate of deformation 

By invoking arbitrariness of (11.41), the following expression is found 

�̃�𝒆�̇�𝒆 = 𝑮𝒆𝜶𝒆 (8.36) 

Where 𝒅 is the displacement and 𝜶 is an unknown.  

The term on the left hand side can be calculated in SPH form using (8.34) replacing �̇�𝒆 

with nodal velocities. 

�̃�𝒆�̇�𝒆 =∑[∑∑ 𝒗𝑘𝑊𝑖𝑘

𝑛𝑝

𝑘=1

 ∇𝑊

𝑖𝑗

𝑛𝑝

𝑗=1

 
𝑚𝑘

𝜌𝑘

𝑚𝑗

𝜌𝑗
]

𝑛𝑝

𝑖=1

𝑚𝑖

𝜌𝑖
 (8.37) 

Writing ∑ 𝒗𝑘𝑊𝑖𝑘
𝑛𝑝
𝑘=1   as 〈𝒗〉𝒊 

�̃�𝒆�̇�𝒆 =∑[∑〈𝒗〉𝒊 ∇𝑊𝑖𝑗

𝑛𝑝

𝑗=1

𝑚𝑗

𝜌𝑗
]

𝑛𝑝

𝑖=1

𝑚𝑖

𝜌𝑖
 (8.38) 

Noting that the term inside the square brackets can be written as an inner product 



 

149 

 

∑〈𝒗〉𝒋 ∇𝑊𝑖𝑗

𝑛𝑝

𝑗=1

𝑚𝑗

𝜌𝑗
= [∇𝑊𝑖,1 ⋯ ∇𝑊𝑖,𝑛𝑝] [

〈𝑣〉1
⋮

〈𝑣〉𝑛𝑝
] (8.39) 

The same can be done with the outer summation, leaving 

∑[∑〈𝒗〉𝒊 ∇𝑊𝑖𝑗

𝑛𝑝

𝑗=1

𝑚𝑗

𝜌𝑗
]

𝑛𝑝

𝑖=1

𝑚𝑖

𝜌𝑖
=

[
 
 
 
 
𝑚1

𝜌1
⁄

⋮
𝑚𝑛𝑝

𝜌𝑛𝑝
⁄

]
 
 
 
 

[∇𝑊𝑖,1 ⋯ ∇𝑊𝑖,𝑛𝑝] [

〈𝑣〉1
⋮

〈𝑣〉𝑛𝑝
] (8.40) 

The dimension of the above matrix expression are [np x 1] [1 x np] [np x 1] resulting in a 

vector with dimensions [np x 1]. 

Call the vector resulting from (8.40) V for simplicity. 

𝑉 = [

V1
⋮
V𝑛𝑝

] (8.41) 

Repeat a similar procedure with the right hand side of (8.32) 

𝑮𝒆𝜶𝒆 =∑[∑∑𝑊𝑖𝑘

𝑛𝑝

𝑘=1

 𝑊

𝑖𝑗

𝑛𝑝

𝑗=1

 
𝑚𝑘

𝜌𝑘

𝑚𝑗

𝜌𝑗
]

𝑛𝑝

𝑖=1

𝑚𝑖

𝜌𝑖
𝜶𝑖 (8.42) 

Leaving 𝜶𝑖 on the outside since it is unknown. 

Simplifying slightly 

∑[∑  𝑊𝑖𝑗

𝑛𝑝

𝑗=1

 
𝑚𝑗

𝜌𝑗
]

𝑛𝑝

𝑖=1

𝑚𝑖

𝜌𝑖
〈𝜶𝑖〉 (8.43) 

And writing in matrix form 

[
 
 
 
 𝑊11

𝑚1

𝜌1

𝑚1

𝜌
1

⋯ 𝑊1𝑛

𝑚1

𝜌
1

𝑚𝑛𝑝

𝜌𝑛𝑝
⋮ ⋱ ⋮

𝑊𝑛1

𝑚1

𝜌1

𝑚𝑛𝑝

𝜌𝑛𝑝
⋯ 𝑊𝑛𝑛

𝑚𝑛𝑝

𝜌𝑛𝑝

𝑚𝑛𝑝

𝜌𝑛𝑝 ]
 
 
 
 

[

α1
⋮
α𝑛𝑝

] (8.44) 

This finally results in a system of equations that needs to be solved for α 
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[
 
 
 
 𝑊11

𝑚1

𝜌1

𝑚1

𝜌
1

⋯ 𝑊1𝑛

𝑚1

𝜌
1

𝑚𝑛𝑝

𝜌𝑛𝑝
⋮ ⋱ ⋮

𝑊𝑛1

𝑚1

𝜌1

𝑚𝑛𝑝

𝜌𝑛𝑝
⋯ 𝑊𝑛𝑛

𝑚𝑛𝑝

𝜌𝑛𝑝

𝑚𝑛𝑝

𝜌𝑛𝑝 ]
 
 
 
 

[

α1
⋮
α𝑛𝑝

] = [

V1
⋮
V𝑛𝑝

] (8.45) 

 

𝛂 can then be used to compute the assumed rate of deformation, by (8.54), which is 

essentially an SPH interpolation of 𝛂. 

Step 2 – Compute stress 

In this step the assumed rate of deformation is simply used in the normal constitutive 

relation to produce a stress term. 

Step 3 – Compute assumed stresses 

Solve (11.29 using the same process as for the assumed rate of deformation, which is the 

solution to the following system. 

[
 
 
 
 𝑊11

𝑚1

𝜌1

𝑚1

𝜌
1

⋯ 𝑊1𝑛

𝑚1

𝜌
1

𝑚𝑛𝑝

𝜌𝑛𝑝
⋮ ⋱ ⋮

𝑊𝑛1

𝑚1

𝜌1

𝑚𝑛𝑝

𝜌𝑛𝑝
⋯ 𝑊𝑛𝑛

𝑚𝑛𝑝

𝜌𝑛𝑝

𝑚𝑛𝑝

𝜌𝑛𝑝 ]
 
 
 
 

[

β1
⋮
β𝑛𝑝

] = [

σ̃1
⋮
σ̃𝑛𝑝

] (8.46) 

Step 4 – Compute acceleration 

Replace the stress tensor in the standard SPH momentum equation with the assumed stress 

tensor and use this to move the particles. 

8.4.2 Discussion 

After implementing the above, a difficulty arose in achieving a solution to the system of 

equations, because of a fundamental (but not so obvious) problem which on closer 

inspection comes from the fact that the matrix is formed from an outer product of two 

vectors. Knowledge of linear algebra tells us that a matrix formed in this way will always 

have a rank of one, and therefore cannot be inverted. This can be demonstrated easily: 

For any two vectors, of arbitrary size. 
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𝑨 = [

a1
⋮
a𝑛
] , 𝑩 = [

b1
⋮
b𝑛

] (8.47) 

An outer product can be written, 𝑨 × 𝑩 

𝐴 × 𝐵 = [
𝑎1𝑏1 ⋯ 𝑎1𝑏𝑛
⋮ ⋱ ⋮

𝑎𝑛𝑏1 ⋯ 𝑎𝑛𝑏𝑛

] (8.48) 

In the example above it is clear that every row in the matrix is a linear combination of the 

vector  

𝑩 = [
b1
⋮
b𝑛

] (8.49) 

And therefore all rows are linearly dependant, meaning the matrix has a rank of one, which 

as linear algebra tells us, cannot be inverted. 

This shows that an implementation is problematic and would require some severe 

assumptions to be made on the structure of the matrix. Such assumptions are likely to 

compromise the rigour that is desirable in the objectives of this project, and therefore left 

as a suggestion for future work. 

For instance, one potential method would be to calculate a pseudo-inverse of the matrix, 

which is possible using widely available linear algebra methods [99]. However it was 

decided not to continue with this since it would require significant work to understand the 

implications of this method and the effect it would have on the rigour of the solution 

method. Instead, alternative methods for implementing the mixed method are explored; in 

particular the direct discretisation of the strong form is attempted. 
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8.5 Strong Form of Hu-Washizu in an SPH Framework 

The weak form of the mixed SPH equations cannot easily be solved due to the reasons 

described in §8.4.2. Therefore the next step is to attempt a discretisation of the strong form 

of the mixed equations, derived in the appendix resulting in (8.1), (8.2), (8.3), (8.4), and 

(8.5). 

8.5.1 Assumed Rate of Deformation 

We will begin with eq. (8.4) , which is a restriction on the rate of deformation. Conceptually 

this equation means that the velocity gradient calculated through the kinematic relation 

must be equal to the interpolated velocity that is the kernel estimation of the velocity 

gradient at particle I around the neighbouring particles, i.e. 

𝐷𝑖𝑗(𝒗) − �̅�𝑖𝑗 = 0  (8.50) 

Where 

𝐷(𝒗) = 𝑠𝑦𝑚 ∑(𝑣𝑗 − 𝑣𝑖)∇𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗

 (8.51) 

And: 

�̅�𝑖 =∑𝛼𝑗𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑝

𝑗=1

 (8.52) 

Where in (8.52), the value 𝛼 is an unknown quantity held at each of the neighbouring 

particles, and could be described as the discrete rate of deformation. Equating (8.51) and 

(8.52) leaves a system of equations in the form Ax-b=0 

𝑨 =

[
 
 
 
 𝑊11

𝑚1

𝜌1
⋯ 𝑊1𝑛

𝑚𝑛

𝜌𝑛
⋮ ⋱ ⋮

𝑊𝑛1

𝑚1

𝜌1
⋯ 𝑊𝑛𝑛

𝑚𝑛

𝜌𝑛 ]
 
 
 
 

 (8.53) 
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𝒙 = [

𝛼1
⋮
𝛼𝑛
] (8.54) 

 

𝒃 = [
𝐷1(𝑣)
⋮

𝐷𝑛(𝑣)
] (8.55) 

 

The size of the matrix A will be 𝑛 × 𝑛, with 𝑛 being the number of particles in the system, 

𝒙 will be 𝑛 × 1, and 𝒃 will be 𝑛 × 1, which comprises of the rate of deformation term for 

each particle. A system would have to be formed for each entry of the rate of deformation 

tensor, 6 in 3D and 3 in 2D (assuming symmetry). 

The system can then be solved for 𝒙, leaving us with a value for 𝛼 at each particle position, 

if 𝛼 is then interpolated again then clearly the result will be the same as the value obtained 

through the evaluation of the velocity gradient. The components of 𝒙 can be thought of as 

discrete particle values for strain rate. 

∑ 𝛼𝑗𝑊𝑖𝑗
𝜀
𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗

= 𝑠𝑦𝑚 ∑(𝑣𝑗 − 𝑣𝑖)∇𝑊𝑖𝑗
𝑣
𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗

 (8.56) 

The superscripts distinguish the kernel functions from one another. 

Once the assumed rate of deformation is known then it can be used in the evaluated of the 

stress tensor through the constitutive relation. 

8.5.2 Assumed stress 

A similar approach can be followed for the calculation of the assumed stress,  

𝜎𝑖𝑗(�̅�)− �̅�𝑖𝑗 = 0 in Ω (8.57) 
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�̅� = ∑ 𝛽𝑗𝑊𝑖𝑗
𝜎𝑚𝑗

𝜌𝑗

𝑛𝑛𝑏𝑟

𝑗

 (8.58) 

 

Identical steps as before can be followed, solving the same system of equations, this time 

for: 

𝒙 = [
𝛽1
⋮
𝛽𝑛

] (8.59) 

 

𝒃 = [
𝜎1(�̅�𝟏)
⋮

𝜎𝑛(�̅�𝒏)
] (8.60) 

 

When the assumed stress is known, (8.1) can be solved. 

8.5.3 Solution procedure 

The solution procedure is identical for both cases, the below outlines the method for the 

rate of deformation, where D can simply be replaced with the stress tensor 

Step one – Find 𝜶 

Solve the system using standard linear algebra methods 

[
𝑊11 ⋯ 𝑊1𝑛

⋮ ⋱ ⋮
𝑊𝑛1 ⋯ 𝑊𝑛𝑛

]

[
 
 
 
 α1

𝑚1

𝜌
1

⋮

α𝑛𝑝
𝑚𝑛𝑝

𝜌
𝑛𝑝 ]
 
 
 
 

= [
𝐷1(𝒗)
⋮

𝐷𝑛𝑝(𝒗)
] (8.61) 

Step Two 

Calculate the assumed rate of deformation by (8.52) 
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Step Three 

Calculate the stress from the assumed rate of deformation through the constitutive relation. 

Step Four 

Find β by solving the system: 

[
𝑊11 ⋯ 𝑊1𝑛

⋮ ⋱ ⋮
𝑊𝑛1 ⋯ 𝑊𝑛𝑛

]

[
 
 
 
 β1

𝑚1

𝜌
1

⋮

β𝑛𝑝
𝑚𝑛𝑝

𝜌
𝑛𝑝 ]
 
 
 
 

= [
𝜎1(�̅�𝟏)
⋮

𝜎𝑛(�̅�𝒏)
] (8.62) 

Step Five 

Replace 𝜎𝑛(�̅�𝒏) with �̅�𝑛  and calculate acceleration through the conventional SPH 

momentum equation, (2.41). 

8.6 Implementation 

The implementation of the mixed SPH formation requires the following additional 

subroutines. 

Linear Algebra Solver – The mixed method requires either the inversion of a matrix, or a 

method to solve a linear system of equations, convention is generally to avoid inverting 

large matrices, therefore a subroutine is taken from numerical methods [99] which is used 

to solve a system of equations. A method that is considered efficient for solving large 

matrices is the conjugant gradient method, which is implemented in the MCM code for the 

purpose of this investigation. 

Matrix Construction – A subroutine is implemented in order to construct the matrix 

from the kernel function values and the strain and stress terms, the same routine is used for 

both operations. 

The matrix that is formed must be of dimension 𝑛𝑝 ×  𝑛𝑝. This is due to the way in which 

the SPH interpolation works, the operation must be done globally and the same matrix 

cannot be constructed locally over only the neighbouring particles. This matrix has not 

particular fixed form, the matrix will always be sparse, but is not necessarily diagonal or 
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symmetric; the number of entries in each row is equal to the number of neighbouring 

particles of each 𝑖 particle. 

The additional subroutine can be found in the appendix. 

8.6.1 Verification 

The implementation of the mixed form requires a considerable amount of additional 

computation, the majority of which is due to the requirement to solve a large system of 

equations, which avoid the need to invert the matrix directly. Therefore it is essential that 

the code is verified to ensure that the method is working as desired. Thankfully the 

verification can be performed in a fairly simple way. 

Firstly the conjugate gradient method was performed within the code on an arbitrary 

system of equation, the solution of which can easily be checked through elementary linear 

algebra. The results of this are omitted since no differences were found; instead a second 

more robust method of verification is presented which proves that the method of linear 

algebra used is working within the SPH framework. 

The steps are as follows: 

1. Populate the 𝑛𝑝 ×  𝑛𝑝 matrix using particle values for the Swegle problem, both 

for the strain rate and stress. 

2. Solve the system of equations using the conjugate gradient method. The result 

being the discrete values for strain rate and stress. 

3. Rebuild the original strain rates and stresses by simply interpolating using the 

conventional cubic spline kernel. 

4. Compare the results with those obtained from the basic SPH method. 

5. If the method is working correctly both results should be the same, proving that 

the system was solved correctly. 
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Figure 8-4 - Verification of the mixed element solution method for the Swegle problem 

Figure 8-4 shows that the two sets of results are identical, with the exception of some very 

small differences which are of such small magnitude that they can be considered purely 

numerical and as a consequence of the large number of additional operations on the data. 

Therefore it is considered that this method can be used as part of the implementation with 

full confidence. 
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8.6.2 Numerical Results 

Figure 8-5 and Figure 8-6 show the results from the Swegle test using the mixed SPH 

method, using both the quadratic and quantic spline kernels as the secondary interpolation 

functions for the assumed rate of deformation and assumed stress, it is clear that the 

additional operations performed on the variables do not have a stabilising effect on the 

solution for this particular problem, in face the growth rate of the error seems to have 

increased in both cases. 

 

Figure 8-5 Assumed values calculated from the quadratic spline kernel 

 

 

Figure 8-6 Assumed values calculated from the quintic spline kernel 
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8.7 Conclusions 

The objective of this chapter was to provide an investigation into potential improvements 

to the SPH method based on existing solutions that exist in finite element analysis. One 

particular topic of mixed element methods was identified as an appropriate method to 

investigate, (see §1.4.4), which can be derived and implemented in a number of ways, only 

one specific form was chosen due to the considerable effort required to adapt this form to 

work in an SPH framework, also since other mixed element type solutions were being 

investigated in other PhD work at the time. The form that was chosen to be implemented 

into the SPH code was the virtual power form using an assumed rate of deformation and 

stress. The implementation was verified to work correctly but when tested against the 

Swegle case, no improvement on the stability properties were observed. Since in the Swegle 

test there is only a hydrostatic pressure, the implementation tested was essentially 

equivalent to a rate of deformation – pressure form. 

Since only one particular form was tested it is impossible to make conclusions about mixed 

methods in general, but it appears that the mixed form that was implemented does not 

improve the stability properties of the SPH method when tested against the benchmark 

cases used throughout this thesis. 
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9 Conclusions 

9.1 Discussion 

Each chapter in this thesis has addressed one of the aims defined in §1.4, which results in 

the aim of the thesis (§1.3) being met, i.e. To provide an investigation toward a rigorous 

derivation of a stable and consistent numerical method based on the established Smoothed 

Particle Hydrodynamics method, suitable for modelling the large deformation transient 

response of fluids and solids. 

In order to achieve this a number of specific objectives were set in §1.4 

Develop Understanding of the SPH Method 

This fundamental objective was required in order to address the other objectives required 

in order to meet the overall aim. This objective was met through the completion of the 

following tasks, which were presented in chapters four and five: 

a) Capability study of the SPH method. The capability of the SPH method to model 

complex problems of fluid structure interaction was demonstrated here, the 

coupled FE-SPH method was used to simulate the impact of a rigid cylinder on 

water, the simulation was performed in 2D and a convergence study showed that 

that good consistency can be achieved with experimental results when comparing 

pressure on the surface of the cylinder, results also showed that peak pressure can 

be predicted well even for a lower particle resolution. The same results could not be 

achieved in 3 dimensions; for this problem a solid sphere was dropped onto water 

and again the acceleration of the sphere was recorded and compared with 

experiment, which showed that the FE-SPH method overestimation the 

acceleration by almost a factor of two. The reasons for the differences are unknown 

and suggest that further investigation should be conducted using this type of 

problem.  

The next demonstration was the response of a steel plate subjected to loading from 

an underwater explosion; this is a complex problem especially due to the difficulty 

in simulating nearly incompressible flow, which is achieved in SPH by assuming 

weak compressibility. The deflection of the centre of a steel plate was compared 
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with experiment showing reasonable results for smaller explosive quantities, as the 

strength of the blast is increased the discrepancy between simulation and 

experiment grows. However, this is to be expected; as the strength of the initial 

shock increases it becomes harder to capture the peak pressure, i.e. an extremely 

fine particle distribution would be required close to the blast. That being said the 

steel plate behaves in the correct manner; other reasons for the differences would 

include differences in the material properties for the steel used in the experiment 

compared to the properties used in the material model in the FE-SPH analysis. 

The capability study continued with the implementation of a turbulence model in 

the MCM code. Turbulence modelling is an important part of fluid modelling and 

had not been implemented in the MCM code, since turbulence models have been 

well studied and already adapted for use in an SPH code; this was a good 

opportunity to implement a relevant improvement to the code. A two equation 𝑘 −

휀 model was implemented and verified using a dam-break problem which was 

reproduced using the volume of fluid method (VOF) in Fluent. Since the objective 

was not to validate this model for any particular application and for that reason this 

particular study was concluded. 

b) The capability study was concluded by the development and implementation of a 

friction model in SPH so as to determine the suitability of the contact algorithm 

implemented in MCM to model lateral forces between two SPH materials using the 

relative velocities between materials.  To date the contact algorithm was not able to 

model lateral forces, and the work completed here provides the first novel 

improvement to the SPH method in this thesis. Friction modelling was identified as 

an appropriate problem in order to validate the approach, a friction model was 

tested using a simple sliding block problem which showed encouraging results with 

only a small amount of unphysical slippage suggesting that improved stiction 

models could be developed. The friction model was tested for a more complex 

problem involving metal forging which was simulated in 3D in which the metal is 

subject to a barrelling effect due to the effects of friction. This barrelling was 

reproduced well in the SPH simulation when compared to FE results from LS-

DYNA; however some differences were observed in the forces that were produced 

during the forging. This could have been due to the fundamental differences in the 
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numerical method or could be due to the problem identified with the stiction 

model in the 2D results. It can be concluded however that the modified contact 

algorithm is able to resolve lateral forces between materials and is suitable for 

coupling with a structural FE model. 

Investigate the Discrete Continuity Equation and its Effect on Stability 

It was demonstrated in chapter two that mass continuity is implied by the continuous 

momentum equation, however in the discrete SPH form the continuity equation does not 

hold exactly, this suggests that the momentum equation must be corrected in order to 

account for this. This objective contributes to the overall aim by providing understanding 

into the effect of the conservation properties of the SPH equations on numerical stability. 

It was found after implementing a correction term in the MCM code that the stability of 

the method was not improved for the particular test problems used and the particular form 

of the correction term that was implemented; This suggests that the loss of volume that is 

associated with the SPH form of the continuity equation is not the main source of stability 

problems with the method 

Investigation into Errors in the Gradient Approximation in SPH 

A literature review presented in chapter three identifies issues with consistency and 

accuracy of the conventional SPH method as areas for potential improvement which may 

lead to an improved method in terms of stability. The continuous form of the momentum 

equation undergoes some manipulation before it is discretised, often leading to better 

results for reasons which are not well understood; In addition it has been noted that forms 

of the momentum equation which are fully conservative are more likely to exhibit 

instabilities. In this work a momentum equation is derived rigorously which minimises the 

error which develops due to the inability to approximate the gradients of constant non-zero 

function using non-uniform particle spacing. Consequently, stability is achieved for the 

Swegle test problem as well as the elastic impact problem, this also provides a possible 

explanation as to why certain forms of the momentum equation perform better than 

others; in some cases the error is minimised through the addition of extra terms; however 

in other cases the error is magnified leading to unstable growth. Stable solutions can be 
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achieved through the use of two different forms of momentum equation, which can be 

switched between subject to the stability criterion derived in chapter seven. 

Investigate the Compatibility of FEM Solutions with SPH 

The final objective looks toward solutions that are commonly applied in finite element 

methods to solve numerical issues with convergence and stability. The mixed element 

method was identified as an area for investigation which led to several attempts at mixed 

SPH methods developed using the same methods used in the explicit finite element 

method. Significant issues arise when developing a weak form of the mixed form that is 

compatible with SPH; the result is a system of equations which has a rank of one and 

cannot be inverted. Another potential option was investigated in the direct discretisation of 

the strong form of the equations which are a consequence of the virtual power form of the 

Hu-Washizu mixed formulation. The resulting SPH framework was implemented and 

tested using the Swegle test, which showed that in this instance, stability properties of the 

method did not appear to show improvement. However only one particular formulation 

was tested, many other variations are possible in terms of the variables that are treated 

independently in the mixed form and the way in which they are discretised. 

To summarise, each objective has been addressed, which has resulted in: 

 A set of SPH equation in which the momentum equation is consistent with the 

SPH form of the continuity equation. 

 A contact algorithm in which the lateral forces between two SPH materials are 

resolved, suitable for coupling with a structural FE model. 

 A rigorously derived set of SPH equations with improved stability properties 

and accompanying stability criterion. 

 A derivation and implementation of a mixed SPH form based on the strong 

form of the Hu-Washizu virtual power equations. 
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9.2 Future Work 

Continuations of the work presented in this thesis should include: 

 Alternative discretisation’s of the correction derived in chapter six preserving 

consistency between the continuity and momentum equations, this could involve 

alternative finite difference form used to calculate the rate of change of density (in 

summation form), as well as applying this correction at different phases in the 

calculation (e.g. velocity, displacement). 

 Further work on the contact algorithm would look at other forms of lateral forces 

between materials, perhaps fluid and solid such as a wall roughness in pipe flow for 

example. Chapter five concluded that improved stiction models could be developed 

for the friction model in particular; continuations of this work should look at other 

potential implementations. 

 Further investigations on the calculation for the average stress term of the 

neighbourhood developed in chapter seven in the modified SPH form should be 

conducted, such as using an SPH interpolation over the neighbouring particles, also 

other forms of stability analysis could be useful in determining the stability regime 

and identifying other forms of a stable SPH method suitable for resolving 

boundaries. One such method is eigenvalue stability analysis. 

 Alternative mixed forms should be developed and tested using the framework 

developed in chapter eight, only one possible formulation was derived here; other 

potential options could involve mixed forms based on displacements, pressure, or 

velocity. Additionally a rigorous stability analysis should be done to identify specific 

stability criteria for the mixed SPH method. 
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Appendix 

11.1 .Hu-Washizu Derivation  

The derivation of the virtual power from of the Hu-Washizu form is presented here, taken 

from [59]. 

The equations of motion can be written in a generalized form through the principle of 

virtual power 

𝛿𝑃 = 𝛿𝑃𝑖𝑛𝑡 − 𝛿𝑃𝑒𝑥𝑡 + 𝛿𝑃𝑘𝑖𝑛 = 0 (11.1) 

With 

𝛿𝑃𝑖𝑛𝑡 = ∫ 𝛿𝐷𝑖𝑗𝜎𝑖𝑗𝑑Ω
Ω

 (11.2) 

 

𝛿𝑃𝑒𝑥𝑡 = ∫ 𝛿𝑣𝑖𝜌𝑏𝑖𝑑Ω
Ω

+∑∫ 𝛿𝑣𝑗𝑡�̅�𝑑Γ
Γ𝑡𝑗

𝑑𝑖𝑚

𝑗=1

 (11.3) 

 

𝛿𝑃𝑘𝑖𝑛 = ∫ 𝛿𝑣𝑖𝜌�̇�𝑖𝑑Ω
Ω

 (11.4) 

We will now see how the equations of motion is strong form can be deduced from the 

above equations, if we start with the right had side of (11.2) 

∫ 𝛿𝐷𝑖𝑗𝜎𝑗𝑖𝑑Ω
Ω

= ∫
𝜕(𝛿𝑣𝑖)

𝜕𝑥𝑗
𝜎𝑗𝑖𝑑Ω

Ω
= ∫

𝜕(𝛿𝑣𝑖𝜎𝑗𝑖)

𝜕𝑥𝑗
𝑑Ω−∫

𝜕𝜎𝑗𝑖
𝜕𝑥𝑗

𝛿𝑣𝑖𝑑Ω
ΩΩ

 (11.5) 

Now applying divergence theorem to the first term on the right hand side of (11.5)  

Where (11.5) can be arrived at since the product of the symmetric tensor 𝜎𝑖𝑗 and the anti-

symmetric spins tensor 𝑊𝑖𝑗 in (11.6) is equal to zero. 

𝜎𝑖𝑗
𝜕𝑣𝑖
𝜕𝑥𝑗

= 𝜎𝑖𝑗(𝐷𝑖𝑗 +𝑊𝑖𝑗) (11.6) 
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∫
𝜕(𝛿𝑣𝑖𝜎𝑗𝑖)

𝜕𝑥𝑗
𝑑Ω = ∫ 𝛿𝑣𝑖𝑛𝑗𝜎𝑗𝑖𝑑Γ+

ΓΩ
∫ 𝛿𝑣𝑖⟦𝑛𝑗𝜎𝑗𝑖⟧𝑑Γ
Γ𝑖𝑛𝑡

=∑∫ 𝛿𝑣𝑖𝑛𝑗𝜎𝑗𝑖𝑑Γ+
Γ

∫ 𝛿𝑣𝑖⟦𝑛𝑗𝜎𝑗𝑖⟧𝑑Γ
Γ𝑖𝑛𝑡

𝑑𝑖𝑚

𝑖=1

 

(11.7) 

Substituting the terms for 𝛿𝑃𝑖𝑛𝑡 (11.7),  𝛿𝑃𝑒𝑥𝑡 (11.3), and 𝛿𝑃𝑘𝑖𝑛 (11.4) into (11.1). 

∑∫ 𝛿𝑣𝑖𝑛𝑗𝜎𝑗𝑖𝑑Γ +
Γ

∫ 𝛿𝑣𝑖⟦𝑛𝑗𝜎𝑗𝑖⟧𝑑Γ
Γ𝑖𝑛𝑡

𝑑𝑖𝑚

𝑖=1

−∫ 𝛿𝑣𝑖𝜌𝑏𝑖𝑑Ω
Ω

+∑∫ 𝛿𝑣𝑗�̅�𝑗𝑑Γ
Γ𝑡𝑗

𝑑𝑖𝑚

𝑗=1

+∫ 𝛿𝑣𝑖𝜌�̇�𝑖𝑑Ω
Ω

−∫
𝜕𝜎𝑗𝑖
𝜕𝑥𝑗

𝛿𝑣𝑖𝑑Ω
Ω

 

(11.8) 

And collecting the terms 

∑∫ 𝛿𝑣𝑖(𝑛𝑗𝜎𝑗𝑖 − �̅�𝑗)𝑑Γ
Γ

+∫ 𝛿𝑣𝑖⟦𝑛𝑗𝜎𝑗𝑖⟧𝑑Γ
Γ𝑖𝑛𝑡

𝑑𝑖𝑚

𝑖=1

− 

∫ 𝛿𝑣𝑖 (
𝜕𝜎𝑗𝑖
𝜕𝑥𝑗

+ 𝜌𝑏𝑖 − 𝜌�̇�𝑖)𝑑Ω
Ω

 

(11.9) 

The variations will now vanish; this is due to the fundamental theorem of variational 

calculus, leaving 

𝑛𝑗𝜎𝑗𝑖 = �̅�𝑗 on Γ𝑖𝑛𝑡 (11.10) 

 

⟦𝑛𝑗𝜎𝑗𝑖⟧ = 0 on Γ𝑡𝑗 (11.11) 

 

𝜕𝜎𝑗𝑖
𝜕𝑥𝑗

+ 𝜌𝑏𝑖 = 𝜌�̇�𝑖 in Ω (11.12) 
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Which are the traction boundary condition (11.10), the interior continuity conditions 

(11.11), and the momentum equation (11.12). 

11.2 Mixed form of virtual power 

The Hu-Washizu form of the virtual power equations takes the following form. 

𝛿𝑃 = ∫ 𝛿�̅�𝑖𝑗𝜎𝑖𝑗(�̅�)𝑑Ω
Ω

+∫ 𝛿[𝜎𝑖𝑗(𝐷𝑖𝑗(𝒗) − �̅�𝑖𝑗)]𝑑Ω
Ω

− 𝛿𝑃𝑒𝑥𝑡 + 𝛿𝑃𝑘𝑖𝑛 = 0 (11.13) 

 

In the above, the over-bar indicates an assumed value, i.e. a value that is evaluated 

independently. �̅�𝑖𝑗 is the assumed rate of deformation, 𝜎𝑖𝑗(�̅�) are the stresses written as a 

function of the assumed rate of deformation 

�̅�𝑖𝑗 Assumed rate of deformation 

�̅�𝑖𝑗 Assumed stress 

𝜎𝑖𝑗(�̅�) 

Stress calculated from the assumed rate of 

deformation through the constitutive 

relation. 

𝐷𝑖𝑗(𝒗) 
Rate of deformation calculated through 

kinematic relations. 

 

The same process can be used as in the previous example, the only difference in the second 

term on the right of (11.13) involving the strain rate D. 

∫ 𝛿 [�̅�𝑖𝑗 (𝐷𝑖𝑗(𝒗)− �̅�𝑖𝑗)]𝑑Ω
Ω

= ∫ 𝛿�̅�𝑖𝑗 (𝐷𝑖𝑗(𝒗)− �̅�𝑖𝑗)𝑑Ω
Ω

−∫ �̅�𝑖𝑗 (𝛿𝐷𝑖𝑗(𝒗)− 𝛿�̅�𝑖𝑗)𝑑Ω
Ω

 

(11.14) 

 

Since the stress tensor is symmetric the following is true. 
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∫ �̅�𝑖𝑗𝛿𝐷𝑖𝑗𝑑Ω
Ω

= ∫ �̅�𝑖𝑗𝛿𝑣𝑖,𝑗
Ω

𝑑Ω = ∫ (�̅�𝑖𝑗𝛿𝑣𝑖) ,𝑗Ω
𝑑Ω−∫ �̅�𝑖𝑗,𝑗𝛿𝑣𝑖

Ω
𝑑Ω (11.15) 

Applying divergence theorem 

∫ (�̅�𝑖𝑗𝛿𝑣𝑖)𝑗
𝑑Ω

Ω
−∫ �̅�𝑖𝑗,𝑗𝛿𝑣𝑖𝑑Ω

Ω

= ∫ 𝛿𝑣𝑖�̅�𝑖𝑗𝑛𝑗𝑑Γ
Γ𝑡

+∫ 𝛿𝑣𝑖 ⟦�̅�𝑖𝑗𝑛𝑗⟧𝑑Γ
Γ𝑖𝑛𝑡

−∫ �̅�𝑖𝑗,𝑗𝛿𝑣𝑖
Ω

𝑑Ω 

(11.16) 

Substituting (11.16) back into (11.15) 

∫ 𝛿�̅�𝑖𝑗𝜎𝑖𝑗(�̅�)𝑑Ω
Ω

+∫ 𝛿�̅�𝑖𝑗 (𝐷𝑖𝑗(𝒗)− �̅�𝑖𝑗)𝑑Ω
Ω

+∫ 𝛿𝑣𝑖�̅�𝑖𝑗𝑛𝑗𝑑Γ
Γ𝑡

+∫ 𝛿𝑣𝑖 ⟦�̅�𝑖𝑗𝑛𝑗⟧𝑑Γ
Γ𝑖𝑛𝑡

−∫ �̅�𝑖𝑗,𝑗𝛿𝑣𝑖
Ω

𝑑Ω+ ∫ 𝛿�̅�𝑖𝑗�̅�𝑖𝑗𝑑Ω
Ω

−∫ 𝛿𝑣𝑖𝜌𝑏𝑖𝑑Ω
Ω

+∑∫ 𝛿𝑣𝑗�̅�𝑗𝑑Γ+∫ 𝛿𝑣𝑖𝜌�̇�𝑖𝑑Ω
ΩΓ𝑡𝑗

𝑑𝑖𝑚

𝑗=1

 

(11.17) 

Collecting terms: 

∫ 𝛿�̅�𝑖𝑗(𝜎𝑖𝑗(�̅�)− �̅�𝑖𝑗)𝑑Ω
Ω

+∫ 𝛿𝑣𝑖 ⟦�̅�𝑖𝑗𝑛𝑗⟧𝑑Γ
Γ𝑖𝑛𝑡

+∫ 𝛿𝑣𝑗 (�̅�𝑗 − �̅�𝑖𝑗𝑛𝑗)𝑑Γ +∫ 𝛿𝑣𝑖(𝜌�̇�𝑖 − �̅�𝑖𝑗,𝑗 − 𝜌𝑏𝑖)𝑑Ω
ΩΓ𝑡𝑗

+∫ 𝛿�̅�𝑖𝑗 (𝐷𝑖𝑗(𝒗)− �̅�𝑖𝑗)𝑑Ω
Ω

 

(11.18) 

 

After applying the fundamental theorem of variational calculus, the variation vanishes 

leaving: 

𝜌�̇�𝑖 − 𝜎𝑖𝑗,𝑗 − 𝜌𝑏𝑖 = 0 in Ω (11.19) 
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⟦�̅�𝑖𝑗𝑛𝑗⟧ = 0 on Γ (11.20) 

 

�̅�𝑗 − �̅�𝑖𝑗𝑛𝑗 =  0 on Γ (11.21) 

 

𝐷𝑖𝑗(𝒗)− �̅�𝑖𝑗 = 0 in Ω (11.22) 

 

𝜎𝑖𝑗(�̅�)− �̅�𝑖𝑗 = 0 in Ω (11.23) 

 

Which are the momentum equation (11.19), the interior continuity conditions (11.20), 

traction boundary conditions (11.21), the strain measure (11.22), and the constitutive 

relation (11.23). 
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11.3 Finite Element Discretisation of the Hu-Washizu equations 

The Hu-Washizu form of the virtual power equations takes the following form. 

𝛿Π𝐻𝑊(𝒗, �̅�, �̅�) = 0

= ∫ 𝛿�̅�𝑖𝑗𝜎𝑖𝑗(�̅�)𝑑Ω
Ω

+∫ 𝛿[𝜎𝑖𝑗(𝐷𝑖𝑗(𝒗) − �̅�𝑖𝑗)]𝑑Ω
Ω

− 𝛿𝑃𝑒𝑥𝑡

+ 𝛿𝑃𝑘𝑖𝑛 

(11.24) 

Where the virtual kinetic and external power terms are 

𝛿𝑃𝑒𝑥𝑡 = ∫ 𝛿𝑣𝑖𝜌𝑏𝑖𝑑Ω
Ω

+∑∫ 𝛿𝑣𝑗𝑡�̅�𝑑Γ
Γ𝑡𝑗

𝑑𝑖𝑚

𝑗=1

 (11.25) 

 

𝛿𝑃𝑘𝑖𝑛 = ∫ 𝛿𝑣𝑖𝜌�̇�𝑖𝑑Ω
Ω

 (11.26) 

 

𝛿 variation 

Ω volume 

Γ𝑡𝑗  Surface on which traction boundary 

conditions are applied 

𝒗 Velocity vector 

�̅�𝑖𝑗 Assumed rate of strain 

𝐷𝑖𝑗(𝒗) Strain rate evaluated through kinematic 

relation. 

𝜎𝑖𝑗(�̅�) Stress tensor evaluated from assumed strain 

rate through constitutive relation. 



 

181 

 

�̅�𝑖𝑗 Assumed stress tensor 

𝑏 Body force 

𝑡�̅� Traction vector 

 

The dependant variables are velocity, strain rate and stress. Their finite element 

approximations are given by: 

𝑣𝑖(𝝃, 𝑡) = 𝑁𝑖𝐴(𝝃)𝑑�̇�(𝑡) (11.27) 

 

�̅�𝑖𝑗(𝝃, 𝑡) = 𝑁𝑖𝑗𝐴
𝐷 (𝝃)𝛼𝐴

𝑒 (𝑡) (11.28) 

 

�̅�𝑖𝑗(𝝃, 𝑡) = 𝑁𝑖𝑗𝐴
𝜎 (𝝃)𝛽𝐴

𝑒 (𝑡) (11.29) 

 

The test functions are 

 

𝛿𝑣𝑖(𝝃) = 𝑁𝑖𝐴(𝝃)𝛿𝑑𝐴̇  (11.30) 

 

𝛿�̅�𝑖𝑗(𝝃) = 𝑁𝑖𝑗𝐶
𝐷 (𝝃)𝛿𝛼𝐶

𝑒  (11.31) 

 

𝛿�̅�𝑖𝑗(𝝃, 𝑡) = 𝑁𝑖𝑗𝐵
𝜎 (𝝃)𝛿𝛽𝐵

𝑒
 (11.32) 

 

Substituting into the first equation 
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𝛿𝑃 =∑𝛿𝛼𝐶
𝑒∫ 𝑁𝑖𝑗𝐶

𝐷 𝜎𝑖𝑗(�̅�)𝑑Ω
Ω𝑒𝑒

+∑∫ 𝛿[𝑁𝑖𝑗𝐵
𝜎 𝛽𝐵

𝑒(𝐵𝑖𝐴𝑑�̇� −𝑁𝑖𝑗𝐶
𝐷 𝛼𝐶

𝑒 )]𝑑Ω
Ω𝑒𝑒

− 𝛿𝑃𝑒𝑥𝑡 + 𝛿𝑃𝑘𝑖𝑛 = 0 

(11.33) 

 

𝛿𝑃𝑒𝑥𝑡 − 𝛿𝑃𝑘𝑖𝑛 = 𝛿�̇�𝐴(𝑓𝐴
𝑒𝑥𝑡 −𝑀𝐴𝐵�̈�𝐵) (11.34) 

For convenience the internal power is written as 

𝛿𝑃𝐻𝑊
𝑖𝑛𝑡 =∑𝛿𝛼𝐶

𝑒 �̃�𝐶
𝑒

𝑒

+ 𝛿 [𝛽𝐵
𝑒 �̃�𝐵𝐴

𝑒
𝑑�̇� − 𝛽𝐵

𝑒𝐺𝐵𝐶
𝑒 𝛼𝐶

𝑒 ] (11.35) 

Where 

�̃�𝐶
𝑒 = ∫ 𝑁𝑖𝑗𝐶

𝐷 𝜎𝑖𝑗(�̅�)𝑑Ω
Ω𝑒

= ∫ 𝑁𝑎𝐶
𝐷
{𝜎𝑎(�̅�)}𝑑Ω 

Ω𝑒

or {�̃�𝐶
𝑒
} = ∫ (𝑵𝐷)

𝑇{𝝈(�̅�)}𝑑Ω 
Ω𝑒

 (11.36) 

 

�̃�𝐵𝐴
𝑒
= ∫ 𝑁𝑖𝑗𝐵

𝜎 𝐵𝑖𝑗𝐴𝑑Ω
Ω𝑒

= ∫ 𝑁𝑎𝐵
𝜎 𝐵𝑎𝐴𝑑Ω 

Ω𝑒

or �̃�𝑒 = ∫ 𝑵𝜎
𝑇𝑩𝑑Ω 

Ω𝑒

 (11.37) 

 

𝐺𝐵𝐶
𝑒 = ∫ 𝑁𝑖𝑗𝐵

𝜎 𝑁𝑖𝑗𝐶
𝐷 𝑑Ω

Ω𝑒

= ∫ 𝑁𝑎𝐵
𝜎 𝑁𝑎𝐶

𝐷 𝑑Ω 
Ω𝑒

or 𝐺𝑒 = ∫ 𝑵𝜎
𝑇𝑵𝑫𝑑Ω 

Ω𝑒

 (11.38) 

 

Expanding eq. (11.35) leaves 

𝛿𝑃𝐻𝑊
𝑖𝑛𝑡 =∑𝛿𝛼𝐶

𝑒 �̃�𝐶
𝑒

𝑒

+ 𝛿𝛽𝐵
𝑒 �̃�𝐵𝐴

𝑒
𝑑𝐴 + 𝛽𝐵

𝑒𝛿�̃�𝐵𝐴
𝑒
�̇�𝐴 + 𝛽𝐵

𝑒 �̃�𝐵𝐴
𝑒
𝛿𝑑�̇� − 𝛿𝛽𝐵

𝑒𝐺𝐵𝐶
𝑒 𝛼𝐶

𝑒

+ 𝛽𝐵
𝑒𝛿𝐺𝐵𝐶

𝑒 𝛼𝐶
𝑒 + 𝛽𝐵

𝑒𝐺𝐵𝐶
𝑒 𝛿𝛼𝐶

𝑒  

(11.39) 

Then re-arranging to collect the variation terms 
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𝛿𝑃𝐻𝑊
𝑖𝑛𝑡 =∑𝛿𝛼𝐶

𝑒(�̃�
𝐶
𝑒

𝑒

+ 𝛽𝐵
𝑒𝐺𝐵𝐶

𝑒 ) + 𝛿𝛽𝐵
𝑒 (�̃�

𝐵𝐴

𝑒
�̇�𝐴 −𝐺𝐵𝐶

𝑒 𝛼𝐶
𝑒) + 𝛽𝐵

𝑒 �̃�𝐵𝐴
𝑒
𝛿𝑑�̇� (11.40) 

Substituting this into (11.34) 

𝛿Π𝐻𝑊 =∑𝛿𝛼𝐶
𝑒(�̃�

𝐶
𝑒

𝑒

+ 𝛽𝐵
𝑒𝐺𝐵𝐶

𝑒 ) + 𝛿𝛽𝐵
𝑒 (�̃�

𝐵𝐴

𝑒
�̇�𝐴 − 𝐺𝐵𝐶

𝑒 𝛼𝐶
𝑒) + 𝛽𝐵

𝑒 �̃�𝐵𝐴
𝑒
𝛿�̇�𝐴

+ 𝛿�̇�𝐴(𝑓𝐴
𝑒𝑥𝑡 −𝑀𝐴𝐵�̈�𝐵) 

(11.41) 

Which can then be used to obtain the following, by invoking the arbitrariness of 

each term: 
 

𝑓𝐴
𝑖𝑛𝑡,𝑒 = �̃�𝐵𝐴

𝑒
𝛽𝐵
𝑒
 (11.42) 

�̃�𝐶
𝑒 = 𝛽𝐵

𝑒
𝐺𝐵𝐶
𝑒

 (11.43) 

�̅�𝑖𝑗 = 𝑁𝑖𝑗𝐴
𝐷
(𝐺𝐴𝐵

𝑒
)
−1
�̃�𝐵𝐷
𝑒
�̇�𝐷 (11.44) 

Which are all the terms required in order to calculate the internal forces using the mixed 

method. 
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11.4 SPH Code Background Stress  

 

DO k=1,par(i)%p%nnbr + par(i)%p%n_symnbr  

        ipar = i-mcm_sep+1 

        if(k.le.par(i)%p%nnbr) then 

            j = mcm_eul_nbrlist(k,ipar) 

        else 

            l  = k - par(i)%p%nnbr 

            j  = mcm_eul_sym_nbr(1,l,ipar) 

 

            do m=1,3 

                do n=1,3 

                    if(m.eq.n) then 

                        sigmaj(m,n) = par(j)%p%sigma(m,n) 

                        qj(m,n) = par(j)%p%q(m,n) 

                    else 

                        sigmaj(m,n) = -par(j)%p%sigma(m,n) 

                        qj(m,n) = -par(j)%p%q(m,n) 

                    endif 

                enddo 

            enddo 

 

        end if 

 

        !and full stress tensor 

        do n=1,mcm_ndim 

            do m=1,mcm_ndim 

                par(i)%p%sigavg(m,n) = par(i)%p%sigavg(m,n) + (sigmaj(m,n)-

qj(m,n))/par(j)%p%rho**2 

            end do 

        end do 

END DO 

    !add i particle contribution, assuming 2d 

    do n=1,mcm_ndim 

        do m=1,mcm_ndim 

par(i)%p%sigavg(m,n) = par(i)%p%sigavg(m,n) + (par(i)%p%sigma(m,n)-

par(i)%p%q(m,n))/par(i)%p%rho**2 

par(i)%p%sigavg(m,n) = par(i)%p%sigavg(m,n) / (par(i)%p%nnbr + par(i)%p%n_symnbr + 1) 

        end do 

    end do 
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11.5 SPH Code – Hu Washizu 

 

module populate 

    contains 

 

    subroutine populatea(a,o) 

    use nrtype 

    use mcm_database 

    IMPLICIT NONE 

 

    REAL(DP),   DIMENSION(mcm_eep,mcm_eep) :: a 

    integer :: i,j,o 

    REAL(kind=real_acc) :: W, volj 

 

    do i = mcm_sep, mcm_eep 

        do j = mcm_sep, mcm_eep 

            volj=par(j)%p%mass/par(j)%p%rho 

            if (o.eq.0) then 

                call mcm_kernel3(w,par(i)%p%x,par(j)%p%x,par(j)%p%h) 

            else 

                call mcm_kernel3(w,par(i)%p%x,par(j)%p%x,par(j)%p%h) 

            end if 

            a(i,j) = volj * W 

        end do 

    end do 

 

 

 

    end subroutine populatea 

 

    subroutine populateb(e,u,m,o,b) 

    use nrtype 

    use mcm_database 

    IMPLICIT NONE 

 

 

    REAL(DP),  DIMENSION(625) :: b 

    REAL(DP),  DIMENSION(625) :: x 

    integer :: i,u,m,o,k,j,e 

    real::mixedrod2,volj,havg 

    REAL(kind=real_acc)    :: W 

 

    if (o.eq.1) then 

        do i = mcm_sep, mcm_eep 

            mixedrod2=0.0 
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            do k=1,par(i)%p%nnbr + par(i)%p%n_symnbr 

                j= mcm_eul_nbrlist(k,i) 

                volj=par(j)%p%mass/par(j)%p%rho    

                havg=(par(i)%p%h+par(j)%p%h)/2 

                call mcm_kernel(w,par(i)%p%x,par(j)%p%x,par(i)%p%h) 

                mixedrod2=mixedrod2+par(j)%p%rod(u,m)*W*volj 

            end do 

            !add i particle 

            call mcm_kernel(w,par(i)%p%x,par(i)%p%x,par(i)%p%h) 

            !for cubic spline 

            mixedrod2=mixedrod2 + par(i)%p%rod(u,m) * W * par(i)%p%mass/par(i)%p%rho 

            b(i)=par(i)%p%rod(u,m) 

 

        end do 

 

    else 
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 do i = mcm_sep, mcm_eep 

 

            mixedrod2=0.0 

            do k=1,par(i)%p%nnbr + par(i)%p%n_symnbr 

                j= mcm_eul_nbrlist(k,i) 

                volj=par(j)%p%mass/par(j)%p%rho 

                havg=(par(i)%p%h+par(j)%p%h)/2 

                call mcm_kernel(w,par(i)%p%x,par(j)%p%x,par(i)%p%h) 

                mixedrod2=mixedrod2+par(j)%p%sigma(u,m)*W*volj 

 

            end do 

            !add i particle 

            call mcm_kernel(w,par(i)%p%x,par(i)%p%x,par(i)%p%h) 

            mixedrod2=mixedrod2 + par(i)%p%sigma(u,m) * W * par(i)%p%mass/par(i)%p%rho 

            !update rod 

            if(u.eq.2) then 

                if(m.eq.2) then 

                    continue 

                end if  

            end if 

            b(i)=par(i)%p%sigma(u,m) 

        end do 

    end if 

 

 

    end subroutine populateb 

 

    subroutine populatex 

    use nrtype 

    use mcm_database 

    IMPLICIT NONE 

 

 

    REAL(DP),  DIMENSION(625) :: x 

    integer :: i 

    !if(allocated(x).eqv. .false.) then 

    !allocate(x(mcm_eep)) 

    !end if 

 

    do i = mcm_sep, mcm_eep 

        x(i) = 0 

        !if (allocated(mcm_mat(1)%X).eqv. .false.) then 

        !allocate(mcm_mat(1)%X(mcm_eep)) 

        !end if 

        !!mcm_mat(1)%X(i)=0 

    end do 
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    end subroutine populatex 

    end module populate 
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subroutine mixedform(u,m,o) 

 

    use nrtype 

    USE xlinbcg_data 

    use populate 

    use mcm_database 

    USE mcm_database; USE nrtype; USE nrutil 

 

 

    IMPLICIT NONE 

 

 

    REAL(DP) ,DIMENSION(625, 625) :: a 

    REAL(DP) :: thresh,cmin,cmax 

    integer :: u,m,o,DeAllocateStatus,e 

 

    REAL(DP), DIMENSION(625) :: b 

    REAL(DP), DIMENSION(625) :: x 

    REAL(DP), DIMENSION(625) :: v 

    INTEGER(I4B) :: itol,itmax 

    REAL(DP) :: tol 

    INTEGER(I4B) :: iter 

    REAL(DP) :: err 

 

     

call populatex 

 

    thresh =0.000001 

    itol=2 

    itmax=9999 

    tol=0.000001 

 

    if(u.eq.2) then 

        if(m.eq.2) then 

            continue 

        end if  

    end if 

 

    call populateb(e,u,m,o,b) 

    cmin=minval(b) 

    cmax=maxval(b) 

    if (cmin.eq.zero) then 

        if (cmax.eq.zero) then 

            return 

        end if  

    end if 

    if (abs(cmin-cmax).lt.0.0000000001) then 
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        return 

 

    end if 

 

    call populatea(a,o) 

 

    call sprsin_dp(a,thresh,sa) 

 

    call linbcg(b,x,itol,tol,itmax,iter,err) 

 

    call mixedrod(x,u,m,o,0,b) 

 

    END SUBROUTINE mixedform 
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subroutine mixedrod(x,u,m,o,e,b) 

    use mcm_database 

    use nrtype 

    IMPLICIT NONE 

 

    REAL(DP),  DIMENSION(mcm_eep) :: x 

    REAL(DP),  DIMENSION(mcm_eep) :: b 

    integer :: u,m,j,o,e 

    real(kind=real_acc) :: W, volj,mixedrod2,massj,rhoj,hj,sigmaj,qj,xj(mcm_ndim),havg 

    integer :: i,k 

 

 

    do i = mcm_sep, mcm_eep 

        !o=i 

        mixedrod2=0.0 

        do k=1,par(i)%p%nnbr + par(i)%p%n_symnbr 

            j= mcm_eul_nbrlist(k,i) 

            !call mcm_get_j_eul_moment_info(i,k,xj,massj,rhoj,hj,sigmaj,qj) 

            volj=par(j)%p%mass/par(j)%p%rho 

 

            havg=(par(i)%p%h+par(j)%p%h)/2 

            if(o.eq.0) then 

                call mcm_kernel(w,par(i)%p%x,par(j)%p%x,havg) 

            else 

                call mcm_kernel(w,par(i)%p%x,par(j)%p%x,havg) 

            end if 

            mixedrod2=mixedrod2+x(j)*W*volj 

        end do 

        !add i particle 

        if(o.eq.0) then 

            call mcm_kernel(w,par(i)%p%x,par(i)%p%x,par(i)%p%h) 

        else 

            call mcm_kernel(w,par(i)%p%x,par(i)%p%x,par(i)%p%h) 

        end if 

        !W=1 

        mixedrod2=mixedrod2 + x(i) * W * par(i)%p%mass/par(i)%p%rho 

        !update rod 

        if(u.eq.2) then 

            if(m.eq.2) then 

                continue 

            end if  

        end if 

        !print *,par(i)%p%rod(u,m), mixedrod2,mcm_timestep 

 

        if(o.eq.1) then 

            if (e.eq.1) then 

                par(i)%p%rod(u,m)=x(i) 

            else 
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                par(i)%p%rod(u,m)=x(i)  

            end if 

        else 

            if (e.eq.0) then 

                !par(i)%p%sigma(u,m)=mixedrod2 

                par(i)%p%sigma(u,m)=x(i) 

            else 

                b(i)=x(i) 

            end if 

        end if 

    end do 

 

    end subroutine mixedrod 

 

    subroutine mixedtracerod 

    use mcm_database 

    implicit none 

    integer :: i 

    do i = mcm_sep, mcm_eep 

        par(i)%p%tracerod=par(i)%p%rod(1,1)+ par(i)%p%rod(2,2)+par(i)%p%rod(3,3) 

    end do 

    end subroutine mixedtracerod 
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11.6 SPH Code – Friction Contact 

 

SUBROUTINE mcm_rep_cont 

. 

. 

. 

! Main body of code is ommited 

!friction here 

!project the relative velocity vector onto the plane tangential to the contact 

force between each contact pair. 

            !the resulting vector will be the direction of the friction force. 

            !take triple cross product of normal force and relative velocity f X 

(f X V) = f(f.v) - v(f.f) 

             

            !find f.f and f.v 

            fdotv=0 

            fdotf=0 

             

            do l = 1,mcm_ndim 

            fdotv=fdotv+par(i)%p%repulsion(l)*par(i)%p%vij(l) 

            fdotf=fdotf+par(i)%p%repulsion(l)*par(i)%p%repulsion(l) 

            end do 

             

            !calculate f(f.v) - v(f.f). The resulting vector has  

the correct direction               but the magnitude is that of the relative 

velocity, need to normalise. 

            len=0.0 

            len2=0.0 

            do l = 1,mcm_ndim 

                velocity_ij(l)=par(i)%p%repulsion(l)*fdotv - 

par(i)%p%vij(l)*fdotf 

                len=len+velocity_ij(l)**2 

                len2=len2 + par(i)%p%vij(l)**2  

                 

            end do 

             

             

            !acceleration required to bring particle to rest over timestep 

            !rest = sqrt(len2)/mcm_dt 

             

            if (abs(len).le.1e-10) then 

                friction_ij=0.0 

                else 

             

            !find length of vector and normalise 
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            len=sqrt(len) 

            do l = 1,mcm_ndim 

            friction_ij(l)=velocity_ij(l)/len   

 

            end do 

             

            vdotcf=0.0 

            do l = 1,mcm_ndim 

            vdotcf=vdotcf+(par(i)%p%vij(l)/par(i)%p%ncont)*friction_ij(l) 

            end do 

             

            rest = abs(vdotcf/mcm_dt)             

 

            !find magnitude of contact force. 

            len=0.0 

            do l = 1,mcm_ndim 

                len = len + par(i)%p%repulsion(l)**2 

                

            end do 

            len=sqrt(len) 

                end if 

                 

                !is yield force greater than that required to bring particle to 

rest over the timestep 

                 

                !velocity in direction of relative motion 

                 !coefficient of friction 

                len=len*0               

                if (len.gt.rest) then 

                    len=rest                   

                else                    

                    len=len 

                end if 

                 

                area=(par(i)%p%h**2)/(1.3**2) 

                !k1=1.44E+08 

                !len=min(len, area*k1/par(i)%p%mass) 

                 

                     

             

             

 

            do l = 1,mcm_ndim 

 

              par(i)%p%repulsion(l) = par(i)%p%repulsion(l) +(friction_ij(l)*len) 

 

            enddo 
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    ! 

  endif 

 

enddo 

. 

. 

. 

!Main body of code is ommited 

 

end subroutine mcm_rep_cont 

 

 

     

 

 


