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SUMMARTY

- The need to generalise the usual assunptions made in
the analysis of load diffusicn problems has been emphasised by
recent experimental work (Ref. 3), which has shown the import-
ance of bending of the edge menmbers, Direct mathematical
solution of the plate problems, which arise, is herdly feasible
end so in this report a numerical solution using the 'relaxation
method' is carried out, Results show the method to be suitable
for design purposes, but comparison with experiment still shows
the need for further physical generalisations., These will

form the subject of future work,
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Introduction

The problem of the diffusion of load from edge members
into a panel of stringer reinforced skin has been the subject of
numercus theoretical investigations (c.g. Refs 1,2), In the
najority of these the assumption is made that the transverse
direct strain component cen be neglected, with the consequence
that the edge members remain straight. In some solutions for
example that of Ref, 2, a general two-dimensional system of
stress and strain is assumed to exist in the panel, but in this
case mathematical difficulties limit the kmown solutions to the
cases where the edge member has infinitely smell flexurasl stiff-

ness, Recent experimental evidence (Ref, 3) has shown however,

the importance of edge member bending and the accompanying trans
verse direct stresses, It is therefore necessary for purposes
of design to have available, methods, which will allow for these
effects, Since direct mathematical solution does not seem to

be feasible, the present report tackles the diffusion problem by

the mumerical method of !relaxationt,

Formulation of the Problem

The problem considered in this report is illustrated
Fige 1s It is the 'classical! diffusion problem of the
literature, for the special case of edge members of constant area,
The skin is shown as reinforced by stringers of area As and
pitch age It will be assumed that these members are distributed

over the skin to form a uniform ‘orthotropic'! plate,

The components of displacement in the plate are written

(u,v) end the corresponding strain components ®xx? Syy and e
e .)
are then given by
xx  ox ? yy oy’ xy ~ ox o9y °°°

The strains of (1) give rise to stresses in the skin and stringers,



Estimating these as resultants T,.i s TZ and 8 per unit length

we find,
Tli = Et-«- (exx + ge + Ei\:% €y “}
(1-0‘ ) Y “s {
Et :
T = (6 + o€ ) ) 0c~c¢¢n(2)
S o= Et e %
2(1+0" Xy j

where +t is the skin thickness, E is Young's modulus and ¢

Poisson's Ratio. The stringers of course only contribute to T,[ .

The conditions of equilibrium for the plate are

i?‘l+§§—§§+—-~aT2*O (3)
ox oy T ox 3y = s0ovsoesscens

+ 2 3

i1+<1‘0‘ Asia?"u* ’io‘}au g1+6‘) O}

"gL ast { ax2 2/ ay oxdy ~  {

. o \ (4)
é1-0ﬁ 3%y o . {ﬁ+o} %u o {

L2 ax2 ay2 . 2/ oxdy _j

Our problem is thus reduced to the solution of (k)
subject to the appropriate boundery conditions at the edges of
the plate,

The end rib at x = 0 will be assumed to be completely

flexible in bendings This implies that | T 3 = 0, A second
.f %x=0 B

condition at this edge follows from the balzmce of shear input

into the rib against the build up of end load within it This

last is given by EA'(e. ) o« Ve thus find,
I %=0

ﬁ * ast 4: ox T o 3;5}‘ = f
i e atx =0 ..naac.t(B)
o5y t ov , duy_ of;
2 2(1+0‘)A' ax ay,""— -



The conditions assumed at x = 1 are those of complete
ixitys We shall thus have,

u=v=0 at x=1 c;cnunyn--oo(())

On the edge y =D we have first of all the shear

input balence and secondly the relc:blon, from the theory of beams,

£
between the transverse loading | 'I}2§ and the displacement
; . =b
(V;y > These yield, rIE
2 & =
J u _ t f _@_’Y_ + gll_% i
52 2U+a)h Lox T dy/ /
A . ;, aty:b a-ca&vvo(?)
I £ X
ax* ( f-"'2)1 Loy oy ;_,fj

Since the panel and loading are both symmetrical about
Ox, we need only consider the region y % 0y  This requires
boundary conditions at ¥ = 0. Symmetry demands that both
(v)y=0 and. (S)y-.-o should be zero and so,

Ju ,
v o= -C:;S;,: 0 % yﬁo lo‘.ouivlvio(S)
Finally certain special conditions must hold at the

cornerse At x = 1 we assume the edge members fully built-in

implying .=
v ‘ /
“a“;:“ = 0 a‘bl X = Z, N =D .gncﬁnw'uoat(g)

At x =0 we have o given end load P in the edge member. Ve
assume too that this member is pimmed to the end rib, so that its
bending moment will be zero and its sheor foree egual to the end

load in the rib. These conditions yield,

u _ B v _ 0 v _atw
- = mp # o = 3 == S
ox b axc’. dX3 I oy

t?nnt.c(}lo)

This completes the mathematical formmlation of our problem.



TEE  RELAXATIONAT, SOLUTION

The specific problem solved

Since equations (4) to (10) are solved (approximately)
by Relaxation Methods it is necessery to select a skin having
specific shape and properties, The quantities chosen were as

Follows =

Iength, 1 = 51 ins,

Width between ﬁ? of booms, 2b = 45 ins.
Boom area, A = 2,23 ins,

Bocna moment of inertia, I = 1,689 in
Skin thickness, t = 0.,0813 in.

Stringer svrea, A = 0,0732 in%

o
&

Stringer spacing, a_ = 2,00 in,

5
. . 2
End-rib area, A' = 0,684 in,

Poisson's ratio, o = 0.3
Young's modulus, E = 107pesois) P L
Loading, P/A = 4000 p,sais g iE Tk

These are identical with the quantities appropriate to the test

specinen used in the experimental work of Ref. 3.

Non-dimensional trensformation of the equations

Since a numerical solution is centemplated it is
necessary to put all the ecquations (L) to (10) into non-dimens

sional forma. Tith 1 chosen as representative dimension let

b
[
i

Then all barred quantities are purely numericcl,  Those sube=
stitutions made in ecuations (&) to (10) leave those equations
unaltered apsrt from the fact that berred quentities now replace
their original counterpartsy it is therefore unnecessary to re-
write the cquations, Hereafter we shall work in terms of the

transformed equations,
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Mnite~difference approximations

The next step, in preparation for a relexational
solution, is to convert the governing equations and boundary
conditions into finite~difference epproximations. The chosen
(square) net at noda pointsb of which values of u and v werc
found is showm in figure 2, The mesh-size over most of the
field is 2 inches, and in fact a solution was first obtained for
wihich the net was uniformly of this size all over, The final
sclution, incorporating values of u and v on the finer net
{of mesh-size 1 inch), gave more detail in the region of stress-
concentration and alsc provided some slight indication of the
accuracy to be expected from the results. The net is so arranged
that net-lines fall on the boundaries y =b and x = O3
"irregular stars' occur near the other two boundsrids. Clecarly
a rectangular net might hove been used (at a cost in more cumber-~
sone aritimetic) which would have presented no irreguler sta

¢ decided against this since the conditions on the boundery
x = I and centre-line y = 0 are particularly simple meking the

treatment of 'irreguler stars' there straightforward,

Finite-difference approximations to the egquations (4)
to (10) will be set down next s Tor use on any square net of meshe

size h inches, Let h = Ih so that §h represents the non=-
dimensional mesh-gize,

The numbering scheme of figure 3 will be used to
indicate, by suffix notation, the relative positions of values
of the functions at a typical nodel point, 0, of the net and a

surrounding nodal points,

The governing ecuations

The governing equations {(4) in non-dimensional form
< e \

and with coefficlents evaluated are

2“‘ 2" 32:\;'

140967 -—§+ 0,35 2 2 + 0465 =—— = 0}
ox ay oxay 5 ’t&.taﬂ(z'*'é-)

2 2~ 2 4

0035 L% + &L 4 0,65 L8 = o

ox° oy 3%oY




Typical approximations needed in these eguetions sre those for
e, =D Doy o= . ] ]
3°0/ox° amd 3°V/ x¢y  and the following stoandard expressions

were useda«

52 ;i%— 2 0, +u 2u
T I
2

ol R A RECRE S I g

' i o e - -
l&a:?é;a"ﬁ * 5 6 7 8

Finite-difference approximations to equations (44) can
now be written dovm and (after multiplying through by 2 for con-
. . g , . .
venience) two residuals {F-rg and | F;\-;‘g , corresponding with
. ‘U""Q Km 40
the first end second respectively of (L&), are defined by

f“ﬂ__" = 0 0 - = Lo o - e
7 z 2,8193 (u1 + Lﬁ) + 0.7 (u, + uh) 750357 G

s

TN
£ [ ‘
410325 (VomV (4 Vo, =V ) b {

{0-785 gV gryvg): % (11)

. . FEX S

f )"L o - !/—- Ll - f"
e"‘“ ] E a 2"“ - E; 7 i
\NV,-;O 0.7 (V,l-wa) + 2(v, + vth‘) Solk 7 \
E
i

5
& Bt
A

&
i‘ -~ - - -
+:§?¢§25(u5 g ua)‘

}

The reason for the suffixes u ond v in { iak

S, * O Y ¢ Q
fairly obvicuss the first expression in (11) defining {F-)
iy

. . .- : c s v PO
contains predominantly terms in u, the second, defining

£ . - - .
{F%;“g s bterms in v, The same notation will be adopted vhen
%, ¢

R o TN . . s . s
we define residuals corresponding with the boundary conditions.

The boundary conditions T, Along end-rib and bhoon

A1l that has been described so far is standard
technique, details of which can be found, for example, in Refs.
L end 5, Ve now come to the boundary conditions, Those along
the end-rib, equations (5), and along the boon, equations (7) |
together with the conditions ot the corner where the force is
applied ere somewhat unusuel end present the crux of the problen

relaxationally,
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Leaving aside the corner x = 0, y =b for the present consider
the conditions along end-rib and boome. In particular let us
examine equations (5)e In their non-dimensional form and with

coefficients evaluated these become

1.4097 == + 0.3 = = 0
3% 35 /
_ 5 tbolttiil‘ti<5A)
. - P e
§:32’-+ 00457(f1);§—f{— 9—-__—1:0 \
3y 1 ox oy ! w?
Equations (54) hold on the verticel boundary x = 0, a piece of

which is shown in Figure L.

First derivatives appear in these equations and the

. . . . s ou . .
simplest approximation to use, exemplified by - , is this,~
ox

a - u &oaunooocacc(iz)

2h 1

Sl

o e

»|le

W

3

An approximation for the second derivate has already been stated
so equations (54) could now be put into finite-difference form.
Applied at a point O on the boundary (figure L), values of ’3}
and v5 appear in the resulting expressions end the node 3 is

a 'fictitious' node, i.e, lies ocutside the field, But we need

a pair of equations at O which do not involve U and v at
fictitious nodes, and the most obvious way to proceed is to
employ the governing equations (LA) together with the boundary
conditions (54) climinating between them all velues at fictitious
nodes. (Cf. Ref. 6), The governing equations, spplicd at O
in figure k4, introduce velues of U and v at a f‘urthef number
of fictitious points and it becones necessary to use the boundary
conditions not only at O itself but at other points such as 2
and L in order to get a palr of equations to be satisfied ot 0O,
The same method of climination could be used along the boom

where equations (7) hold, This procedure was investigated at
first but wes ebandoned (perhaps inadvisedly) because the

elimination resulted in some very unweildy cxpressions, particuierly
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along the boom (where a fourth derivative is present in one of
the boundary conditions), It wes also difficult to see how to

get adequate approximetions near the corner where the force actse

The method finally adopted on these boundaries was
the simple one of satisfying the boundary conditions only and
avoilding the introduction of values at fictitious nodes by using
end~difference formulae where necessary in place of central-
differences, {?he accuracy of such a procedure ought to be
investigated mofefhllywbefore firm reliance is placed on the

results of this repor@ﬁ

Treating equations (54) in this way we replace the
epproximation (12) by

ou - - -
{":g % 11:.1,11 - 3‘3-0 = Uge (see figure ]—é—)v 0&'0‘(15)
<OX ¢ -
o
vy . 0 s ; . .

g-—-’ is approximated similarly and the residual expressions for
- XP
L ox o

the end=-rib boundery can then be defined by

, N - -

iFﬁ}O = 5,6387 u, = 1.4097 ug = 442290 u + 1 o,s(v "VAL)"‘ indept.of h, [‘}
{(F=} = 0,091k v, - 0,0229 v + (V47 )-2. O686v +»o 0249(1,1 -0 )q where g (14)
%, J;o l“ J+ !

h=1/51, its value for the finer nst_j

Consider equations (7) nexty in non~dimensional form and
with coefficients evaluated they become

" S
9—:——-001402(51),;9-‘5 AT R
0% i 3y
“WX y;'i . 'i!(lttt‘t(?A)
2" 3] 0% 5% |
- TR Os 05290(51) o+ 03 =—=1{ =0

PO araad

Now it lsf ) and {é%ﬁ which must be approximated by the
N &y \oy/,

3=point end formula illustrated in (13). Central~differences are

used for all other derivatives, The (standard) spproximation



-10m

3%
used for = Vas
ox’
Ly
el b - - - - -
- héui,ﬁ"'“’;"r‘, 2 (v, +v,) - (v, +7,,) = 6V_,
S 1 3 9 T V11 o
', J*O

Residuals may now be defined as follows.~

¥

e
m

- - - - ‘. - .. ¥
= _o,ozaOul; 0.0070u, , +(u,i+u3)-— 2,0210u_~ ‘g‘o‘oo7o(v1-v3)§,

o~
F
O

o
.

i

041058v, - o.ozézw +1+(v +V ) (v +V,, )= .O795v - 0.0079(u -u )$
A 11 3 t‘

for h = - s 1ibs value for the first nets
; o1 »

i . . . pa o v 2
iSome coefficlents in both of (15) need modification when h = BT 2
its value for the coarse net,

Finally, in detall, the approximations used at the
corner x =0, y =b will be given, Eouations (10) hold hereg

in non~dimensional form and with data inserted these become

WMy ot )
ox ,‘I
o0 !
37V
5 = 0 0000&00#"'0(10A)

¥
™
J———

.40497(51)3 U
ox ay

4
1

Corresponding with the first of (104) an approximation using the
S-point end-formula was adopted, a residual F‘a being defined
by

My =By = - () e (16)

HL

The second two equations in (10A) were used together to find a
residual expression "?‘- The 3=-point end=-formule was again
employed for ov/dy oY and the approximetion taken for 655/ a§5
(derived with o use of 62;}/ 072 = 0) was

V. +Vv_ = 27

..3:"'33‘"'}
i 9’ o) 1

eils
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Vith h = 1/51 a residual E; at this corner can then be
defined by

5 * 2v1 - v9 ~ 146075 Ve

PR - -
B3 = 0,80 - (042025
{' vf’o «5099 V‘l;_ ® o v

vuapntcua»tc("?)

The boundary conditions. II, Along built=in end and centre~line

The methods used for dealing with the irregular stars
which occur near the built=-in end of the skin (x = ) and near the
centre-line (y = 0) were mostly stenderd and call for no detailed
descriptions The boundary conditions were here eapplied by using
them to eliminate values of U and Vv at fictitious nodes which
occur in equations (11) when the point O lies on either of the
net-lines immediately adjacent to these boundaries,

The relaxation process

Knowledge of relaxational technique must be assumed
here,x but it is perhaps appropriate to add a few remarks sbout

the technique as applied to the particular problem of this reports

The residual expressions (11), (14), (15), (16) and (17),
together with those (not given) for use at the centres of +the
irregular stars discussed in the last section, form the besis of

the relaxation solution.

It is possible, and most convenient, to work the problem
in stages, first relaxing u only for a time and then switching
over to relax v alone, The significance of the notation Fﬁ
and F; now becomes apparent, TVhile working on ﬁ, for example,
we concentrate on the Ea residual expressions employing incomplete
patterns (derived from these) which involve changes in FG residuals
onlys the terms in ¥, in curly brackets, remain (‘temporarily)
constant at their values obtained from the current distribution of
Ve This is a standard approach.whiéh'is not invalidated by the

particular boundery conditions of the problen under discussion,

x Ref, L gives an excellent account of technique,
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The prcblem is of the kind which reguires meticulous
treatment - especially on the boom and end-rib bounderies,
Individual residuals are easlly reduced to acceptable magnitudes
but large chenges in 1 and v may still be necessary in order

to make the sum of the residuels negligibly small,

RESULTS

The complete solution is not recorded for reasons of
space, however figures 5 and 6 give some indication of the nature
of the distributions of u and v over the field, TFigure 5
shows the variation of u along a few selected lines of constant
xy figure 6 the variation of v along certain lines of constant
Ve u and v are very smooth functions and the curves run

lirec ¢ large muber of plotted points.
directly through a lar ber of plotted point

Pigures7 show the strains by means of contourss since

values of € 2 © and exy mast be found by differencing these

are less accurateyzﬁan u and v which are computed directly.
There is also the difficulty that u varies very rapidly nesx the
corner where the force is applied which mekes close estimation of
the gradient there impossibles It is perhaps worth recording that
the preliminary solution found for u and v - working on a net
of mesh~-gize 2 inches throughout the field - was very little
different from the final solution (here presented) which incorpor-
ated a finer net in the region of stress-concentration. |

Pigures & and 9 show the variations of strains along

boom and end-rib near the corner where the force is applied.

Conclusions

The mumerical results obtained in this report show that
it is quite feasible to tackle the diffusion problem, even in the
complicated case vhere bending of the edge members is considered,
by means of the relaxation method., Comparison with the cxperimental
evidence of Ref, 3 still shows however that further complexity must
be introduced into our assumptions, before full agreement can be

achicved with experiment, In particular the rigid connection
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agsumed between plete and edge merber must be replaced by an

elastic element,

Thig and othcr developments rmst awailt future

investigation, but experience to date sugcoests that the relaxation

method will be an adequate tool for the further work,
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