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ABSTRACT

While current food science research mainly focuses on microbial changes in food

products that lead to foodborne illnesses, meat spoilage remains as an unsolved

problem for the meat industry. This can result in important economic losses, food

waste and loss of consumer confidence in the meat market. Gram-negative bacteria

involved in meat spoilage are aerobes or facultative anaerobes. These represent the

group with the greatest meat spoilage potential, where Pseudomonas tend to

dominate the microbial consortium under refrigeration and aerobic conditions.

Identifying stress response genes under different environmental conditions can help

researchers gain an understanding of how Pseudomonas adapts to current

packaging and storage conditions. We examined the gene expression profile of P.

putida KT2440, which plays an important role in the spoilage of meat products. Gene

expression profiles were evaluated to select the most differentially expressed genes

at different temperatures (30°C and 10°C) and decreasing glucose concentrations, in

order to identify key genes actively involved with the spoilage process. A total of 739

and 1269 were found to be differentially expressed at 30°C and 10°C respectively; of

which 430 and 568 genes were overexpressed, and 309 and 701 genes were

repressed at 30°C and 10°C respectively.
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1. Introduction

Meat represents one of the most important consumed food commodities worldwide.

Food availability data indicate that overall meat consumption in developed countries

is increasing, with the USA standing as the leading country in total meat consumption

(Daniel et al., 2011). The United States Census (The-United-States-Census-Bureau,

2012) estimates that world consumption of beef (including veal), pork and broiler

(chicken) in 2010 was 56,544, 102,953 and 75,127 thousands of metric tons,

respectively. This suggests that not only does the meat industry have to meet this

increasing demand but it also has to adapt to seemingly different market demands.

Consumers expect food products of upgraded functional and nutritional properties in

conjunction with low processing interventions and fewer additives, and yet that they

possess a long shelf life and guaranteed product safety (Nychas et al., 2008). These

changes in demand, as well as the introduction of new food products that broaden

food choices in conjunction with the adoption of new technologies by the industry,

have a direct influence on food loss rates in the overall meat supply chain (Buzby et

al., 2009).

Meat is described as spoiled when it is considered unacceptable by consumers due

to physical and chemical changes that alter its sensory characteristics. As spoiled

food is not necessarily unsafe, spoilage has not received the same attention as

microbial changes that lead to foodborne illnesses. However, spoilage leads to

important economic losses, food waste and loss of consumer confidence in the meat

market. Therefore understanding the underlying mechanisms involved in meat

spoilage is crucial for minimising its economic, social and environmental impacts.

Although several attempts have been made over the past few years to associate

specific metabolites with microbial spoilage in meat, none of them have been

completely successful due to a poor understanding of the phenomena (Nychas et al.,
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2007). Therefore, novel technologies are arising in order to overcome this lack of

information.

Predominance of a certain group of microorganisms on meat depends on the

characteristics of the meat product, the processing that meat may undergo and

environmental storage conditions. The intrinsic characteristics of meat are favourable

for the growth of most microorganisms. Gram-negative bacteria involved in meat

spoilage are aerobes or facultative anaerobes, and represent the group with the

greatest meat spoilage potential. In chilled meat stored aerobically, members of the

genera Pseudomonas, Acinetobacter, Psychrobacter and Moraxella display the

fastest growth rates (García-López et al., 1998). However, even though small

numbers of Acinetobacter, Psychrobacter and Moraxella appear in meat, members of

these genera fail to effectively compete against Pseudomonas (Stanbridge & Davies,

1998).

Although Acinetobacter could compete for amino acids and lactic acid with

Pseudomonas, its low oxygen affinity favours the dominance of Pseudomonas

(Baumann, 1968). Therefore, Pseudomonas tends to dominate the microbial

consortium under refrigeration and aerobic conditions.

The genus Pseudomonas comprises a group of gram-negative rods, motile and non-

spore-forming which are mostly aerobic (Liao, 2006). Its classification has suffered

modifications since the assortment made by Palleroni in 1973, in which the genus

was subdivided into five rRNA similarity groups according to DNA-DNA hybridization

studies. Despite these taxonomic changes, the most relevant species involved in

meat spoilage are located in group I, including P. aeruginosa, P. fragi, P. lundinensis,

P. fluorescens, P. putida, P. chlororaphis, P. cichorii, P. viridiflava and P. syringae.

Of these species, P. fragi is considered the main component of the microbial

association, with an incidence between 56.7% and 79.0% on spoiled meat, followed
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by P. lundinensis, which is the second most common species responsible for meat

spoilage. Due to the importance and spoilage potential of this genus, several studies

have been conducted in broth and in model systems such as meat extracts and gel

cassettes in order to monitor the chemical changes associated with metabolic

attributes of Pseudomonas spp. (Nychas et al., 2007).

The genomics, transcriptomics and metabolomics of spoilage compounds must be

understood to effectively develop technologies that can prevent meat spoilage.

Therefore, identifying the genes involved in the metabolic pathways that lead to

spoilage compound production is crucial. Moreover, identifying stress response

genes under different environmental conditions can help researchers increase their

knowledge of how Pseudomonas adapts to current packaging and storage

conditions. This could lead to the potential of finding optimum solutions to decrease

its role in meat spoilage.

In the field of genomics, microarrays have already been implemented for the study of

meat spoilage via the construction of a mixed species microarray for identifying

spoilage bacilli in a wide variety of food products (Caspers et al., 2011). This study

aimed to detect Bacillus bacteria in a rapid and cost-effective approach since

spoilage of food products is often caused by thermo-stable spores from the

Bacillaceae family. Another example is the use of microarrays for the detection of

bacterial species that play a significant role in beer spoilage (Weber et al., 2008). In

this case, the use of microarrays allowed the distinction between bacteria with the

potential to grow in beer and unviable bacteria.

This article presents a novel approach to identify spoilage biomarker genes by

identifying genes whose expression was significantly different between different

glucose concentrations and temperature conditions to obtain a better understanding



6

of the regulation of spoilage in meat products at 30°C and 10°C at a decreasing

glucose concentration.

2. Materials and Methods

A full account of the experimental procedures can be found in the accompanying

supplementary materials.

2.1 Growth experiments

P. putida KT2440 cells were grown in Luria Bertani broth (LB) at 10°C and 30°C in

the presence of glucose. During the experiment growth kinetics was determined and

the concentration of glucose was monitored. In brief, samples were taken at different

time points to assess gene expression profiles at different glucose concentrations

(Table 1). Time points were selected in such a way as to provide similar glucose

concentrations in the experiments performed at different temperatures. The glucose

concentration was determined at the different growth stages using the D-Glucose/D-

Fructose determination kit (R-Biopharm, Germany). At these time points, cells were

immediately cooled, collected by centrifugation and subsequently stored at -80°C for

RNA isolation.

2.2 RNA isolation and cDNA synthesis

Total RNA was prepared based on the Progenika protocol and the article of (Yuste et

al., 2006). For cDNA synthesis 20 µg total RNA in a maximum volume of 18 µl was

mixed with 3 µl random hexamer primers (3 µg/µl, Life Technologies, UK), incubated

at 70°C for 5 minutes and subsequently placed on ice for at least 1 minute.

Purification of the cDNA was carried out using S.N.A.P. columns (Invitrogen, UK)

according to the manufacturer’s instructions. Full details are available in S1.2 and

S1.3 respectively of the supplementary materials.

2.3 Fluorescent labelling
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Cy3™ and Cy5™ dyes (Amersham Pharmacia, UK) were each dissolved in 5 µl

dimethylsulfoxide (included in the “SuperScript Indirect cDNA Labeling” system

(Invitrogen, UK)). To 5 µl cDNA in coupling buffer either 2.5 µl Cy3-dye or 2.5 µl Cy5-

dye was added and 2.5 µl Sigma water. Full details are available in S1.4 of the

supplementary materials.

2.4 Microarray hybridization and washing

For the transcriptomics experiments the P. pudita whole genome microarray of

Progenika Biopharma S.A. (Spain) was used. This microarray (P. putida KT2440

Genome Microarray) represents 5,539 P. putida open reading frames (ORFs). The

hybridization and washing are described in S1.5 of the supplementary materials.

2.5 Experimental analysis

P. putida KT2440 cells were collected during growth experiments by centrifugation

and immediately stored at -80ºC for RNA isolation. mRNA was extracted from the

samples, purified and reverse transcribed into cDNA. Control samples were prepared

by pooling the extracted RNA from all the samples of a given experiment. Controls

were labelled with Cy5 while samples were dyed with Cy3. After labelling, samples

and controls were applied in equal proportions (1:1 mix of Cy3 labelled sample and

Cy5 labelled pooled RNA) onto the microarray slides to enable the hybridization

reaction between samples and probes. Once hybridization had taken place,

microarray slides were washed and scanned. The resulting image was the starting

point for the data analysis. The commercial microarray platform used was the P.

putida Genome Oligonucleotide Array from Progenika Biopharma, SA (Spain), which

consists of single stranded oligonucleotides printed in a repeating spot pattern onto

γ-aminosylane treated microscope slides. This array was generated from a P. pudita

oligonucleotide collection, which represents 5,539 P. pudita open reading frames

(ORFs), with each ORF represented by a 50-mer length oligonucleotide. As a result,
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10 microarrays were performed, with each microarray representing a different

temperature with a different glucose concentration point for each experiment.

2.6 Data analysis

Pixel intensities originating from the scanners were converted into numeric probe-

level datasets. ArrayVision software (by Biocompare, USA) was used to determine

which pixels corresponded to the fluorescence emitted by the hybridized samples

(foreground) or to the glass slide (background). The background correction, data

normalisation and statistical analysis were performed using R in conjunction with

Bioconductor and the Limma package. R is an open source environment and

programming language for statistical computing and visualisation (http://www.r-

project.org). Bioconductor (http://www.bioconductor.org) is a collection of R

packages that provide tools specialized in the analysis of genomic data. The Limma

package (Smyth, 2005) in Bioconductor offers a wide collection of pre-processing

and statistical analysis methods for two-channel arrays. Therefore, this package was

used for analysis.

The analysis of the microarrays was performed using a “two-channel normalisation

approach”. This approach was selected as log-ratios were considered to be more

stable than absolute intensities across slides.

A time course analysis based on the Limma approach (Smyth, 2005) was performed

on the data within each set, considering the points of decreasing glucose

concentration at 30ºC and 10ºC. The analysis was conducted by fitting a linear model

to the expression data of all the arrays in one set for each gene, using the function

“lmFit” from the Limma package. For this purpose, a design matrix was created

specifying the different RNA sources that had been hybridized to the arrays and the

common references used in each set (e.g. “Pool1”). The two replicates for each gene

were also specified when fitting the linear model by the function
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“duplicateCorrelation”. Subsequently, a contrast matrix was determined, allowing the

coefficients outlined in the design matrix to become contrasts of interest. Each

contrast corresponds to a comparison of interest between the RNA sources. The

contrast and fitted matrix were used by “contrasts.fit” function in Limma for computing

fold changes and t-statistics for the contrasts of interest. Moderated t-statistics and

log-odds of differential expression were computed in each contrast for each gene

using a simple empirical Bayes model. This model was used to decrease the

standard errors into a common value and increase the degrees of freedom of

individual variances (Smyth, 2004). The function used was “eBayes”, which allowed

genes to be ranked in order of evidence of differential expression by computing a

moderated F-statistic. The F-statistics tested if any of the contrasts were non-zero for

a gene, this is, if a gene was differentially expressed on any contrast.

The results of the contrasts were corrected for multiple testing using the Benjamini

and Hochberg´s (BH) method to control false discovery rate (Benjamini & Hochberg,

1995). The significance p-value was set at 5%. This function provides average log

intensities, log fold changes, moderated t-statistics, t-statistics p-values, adjusted p-

values after multiple testing, F-statistics and F-statistics p-values. Once genes were

classified as differentially or non-differentially expressed for the contrasts of interest,

this information was used for selecting spoilage biomarkers and for monitoring genes

which had already been identified to play a role in spoilage.

The Limma “write.fit” function was used to select biomarkers, which had either

incremental or decreasing differential expression when glucose concentration was

decreased. A list of potential biomarkers was computed for each temperature (10ºC

and 30ºC).
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3. Results

Two gene expression microarray studies were performed using P. putida KT2440.

Cells were grown in the presence of glucose at different temperatures of 10ºC and

30ºC, with the highest temperature being representative of spoilage. Growth curves

and glucose consumption were determined for P. putida KT2440 in LB broth (Figure

1). Scatterplots were used to compare raw intensities between the red channel (X-

axis) and green channel (Y-axis) for raw and normalised data (Figure 2); the results

followed the expected pattern of intensities distributed symmetrically to a straight line

of slope 1 and an intercept of 0, with positive values for the spots with greater red

than green intensities (R>G) and negative values for spots with higher green

intensities (R<G). Data were treated for background correction using the method

“normexp” with an offset of 50. This method was preferred to the traditional

subtraction method after a visual assessment using scatterplots for the corrected

values and to avoid negative values, which would lead to missing log-ratios (Figure

2c and 2d).

MA-plots (where ‘M’ captures the ratio between the red and green intensities, and ‘A’

captures the average of the red and green intensities) identified “print tip loess” and

“aquantile” methods as the best transformations for within and between

normalisation. As shown in Figure 3a, the experiment presented considerable

variation between both arrays and channels. After normalisation of the M-values

using the print-tip-loess method, the distribution of the green and red channels for

each array became essentially similar, although variation between arrays was still

notable (Figure 3b). After the application of “aquantile” normalisation to the A-values,

the distributions became similar across channels and arrays (Figure 3c). Differentially

expressed genes were identified for each contrast of interest. An average of 4,114

genes showed significant differential expression in at least one of the contrasts.

Genes that could be used as potential biomarkers for spoilage were selected at each
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temperature (30ºC and 10ºC). The criterion set for biomarker selection was either an

increase or a decrease in gene expression for the initial glucose consumption period

and for the interphase between intermediate glucose concentrations to glucose

depletion (i.e. a systematic decrease or increase in gene expression when glucose

concentration was reduced). For this purpose, genes were classified as

overexpressed, repressed or not differentially expressed by means of the F-statistic.

The number of biomarkers identified in each treatment is summarised in Table 2.

Figure 4 shows two heatmap clusters of the top 100 most differentially expressed

genes under both 30ºC (Figure 4a) and 10ºC (Figure 4b) across different glucose

concentrations; where genes are clustered according to similar behaviour in

expression levels. Spoilage biomarkers that expressed consistently (either

continuously increasing or decreasing their expression) at different temperatures and

decreasing glucose concentrations were then selected for further analysis.

The top 100 most differentially expressed genes shown in Figure 4 were then

shortlisted further into two lists of 20 potential biomarkers for each temperature (30ºC

and 10ºC), where a further analysis was conducted using STRING (http://string-

db.org/) and InterPro (www.ebi.ac.uk/interpro/) to identify the corresponding proteins

and their functional domains (Table 3 and 4). This list could be applied to monitor

the degree of glucose consumption in the meat muscle both at 30ºC and 10ºC, giving

an indication of the degree of spoilage associated with this decrease in glucose

concentration.

4. Discussion

The expression pattern revealed differences in the level of expression between the

two temperatures (10ºC and 30ºC). The fact that these differences were higher at

initial glucose concentrations, and considerably lower when approximating glucose

depletion, suggest that glucose concentration plays a more important role than

temperature in determining bacterial gene expression (Nychas et al., 1988). At
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optimal glucose concentrations the effects of temperature were noticeable. However,

when glucose was close to depletion, the effect of temperature was less relevant and

the lack of glucose became the limiting factor in determining gene expression. The

importance of the role of low molecular compounds, and especially of glucose, in

meat spoilage has been highlighted (Nychas et al., 1988; Nychas et al., 2008).

It has thus been stipulated that the concentration of glucose, lactic acid and certain

amino acids affect the type and rate of spoilage (Lambropoulou et al., 1996). The

criterion used for biomarker selection for ideal spoilage indicators also satisfied the

specific characteristics previously defined (Nychas et al., 2007; Nychas et al., 2008).

This suggests that optimum biomarkers should: (i) be absent or at low levels in

unspoiled fresh muscle tissue; (ii) increase with storage time; (iii) be produced by the

dominating microbes during spoilage; and (iv) have a good correlation with sensory

testing (Nychas et al., 2007; Nychas et al., 2007; Nychas et al., 2008).

As the preferred energy source for Pseudomonas is D-glucose, which has been

found to be a precursor of many off-odour compounds during storage (Nychas et al.,

1988; Ercolini et al., 2010; Casaburi et al., 2014), our study contemplated the

identification of potential biomarkers which were significantly differentially expressed

(either up or down regulated) for continuous glucose decreasing concentrations. The

decrease therefore in glucose concentration through time was considered to be

representative of glucose consumption in meat muscle that supports the growth of

Pseudomonas during storage. This criterion aimed to identify genes activated or

repressed during the initial glucose consumption phase and the stage equivalent to

glucose depletion. This last phase was considered particularly interesting as it

represented the stage when spoilage is known to occur, in which the available

glucose does not meet microbial glucose demand, and bacteria must switch to amino

acids as the new energy source (García-López et al., 1998; Nychas et al., 2007).
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Monitoring the expression patterns of spoilage genes aims to increase the

understanding of spoilage regulation. This is necessary for developing accurate

storage and packaging technologies. Interestingly, spoilage genes showed more

differential expression activity after a decrease in glucose concentration at 10ºC than

at 30ºC. These results were surprising; as abuse temperatures like 30ºC constitute

more optimal conditions for spoilage. However, a deeper examination of the

expression patterns when reaching glucose depletion revealed that at 30ºC, 35.0% of

the differential expression corresponded to up-regulated genes, whereas at 10ºC

only 21.7% of the genes were overexpressed. These findings are in agreement with

higher temperatures being more favourable for spoilage, as a higher percentage of

spoilage genes were found to be up-regulated at 30ºC than at 10ºC. Therefore, the

overall higher differential expression found at 10ºC corresponds to genes being more

repressed than at 30ºC.

The obtained results also support that it is precisely at the final stage of glucose

consumption where spoilage is more pronounced (García-López et al., 1998). This is

because the total number of activated genes at the stage of glucose depletion was

considerably higher than the number of repressed genes at 30ºC. However, at 10ºC

this pattern was not followed, as the number of activated and repressed genes was

similar. This could be the result of the effect of low temperature, which would be

delaying the spoilage process. Furthermore, genes involved in the production of

malodorous end-products appeared to be repressed under low temperatures,

whereas genes participating in ammonia production showed a more varied pattern.

In order to gain more supporting evidence about this pattern in expression profiling,

an in-depth functional annotation analysis was performed on the top differentially

expressed genes at both 30ºC and 10ºC temperatures; through the annotation of

these genes using Gene Ontology (GO) terms, protein signature databases

(InterProScan), followed by mapping of the retrieved enzyme GO terms to their
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corresponding KEGG pathways. At 10ºC, a total of 66 hits of the top DE genes GO

terms are related to the metabolic and cellular process. Closer examination of the

genes group that shows continuous increase of expression [Figure 3.a (B)] revealed

that a large proportion of this group are involved in metabolic or catabolic activity. For

instance, PP3139, Glycoside hydrolase, is involved in synthesis and breakage of

glycosidic bonds; while PP0035 is a family protein involved in the polysaccharide

biosynthetic process. At 30ºC, a different pattern was observed, where 39 hits are

related to metabolic and cellular process. The gene group showing a steady increase

in expression [Figure 3.a(B)] are mostly related to main cellular function, such as

PP1131 catalyses the transposition of transposable elements of transposons, and

PP1028 involved in the transcription regulation.

Another interesting finding was that several of these spoilage genes had the

appropriate pattern to become potential spoilage biomarkers. For example, at 30ºC,

“ubiA” (4-hydroxybenzoate octaprenyltransferase) catalyses the decarboxylation of 3-

octaprenyl-4-hydroxy benzoate to 2-octaprenylphenol, and “PP4030” (Enoyl-CoA

hydratase) is involved in the degradation of even cis-unsaturated fatty acids,

therefore they can be used as indicators for the production of malodourous

compounds.

It is also noted that most of the differentially expressed genes at 30°C are associated

with fundamental cellular activities, such as transcription regulation, further studies of

such proteins using the “String” database revealed direct association with the

spoilage process. For example, “PP5337” is found to be directly linked with “aspA”

(aspartate ammonia-lyase) and “purE (phosphoribosylaminoimidazole regulator),

indicating that it can also be associated with the malodours production (Figure 5a).

Similarly, at 10°C, “aruF” (arginine N-succinyltransferase, alpha subunit) is found to

be linked to a series of genes involved with the production of ammonia such as “astb”

(succinylarginine dihydrolase), which catalyzes the hydrolysis of N2-succinylarginine
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into N2-succinylornithine, ammonia and CO2 (Figure 5b). soxA (Sarcosine oxidase) is

responsible for the demethylation of sarcosine to yield glycine, and has shown a

constant increase in expression levels over the course of the experiment (Figure 5c).

On the other hand, these two lists include a series of hypothetical proteins. Further

studies of these unknown genes are required to identify the suitability of using these

genes as spoilage biomarkers.

5. Conclusions

The aim of this study was to analyse the data from microarray experiments

performed with P. putida KT2440 to obtain a better understanding of the regulation of

spoilage in meat products at 10°C and 30°C at a decreasing glucose concentration.

As a result, a list of the P. pudita genes differentially expressed between the two

temperatures was generated. The fact that there is a lack of a sound definition for

spoilage makes the task of identifying spoilage indicators difficult (Nychas et al.,

2008). This is because spoilage is mainly due to the growth of bacteria in the food

substrate. As a result, genes which showed differential expression were found to be

participating in a wide range of metabolic pathways, some related directly to the

production of metabolites that have been correlated with spoilage (Casaburi et al.,

2014), whilst most of them were involved in reactions from the basal metabolism that

maintain the growth of the bacteria.

To our knowledge we are the first to reveal the role of specific genes from bacteria

that contribute significantly to meat spoilage. The influence of parameters such as

the glucose concentration and the temperature storage of meat were also evident.

As a future recommendation, the results from this study should be validated by other

high throughout techniques such as de novo RNA-Seq analysis for P. putida species,

as well as other specific strains that also have been found to be associated with the

ecological phenomenon of spoilage. This will allow us to gain a greater depth of
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understanding of the genome, especially for the genes with currently unknown

function.

The type and the rate of spoilage can only be controlled by a thorough understanding

of the metabolic pathways that lead to spoilage. This can only be achieved by

carrying out further research. Therefore additional experiments in the line of this

study could help increase the knowledge on spoilage of food products.
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Table 1. Experimental set up for growth experiments.

Time points for similar glucose concentration (h)

Set No. Temperature (ºC) 1 2 3 4 5

1 30 8 9 11 13 14

2 10 50 66 68 71 75

Time points represent (1) initial glucose concentration, (2) and (3) intermediate glucose concentrations,

(4) and (5) glucose depletion.
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Table 2. Total number of genes selected as potential biomarkers in each

treatment for being constantly overexpressed or repressed at decreasing

glucose concentrations.

Number of potential biomarkers

Set Temperature Overexpression Repression

1 30°C 430 309

2 10°C 568 701
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Table 3: The top 20 most differentially expressed genes at 30ºC showing the

predicted protein information.

Gene ID Protein information Protein function

PP4444 transposase family

protein

Essential for efficient DNA transposition (InterPro: IPR021896)

PP3088 Hypothetical protein Unknown

PP4956 Acetyl transferase Responsible for transferring organic acids, typically fatty acids,

onto hydroxyl groups of membrane-embedded targets. (InterPro:

IPR024194)

aer-1 aerotaxis receptor Aer-1 Responsible for mediating chemotaxis to diverse signals,

responding to changes in the concentration of attractants and

repellents in the environment by altering swimming behaviour

[PMID: 16359703] (InterPro: IPR004090).

fliK Flagellar hook-length

control protein F

This is the C terminal domain of FliK. FliK controls the length of

the flagella hook by directly measuring the hook length as a

molecular ruler (InterPro: IPR021136)

PP4030 enoyl-CoA hydratase Enoyl-CoA hydratase/isomerase family protein. In Arabidopsis,

enoyl-CoA hydratase 2 is involved in the degradation of even

cis-unsaturated fatty acids (InterPro: IPR027090)

PP0580 acyl dehydratase MaoC The C terminus of the MaoC protein is found to share similarity

with a wide variety of enzymes. This domain is found in parts of

two enzymes that have been assigned dehydratase activity

(InterPro: IPR002539)

PP4314 Hypothetical protein Unknown

PP0102 Hypothetical protein Unknown

ubiA 4-hydroxybenzoate

octaprenyltransferase

Catalyses the decarboxylation of 3-octaprenyl-4-hydroxy

benzoate to 2-octaprenylphenol

PP1729 Hypothetical protein Unknown

PP5165 NLPA lipoprotein D-methionine binding lipoprotein MetQ is the main member of

this group. This protein is a component of a D-methionine

permease, a binding protein-dependent, ATP-driven transport

system (InterPro: IPR004872)

cheW purine-binding

chemotaxis protein

CheW

Interacts with the methyl accepting chemotaxis proteins (MCPs)

and relays signals to CheY, which affects flagella rotation.

PP0098 Hypothetical protein Unknown

PP2210 LysR family

transcriptional regulator

InterPro:IPR017724. These are transcriptional regulators of the

LysR family which contain a helix-turn-helix (HTH) domain

(IPR000847) and a periplasmic substrate-binding protein-like

domain (IPR005119).

PP3756 TetR family

transcriptional regulator

Members of this family are transcriptional regulators belonging to

the TetR-family (InterPro: IPR023851)

PP4924 serine protease InterPRo: IPR022241. This domain family is found in eukaryotes,

and is approximately 210 amino acids in length. The family is

found in association with PF01694. Rhomboid is a seven-

transmembrane spanning protein that resides in the Golgi and

acts as a serine protease to cleave Spitz.

PP1328 cell division protein MraZ These proteins may be DNA-binding transcription factors

(InterPro: IPR003444)

PP4605 AraC family

transcriptional regulator

Transcription regulator, AraC, predicted (InterPro: IPR016981)
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Table 4. The top 20 most differentially expressed genes at 10ºC showing the

predicted protein information.

Gene ID Protein Information Protein Function

PP3541 Mg2+ transporter Protein belongs to the family MgtC/SapB/SrpB transporter

(InterPro: IPR003416). The MgtC protein is found in an operon

with the Mg2+ transporter protein MgtB (InterPro: IPR003416).

PP0023 hypothetical protein Unknown

PP1680 alpha-ribazole-5'-

phosphate phosphatase

Catalyses reactions involving the transfer of phospho groups

between the three carbon atoms of phosphoglycerate [PMID:

2847721, PMID: 2831102, PMID: 10958932]. (InterPro

IPR013078).

PP2534 LysR family

transcriptional regulator

These are transcriptional regulators of the LysR family which

contain a helix-turn-helix (HTH) domain (IPR000847) and a

periplasmic substrate-binding protein-like domain (IPR005119)

(InterPro: IPR017724).

PP3563 hypothetical protein Unknown

PP3861 phage FluMu protein

gp46

The characteristics of the protein distribution suggest prophage

matches in addition to the phage matches (Interpro:

IPR018755).

PP2188 tRNA--hydroxylase This family consists of several bacterial tRNA-(MSIO[6]A)-

hydroxylase (MiaE) proteins (InternPro: IPR010386).

PP0050 hypothetical protein

argS arginyl-tRNA synthetase Catalyses the attachment of an amino acid to its cognate

transfer RNA molecule in a highly specific two-step reaction

(InterPro: IPR015945)

PP2427 hypothetical protein Unknown

PP3088 hypothetical protein Unknown

PP1728 hypothetical protein Unknown

PP3027 hypothetical protein Unknown

PP0640 hypothetical protein Unknown

PP4903 ribosome-associated

GTPase

NA

PP2235 hypothetical protein Unknown

PP2867 pyridine nucleotide-

disulfide oxidoreductase

The pyridine nucleotide-disulphide reductases (PNDR) use the

isoalloxazine ring of FAD to shuttle reducing equivalents from

NAD(P)H to a Cys residue that is usually a part of a redox-active

disulphide bridge. (InterPro: IPR000103)

PP4345 GntR family

transcriptional regulator

Involved with the regulation of transcription. Many bacterial

transcription regulation proteins bind DNA through a helix-turn-

helix (HTH) motif, which can be classified into subfamilies on the

basis of sequence similarities. The HTH GntR family has many

members distributed among diverse bacterial groups that

regulate various biological processes (InterPro: IPR000524)

PP4444 transposasetransposase

family protein

Essential for efficient DNA transposition (interPro: IPR021896)

PP4030 enoyl-CoA hydratase This entry represents enoyl-CoA hydratase 2 (EC:4.2.1.119). It

contains a MaoC-like domain. In Arabidopsis, enoyl-CoA

hydratase 2 is involved in the degradation of even cis-

unsaturated fatty acids (InterPro: IPR027090)
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Figure 1. Growth of P. putida strain KT2440 () and glucose consumption ()

in LB broth at (a) 30°C and (b) 10°C
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Figure 2. Relation between red (control – X-axis) and green (sample – Y-axis)

channel intensities. Scatterplot (a) shows the distribution of raw intensities,

with the x-axis representing the red intensity, and the y-axis representing the

green intensity. Scatterplot (b) shows the effect of transforming the raw

intensities of set 1 into log2 intensities. Scatterplot (c) shows the effect of

background correction (normexp + offset 50) for raw and (d) log2 values.
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Figure 3. Density plots for each step of the normalisation process: (a) red (R)

and green (G) intensities without normalisation correction, (c) R and G

channels after print-tip-loess normalisation, and (e) distribution of R and G

intensities after aquantile normalisation; (b) distribution of M-values before

normalisation; (d) after within array print tip loess normalisation; and (f) after

aquantile within array normalisation.
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Figure 4. Heatmap clusters showing the top 100 most differentially expressed

genes under 30°C (a) and 10°C (b). Group (A) shows genes that are

continuously decreasing in their expressions, while Group (B) shows genes

that are continuously increasing in their expression.
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(a) (b)

(c)

Figure 5. Summary network showing protein-protein interactions as identified

by the STRING database (http://string-db.org/). (a) PP5337 (LysR family

transcriptional regulator), (b) aruF (arginine N-succinyltransferase, alpha

subunit) and (c) soxA (Sarcosine oxidase).


