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Abstract 

This paper presents an approach for determining the most appropriate technique for cost estimation of innovative high value manufacturing 
products depending on the amount of prior data available. Case study data from the United States Scheduled Annual Summary Reports for the 
Joint Strike Fighter (1997-2010) is used to exemplify how, depending on the attributes of a priori data certain techniques for cost estimation are 
more suitable than others. The data attribute focused on is the computational complexity involved in identifying whether or not there are 
patterns suited for propagation. Computational complexity is calculated based upon established mathematical principles for pattern recognition 
which argue that at least 42 data sets are required for the application of standard regression analysis techniques. The paper proposes that below 
this threshold a generic dependency model and starting conditions should be used and iteratively adapted to the context. In the special case of 
having less than four datasets available it is suggested that no contemporary cost estimating techniques other than analogy or expert opinion are 
currently applicable and alternate techniques must be explored if more quantitative results are desired. By applying the mathematical principles 
of complexity groups the paper argues that when less than four consecutive datasets are available the principles of topological data analysis 
should be applied. The preconditions being that the cost variance of at least three cost variance types for one to three time discrete continuous 
intervals is available so that it can be quantified based upon its geometrical attributes, visualised as an n-dimensional point cloud and then 
evaluated based upon the symmetrical properties of the evolving shape. Further work is suggested to validate the provided decision-trees in cost 
estimation practice. 
 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

This paper presents an approach for determining the most 
appropriate technique for cost estimation of innovative high 
value manufacturing products depending on the amount of a 
priori data available [1]. High value manufacturing products 
are understood as such products which are the results of 
“…the application of leading edge technical knowledge and 
expertise…” and result in “…the creation of products, 
production processes, and associated services which have 
strong potential to bring sustainable growth and high 
economic value…” [2]. Exemplary high value manufacturing 
products are aerospace engines and airframes, sea vessels and 

defence ground vehicles. Innovation is declared to exist when 
no verified and accurate cost models are available. Under the 
associated conditions of deep uncertainty and small data it is 
especially the plethora of varying plausible future scenarios 
that calls for a deeper understanding of available methods. 
Uncertainty is defined as unintended cost variance with a 
probability of 100% and an unknown impact [3]. The 
presented approach provides guidelines for when the 
following cost estimation techniques can be applied with 
confidence: analogy or expert opinion, topological estimation, 
parametric estimation and standard statistical regression. The 
cost estimation technique based upon topological estimation is 
novel in the field of cost estimation and deemed suitable for 
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filling the gap between zero and four discrete time elements 
of prior data [4]. The guidelines are based upon the 
complexity of a priori data as defined by Kolmogorov [5] and 
applied to an evolving bit string describing the propagation 
direction of cost variance metrics deemed relevant by the 
estimator (i.e. the direction of cost variance propagation).  

Section 2 describes how the principles of Kolmogorov 
complexity are used to determine the time windows for 
differing forecast techniques and Section 3 presents the case 
study data. Section 4 presents the fundamental selection 
guidelines and Section 5 presents the process for determining 
which forecast technique is most applicable when. Section 6 
discusses the concept of innovativeness and Section 7 shares a 
series of common estimation situations and describes how the 
presented approach leads to specific forecast technique 
recommendations. Section 8 shares a conclusion and provides 
recommendations for future research. 

2. Complexity for determining time windows 

It is suggested that Kolmogorov complexity [5] is a 
suitable indicator for determining when a specific forecasting 
technique is applicable or not. The metric of Kolmogorov 
complexity signifies the degree of compression a binary string 
can be subject to whereby compression is understood as the 
process of converting the sequence of bits into the description 
of the pattern represented by that bit sequence. The bit 
sequence is hence transformed into a program that can 
generate exactly that bit sequence. The program consists of a 
descriptor language which explains how a sequence of 
instructions is applied by a Turing Machine in order to 
generate the bit string. 

The data of interest is the prior data related to the financial 
cost variance of the high value manufacturing product, 
specifically across at least three dimensions of cost variance 
such as cost changes due to variance in requirements, 
schedule or units ordered. This data needs to cover iterative 
discrete time intervals prior to the point in time where the cost 
estimate is being performed. 

The first boundary suggested by Kolmogorov complexity 
is that the data from at least 42 discrete time intervals is 
required before pattern recognition approaches can be applied 
for forecasting purposes. This includes the application of 
standard regression techniques [5]. 

The second boundary suggested by Kolmogorov 
complexity is that depending on the length of the bit string the 
actual complexity score of individual bit strings can be 
grouped into groups of identical complexity. Bit strings of 
length one or two have the same complexity group. It is first 
the bit strings with a length of three elements that demonstrate 
this behavior. It is then with the fourth element that a first 
determination of stability can be made. The authors therefore 
suggest that while at time interval zero no techniques other 
than analogy or expert opinion are feasible, starting with the 
fourth time intervals parametric models (that depend on an 
understanding of cost estimating relationships) are applicable. 
From one to three elements a gap exists that the authors 
propose to fill with the technique of topological estimation. 

3. Case study data 

The data selected for exemplifying the selection technique 
is drawn from the United States Scheduled Annual Summary 
Reports [6] for the Joint Strike Fighter in the time period of 
1997 to 2010 as illustrated by Table 1.  
 
Table 1. Case study data 
 

Base-
line Year Quan-

tity 
Sche-
dule 

Engin-
eering 

Estim- 
ating 

Oth-
er Support 

1994 1997 0 0 0 140 0 0 
1994 1998 0 0 1121 105 0 0 
1994 1999 0 0 1121 105 0 0 
1994 2000 0 0 1121 105 0 0 
2002 2001 0 19 5452 7438 0 0 
2002 2002 16249 0 2458 2330 0 2595 
2002 2003 16249 8024 4370 17153 0 2735 
2002 2004 16249 8139 7940 11998 0 5092 
2002 2005 16249 8208 8279 17838 0 8054 
2002 2006 16249 8797 9687 18849 0 11218 
2002 2007 16249 8797 9687 30738 0 58 
2002 2008 16249 8797 9687 30738 0 58 
2002 2009 16119 8797 9687 52380 0 6753 
2002 2010 16119 8797 9687 77984 0 13151 

 
The “baseline” is the year in which the technical baseline 

estimate was created. The “year” is the discrete time period 
for which accounting data was available. The factors 
“quantity” through “support” are the reasons for cost variance 
assessed in the accounting period and the numbers entered 
represent the total absolute financial variance in USD$ 
million as compared to the baseline estimate. This variance 
may represent cost increases or reductions whereby the focus 
of the research is absolute variance from target. 

As illustrated in Table 2 the case study data is now 
analysed to determine whether the cost variance for an 
accounting time period is higher (“1”), lower (“0”) or equal 
(“0”) to the previous time period. If the year of the baseline 
estimate changes a “1” is also assigned. 
 
Table 2. Case study data 

 
Year Quan-

tity 
Sche-
dule 

Engin-
eering 

Estim- 
ating Other Sup-

port Total 

1997 N/A N/A N/A N/A N/A N/A N/A 
1998 0 0 0 0 0 0 1 
1999 0 0 0 0 0 0 0 
2000 0 0 0 0 0 0 0 
2001 1 1 1 1 1 1 1 
2002 1 0 0 0 0 1 1 
2003 0 1 1 1 0 1 1 
2004 0 1 1 0 0 1 1 
2005 0 1 1 1 0 1 1 
2006 0 1 0 1 0 1 1 
2007 0 0 0 1 0 0 1 
2008 0 0 0 0 0 0 0 
2009 0 0 0 1 0 1 1 
2010 0 0 0 1 0 1 1 

 



43 Oliver Schwabe et al.  /  Procedia CIRP   55  ( 2016 )  41 – 46 

The string for any cost variance factor can now be 
examined for relevant changes in complexity groups. The 
complexity group is based on using a three bit sliding window 
along an exemplary bit string. For exemplary purposes the 
string for total change is used therefore “1001111111011” as 
illustrated in Table 3. The complexity score is calculated 
using http://www.complexitycalculator.com and categorized 
into complexity groups [5, p. 30, table 5]. Complexity group 1 
corresponds to a complexity score of 5.40 for a three bit 
string. Complexity group 2 corresponds to a complexity score 
of 5.45 and complexity group 3 to a complexity score of 5.51. 
 
Table 3. Case study data exemplary bit string analysis 

 
Three bit string Complexity Complexity group 

100 5.45 2 
001 5.45 2 
011 5.45 2 
111 5.40 1 
111 5.40 1 
111 5.40 1 
111 5.40 1 
110 5.45 2 
101 5.51 3 
011 5.45 2 

 
These changes in complexity groups are illustrated in 

Figure 1. Each change in complexity group indicates a 
potential need for (re-) selecting a cost estimation technique. 
 

Fig. 1. Cost estimate (re-) selection points 

4. Selection guideline 

The previous section has discussed how complexity groups 
can be identified with the minimum prior information of three 
consecutive bits as examined using a three bit sliding window 
approach. The moment the complexity group changes the 
minimum a priori data counter must be reset to “0” and the 
recommended estimation technique is re-evaluated as 
indicated in Table 4. In essence the moment a complexity 
group repeats itself geometric relationships are deemed 
identifiable and topological estimation can be applied; 
analogies / expert opinions no longer need to be relied on. The 
moment a complexity group repeats itself four times the 
estimator can move to parametric estimation techniques. 

Table 4. Selection guideline 
 

Minimum a priori 
data counter 

Estimation 
technique Reasoning 

0 Analogies / 
expert opinion No data available 

1-3 Topological Geometric relationships 
can be identifed 

4-41 Parametric Arithmetic relationships 
can be identified 

> 42 Standard 
regression 

Central Limit Theorem 
applicable 

 
The selection guidelines are based on the available 

minimum a priori data as related to a bit string describing the 
direction of cost variance propagation (or other metric such as 
geometrical symmetry). Geometric relationships are 
understood as the interdependency of topological boundaries 
when the shape of point clouds is used as an organising 
principle for data while arithmetic relationships are such that 
can be described through parametric approaches such as 
dependency models [11]. 

When variance data is not available for any time interval 
then only analogies or expert opinion can be used for 
forecasting cost estimate uncertainty propagation.  

If variance data for one to three time increments is 
available then topological estimation can be applied since it 
draws upon the redundant information provided in the point 
cloud shape as indicators for propagation. The approach 
should be applied as an enhancement to a structured analogy 
or expert estimating process. 

When variance data for four increments is available then 
parametric estimation can begin to be applied and the 
confidence in the generated results will grow iteratively until 
variance data for more than 42 time increments is available 
and standard statistical regression techniques become most 
effective. 

Important to note however is that assuming a normal 
accounting period of one year then it can be safely assumed 
that at no time will standard regression techniques in fact 
become applicable unless this is compensated for by 
production volumes of identical products. The question of 
production volumes is hereby closely related to ramp up rates 
in a manufacturing facility so that it can be assumed that once 
at least 4 units have been produced (independent of time taken 
for this) this may suffice for the application of parametric 
techniques. In this respect the production of a single unit may 
suffice for the application of topological estimation 
techniques. The authors assume that the whole product life 
cycle phases of concept and development are the shortest and 
may at best need three or less years to complete. The phases 
of production, utilization and support are expected to last (in 
parallel) perhaps 30-40 years and the retirement phase 
between four and ten years [13].  

At the beginning of each phase the conditions for 
estimating and forecasting usually change in respect to 
methods, stakeholders and timelines so that it can safely be 
assumed that the minimum a priori data counter is reset. 
Estimating and forecasting must therefore occur initially 
based on analogy or expert opinion to then be replaced by 
topological estimation until the end of time increment three 
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and then followed by parametric estimation approaches. If 
only small volumes of products are manufactured (therefore 
less than 42) then standard regression techniques may not 
become applicable at any point in time. 

5. Selection process 

The process for selecting the most appropriate estimation 
technique is based on the following factors: 
 
x n = the number of historical time intervals with a 

common complexity group for which data is available 
x d = the number of consistent cost variance dimensions n 

is available for 
x CERs means “Cost Estimating Relationships” 
x ʃ means the integral version of the dependency model 

describing the entirety of CERs  

Figure 2 illustrates the relevant decision making process. 
 
 

 
 

Fig. 2. Selection process 

The approach begins with the cost estimator gathering all 
prior cost variance information available for historical discrete 
time intervals, i.e. the cost variance propagation in the time 
periods before the time of the estimate and determining its 
complexity group: 

• If the number of discrete time intervals (t) for which 
data is available (n) is greater than 42 then standard regression 
analysis approaches can be applied since the Kolmogorov 
complexity of the underlying data strings is sufficient to allow 
for lossless compression [5]. 

• If the number of discrete time intervals for which 
data of a common complexity group is available (n) is greater 
than four but less than 42 then a cost estimate can be made 
using the generic dependency model and generic starting 
conditions presented.  

• If the number of discrete time intervals for which 
data is available (n) is less than four then the cost estimator 
proceeds to determine for how many dimensions (d) cost 
variance data is available.  

• If more than two dimensions are available (i.e. cost 
variance due to quantity, schedule and engineering, changes) 
then topological data analysis can be considered applicable 
since the minimum number of dimensions for such has been 
arrived at (therefore three) otherwise the cost estimator must 
depend on using analogies and expert opinion for proceeding 
with the cost estimate [4,7,8,9,10,11,12, 13].  

The cost estimator can then proceed to review the 
relationships between the cost variance factors in order to 
determine whether a context specific cost estimating 
relationship (CER) can be defined and transformed into a 
dependency model. This review can occur through data 
analysis and / or expert opinion as deemed relevant. Cost 
estimation relationship models are used to correlate key 
independent and dependent variables for calculating the 
technical baseline estimate (including inherent uncertainty). 
The presented approach focuses on those variables related to 
the variance of key performance indicators for the whole 
product life cycle itself. On the simplest level these are cost 
variances related to schedule, cost and requirements. If a 
dependency model can be defined the cost estimator must 
then determine whether this relationship can be described 
using the integral form (ʃ) [14]. While continuous change is 
best modelled using differential equations which support 
infitessimal accumulation processes discrete event simulations 
such as the one represented by this stock-flow diagram are 
better modelled through integral equations as suggested by 
Forrester [14] and Ossimitz and Mrotzek [15] in their 
opinions that these explain the relationship between a model 
and the real world more effectively. If this is not the case then 
the cost estimator must rely on expert opinion for the cost 
estimate. If the integral form can be described then the 
presented method can be used for quantifying and forecasting 
cost estimate uncertainty.  

Applying the selection technique to the case study data 
results in the selection of techniques as shown in Table 5. 

 
 
 
 
 

 

 

1. Gather prior  information. 

n > 
42 ? 

n > 4 
? 

2. Identify cost variance 
dimensions 

d > 2 
? 

3. Review CERs 

ᖮ ? 

4. Apply topological 
estimation approach. 

Use standard regression 
analysis 

Use generic dependency 
model and starting 

conditions. 

Use analogies and expert 
opinion. 

Use analogies and expert 
opinion. 

No

Yes 

No

No 

No 

Yes

No 

Yes
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Table 5. Case study data selection techniques 
 

Year Estimation technique 

1999 Analogies and expert opinion 

2000 Topological 

2001 Topological 

2002 Topological 

2003 Analogy and expert opinion 

2004 Topological 

2005 Topological 

2006 Topological 

2007 Analogy and expert opinion 

2008 Analogy and expert opinion 
 
Important to note is that changes in the technique will 

always occur one time period after the complexity group has 
changed since only then is the cost variance data for assessing 
the complexity group available. 

6. Assessing innovativeness 

Although the authors introduce a definition of 
innovativeness based on the availability of a verified and 
accurate cost model it is important to provide the estimator 
with greater guidance on applying this in practice. For 
purpose of exploration a high value manufacturing product 
can be considered to consist of multiple components that each 
consists of multiple sub-components as illustrated in Figure 3. 

 
 

 

Fig. 3. Component breakdown 
 

While individual components or sub-components may have 
verified and accurate cost models the object of analysis is the 
product as a whole or the system the product is embedded in. 
Therefore the moment any (sub-component) does not have a 
verified and accurate cost model the product (or system it is 
embedded in) must be considered as innovative and the cost 
selection technique presented applied.  

7. Application to common estimation scenarios 

The presented selection process is not based on specific 

whole product life cycle phases or technology readiness level 
as is common in practice. The presented selection process is 
based on the availability of a priori data for discrete time 
periods of common complexity groups. When exploring 
relevant scenarios for the estimator which trigger the 
application of the method certain generic points in the whole 
product life cycle can be identified. It is at least at these points 
where the presented method should find application. Generic 
points include: 
 
x Change in whole product life cycle phase 
x Major milestones applied during a project 
x After re-baselining of an estimate 
x Significant changes in schedule or requirements 
x Change in responsible cost estimator 
x Change in key assumptions 
 

These generic points all relate to significant changes in the 
open complex system [16] represented by the whole product 
life cycle and hence by default will lead to significant changes 
in perspectives and valuations of the involved stakeholder 
groups (which also change accordingly). 

8. Conclusions and recommendations for further research 

The relevance of the presented approach for industry 
practice may be significant because it potentially disqualifies 
the use of standard regression based techniques (i.e. Monte 
Carlo simulation) in most cost estimation scenarios. When 
estimating the cost for innovative high value manufacturing 
products the attribute of innovativeness defers any initial cost 
estimate technique automatically to analogies or expert 
opinions. Only after the cost variance data from the first time 
increment is available can structured methods such as the 
topological approach be applied whereby with the fourth 
element parametric approaches appear to become feasible. 

From a practitioner perspective this means that the more 
innovative a high value manufacturing product the less 
feasible a cost estimate uncertainty forecast for the whole 
product life cycle can be. It is only as the number of units 
produced grows that cost estimates can be validated and hence 
the innovativeness drops. The less prior data is available the 
more the estimator must hence be given permission to doubt 
the accuracy of estimates thus moving from single point 
estimates, to ranges and probability fields [ 17, 18]. 

One common mitigation strategy in respect to the financial 
uncertainty is to reduce the innovativeness to a degree that at 
least parametric models can be applied with relative 
confidence. The authors argue that the need for such a 
strategy could be reduced by introducing the concept of 
topological estimation which requires only one set of cost 
variance data in order to generate a first forecast if only for a 
short time window. 

A further common mitigation strategy is to introduce a 
research and development phase that precedes the concept 
phase for a specific innovative high value manufacturing 
product. The research and development phase is budgeted for 
separately from a specific product and is intended to reduce 
the innovativeness of the solution per se before being 
confronted with the need for a commercially binding estimate.  

Product 

Component 1 

Sub-component 
1 

Sub-component 
2 

Component 2 

Sub-component 
1 

Sub-component 
2 
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In parallel by introducing a focus on factors affecting the 
variance of cost (and their interdependency) a path is opened 
for optimizing the accountability and tracking of such among 
the relevant stakeholders which in itself helps to stabilize the 
context the estimate is being made in as well. 

Comparative validation of the presented approach using a 
variety of case studies is part of ongoing research activities. 
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Key terms and definitions 

This article is based on a number of important terms whose 
definition is provided in Table 6 for the sake of clarity. 

Table 6. Key terms and definitions. 

Term Definition 
Baseline 
estimate 

The agreed cost of producing a unit or delivering 
agreed support services. This cost consists of costed 
technical line items (often called the technical 
baseline estimate) and a risk contingency. 

Complexity As defined by Kolmolgorov this metric quantifies the 
length of the shortest computer program that 
reproduces a specific binary string. 

Complexity 
group 

The Kolmolgorov complexity shared by different 
binary strings of equal length. 

Cost 
uncertainty 

Manifested and unintended future cost variance with 
a probability of 100% and an unknown quantity. 

Cost variance Deviations from the baseline estimate. 
Deep 
uncertainty 

A decision-making situation where Knightian 
uncertainty, conflicting divergent paradigms and 
emergent decision making are relevant. 

Forecast Predictions of future baseline estimate changes. 
High value 
manufacturing 
product 

Products, production processes, and associated 
services which have the potential to create 
sustainable growth and high economic value. 

Minimum a 
priori data 

Historical cost variance known in advance of 
estimation which suffices for cost estimating. 

Innovativeness A product attribute which exists when no verified 
cost estimates are available. 

Open complex 
system 

A group of dependent variables that form a 
purposeful whole, interacts with its environment and 
exhibits unpredictable behavior. 

Pattern Recurring behaviour of data as it propagates. 
Prior 
information 

The probability distribution function applied to a data 
set before the identification of relevant evidence. 

Scenario A future use case for a product or service for which a 
business model has been created. 

Small data Data sets which are significantly smaller than those 
encountered in daily practice and arise from a context 
of few measurement points, little prior experience, 
little to no known history, low quality and conditions 
of deep uncertainty. 

Stability The consistency of the complexity group over time. 
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