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Abstract 10 

Polymer-bonded explosives (PBX) fulfil the need for insensitive munitions. However, the 11 

environmental impacts of PBX are unclear, even though it is likely that PBX residues from low-order 12 

detonations and unexploded ordnance are deposited on military training ranges. The release of high 13 

explosives from the polymer matrix into the environment has not been studied in detail, although 14 

polymers degrade slowly in the environment thus, we anticipate high explosives to be released into 15 

the environment. In this study, PBXN-109 (nominally 64% RDX) samples were exposed to variable 16 

UK climatic conditions reproduced in the laboratory to determine the effects of temperature, UV 17 

irradiation and rainfall on the release of RDX from the polymer binder. The most extreme conditions 18 

for spring, summer and winter in the UK were artificially reproduced. We found that up to 0.03% of 19 

RDX was consistently released from PBXN-109. The rate of RDX release was highest in samples 20 

exposed to the summer simulation, which had the lowest rainfall, but the highest temperatures and 21 

longest UV exposure. This was confirmed by additional experiments simulating an extreme summer 22 

month with consistently high temperatures and long periods of sunlight. These results probably reflect 23 

the combination of polymer swelling and degradation when samples are exposed to higher 24 

temperatures and prolonged UV irradiation.  25 
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Introduction  31 

Polymer bonded explosives (PBX) are designed to meet the need for insensitive munitions, which 32 

minimise the risk of inadvertent initiation while reliably fulfilling their intended detonation functions 33 

(Ang and Pisharath, 2012). PBX compositions typically consist of a nitramine high explosive 34 

encapsulated by a polymer binder, which confers insensitivity by protecting the explosive with a 35 

flexible and rubber-like coating (Shee et al., 2015). One of the most common nitramines in PBX is 36 

1,3,5-trinitroperhydro-1,3,5-triazine (RDX), accounting for up to 95% of the composition.  37 

RDX is a common soil contaminant at manufacturing sites and on military training ranges. Low order 38 

and blow-in-place detonations of legacy compositions such as Composition B can deposit thousands 39 

of milligrams of RDX on soil surfaces (Jenkins et al., 2006). Unexploded ordnance can also cause 40 

contamination when damaged because the high explosive filling is then exposed to the climate 41 

(DuBois and Baytos, 1991).  42 

The fate and transport of RDX is highly dependent on location due to differences in climate and soil 43 

type (Larson et al., 2008). Solid RDX particles can remain in the top layer of soil for a long time 44 



 
 

(Sheremata et al., 2001) but are more likely to undergo slow biodegradation under anaerobic 45 

conditions, yielding other undesirable contaminants such as methanol and hydrazine. RDX does not 46 

significantly adsorb to soil (Singh et al., 1998) and dissolved RDX therefore tends to migrate (Selim 47 

et al., 1995). However, RDX has low solubility in water and is unlikely to exceed current threshold 48 

limits of 2 µg/l in groundwater (Gauthier et al., 2003; Pichtel, 2012). RDX becomes more soluble at 49 

higher temperatures, doubling with every 10°C increase, so water contamination is a more significant 50 

problem in warm, wet climates (Lynch et al., 2002). Because RDX leaches slowly in temperate 51 

regions, it accumulates on or just beneath the soil surface, presenting a risk to humans, animals and 52 

plants due to its extreme toxicity (Pennington and Brannon, 2002; Pichtel, 2012). This may be 53 

exacerbated by PBX materials because the polymer protects RDX from the climate and may prevent 54 

RDX crystal distribution, resulting in more surface contamination than non-bonded high explosive. 55 

However, many polymers swell at higher temperatures and degrade when exposed to UV light, which 56 

may release RDX into the environment (Adeniyi and Kolawole, 1984). 57 

We investigated the environmental fate of PBXN-109, an aluminized, cast-and-cured secondary 58 

explosive containing 64% RDX and 8% polybutadiene binder. The aim was to determine the effect of 59 

a variable climate on the rate at which RDX leaches from the PBXN-109 polymer matrix under 60 

controlled laboratory conditions. Samples of PBXN-109 were exposed to predetermined doses of UV 61 

irradiation and water at controlled temperatures to simulate variable conditions, i.e. cold and wet vs. 62 

hot and dry. The release of RDX from PBXN-109 was measured by analysing the RDX content of the 63 

water run-off. 64 

1. Materials and methods 65 

2.1 Preparation of samples 66 

Samples of PBX (RWM Italia SpA) were supplied as small spheres (~1.5 g each / diameter = 0.5mm) 67 

containing 64% RDX, 20% aluminium, 8% hydroxyl-terminated polybutadiene (HTPB) and 8% di-68 

(2-ethylhexyl)-adipate (DOA). The RDX content was confirmed by acetone extraction from pristine 69 

PBXN-109 in a Soxhlet extractor. The samples were used as supplied and loaded into Buchner 70 



 
 

funnels (4 cm diameter) fitted with a glass frit before exposure to variable climate conditions (Taylor 71 

et al., 2015, 2009).  72 

2.2 The UK climate 73 

Climate conditions representing South-West England were simulated in the laboratory to mimic the 74 

exposure of PBXN-109 on military ranges. Climate data from 1990–2014 were obtained from the UK 75 

Meteorological Service website (Met Office website) (Table 1). The highest seasonal averages for 76 

rainfall, temperature and sunlight hours were identified and used in laboratory simulations to provide 77 

representative worst-case exposure scenarios. Autumn climate conditions were not reproduced in the 78 

laboratory due to the similarity between the autumn and winter rainfall and temperature, and number 79 

of daylight hour’s falls between spring and winter values therefore can be estimated to be between the 80 

two. 81 

The volume of simulated rainfall deposited on the PBXN-109 samples for winter, spring and summer 82 

was determined by calculating the equivalent rainfall on the area of the sample within the Buchner 83 

funnel housing. The rainfall was calculated by multiplying the maximum seasonal average rainfall 84 

(mm/m2) by the area of the sinter funnel. The average sunlight per day was determined by dividing 85 

the maximum seasonal average by 90 days (the average number of days in a season) (Table 1). 86 

Maximum and minimum average temperatures were also taken into consideration.  87 

Table 1: Average climate conditions in South-West England during the period 1990–2014. 88 

Season Seasonal Rainfall Seasonal Temperature Seasonal Sunlight Hours 

 

Season 

average 

(mm) 

Equivalent 

artificial 

rainfall 

(mL) 

Max. (˚C) Min. (˚C) Average (h) 
Average/ day 

(h) 

Winter 694 872 10±1 0±1 210 2.5 

Spring 332 599 15±1 3±1 601 6.75 

Summer  476 417 22±1 10±1 721 8 

Autumn 624 784 9±1 5±1 360 4 
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2.3 Simulating the UK climate under controlled conditions 91 

Seasonal variations were simulated in the laboratory on an accelerated timescale of 11–15 days 92 

depending on the average number of rainy days in the 3 seasons under investigation. Duplicate 93 

samples, of individual spheres of PBXN-109 were housed in self-contained temperature controlled 94 

chambers to simulate the artificial seasons. The climate chambers were designed to eliminate any non-95 

controlled sources of light, heat or water. Samples were exposed to the seasonal maximum and 96 

minimum temperatures over alternating 24-h periods to represent natural temperature fluctuations 97 

between night and day. Rainfall was simulated using peristaltic pumps to deliver a daily dose (8 98 

mL/hour) of ultrapure water from a MilliQ Water Purification System equivalent to the average UK 99 

seasonal rainfall on a similar area (see Supporting Information for daily volumes of applied water). 100 

The maximum volume of water delivered each day was 90 mL, resulting in a minimum dry period of 101 

11.5 hours per day.  The run-off was collected in 500-ml wide-neck amber jars. Daylight hours of 102 

intense UV during the summer were simulated using a Philips high intensity UV lamp 103 

(HPW125WTPH), and daylight hours during the winter and spring were simulated using a BTL low-104 

intensity UV tube lamp. Duplicate samples were simultaneously exposed to temperature, rainfall and 105 

sunlight representative of UK spring, summer or winter. The artificial conditions for each sample are 106 

summarized in Table 2. 107 

Table 2: Summary of the conditions used for seasonal simulations.   108 

Experiment 

reference 

Sample 

Mass 

(g) 

Temperature                  

(˚C) 

Average UV 

 (h/ day) 

Total 

Rainfall 

(mL) 

Duration of 

Artificial 

Season 

(days) 

  

Min    

(7 days) 

Max    

(7 days)    

Winter 1  1.66 
0 10 2.5 

830 
15 

Winter 2  1.42 846 

Spring 1  1.60 
5 15 6.75 

572 
11 

Spring 2  1.60 451 

Summer 1  1.60 
10 22  8.0 

465 
14 

Summer 2  1.60 404 

Extreme 1  1.14 
22 13 

389 
11 

Extreme 2  1.12 329 



 
 

 109 

2.4 High performance liquid chromatography  110 

Sample run-off was collected every 24 h and analysed by high performance liquid chromatography 111 

(HPLC) to determine the percentage loss of RDX from the PBXN-109 sample. The HPLC system 112 

consisted of a Waters Alliance 2695 equipped with a Waters 996 photodiode array detector. The 113 

chromatographic separations were performed on ACE UltraCore 2.5 SuperPhenylHexyl columns (100 114 

x 4.6 mm internal diameter) maintained at 35⁰C. A mixture of acetonitrile/water (3:2) was used as the 115 

mobile phase at a flow rate of 1.5 ml/min. A linear calibration curve for RDX was obtained for the 116 

concentration range 0.1–20 µg/ml.  117 

2. Results and discussion 118 

The samples of PBXN-109 were formulated with 64% RDX, which gave ~1 g of RDX in each 119 

sample. The concentration of RDX found in each run-off sample was determined by HPLC and 120 

expressed as a percentage based on the quantity of RDX in the sample. The total amount of pure RDX 121 

recovered from a single sphere of PBXN-109 during a laboratory season was small (3mg), probably 122 

reflecting the inability of water to penetrate deeply into the insoluble polymer matrix. However, RDX 123 

contamination could still pose a problem when frequently using PBXN-109 filled munitions over long 124 

periods of time. 125 

The results from the first series of experiments aiming to replicate UK spring, summer and winter 126 

seasons are shown in Table 3. They revealed that more RDX was lost from PBXN-109 samples 127 

exposed to summer conditions (up to 2.74 mg RDX lost by the season end). The summer samples 128 

were exposed to 50% less water than the winter samples, confirming that the polymer binder limits 129 

the migration of water to accessible RDX crystals regardless of the volume of water applied. The 130 

temperature of the applied water was identical for all samples, so the higher concentration of RDX is 131 

unlikely to reflect its greater solubility at higher water temperatures. 132 

PBXN-109 samples under spring and winter conditions lost similar percentages of RDX even though 133 

the spring accelerated season ended four days sooner than the winter season and less water was used, 134 



 
 

again indicating that rainfall alone is not responsible for RDX release. The percentage of RDX 135 

migrating from each replicate summer sample was noticeably different, even though the two samples 136 

received similar volumes of water at identical temperatures with the same amount of UV exposure. 137 

These differences may reflect inconsistencies between the PBXN-109 samples in terms of 138 

composition, e.g. differences in the average RDX content, the accessibility of the RDX crystals, or the 139 

micro-structure of the polymer (such as cracking).  140 

Table 3: Summary of mass and percentage release of RDX from PBXN-109 samples at the end of the 141 
artificial seasonal. 142 

Sample 
RDX mass 

recovered (mg) 
% Loss 

Total UV 

Exposure 

Total 

Rainfall (ml) 
Days 

Winter 1 1.56 0.11 
37.5 

830 
15 

Winter 2 1.40 0.12 846 

Spring 1 1.40 0.14 
74.25 

572 
11 

Spring 2 1.11 0.11 451 

Summer 1 1.75 0.19 
112 

404 
14 

Summer 2 2.74 0.33 465 

 143 

The rate of release indicated that RDX release was accelerated under the warmer and drier summer 144 

conditions compared to the cooler spring and winter conditions - 0.01%/ day for Winter 1 and Winter 145 

2 samples compared to 0.013 %/day and 0.019 %/day for Summer 1 and summer 2 samples 146 

respectively (Graph 1). Spring sample 1 was exposed to 121 mL more water than sample 2 and lost 147 

more RDX, but this difference is more likely to reflect random differences in the distribution of RDX 148 

and the polymer structure given that the opposite effect was observed for the summer samples.  149 



 
 

Graph 1: Rate of RDX release from PBXN-109 during artificial seasons: 150 
spring (11 days), summer (14 days), and winter (15 days).  151 

 152 

These results suggest that the rate of RDX release from the PBXN-109 was accelerated by high 153 

temperatures and exposure to sunlight, and was not dependent on the volume of rainfall (Lynch et al., 154 

2002). This differs from pure RDX, where the limiting factor is its solubility, which is mainly 155 

dependent on the water temperature and the volume of rainfall.  156 

The effect of high temperatures and UV on the rate of release of RDX from PBXN-109 was 157 

investigated further by exposing two additional samples of PBXN-109 to a consistently warm climate 158 

(22°C) and 13 h UV irradiation per day, to simulate long periods of hot and bright weather (Graph 2). 159 

Water was applied at a volume that was representative of a dry summer (389 and 329 ml). The results 160 

confirmed that prolonged warm temperatures and intense UV exposure accelerate the release of RDX 161 

from PBXN-109 from 0.013 %/day and 0.019%/day for summer 1 and summer 2 samples compared 162 

to 0.031 %/day and 0.028 %/day for Intense 1 and Intense 2 samples. . The increase in rate of RDX 163 

release may reflect the swelling of the polymer matrix at higher temperatures, which would make it 164 

easier for water to penetrate. Furthermore, polybutadiene polymers are known to degrade under UV 165 

light, which might cause additional cracking in the matrix allowing water to penetrate deeper into the 166 

PBXN-109 and wash out the RDX. 167 



 
 

Graph 2: RDX release from PBXN-109 at constant 22°C temperature and 168 
maximum UV exposure (13 h/day). 169 

 170 

3. Conclusion  171 

RDX does migrate from the polymer matrix of PBXN-109 when exposed to simulated seasonal 172 

conditions. The rate of release is low but consistent, and PBXN-109 deposits on ranges are therefore 173 

likely to result in RDX contamination in the environment by dissolution and transport in water. We 174 

also found that the rate of RDX release is accelerated in warm temperatures with intense UV 175 

exposure, probably reflecting a combination of polymer swelling and degradation allowing more 176 

access to the encapsulated RDX crystals. The results presented in this manuscript are preliminary, and 177 

long term work is currently underway to fully investigate the rate of RDX release from PBXN-109 in 178 

artificial and real environments.  179 
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