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Abstract
This paper presents the development of a mathematical approach targeting the modelling and analysis of coupled flap-lag-
torsion vibration characteristics of non-uniform continuous rotor blades. The proposed method is based on the deployment
of Lagrange’s equation of motion to the three-dimensional kinematics of rotor blades. Modal properties derived from
classical beam and torsion theories are utilized as assumed deformation functions. The formulation, valid for hingeless,
freely-hinged, and spring-hinged articulated rotor blades, is reduced to a set of closed form integral expressions. Numerical
predictions for mode shapes and natural frequencies are compared with experimental measurements, nonlinear finite
element analyses, and multi-body dynamics analyses for two small scale hingeless rotor blades. Excellent agreement is
observed. The effect of different geometrical parameters on the elastic and inertial coupling is assessed. Additionally, the
effect of the inclusion of gyroscopic damping is evaluated. The proposed method, able to estimate the 7 first coupled modes
of vibration in a fraction of a second, exhibits an excellent numerical stability. It constitutes a computationally efficient
alternative to multi-body dynamics and finite element analysis for the integration of rotor blade flexible modelling into a
wider comprehensive rotorcraft tool.
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1. Introduction

1.1. Background

A significant evolution in structural modelling of rotor blades has taken place from the elementary beam theories to more
refined modern finite element analysis (FEA) theories. Classical beam theory was deployed as a first attempt to model the
structural dynamics of rotor blades. It comprised Euler-Bernoulli beam theory for the extension and bending and Saint-
Venant’s theory for torsion. Coupling between bending, extension and torsion was not modelled. Timoshenko (Ref. 1)
enhanced the classical theory accounting for transverse shear deformation and cross-sectional rotary inertia. Vlasov (Ref.
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2) incorporated torsional warping restraint to the previous theory. However, the rotation of the blade was not accounted for
and the degrees of freedom (DOFs) were treated individually, therefore these theories were unsuitable for rotor blades.

During the late 1950s Houbolt and Brooks (Ref. 3) formulated the differential equations of motion for the coupled
flapwise/chordwise bending and torsion of a twisted non-uniform rotor blade subjected to linear aerodynamic loads. The
theory was based on the classical engineering beam theory. It was reduced to a set of linear second order ordinary differential
equations neglecting shear deformation, rotary inertia and other nonlinear terms of secondary nature. Although this theory
clearly omitted the effect of nonlinear terms, it provided physical insight of the problem and constituted the basis for many
subsequent analyses where approximate solutions of the set of equations were obtained.

A nonlinear set of equations of motion was derived by Hodges and Dowell (Ref. 4) during the 1970s for the coupled
flapwise/chordwise bending and torsion of rotor blades. A truncation scheme which reduced the rotor blade to a long, straight,
slender, homogeneous, and isotropic beam undergoing moderate deflections was deployed to simplify the equations. Two
methods were used to derive the theory: Hamilton’s principle and Newtonian methods. The strain-displacement relations
were derived from the geometrically exact transformation between the deformed and undeformed system. Although the
use of ordering schemes reduced the non-linearities considerably, several nonlinear structural and inertial coupling terms
still appeared in the final set of equations. These effectively represented the nonlinear coupling between axial extension,
flapwise/chordwise bending, and torsion. The relevance of these nonlinear coupling terms for aeroelastic applications was
later emphasized in (Ref. 5).

A series of new ordering schemes were developed in the 1970s and 1980s. These theories were based on small-strain
approximations. These did not explicitly limit the displacements of the reference line and the rotations of the cross-section
caused by deformations. This led to a generalization of the often called “geometrically exact theories". A representative
example of this type of theory is the study of the kinematics of elastic motion of Bernoulli-Euler beams subjected to
large deflections carried out by Hodges et al. (Ref. 6). As a result, nonlinear expressions relating the orientation of the
deformed cross-section, torsion, local bending curvature, angular velocity, and virtual rotation with deformation variables
were obtained. A posterior study carried out by the same authors (Ref. 7) extended the methodology of Ref. 6 to the dynamic
analysis of pretwisted rotating beams.

Berdichevsky (Ref. 8) proposed the variational-asymptotic method (VAM). VAM divides the 3D geometrically nonlinear
elastic analysis into two different analyses: a nonlinear 1D analysis and a 2D analysis. Energy functionals or variational
principles are asymptotically expanded as functions of small parameters. Hodges et al. (Refs. 9, 10) extrapolated VAM to
beams, plates and shells made of non-homogeneous composite materials. Although computationally more efficient than
FEM, its computational overhead and the large amount of data required makes this tool not suitable for preliminary design.

Most of the aforementioned references are focused on the development of the kinematic expressions of a beam element
However, the equations of motion obtained have no analytical solutions. In most cases numerical methods methods were
developed to estimate the response of the coupled system or simplified uncoupled cases.

Murthy (Ref. 11) deployed the Transmission Matrix (MT) to estimate the solution of the linear differential equations of
Houbolt and Brooks (Ref. 3) for a twisted non-uniform blade. The TM method carries out a transformation of the differential
equation of motion into first order differential equations using a state vector. Once the transformation was performed, modal
characteristics were obtained for a particular set of boundary conditions. Accurate results were obtained for combined
flapwise bending/chordwise bending/torsion, flapwise bending/chordwise bending, and flapwise bending/torsion.

Surace et al. (Ref. 12) used Green functions to calculate the coupled vibration characteristics for a rotating non-
uniform pretwisted blade. Specific Green functions were imposed to satisfy the boundary conditions. Weighting matrices
were required for numerical integration and differentiation. Structural influence functions are only available for hingeless
beams. Therefore, they need to be derived for freely-hinged and spring-hinged articulated rotor blades.
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1.2. Minimum potential energy methods

Both numerical methods presented above are based on the numerical evaluation of Houbolt and Brooks equations. However,
alternative approaches based Lagrange’s method, Rayleigh’s method, and Rayleigh-Ritz procedures were have also been
deployed in the existing literature.

Fasana and Marchesiello (Ref. 13) used Rayleigh-Ritz method to study the modal characteristics of sandwich beams
with constrained viscoelastic layer. 20 simple polynomial expressions were utilized as assumed deformation functions. Up
to 80 polynomial expressions were deployed to evaluate the sensibility of the results on the number of assumed deformation
functions. No significant variation in the estimated results were found. The first four predicted bending natural frequencies
were compared with other numerical methods estimations. Good agreement was found for the lowest natural modes,
nevertheless, for higher modes discrepancies between models increased considerably.

Hodges (Ref. 14) deployed a modified Ritz method to analyse non-uniform rotating beams. Radial discontinuities in
bending stiffness and mass per unit length were included. The structural properties discontinuity required the use ofM + 1

continuous segments with M discontinuities in structural properties. Hodges replaced standard polynomial expressions
with power series of N terms for the formulation of the assumed deformation functions within each discrete segment.
Additionally, geometric continuity was obtained at the extremes of each segment imposing boundary conditions. The
relevance of the set of deformation functions assumed was emphasized by the author.

Goulos et al. (Ref. 15) deployed Lagrange’s method to estimate the modal characteristics of non-uniform rotating
helicopter blades. Mode shapes derived from classical beam and torsional theories were utilized as assumed deformation
functions. The employed functions satisfied the structural boundary conditions for a series of hub supports. These were
linearly independent and close to the actual deformation mode. The latter reduced the number of required assumed modes
to attain convergence. As a result, computational times were reduced considerably leading to a computationally efficient
method. The method proposed described in Ref. 15 treated flapwise, chordwise displacements and torsion independently,
i.e. uncoupled. However, very good agreement with the experimental measurements, FEA, and multi-body dynamics
analyses was observed. Subsequently, Goulos et al. 16–18 applied the proposed structural model to real-time helicopter
flight dynamic integrating the proposed method into a helicopter comprehensive code.

1.3. Scope of present work

Within this context it is clear the absence of methods able to rapidly estimate the coupled vibration characteristics of
helicopter rotor blades. The potential method has to be able to solve the aforementioned weaknesses: model coupling
between DOFs, be expressed in closed form expressions readily available for any type of hub support, require a limited
amount of information, and deploy a reduce number of assumed deformation functions to enhance the computational
efficiency.

This paper presents a mathematical formulation that meets the previous requirements. It is capable of modelling the
coupled flap/lag bending and torsion natural frequencies and mode shapes of non-uniform rotor blades. The method is based
on the deployment of Lagrange’s equation of motion to the three-dimensional kinematics of rotor blades. It uses mode
shapes derived from classical beam and torsional theories as assumed deformation functions. These better approximate the
actual deformation of the blade accelerating the convergence of the method. As a result, the computational efficiency of
the method is considerably improved.

Closed form integral expressions for the kinetic and potential energies are formulated. Lagrange’s equation of motion is
deployed to obtain the dynamic system’s set of second-order ordinary differential equations. The latter is transformed into
a quadratic eigenvalue problem. Its solution comprises natural frequencies and mode shapes of the non-uniform rotating
blade. Different sources of coupling between modes of vibration are identified. An extensive analysis of the effect of the
inclusion of gyroscopic damping on the estimated modal characteristics is carried out.



4 J. Aerospace Engineering 000(00)

BOUNDARY CONDITIONS 

EULER-BERNOULLI BEAM THEORY 

CLASSICAL TORSIONAL THEORY 

ASSUMED DEFORMATION FUNCTIONS 

INERTIAL PROPERTIES 

STRUCTURAL PROPERTIES 

GENERAL DIMENSIONS 

OPERATING CONDITIONS 

BLADE KINEMATICS 

STRAIN DISPLACEMENT RELATIONS 

OUTPUT 

ASSEMBLED EQUATIONS 

Fig. 1. Model flowchart.

Figure 1 summarises the main features of the proposed methodology. The classical beam and torsional theories are
utilised to obtain the assumed mode shapes. These require inertial properties, structural properties, general dimensions
and structural boundary conditions as inputs. The derived assumed mode shapes are deployed along with blade properties,
operating conditions, blade kinematics and strain displacement relations to fill the mass, gyroscopic, and stiffness matrix.
These form the quadratic eigenvalue problem solved to obtain the final natural frequencies and mode shapes.

The proposed method constitutes a computationally efficient alternative to multi-body dynamics and FEA for the
structural treatment of rotor blades. The limited information required by the model makes it a suitable tool for structural
studies during preliminary design phases. The proposed method can be deployed along with any inflow, and aerodynamic
blade models to carry out aeroelastic analyses in the time domain. The further integration of the mentioned aeroelastic
model along with a flight-dynamic model sets up the basis of a comprehensive rotorcraft code. Its excellent computational
performance and ease of implementation present this method as an optimal choice for its integration into a comprehensive
rotorcraft code.

2. Mathematical formulation

2.1. Derivation of assumed deformation functions

Lagrange’s equation of motion requires the formulation of the kinetic and strain energies as functions of generalized
coordinates and assumed deformation functions. An effective modal coordinate x = r− eR, x ∈ (0, L) is defined. Where
r ∈ (eR,R) is the local blade radius, e is the ratio between the hinge/root offset from the center of the rotor hub and the
blade tip radius R, and L = R(1− e) is the actual blade length.
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The classical Bernoulli-Euler beam theory (Eq. (1a)) is the governing equation for the transverse displacement w(x, t)

of a non-rotating beam with variable bending stiffnessEI(x), mass per unit length ρA(x), and load per unit length P (x, t).
The classical torsional theory (Eq. (1b)) is the governing equation for the torsion angle θ(x, t) for a non-rotating beam with
variable torsional rigidity GJ(x), polar moment of inertia Ip(x), and torsional moment loads per unit length M(x, t).

(1a)
∂2

∂x2

(
EI(x)

∂2w(x, t)

∂x2

)
+ ρA(x)

∂2w(x, t)

∂t2
= P (x, t)

(1b)
∂

∂x

(
GJ(x)

∂θ(x, t)

∂x

)
+M(x, t) = Ip(x)

∂2θ(x, t)

∂t2

Uniform structural properties and zero external forcing are assumed in Eqs. (1a) and (1b). Separation of variables is
applied to the simplified equations leading to the spatial solutions for transverse displacement Φ(x) and torsion angle Θ(x).

(2a)Φ(x) = AΦ sinβx+BΦ cosβx+ CΦ sinhβx+DΦ coshβx

(2b)Θ(x) = AΘ cos γx+BΘ sin γx

Where β and γ are the frequency parameters for transverse displacement and torsional deformation respectively. AΦ, BΦ,
CΦ,DΦ, AΘ, and BΘ are constants of integration determined through application of boundary conditions. Goulos et al.

(Ref. 15) provided closed form expressions for the ratios between the constants of integration and frequency parameters for
hingeless, freely-hinged articulated, and spring-hinged articulated rotor blades, and rotor blade pitch-control system with
finite and infinite torsional stiffness. The application of this procedure to flap, lag, and torsion results in the derivation of
N assumed deformation functions per DOF. The deformation functions, calculated for a non-rotating beam with constant
properties, satisfy the structural boundary conditions and exhibit orthogonality between each other. The deformation
functions are utilised to better approximate the actual mode shapes for rotating non-uniform rotor blades with coupled
modes of vibration. These functions are expressed in vector form as

{
ψφ(x)

}
= [Θi(x), i = 1, . . . N ]

T , {ψv(x)} =

[Φvi (x), i = 1, . . . N ]
T , and {ψw(x)} = [Φwi (x), i = 1, . . . N ]

T for torsion, lag, and flap respectively. The assumed
deformation function subscript i ∈ [1, . . . N ] refers to the ith assumed deformation function. Similarly, the 1st and 2nd
spatial derivatives can be obtained in closed form expressions. Thus, numerical errors associated with numerical derivation
are not generated. These derivatives are expressed as the following vectors {ψ′ r(x)} and {ψ′′ r(x)} where the DOF
superscript r ∈ [φ, v, w] refers to the DOF associated with the vector: φ, v, and w for torsion, lag, and flap respectively.

2.2. Lagrangian formulation for rotor blade dynamics

Lagrange’s equation of motion The proposed formulation accounts for inertial and elastic coupling between torsional
deformation, chordwise displacement and flapwise displacement. Lagrange’s equation of motion, defined in Eq. (3), is
applied to torsion, lag, and flap independently. In Eq. (3), T and U are the kinetic and strain energies of the complete
system, Qri is the generalized external force/moment and qri (t) is the time-dependent generalized coordinate.

(3)
d

dt

(
∂T

∂q̇ri

)
− ∂T

∂qri
+
∂U

∂qri
= Qri , i = 1, ...N

The generalized coordinates can be expressed as {qr(t)} = [qri (t), i = 1, . . . N ]
T , whilst the transverse displacements

and torsional deformation as the dot products of the assumed deformation function and the generalized coordinate vectors.

(4a)φ(x, t) =
{
ψφ(x)

}
·
{
qφ(t)

}
(4b)v(x, t) = {ψv(x)} · {qv(t)}
(4c)w(x, t) = {ψw(x)} · {qw(t)}

The calculation of the rotor blade modal characteristics does not require the inclusion of external loads in the analysis.
Therefore, the calculation of the generalized external force/moment, Qri , is not necessary and is eliminated from Eq. (3).



6 J. Aerospace Engineering 000(00)

Fig. 2. Cross-section frame of reference.

Frames of reference. Transverse displacements and torsional deformation of the rotor blade are expressed in a frame of
reference fixed to the blade with origin at the root/hinge. This reference system, shown in Fig. 2, is non-inertial due to
the rotation of the blade about the hub axis and introduces nonlinear phenomena in the analysis. The position vector of an
arbitrary point P on the elastic axis before deformation is r̃0 = [x 0 0]

T . After the deformation, the same point is located at
r̃1 = [x+ u v w]

T where u, v andw are the axial, chordwise and flapwise displacements of P in ẽx, ẽy and ẽz respectively
as shown in Fig 2. An extra two-dimensional reference system is defined for the cross-sectional plane, it is based on the
major η and minor ζ principal axes with origin at the elastic axis. The angle between the axes Y and η prior to deformation
is the pretwist angle θ. After the deformation, the angle between Y and η becomes θ + φ, where φ represents the elastic
torsion angle.

Strain Energy Prior to the application of Lagrange’s equation of motion, the strain energy is expressed in terms of the
generalized coordinates and the assumed deformation functions. Based on the assumption of uniaxial stress and the validity
of the Generalized Hooke’s law, the strain energy is defined as follows

(5)U =
1

2

∫ L

0

∫∫
A

(
Eε2xx +Gε2xη +Gε2xζ

)
dζ dη dx+

1

2

(
Kφφ2

0 +Kvv′20 +Kww′20
)

where εxx, εxη , and εxζ are the classical strain components,E andG are the material Young’s and shear stress moduli, φ0 is
the torsional deformation at the root/hinge, and v′0 and w′0 are the linearised chordwise and flapwise angular deformations
of the hinge springs. In the case of a spring hinged articulated blade, the last group of terms in Eq. (5) accounts for the extra
strain energy due to the presence of discrete springs withKv/w stiffness and/or a pitch-control system with finite torsional
stiffness Kφ at the root/hinge location.

A series of assumptions reduces the strain displacements relations developed by Hodges and Dowel (Ref. 4) to the
classical strain components εxx, εxη , εxζ used in this formulation. The assumption of uniaxial stress simplifies the actual
blade to a long, straight, slender, homogeneous, and isotropic beam undergoing moderate displacements. For the purpose of
this work, the effect of cross-sectional warp is neglected, the expressions are reduced to second order, and the trigonometric
functions containing the torsion angle are approximated with Maclaurin series expansions of second order. The resulting
strain components are presented in Eq. (6) where ( )

′ and ( )
′′ represent the first and second derivatives with respect to x.

(6a)
εxx = u′ +

v′2

2
+
w′2

2
+
(
η2 + ζ2

)(
θ′φ′ +

φ′2

2

)
−
(
v′′ + w′′φ− v′′φ

2

2

)
(η cos θ − ζ sin θ)

−
(
w′′ − v′′φ− w′′φ

2

2

)
(η sin θ + ζ cos θ)

(6b)εxη = −ζφ′

(6c)εxζ = ηφ′
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The axial displacement u is expressed as a function of the transverse displacements v andw, and torsion angle φ through
application of Eq. (7). This equation is an adaptation of the methodology used in Ref. 4.

(7)u′ =

∫ L
x
mΩ2(%+ eR)d%

EA
− 1

2
v′2 − 1

2
w′2 − J

A
θ′φ′ + eAv

′′ cos θ + eAw
′′ sin θ − eAv′′φ sin θ + eAw

′′φ cos θ

Equation (7) deploys cross-sectional integrals defined in Eq. (8). These integrals, which are functions of the material
density ρ and the cross-sectional major η and minor ζ axes coordinates, are evaluated only over the area of the blade
cross-section structurally effective. A is the cross-sectional area carrying tension, m is the blade mass per unit length,
em and eA are the offsets of the mass and area centroids from the elastic axis respectively, Iy and Iz are the flapwise
and chordwise area moments of inertia respectively, I1 and I2 are the flapwise and chordwise mass moments of inertia
respectively, J is the cross-sectional polar moment of inertia, Ip is the cross-sectional mass polar moment of inertia, and
B∗1 and B∗2 are section constants equivalent to those of Refs. 3 and 4. It is noted that in order to not overcomplicate the
formulation with low order of magnitude terms, the cross-section is assumed to be symmetric about the major axis η. This
essentially eliminates the cross-sectional integrals of odd-degree ζ polynomials. In Eq. (7) the first three terms have the
most relevant effect on the axial displacement. The first term is directly associated with centrifugal stiffening while the
following two terms are associated with the effect of transverse dislocations on the axial extension.

(8)

A =
∫∫
A

dζ dη m =
∫∫
A
ρdζ dη meM =

∫∫
A
ρη dζ dη

B∗1 =
∫∫
A

(
η2 + ζ2

)2
dζ dη B∗2 =

∫∫
A
η
(
η2 + ζ2

)
dζ dη AeA =

∫∫
A
η dζ dη

Iy =
∫∫
A
ζ2 dζ dη Iz =

∫∫
A
η2 dζ dη J =

∫∫
A

(
η2 + ζ2

)
dζ dη

I1 =
∫∫
A
ρζ2 dζ dη I2 =

∫∫
A
ρη2 dζ dη Ip =

∫∫
A
ρ
(
η2 + ζ2

)
dζ dη

The final strain energy expression is derived inserting Eqs. (6), and (7) in Eq. (5) and expressing the transverse displace-
ment and torsional deformation as the dot products of the assumed deformation function and the generalized coordinate
vectors (Eq. (4)). The proposed approach targets the rapid estimation of helicopter rotor blade vibration characteristics. In
order to accomplish the computational efficiency and make it suitable for preliminary design, the products of v, w, and/or
φ of third degree or higher are neglected. Additionally, flap and lead-lag hinges are assumed to be coincident and their
position determines the actual length of the blade L.

Kinetic energy The kinetic energy is defined in Eq. (9) as the volume integral of the density times the dot product of the
absolute velocity vector Ṽ of an arbitrary pointP . The latter is, defined in Eq. (10), comprises the following terms expressed
in the blade fixed reference frame: linear velocity of the root/hinge Ṽ0, deformed position vector r̃ , time derivative of the
deformation position vector ∂r̃

∂t and the angular velocity vector Ω̃. ~V0 and Ω̃ are defined in Eqs. (11) and (12) in terms of
the rotorspeed Ω, root/hinge offset eR, and pre-cone angle β.

(9)T =
1

2

∫ L

0

∫∫
A

ρṼ · Ṽ dζ dη dx

(10)Ṽ = Ṽ0 +
∂r̃

∂t
+ Ω̃× r̃

(11)Ṽ0 = [0 ΩeR 0]
T

(12)Ω̃ = [Ω sinβ 0 Ω cosβ]
T

The deformed position vector r̃ of an arbitrary point P is based on the kinematic expressions derived by Hodges and
Dowel (Ref. 4) for a long, straight beam undergoing moderate displacements. Warping is neglected and the trigonometric
functions containing the torsion angle are approximated using second order Maclaurin series expansions. The resulting
position vector r̃ is shown in Eq. (13). Once again, the products of v, w, and/or φ of third degree or higher are neglected,
and the flap and lag hinges are assumed to be coincident. However, the pre-cone angle’s trigonometric functions are
approximated using Maclaurin series expansions of first order.
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(13)r̃ =


x+ u− (v′ + w′φ)[η cos θ − ζ sin θ]− (w′ − v′φ)[η sin θ + ζ cos θ]

v + [η cos θ − ζ sin θ]− φ[η sin θ + ζ cos θ]− φ2

2 [η cos θ − ζ sin θ]

w + [η sin θ + ζ cos θ] + φ[η cos θ − ζ sin θ]− φ2

2 [η sin θ + ζ cos θ]


2.3. Eigenproblem

Once the strain and kinetic energies have been formulated, the transverse displacements and torsional deformation are
substituted by the equivalent products of assumed deformation functions and generalized coordinates (Eq. 4). This results
on the final expressions of the kinetic and strain energies. The application of Lagrange’s equation of motion (Eq. 3) to the
strain and kinetic energies expressions leads to the following second order system of ordinary differential equations

(14)


...

· · ·
[
Mr,s
i,j

]
· · ·

...




...
{q̈ri }

...

+


...

· · ·
[
Cr,si,j

]
· · ·

...




...
{q̇ri }

...


+




...
· · ·

[
F r,si,j

]
· · ·

...

+


...

· · ·
[
Gr,si,j

]
· · ·

...





...
{qri }

...

 =


...
{fri }

...


or

(15)[M ] {q̈}+ [C] {q̇}+ [S] {q} = {f}

where [M ], [C], and [S] are the mass, damping, and overall stiffness intermodal coupling matrices. The overall stiffness
intermodal coupling matrix [S] comprises contributions of two different nature: structural stiffening [G] and centrifugal
stiffening [F ]. {f} is denominated external static loading forcing vector. {q}, {q̇}, and {q̈} are the generalized coordinates
vector and its first and second time derivatives, respectively. In Eq. (14), the DOF superscripts r and s refer to a partition
number (row or column) that corresponds to a DOF (φ for torsion, v for lag, and w for flap). It is noted that consecutive
integers (1,2, and 3) are used as DOF indices in the mathematical implementation of the model. However, the use of φ,
v, and w simplifies the description. The mode subscripts i and j correspond to row/column indices within each partition
matrix. Thus, Mr,s

i,j gives the mass intermodal coupling coefficient of the ith assumed deformation function of the r DOF
with to jth assumed deformation function of the s DOF. It is noted that these coefficients are exclusively functions of x.

At this point, each of the above matrices is derived. The mass intermodal coupling matrix [M ] is symmetric and positive
definite. It is associated with the kinetic energy due to time-variations of the elastic deformation of the blade. The individual
components of the [M ] matrix are defined as follows:

(16a)Mφ,φ
i,j =

∫ L

0

m

∫ x

0

J

A
θ′ψ′idλ

∫ x

0

J

A
θ′ψ′jdλdx+

∫ L

0

Ipψiψjdx

(16b)Mφ,v
i,j = Mv,φ

j,i =

∫ L

0

m

(
−eM sin θψiψj +

∫ x

0

J

A
θ′ψ′idλ

(
eM cos θψ′j −

∫ x

0

eA cos θψ′′j dλ

))
dx

(16c)Mφ,w
i,j = Mw,φ

j,i =

∫ L

0

m

(
eM cos θψiψj +

∫ x

0

J

A
θ′ψ′idλ

(
eM sin θψ′j −

∫ x

0

eA sin θψ′′j dλ

))
dx

(16d)
Mv,v
i,j =

∫ L

0

m

(
ψiψj +

∫ x

0

eAψ
′′
i cos θdλ

∫ x

0

eAψ
′′
j cos θdλ−meM cos θ

(
ψ′i

∫ x

0

eAψ
′′
j cos θdλ+

ψ′j

∫ x

0

eAψ
′′
i cos θdλ

))
dx+

∫ L

0

ψ′iψ
′
j

(
I2 cos2 θ + I1 sin2 θ

)
dx
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(16e)
Mv,w
i,j = Mw,v

j,i =

∫ L

0

m

(∫ x

0

eA cos θψ′′i dλ

∫ x

0

eA sin θψ′′j dλ− ψ′ieM cos θ

∫ x

0

eA sin θψ′′j dλ−

ψ′jeM sin θ

∫ x

0

eA cos θψ′′i dλ

)
dx+

1

2

∫ L

0

ψ′iψ
′
j sin 2θ (I2 − I1)dx

(16f)
Mw,w
i,j =

∫ L

0

m

(
ψiψj +

∫ x

0

eAψ
′′
i sin θdλ

∫ x

0

eAψ
′′
j sin θdλ− eM sin θ

(
ψ′i

∫ x

0

eAψ
′′
j sin θdλ+

ψ′j

∫ x

0

eAψ
′′
i sin θdλ

))
dx+

∫ L

0

ψ′iψ
′
j

(
I2 sin2 θ + I1 cos2 θ

)
dx

The damping matrix [C] is proportional to the rotational speed of the rotor Ω. It is anti-symmetric and related to the
effect of Coriolis acceleration. The latter generates accelerations normal to the rotation axis and the velocity of the body.
Thus, radial dislocations in the flap direction produces accelerations in the lead-lag direction and vice versa. Due to the
anti-symmetry of the matrix, it does not introduce real structural or material damping and effectively acts as a rotating
matrix. Therefore, the term gyroscopic will be used instead of damping within the following sections. The individual
components of the [C] matrix are defined as follows:

(17a)Cφ,φi,j = 2Ω

∫ L

0

meM sin θ

(
ψi

∫ x

0

J

A
θ′ψ′jdλ− ψj

∫ x

0

J

A
θ′ψ′idλ

)
dx

(17b)
Cφ,vi,j = −Cv,φj,i = 2Ω

∫ L

0

m

(
ψieM

(
ψjβ cos θ − sin θ

∫ x

0

eAψ
′′
j cos θdλ

)
+ ψj

∫ x

0

J

A
θ′ψ′idλ

)
dx+

Ω

∫ L

0

ψiψ
′
j sin 2θ(I2 − I1)dx

(17c)
Cφ,wi,j = −Cw,φj,i = 2Ω

∫ L

0

mψieM sin θ

(
βψj −

∫ x

0

eAψ
′′
j sin θdλ

)
dx+

2Ω

∫ L

0

ψiψ
′
j

(
I2 sin2 θ + I1 cos2 θ

)
dx

(17d)Cv,vi,j = 2Ω

∫ L

0

m

((
ψ′iψj − ψiψ′j

)
eM cos θ + ψi

∫ x

0

eAψ
′′
j cos θdλ− ψj

∫ x

0

eAψ
′′
i cos θdλ

)
dx

(17e)Cv,wi,j = −Cw,vj,i = −2Ω

∫ L

0

mψi

(
ψjβ + ψ′jeM sin θ −

∫ x

0

eAψ
′′
j sin θdλ

)
dx

(17f)Cw,wi,j = 0

The centrifugal stiffening matrix [F ], which is proportional to Ω2, is symmetric and positive definite. It quantifies the
stiffening of the blade due to the centrifugal force acting on it. The individual components of the [F ] matrix are defined as
follows:

(18a)
Fφ,φi,j = −Ω2

∫ L

0

m

(∫ x

0

J

A
θ′ψ′idλ

∫ x

0

J

A
θ′ψ′jdλ+ eMβ

(
ψiψj sin θ (x+ xT + eR) +

cos θ

(
ψi

∫ x

0

J

A
θ′ψ′jdλ+ ψj

∫ x

0

J

A
θ′ψ′idλ

)))
dx+ Ω2

∫ L

0

ψiψj cos 2θ (I2 − I1)dx

(18b)

Fφ,vi,j = −F v,φj,i = −Ω2

∫ L

0

m

(
ψieM sin θ

(
ψ′j (x+ xT + eR)− ψj

)
+ ψ′jeM cos θ

∫ x

0

J

A
θ′ψ′idλ−∫ x

0

eAψiψ
′′
j sin θdλ (x+ xT + eR− βeM sin θ)−

∫ x

0

eAψ
′′
j cos θdλ

(∫ x

0

J

A
θ′ψ′idλ+

ψieMβ cos θ

))
dx− Ω2

∫ L

0

ψiψ
′
jβ cos 2θ (I2 − I1)dx
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(18c)

Fφ,wi,j = −Fw,φj,i = −Ω2

∫ L

0

m

(
ψieM cos θ

(
ψjβ

2 − ψ′j (x+ xT + eR)− β
∫ x

0

eAψ
′′
j sin θdλ

)
+

(x+ xT + eR− eMβ sin θ)m

∫ x

0

eAψiψ
′′
j cos θdλ+m

∫ x

0

J

A
θ′ψ′idλ

(
ψjβ +

ψ′jeMm sin θ −
∫ x

0

eAψ
′′
j sin θdλ

))
dx− Ω2

∫ L

0

ψiψ
′
jβ sin 2θ(I2 − I1)dx

(18d)

F v,vi,j = −Ω2

∫ L

0

m

(
ψiψj − (x+ xT + eR− βeM sin θ)

∫ x

0

ψ′iψ
′
j dλ+∫ x

0

eAψ
′′
i cos θdλ

∫ x

0

eAψ
′′
j cos θdλ− eM cos θ

(
ψ′i

∫ x

0

eAψ
′′
j cos θdλ+

ψ′j

∫ x

0

eAψ
′′
i cos θdλ

))
dx− Ω2

∫ L

0

ψ′iψ
′
j

(
I2 cos2 θ + I1 sin2 θ

)
dx

(18e)
F v,wi,j = −Fw,vj,i = −Ω2

∫ L

0

m

(
ψ′ieM cos θ

(
ψjβ −

∫ x

0

eAψ
′′
j sin θdλ

)
−
∫ x

0

eAψ
′′
i cos θdλ

(
ψjβ +

ψ′jeM sin θ −
∫ x

0

eAψ
′′
j sin θdλ

))
dx− 1

2
Ω2

∫ L

0

ψ′iψ
′
j sin 2θ(I2 − I1)dx

(18f)

Fw,wi,j = −Ω2

∫ L

0

m

(
−
∫ x

0

ψ′iψ
′
j dλ(x+ xT + eR− βeM sin θ) + eMβ sin θ

(
ψ′iψj + ψ′jψi

)
−

ψiψjβ
2 −

∫ x

0

eAψ
′′
j sin θdλ (ψiβ + ψ′ieM sin θ)−

∫ x

0

eAψ
′′
i sin θdλ

(
ψjβ + ψ′jeM sin θ

)
+∫ x

0

eAψ
′′
i sin θdλ

∫ x

0

eAψ
′′
j sin θdλ

)
dx− Ω2

∫ L

0

ψ′iψ
′
j

(
I2 sin2 θ + I1 cos2 θ

)
dx

The structural stiffening matrix [G] is associated with the elastic potential energy of the blade. It is symmetric and
positive definite. The individual components of the [G] matrix are defined as follows:

(19a)Gφ,φi,j =

∫ L

0

(
GJ +

J

A

∫ L

x

mΩ2(λ+ eR)dλ+ Eθ′2
(
B∗1 −

J2

A

))
ψ′iψ

′
jdx+Kφψi0ψj0

(19b)Gφ,vi,j = Gv,φj,i = −
∫ L

0

Eθ′ cos θ (B∗2 − JeA)ψ′iψ
′′
j dx

(19c)Gφ,wi,j = Gw,φj,i = −
∫ L

0

Eθ′ sin θ (B∗2 − JeA)ψ′iψ
′′
j dx

(19d)Gv,vi,j =

∫ L

0

E
(
Iy sin2 θ +

(
Iz −Ae2

A

)
cos2 θ

)
ψ′′i ψ

′′
j dx+Kvψ′i0ψ

′
j0

(19e)Gv,wi,j = Gw,vj,i =
1

2

∫ L

0

E sin 2θ
((
Iz −Ae2

A

)
− Iy

)
ψ′′i ψ

′′
j dx

(19f)Gw,wi,j =

∫ L

0

E
(
Iy cos2 θ +

(
Iz −Ae2

A

)
sin2 θ

)
ψ′′i ψ

′′
j dx+Kwψ′i0ψ

′
j0

Finally, an external static forcing vector {f} is obtained through the application of Lagrange’s equation of motion to the
kinetic energy of the system. This time-invariant vector represents the static deflection associated with by the centrifugal
force. The deviation of the mass centre of the blade from the radially outward location where the centrifugal load is applied
generates this static deflection. Therefore, coupling parameters such as pretwist, precone, and offset between mass centre
and elastic axis are effectively associated with the static vector {f}. It is noted that this vector does not influence the natural
vibration characteristics of the rotor blade due to the steady nature of the forcing. The individual components of the [f ]

vector are defined as follows:
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(20a)
fφi = −Ω2

∫ L

0

m

(
(x+ xT + eR− βeM sin θ)

∫ x

0

J

A
θ′ψ′idλ+ (x+ xT + eR)ψieMβ cos θ

)
dx−

1

2
Ω2

∫ L

0

ψi sin 2θ (I2 − I1)dx

(20b)
fvi = Ω2

∫ L

0

m

(
eM cos θ (ψi − ψ′i (x+ xT + eR)) +∫ x

0

eAψ
′′
i cos θdλ(x+ xT + eR− βeM sin θ)

)
dx+

1

2
Ω2

∫ L

0

ψ′iβ sin 2θ (I2 − I1)dx

(20c)
fwi = −Ω2

∫ L

0

m

(
(x+ xT + eR− βeM sin θ)

(
ψiβ −

∫ x

0

eAψ
′′
i sin θdλ

)
+

(x+ xT + eR)ψ′ieM sin θ

)
dx+ Ω2

∫ L

0

ψ′iβ
(
I2 sin2 θ + I1 cos2 θ

)
dx

To obtain the natural frequencies and mode shapes of vibration, an eigenvalue problem is generated and solved. Inserting
a generic solution of the form {q} = {q̄} exp (λt) in the homogeneous part of the second order system of linear differential
equations defined in Eq. (15) leads to the following quadratic eigenvalue problem (QEP)

(21)
(
λ2 [M ] + λ [C] + [S]

)
{q̄} = [Q(λ)] {q̄} = {0}

where λ represents an eigenvalue and {q̄} is its associated eigenvector. The dimension of the λ-matrix [Q(λ)] is 3N × 3N ,
where N is the number of assumed deformation functions per DOF. The symmetry of [M ] and [S] and skew-symmetry of
[C] determine the spectrum location of the 6N eigenvalues in the complex plane. The eigenvalues are purely imaginary
(< (λ) = 0) and symmetrically located with respect to the real axis as reported in Ref. 19. Hence, the eigenvalues and
eigenvectors occur in pairs of conjugate complex numbers λ, λ and {q̄}, {q̄}. The final N first mode shapes are calculated
as dot products of the assumed deformation function vectors and the eigenvectors of the QEP as shown in Eq. (22).

(22)Xr
i (x) = {ψr(x)} · {q̄r(t)}i , i = 1, ...N

3. Results and discussion

3.1. Numerical performance

The numerical performance of the proposed method has been assessed by analysing the convergence of the natural frequen-
cies on the number of assumed deformation functions per DOF. A small scale, 1.92m diameter, torsionally soft, untwisted
hingeless helicopter rotor blade was used as case study. The blade was designed to have uniform properties from 9.5% of
the blade radius to the tip. The two bladed rotor was tested at hover conditions at different rotor speeds ranging from 0 to
1000rpm. The objective of the analysis described in Ref. 20 was to quantify the modal frequencies, steady blade bending
moments, and lead-lag damping.

Figure 3 presents the influence of the number of assumed deformation functions per DOF on the convergence natural
frequencies. The natural frequencies were normalized with the nominal rotorspeed (Ω = 105 rad s−1). In Fig. 3, the labels
refer to the dominant DOF. The first two natural modes (1F and 1L) are highly independent of the number of assumed
deformation functions. Convergence of the normalized natural frequencies is attained with only two assumed deformation
functions per DOF, and no further variation is obtained as a result of the use of a higher number of assumed deformation
functions. The estimation of the first 7 natural modes of vibration(1F, 1L, 1T, 2F, 3F, 2T, and 2L) is attained with the use of 4
modes per DOF. The calculation of high-order content requires the deployment of a larger number of assumed deformation
functions, e.g. 7 assumed deformation functions per DOF are required to reach convergence for the 12 first natural modes.
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Fig. 3. Influence of number of assumed deformation functions for the hingeless rotor blade model described in Ref. 20 on the convergence
of the normalized modal frequencies.

Thus, the proposed method has been proven to exhibit excellent numerical behaviour. A relatively small number of
assumed deformation functions per DOF is required for the convergence of the final natural frequencies. This characteristic
is highly associated with the deployment of assumed deformation functions derived from classical methods. These better
approximate the actual mode shape accelerating the convergence of the method. The analytical availability of the first and
second assumed deformation function spatial derivatives does not introduce any numerical error. As a result, an infinite
number of vibration modes can be theoretically calculated. Additionally, the lack of numerical instabilities found in the
analyses carried out, presents this method as a robust approach for the structural treatment of helicopter rotor blades.

3.2. Computational performance

The computational performance of the method has been evaluated by analysing the dependence of the required computa-
tional time on the number of assumed deformation functions. The small scale hingeless rotor described in Ref. 20 has been
used as study case. The measured computational time comprises the allocation of system variables, solution of the classical
methods, population of the dynamic system matrices, solution of the QEP, eigenvector normalization and calculation of the
final mode shapes. The method has been implemented in serial FORTRAN 90/95 code. The calculations have been carried
out on a personal computer equipped with 8 Gigabytes (GB) of Random Access Memory (RAM) and a Central Processing
Unit (CPU) operating at 1.7 Gigahertz (GHz) without parallel processing.

Figure 4 presents the evolution of the required computational time with the number of assumed deformation functions.
AN2 relation is identified. Thus, the convergence of the method needs to be quick to avoid computational overhead. Figure
3 shows that, the first 12 natural modes can be estimated with the use of 7 assumed modes per DOF. This fairly quick
convergence requires a computational time of 0.9 seconds. If a lower number of vibration modes is desired, e.g. up to 7th
mode, the computational time would be reduced to only half a second.
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Fig. 4. Influence of number of assumed deformation functions for the hingeless rotor blade model described in Ref. 20 on: the required
computational time for a personal computer with 1.7 GHz CPU and 8 GB of RAM.

Excellent computational performance has been identified for the proposed method. Fully converged solutions with 7
modes of vibration have been obtained in half a second on a low-end personal computer for the configurations studied. The
excellent computational performance enables an efficient integration of the method into a rotorcraft comprehensive code.

3.3. Comparison with experiment and FEA

The agreement of the proposed method results with experimental measurements and FEA results is assessed for two small
scale hingeless rotor blades. These are the previously presented torsionally soft, untwisted blade described in Ref. 20 and
the HART II rotor blade. The latter is a 2m radius, geometrically and dynamically scaled model of the hingeless BO-105
helicopter rotor blade used in the Higher harmonic control Aeroacoustics Rotor Test program HART II. The main objective
of the HART II program was to generate a comprehensive database of rotor loads, pressure distributions, blade deformations,
acoustic radiations, and wind tunnel data for the small scale rotor during descending flight. A detailed description of the
HART II rotor blade can be found in Ref. 21.

Figure 5 presents the resonance chart calculated for the small scale, torsionally soft, hingeless rotor described in Ref.
20. Natural frequencies and rotorspeed have been normalized with its nominal rotorspeed Ω0 = 105 rad s−1. Solid and
dashed lines represent the natural frequencies predicted with the present approach and FEA respectively. Experimental
measurements in vacuum reported in Ref. 22 have been labelled as Exp. Excellent agreement between experimental
measurement and results calculated by the proposed method is observed. The averaged relative errors between both
methods across the whole rotorspeed range are of the order of 0.3%, 1.6%, 0.5%, 1.7%, and 0.5% for the first 5 vibration
modes respectively. The comparison of calculations of the proposed method with FEA results reported in Ref. 22 leads to
the identification of average relative errors of the order of 1.1%, 1.0%, 1.3%, 0.5%, and 0.5%. It is noted that, the order of
magnitude of the relative errors is representative of a method with excellent agreement with FEA.

The proposed method is able to predict transitions between modes of vibration, i.e. changes in the dominant DOF for a
given natural mode of vibration. The transition between 2F and 1T modes can be observed in the magnified area of Fig. 5 as
the convergence and posterior divergence of the frequencies of both modes. Apart from the convergence-divergence of the
natural frequencies, an energy transfer takes place. The flapping amplitude is reduced whilst the torsional deformation is
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Fig. 5. Calculated resonance chart for the hingeless rotor blade model described in Ref. 20. - Comparison with experimental measurements
and FEA results from Ref. 22 - Solid and dashed lines denote Lagrangian and FEA predictions respectively.

increased for the 3rd natural mode in the convergent region. This process continues in the divergent region until the torsion
becomes the dominant DOF. The opposite phenomenon takes place for the 4th natural mode. This can only be predicted
with methods able to model coupling between modes of vibration such as the proposed approach.

Figure 6 presents the calculated dominant mode shapes for the first 5 modes of vibration of the hingeless rotor described
in Ref. 20 at nominal speed. Very good agreement with experimental and FEA data reported in Ref. 22 is observed for all
modes except for the 1st flap mode where a significant variation in mode shape is noticed.

Figure 7 presents the resonant chart calculated for small scale hingeless HART II rotor blade. Natural frequencies
and rotorspeed have been normalized with the nominal rotorspeed Ω0 = 109.01 rad s−1. Solid lines represent natural
frequencies calculated with the present approach. Experimental measurements taken in vacuum for the 2nd to 6th vibration
modes (Refs. 23 and 24) have been superimposed in Fig. 7 as Exp. Experimental tests have been only undertaken at
non-rotating conditions and therefore no comparison can be done at higher rotorspeeds. It is noted that the experimental
measurements of the 1st torsion mode present scatter. This has been attributed to variations in blade weight consequence
of the attachment of instrumentation to the blade (Ref. 21). The calculated natural frequencies exhibit excellent agreement
with the experimental measurements. Relative errors of the order of 0.4%, 0.5%, 1.1%, 4%, 1.4%, and 1.7% are observed
for the 2nd to 6th natural modes respectively. For this particular configurations three different transitions between modes
of vibration are observed. The 1st one involves 1F and 1L and is magnified at the upper left hand corner). The 2nd one
involves 1T and 3F and is magnified at the top of the figure. Finally a 3rd transition between 2L and 3F is identified.

Potential sources of errors between the estimated frequencies and the experimental measurements and FEA results can
be identified. The first one is the truncation scheme deployed during the derivation of the presented formulation, terms
involving transverse displacement and/or torsion deformation of order cubic or higher have been eliminate. That leads
to the omission of certain nonlinear terms which might be relevant at high speed conditions. Shear deformation, rotary
inertia, and other secondary nature nonlinear terms have also been neglected. Those could lead to significant variation in
predicted natural frequencies at high speed. A third source of error is the normalization condition applied to the assumed
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Fig. 6. Normalized dominant mode shapes for the hingeless rotor blade model described in Ref. 20, Ω = 105 rad s−1 - Comparison
with experimental measurements and FEA results from Ref. 22.

deformation functions, for small scale rotors the assumption of generalized mass equal to 1.0 can lead to a potential
breakdown of the linearisation associated with the small displacement formulation as reported in Ref. 15. A fourth source
of error is the uncertainty of some inertial and structural properties not readily available in the public domain, which have
been estimated based on sensible best guess engineering criteria. These include: blade cross-sectional integrals B1,2, area
centroid offset from the elastic axis eA, extensional stiffness EA, and blade mass moments I1,2. A fifth source of error is
the uncertainty of the experimental measurements itself. The introduction of instrumentation can cause variations in the
vibration characteristics of the rotor blade. Additionally, a deficient vacuum isolation can lead to deviation in the modal
characteristics due to aerodynamic damping.

3.4. Comparison with multi-body analysis methods

The proposed approach is compared with multi-body analysis methods extensively used in comprehensive rotorcraft codes.
To carry out this comparison, a resonant chart is calculated for the small scale hingeless HART II rotor described in Ref.
21. Additionally, the dominant mode shapes are calculated and compared at its nominal rotational speed.

Figure 7 presents the resonant chart for the HART II rotor. Natural frequencies and rotational speed have been normalized
with the nominal speed Ω0 = 109.01 rad s−1. Solid and dashed lines represent predictions of the proposed method and
CAMRAD calculations respectively. The averaged relative errors across the rotorspeed range are of the order of 3%, 2%,
3%, 2%, 4%, 4%, and 5% for the first 7 natural frequencies. The larger deviations from CAMRAD calculations can be
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Fig. 7. Calculated resonance charts for the HART II rotor described in Ref. 21 - comparison with CAMRAD calculation from Ref. 25
and experimental measurements from Refs. 23, 24 - Solid and dashed lines denote Lagrangian and CAMRAD predictions respectively.

justified by the deployment of different sets of mass and structural properties. The calculations carried out with CAMRAD,
reported in Ref. 25, were based on the original set of structural data (Ref. 24). Jung et al. (Ref. 21) further studied the
structural properties and found that the initial documentation overestimated the properties by 5 to 15%. The structural
properties obtained by Jung et al. (Ref. 21) have been used in the present work. The excellent agreement of the Lagrangian
estimation with the experimental measurements shown in Fig. 7 justifies the use of the newest set of structural properties.

Figure 8 shows the calculated dominant mode shapes for the first 5 modes of vibration of the small hingeless HART II
rotor blade at its nominal speed. Excellent agreement in the shape and amplitude of the modes estimated by both means of
the proposed approach and multi-body analysis methods is observed for all the natural modes.

The natural frequencies estimated with proposed approach exhibit good agreement with those calculated with multi-
body dynamics codes. Discrepancies of the order of 3%, justified by the use of different structural properties, have been
identified for the natural frequencies of this small scale rotor. Excellent agreement between mode shapes calculated with
both methods is observed. The overall good agreement of both techniques makes the proposed approach a computationally
efficient alternative to multi-body dynamics.

3.5. Coupling analysis

As a consequence of the symmetry of the mass and stiffness matrix and the antisymmetry or the gyroscopic damping matrix,
pairs of complex conjugate eigenvalues and eigenvectors are obtained solving the QEP of Eq. (21). If the gyroscopic matrix
is eliminated, denominated as the undamped case, and a solution of the form {q} = {q̄} sinλt is assumed, the QEP is
reduced to the following generalized eigenvalue problem (GEP)

(23)
(
[S]− λ2 [M ]

)
{q̄} = [Q(λ)] {q̄} = {0}
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Fig. 8. Normalized dominant mode shapes for the hingeless rotor blade model described in Ref. 21, Ω = 109.01 rad s−1 - comparison
with CAMRAD calculations from Ref. 25.

where λ is a real eigenvalue and {q̄} its associated real right eigenvector. Equation (24) presents the resultant undamped
mode equation as meant to be introduced in the forced response of the dynamic system, where λi and Xr

i (x) are real
numbers representing the eigenvalues and final mode shapes calculated with Eq. (22).

(24)χr,Ui (x, t) = Xr
i (x) cos

(
λit− ϕrefi

)
In Eq. (24), χr,Ui (x, t) is the undamped (U ) time-dependent transverse displacement/torsional deformation for the ith

natural mode and r DOF. A reference phase angle ϕrefi accounts for the possible phase angle respect the exciting force.
This phase angle is unique for all DOFs for a given natural mode and does not depend on the axial position.

If the gyroscopic matrix is included in the analysis, pairs of complex conjugate eigenvalues (λi, λi) and mode
shapes (Xr

i (x), Xr
i ) are obtained. The superimposition of pairs of complex conjugate time-dependent functions

(Xr
i (x) exp(λit), Xr

i (x) exp(λit)) leads to Eq. (25). Where χr,Di (x, t) represents the damped (D) time-dependent
transverse displacement/torsional deformation for the ith natural mode and r DOF.

(25)χr,Di (x, t) = |Xr
i (x)| cos

(
= (λi) t− ϕrefi + arctan

= (Xr
i (x))

< (Xr
i (x))

)
e<(λi)t

As previously discussed in subsection “Eigenproblem", a QEP with symmetric mass and stiffness matrices, and skew-
symmetric gyroscopic matrix is associated with pairs of purely imaginary (< (λi) = 0) eigenvalues. As a result, the
time-dependent decay term exp(< (λi) t) = 1 and no damping is present. Although the gyroscopic matrix does not
introduce any time-dependent decay, it introduces a phase angle ϕri (x) = arctan

=(Xri (x))

<(Xri (x))
which depends exclusively
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Table 1: Influence of gyroscopic damping on the normalized modal frequencies of the model described in Ref. 20.

Uncoupled eM = 5%c θ0 = 5deg θ′ = −5deg β = 5deg

Q
(
ω
Ω0

)
G(%) Q

(
ω
Ω0

)
G(%) Q

(
ω
Ω0

)
G(%) Q

(
ω
Ω0

)
G(%) Q

(
ω
Ω0

)
G(%)

1F 1.176 0.000 1.176 0.000 1.170 0.000 1.174 0.000 1.173 1.555
1L 1.516 0.000 1.516 0.002 1.521 0.001 1.517 0.000 1.540 -1.530
1T 2.864 0.002 2.839 0.002 2.862 0.001 2.865 0.002 2.864 0.002
2F 3.341 -0.002 3.398 -0.002 3.340 -0.002 3.343 -0.002 3.340 0.018
3F 7.064 0.001 6.971 0.000 7.064 0.001 7.054 0.001 7.064 0.003
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Fig. 9. Hinton diagrams computed for the hingeless rotor blade model described in Ref. 20 - Uncoupled. a) Mass matrix, b) Gyroscopic
matrix, c) Overall stiffness matrix.

on the phase angle of the complex number Xr
i (x). The variation of the phase angle ϕri (x) across the blade leads to a

time-dependent mode shape variation. Therefore, the mode shape is not constant with a sinusoidal amplitude oscillation as
it was observed for the undamped system. In addition to the non-uniformity along the span, the phase angle ϕri (x) depends
on the DOF r and phase delays between DOFs can be found.

Table 1 quantifies the effect of the inclusion of the gyroscopic matrix on the normalized natural frequencies of the
hingeless small scale generic helicopter rotor blade model described in Ref. 20. The analyses were carried out at the
nominal speed (Ω0 = 105 rad s−1). Normalized frequencies obtained from the QEP are shown in columns labelled as Q(
ω
Ω0

)
whilst the solutions of the GEP are presented as percentage deviations from the QEP data and labelled as G (%).

The uncoupled case refers to a case study with zero offset between the centre of gravity and the elastic axis (eM ), blade
pitch angle (θ0), pretwist (θ′). and pre-cone (β). Whilst the coupling source of the other cases is specified in the top row.

For the uncoupled case, small discrepancies between the QEP and GEP frequencies are observed for the first torsion
(1T) and second flap (2F) modes of vibration. That suggests a soft gyroscopic coupling flapwise displacement and torsional
deformation. To corroborate this assumption, Hinton diagrams of the mass, gyroscopic and overall stiffness matrices are
presented in Fig. 9 for this case study. A Hinton diagram represents the magnitude and sign of each matrix element with a
square. The area of the square is proportional to the absolute value of the matrix element, while the sign of the element is
determined by the color (white for positive values and black for negatives). As previously stated, each matrix comprises 9
partitions. These have been arranged as follows: 1st partition column/row corresponds to torsion, 2nd partition column/row
to lead-lag, and 3rd partition column/row to flap. From Fig. 9 it is easy to observe the symmetry of the mass and overall
stiffness matrices and the anti-symmetry of the gyroscopic matrix. Thus, Mr,s

i,j = Ms,r
j,i , Sr,si,j = Ss,rj,i , and Cr,si,j = −Cs,rj,i .

In Fig. 9 only the diagonal blocks are non-zero for the mass and stiffness matrices. However, a non-diagonal block appears
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Fig. 10. Hinton diagrams computed for the hingeless rotor blade model described in Ref. 20 - eM = 5%c. a) Mass matrix, b) Gyroscopic
matrix, c) Overall stiffness matrix.
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Fig. 11. Hinton diagrams computed for the hingeless rotor blade model described in Ref. 20 - θ0 = 5deg. a) Mass matrix, b) Gyroscopic
matrix, c) Overall stiffness matrix.

in the gyroscopic matrix which couples flap and torsion. The coupling strength increases with the proximity of the flap and
torsion modes in the frequency spectrum and therefore the intensity of the coupling is higher for the coupling between 1T
and 2F for this particular case of study.

As a result of the inclusion of an offset between the center of gravity and the elastic axis of 5%, certain coupling
between flap and torsion is generated. It can be observed in Table 1, where the first torsion and second flapping frequencies
are affected. It can be observed as well in Fig. 10, where blocks coupling flap and torsion appear in the mass and stiffness
matrices. Although of low order of magnitude, intermodal coupling between lead-lag assumed deformation functions are
observed in the gyroscopic matrix.

The inclusion of blade pitching angle results in coupling between flapwise and chordwise displacements. It can be
easily observed in the mass and stiffness matrices of Fig. 11, where blocks linking flap and lag are present. This leads to
discrepancies between QEP and GEP frequencies as shown in Table 1. Certain gyroscopic coupling is further generated
between lead-lag and torsion. However, the effect is fairly weak due to the distance between torsion and lead-lag frequencies
in the frequency spectrum. Although of different nature, the effects of pretwist along the blade and pitching angle are similar
and further discussion is not carry out.

The inclusion of pre-cone has the strongest effect on the gyroscopic coupling as observed in Table 1. Large intermodal
coupling coefficients between lag and flap appear in the partition matrices’ diagonals (i.e., Cv,wi,i = 2Ω

∫ L
0
mψvi ψ

w
i βdx =

−Cw,vi,i ) due to the Coriolis acceleration. This generates considerable coupling between assumed modes of vibration with



20 J. Aerospace Engineering 000(00)

φ

v

w

φ v w

a)

φ

v

w

φ v w

b)

φ

v

w

φ v w

c)

Fig. 12. Hinton diagrams computed for the hingeless rotor blade model described in Ref. 20 - θ′ = −5deg. a) Mass matrix, b) Gyroscopic
matrix, c) Overall stiffness matrix.
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Fig. 13. Hinton diagrams computed for the hingeless rotor blade model described in Ref. 20 - β = 5deg. a) Mass matrix, b) Gyroscopic
matrix, c) Overall stiffness matrix.

the same mode index i. This coupling strengths with the proximity of the flap and lead-lag frequencies in the frequency
spectrum. For this particular case of study, the 1st lag and flap modes are closely located. As a result, the effect of the
inclusion of the gyroscopic matrix is much larger for these two modes of vibration. Although of smaller magnitude,
gyroscopic coupling between flap and torsion does still exist and certain coupling between lag and torsion is observed in
the stiffness matrix.

The effect of the inclusion of the gyroscopic matrix in the analysis of modal characteristics has been assessed. Initially,
the generation of time-dependent variations on mode shapes has been mathematically demonstrated. Secondly, the relevance
of the gyroscopic matrix has been assessed in terms of discrepancies between frequencies obtained from the QEP and GEP
for different study cases. The presence of pre-cone has been identified as the key factor in generation of gyroscopic coupling
between flap and lag. Therefore, gyroscopic damping needs to be accounted in the modal analysis of rotor blades with large
pre-cone angles such as the ones found on tiltrotors. However, it can be omitted without a significant loss of information
for conventional helicopter rotors where the pre-cone angle is small. Additionally, the effect of other coupling factors on
the coupling between modes of vibration has been assessed, and its magnitude quantified.
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4. Conclusions

A mathematical formulation for modelling of coupled flap/lag bending and torsion vibration characteristics of helicopter
rotor blades has been presented. The method has been formulated based on the application of Lagrange’s equation of motion
to the three dimensional kinematics of a non-uniform continuous rotating blade. Spatial solutions of classical theories have
been deployed as assumed deformation functions to enhance the computational efficiency of the method. The method has
been reduced to a set of closed form integral expressions compatible with different structural boundary conditions. The
effect of different geometrical parameters on the coupling between modes of vibration has been assessed. The dependence
of the method’s prediction on the gyroscopic matrix has been assessed. The predictive vibration characteristics have been
compared against experimental measurement andFEA and multi-body dynamics calculations for two hingeless rotors.

Excellent numerical performance based on the use of assumed deformation functions derived from classical methods
has been demonstrated. Definite fast convergence with a theoretical infinite number of obtainable modes of vibration
has been shown. As a result of the enhanced convergence, converged results are obtained with with the deployment of a
low number of assumed deformation functions (Fig. 3). As a consequence, the computational efficiency has been highly
improved (Fig. 4). Excellent agreement of the experimental measurements and FEA results with the natural frequencies
prediction has been demonstrated for two small scale hingeless rotor blades. Very good agreement between the predicted
dominant mode shapes and the experimental measurements has been found, with the exception of the first flap mode. Good
agreement between natural frequencies predicted by the proposed method and nonlinear multi-body dynamics calculation
has been observed for a small scale rotor blade. Additionally, excellent agreement between the predicted dominant mode
shapes and multi-body calculations has been identified for the small scale hingeless rotor. The effect of the gyroscopic
matrix on the vibration predictions has been assessed. Time-dependent variations in mode shapes have been associated with
the inclusion of the gyroscopic effect in the analysis. Pre-cone has been identified as the key parameter in the generation
of gyroscopic coupling between chordwise and flapwise displacements.

The proposed method has been demonstrated to accurately estimate the first 7 modes of vibration a fraction of a second.
Its computational efficiency and the very limited required information present this method as an efficient alternative to
FEA or multi-body dynamics for the structural analysis of rotor blades during the preliminary design phase. Its further
integration into a flight dynamics code acts as an enabler for the generation of comprehensive codes for the analysis of
novel rotorcraft configuration where strong coupling between modes of vibration is present.
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A. Nomenclature

Roman Symbols
[Q(λ)] dynamic system resultant λ-Matrix
{q̄}i ith eigenvector of λ-Matrix [Q(λ)]

ẽx, ẽy, ẽz unit vectors of the orthogonal coordinate system with origin at the blade hinge/root, X along the
undeformed blade and Y towards the leading edge, m

r̃ position vector of a point P relative to the blade root/hinge offset , m

Ṽ Velocity vector of a point P relative to the blade root/hinge offset , m s−1

A(x) cross-sectional area, m2

B∗1(x), B∗2(x) blade cross-sectional integrals, m6, m5

Cr,si,j gyroscopic intermodal coupling coefficient between the ith and jth assumed deformation functions of
the r and s DOFs
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e blade root/hinge offset from the hub center as a fraction of rotor radius
E(x), G(x) material Young’s, shear stress moduli, Pa

eA(x), eM (x) area centroid, mass centroid offsets from the blade elastic axis, m

F r,si,j centrifugal stiffening intermodal coupling coefficient between the ith and jth assumed deformation
functions of the r and s DOFs

fri centrifugal static force coefficient for the ith assumed deformation function of the r DOF
Gr,si,j elastic intermodal coupling coefficient between the ith and jth assumed deformation functions of the

r and s DOFs
I1(x), I2(x) blade cross-sectional mass moments of inertia about major, minor axes, kg m

Ip(x) blade cross-sectional mass polar moment of inertia, kg m

Iy(x), Iz(x) blade cross-sectional moments of inertia about major, minor axes, m4

J(x) blade cross-sectional polar moment of inertia , m4

Kr hinge/pitch-control system spring stiffness of the r DOF, N m rad−1

L actual blade length, = R (1− e), m

m(x) blade mass per unit length, kg m−1

Mr,s
i,j mass intermodal coupling coefficient between the ith and jth assumed deformation functions of the r

and s DOFs
N number of assumed deformation functions per DOF
Qri generalized force corresponding to the ith generalized coordinate of the r DOF
qri (t) time-dependent generalized coordinate of the ith assumed deformation function of the r DOF
R rotor blade radius, m

Sr,si,j overall stiffness intermodal coupling coefficient between the ith and jth assumed deformation functions
of the r and s DOFs

t time, s

T, U kinetic, potential energies of the rotor blade, J

u(x, t) axial (X axis) time-dependent beam element displacement, m

v(x, t) chordwise (Y axis)time-dependent beam element displacement, m

w(x, t) flapwise (Z axis) time-dependent beam element displacement, m

Xr
i (x) shape for the ith mode of motion of the r DOF, m, rad

xT (x) beam element centrifugal displacement (x axis),
∫ x

0

∫ L
λ
mΩ2(%+eR)d%

EA dλ , m

Greek Symbols
β pre-cone angle, rad

εxx, εxη, εxζ classical strain components
η, ζ cross-sectional coordinates along the major, minor principal axes, m

λ eigenvalue of the λ-Matrix [Q(λ)] , rad s−1

{Ψr(x)} assumed deformation function vector of the r DOF, =
[
ψrj (x), j = 1, . . . N

]T
Ω blade rotorspeed, rad s−1

φ(x, t) time-dependent torsional deformation angle, rad

ψri (x) assumed deformation function of the ith mode shape of the r DOF, m, rad

ρ material density, kg m−3

θ(x) cross-sectional pretwist angle, rad

Ω̃ blade rotorspeed vector, rad s−1

Superscripts
˙( ), (̈ ) 1st and 2nd derivatives with respect to time t
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( )
φ,v,w referring to torsion, lag or flap respectively

( )
′
, ( )
′′ 1st and 2nd derivatives with respect to axial coordinate x

( )
r,s DOF indices

Subscripts
( )0 referring to the root/hinge location
( )i,j mode number indices
Acronyms
DOF degree of freedom
FEA finite element analysis
GEP generalized eigenvalue problem
QEP quadratic eigenvalue problem




