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Abstract—This paper contains the first steps towards the
development of a fully decentralized system framework. The
novel approach that has been taken is derived from the inherent
properties of the immune system. An assessment of the proposed
control architecture has been performed by comparison with
a more typical approach under a search and suppress kind of
mission for an unmanned fleet.

Index Terms—immune system, decentralized architecture

I. INTRODUCTION

During the last years, the main objective of the technology
involved in Unmanned Systems, has been focused in the
development of multitasking platforms, which are capable
of performing different kinds of missions without making
significant changes on them. This approach leads to very
capable fleets, able to succeed in a broad range of missions
but, extremely weak against certain kinds of attacks that can
can be exploited by the adversaries to completely annihilate
all fleet members.

Centralized control architectures are typically employed in
these fleets, to achieve the required cooperative behaviors to
successfully complete their mission. This solution works fairly
good for small fleets, but the expensive computational and
communication requirements prevents this control implemen-
tation from being scalable as the fleet increases in size; being
it also quite vulnerable to the loss of its central controller.

The aforementioned facts are the main reasons behind the
work that has been conducted as

• There is a need of exploring decentralized architectures
that would provide the unmanned fleet with the required
flexibility to achieve complex tasks.

• New fleet configurations are required, based on different
platforms, specialized in a particular set of tasks; leading
to a reduction in the required fleet budget, but providing
the fleet with the arising complex behaviours that it needs
to succeed.

The work conducted during this research project aims to:
• Develop a highly innovative decentralized control sys-

tem framework, for multi-agent fleet cooperation in an
unknown and dynamic environment.

• Proposal of a new fleet configuration, using an heteroge-
neous approach regarding each fleet member capabilities,
as contrast with the current trends with homogeneous
configuration.

The following paper is organized as follows, in section II
the basis of decentralized multi-agent systems are mentioned
Section III summarizes the main characteristics of the Immune
system along with a description of different computational
models associated to them. Following, the commonalities that
can be found between the immune system behaviours and those
that can be found on-board an unmanned vehicle are presented
in section IV; in section V the developed framework model and
implementation is explained. Section VI contains the chosen
simulation environment parameters and characteristics to test
the proposed framework. Next, in section VII the simulation
results are analyzed and, finally, the reached conclusions are
presented in section VIII.

II. DECENTRALIZED MULTIAGENT SYSTEMS

In a self-organizing multi-agent system, the mutual interac-
tion of its agents’ behaviors generates, as a side effect, a group
behavior; while the dynamic environment works as a driving
force to organize the group behavior, as cited in [1] and [2].

A successful cooperative operation algorithm reduces cost
and enhances reconfigurability and robustness; but the design
is challenging due to the increase of complexity and non-
linearity of the overall system as the number of agents
increase.

Different approaches have been examined and used as an
attempt to control and organize a multi-agent system, each one
with different associated problems:

• Centralized operation, which carries large computation
and communication requirements with it.

• Behavioral artificial intelligence methods, these imple-
mentations have bottlenecks when coping with complex
and dynamic environments.

• New techniques based on macroscopic primitives, such
as PSO algorithms, that are inspired by the emergent
behaviours that can be observed in bird flocks or fish
schools.
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However, these methods are in a theoretical stage or working
on function peak value problems, with only a few being used
in practical engineering problems.

This paper presents a novel technique, where the collective
behavior emerges independently of any centralized control
as the system distributes its overall functionality among the
smaller, less expensive and cooperative agents, where each
agent bases its own actions on its available and local knowl-
edge of the surrounding environment.

III. THE IMMUNE SYSTEM AS AN APPROPRIATE APPROACH

The following properties, cited in [3], make the immune
system the perfect source of inspiration to develop a fully
decentralized architecture:

• Distributed and self organized: the highly complex behav-
ior of the immune system arises as a result of the individ-
ual behaviors of billions of agents distributed throughout,
with no central controller; where each cell reacts with
regard to its local knowledge of the environment. The
organized response emerges as a system-wide property
that is derived from the low-level agent’s behavior.

• Learning, adaptation and memory capabilities: it is able
to recognize previously unseen pathogens, being able to
recognize them in posterior encounters to cope with them
in a faster and more efficient way. This fact implies that
the immune system possesses a sort of ’memory’ and,
hence, the capability of ’learning’.

• Pattern recognition: its is capable recognizing a wide
range of pathogens as a whole, while each agent can only
recognize a limited range of pathogens through their own
receptors.

• Classification: the immune system is capable of distin-
guishing between harmful and non-harmful substances,
doing so by just accessing information about its own
molecules.

Because of these inherent properties, the immune system is
a highly intelligent cooperative system that self-organizes to
mount a proper and adequate response to invading antigens.

Based on these observations of the immune system, in the
swarm intelligence algorithm approach, each agent perceives
its environment and its neighbors’ behaviors, with local peer
to peer communications, determining then its own behavior
independently; in order to cooperate with other agents towards
the common goal.

A. Brief description of the Immune System

The immune system is composed of two distinguished parts,
the innate immune system, which is formed of static defenses,
such as skin; and the adaptive immune system, which is
responsible for the generation of specific reactions to cope
with infectious agents. The proposed decentralized framework
is inspired by the characteristics of the latter part, the adaptive
immune system.

The adaptive immune system is responsible for the pro-
duction of a specific reaction that copes with the infectious
agents that have surpassed the innate immune system. The

basic components of the adaptive immune system are white
blood cells, known as lymphocytes; of which there are two
main kinds, B-cells and T-celles.

A deeper description on the fundamentals of the immune
system, than the one presented in this paper can be found in
[2] and [4].

B. Computational models based on the Immune System

The main computational models that have been developed
and implemented are:

• Bone marrow models.
• Clonal selection.
• Negative-selection theorem.
• Danger theory.
• Immunized computational systems (ICS).
• Idiotypic network model.
The usability of one model or another is subjected to the

available knowledge of the considered problem. For the pur-
pose of this paper, the considered problem is the development
of a completely decentralized multi-task allocation algorithm,
in order to generate complex group behaviors by making use
of the limited and simpler behavior of each unmanned vehicle
of a fleet. Hence, the main aspects of the immune system that
act as inspiration for the novel algorithm are Clonal Selection
and Idiotypic Network Model.

1) Clonal Selection: Clonal selection based algorithms try
to capture the mechanisms of B-cell proliferation, driven only
by the presence of antigens, improving this way the B-cells
binding affinity. Using a process known as affinity maturation,
the receptors of the B-cell are mutated, the subsequent B-cell
selection results in a population that is better adapted to the
present antigen than its ancestor population. These algorithms
capture the properties of learning, memory, adaptation and
pattern recognition of the immune system.

When an antigen enters a living body, not all of the available
antibodies that come into contact with it will be able to
recognize said antigen; some of them have higher affinity and
are, thus, more suited to cope with it in order to make it
disappear. Those B-cells, whose antibodies have higher affinity
to the encountered antigen, are induced to replicate further
more than those with smaller affinity.

As a result, the population of B-cells evolves towards the
extermination of the antigen in a short period of time. Once
the antigen has been erased, all the B-cells recover their initial
proliferation rate, so if the antigen appears again is easier for
the system cope with it.

Translating this to the computational environment; first a set
of antigens is input to the algorithm, with a set of memory
B-cells as output. At the first iteration of the algorithm a set of
randomly initialized B-cells is chosen, being cloned afterwards
proportionally to their affinity to the presented antigens. The
higher affinity cells replace those of lower affinity from the
previous generation. Following, each generation of B-cells
is mutated at a rate inversely proportional to their affinity,
allowing this way for the lower affinity cells to develop to
cope with the antigens. During the last stages of the algorithm,



those cells with the highest affinity compete for a place in the
set of memory cells.

It is possible to tailor this algorithm approach for optimiza-
tion problems by removing the set of antigens and evaluating
directly the optimization function as the affinity function of
the B-cells.

2) Idiotypic Network Model: The Idiotypic Network Model
was proposed by Jerne, and its basic idea is that the immune
system is a regulated network of molecules and cells which
are capable of recognizing each other. As antibody molecules
are created by random genetic mechanisms, they must look
like novel molecules to the rest of the immune system, and
must therefore be treated like antigens. Since antibodies have
epitopes, they are capable of being recognized by other anti-
bodies and, a network of B-cells occurs due to the matching of
the paratopes against the idiotopes on other B-cells, where the
same antibody could interact with more than one antibody.
The immune system will recognize its own antibodies as if
they were foreign and will make antibodies against them.

An antibody is stimulated when it recognizes other types,
and suppressed if it is recognized. There exists a balance which
is established between recognizing and being recognized that
produces a network of coupled stimulation-suppression phe-
nomenon that maintains a stable equilibrium of good anti-
bodies for future use. As the antibody matures, it recognizes
the antigen with a higher degree of accuracy and, once the
antigen is removed, the antibody network helps in keeping the
immune system from extinguishing itself. A stable population
is maintained as ’memory’ that will be useful for future
encounter with a similar antigen.

In the idiotypic network, the immune system operates at a
steady state in absence of antigen; an antigen simply causes a
perturbation away from this steady state. Upon the termination
of the response to the antigen, the system would return to a
steady state, either the previous one or a new one.

This theory does not require the presence of antigens to
stimulate an immune response. The dynamics are governed
by both the presence of antigens and antibodies. The increase
or decrease of the concentration of a set of lymphocyte clones
and the responding B-cells can simulated using a non-linear
differential equation, [1], [2] and [4].

The mathematical model of this model is provided in
section V, where the full modeling and implementation of the
idiotypic network is devised.

IV. ANALOGY BETWEEN IMMUNE SYSTEM AND UAS
BEHAVIORS

In order to make use of the Immune System characteristics
as the starting point for the development of a fully decentral-
ized system, it is necessary to make an analogy between the
Unmanned Fleet and the agents of the Immune System.

Considering first the different unmanned vehicles that com-
pose a general fleet, each one of them would have different set
of possible simple behaviors, or tasks, that each can accom-
plish as a result of their different on-board sensors or platform
characteristics. Thus, it is feasible to consider each vehicle as

a B-cell with different antibodies, which are equivalent to the
different behaviors. In the same sense, the different tasks or
threats that appear in the dynamic environment the fleet has
to perform can be regarded as the antigens that the immune
system has to cope with.

In this way, each platform within the fleet would be capable
of coping with certain tasks or threats depending on its
capabilities, hence the need to generate a cooperative behavior
to accomplish the fleet tasks.

V. MODELING AND IMPLEMENTATION OF THE IDIOTYPIC
NETWORK

The mathematical model that represents B-cell molecules’
population dynamics, was proposed by Farmer [5],

ẋi =k3

 n∑
j=1

Sijxiyj +
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Mjixixj − k1
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=k3 [T1 + T2 − k1T3]− k2T4 (2)

Farmer’s equation, 1, represents how the concentration of
antibody, xi, evolves, with regard to the presence of antigens,
yj , enclosed in term T1, stimulation and suppression due
to other antibodies, xj , represented by terms T2 and T3,
respectively. And, natural death rate of antibodies, which is
expressed by term T4. Where N is the number of different
antibodies, n is the number of antigens and constant k1,
represents asymmetry between stimulation and suppression, k2
and k3 are weighting factors of natural death rate and the result
of stimulation and suppression due to the idiotypic network,
respectively.

Regarding the scope of this paper, the last term of the
equation, T4 is not considered, as the different behaviors on
each Unmanned Vehicle are not considered to die during its
mission.

In [6], the implementation of a full artificial immune system
is carried out, following equation 1, for a single robot; this
work has been used as the starting point for the development
of the novel decentralized framework proposed in this paper.

Next the required steps for the implementation are outlined.
1) Preparation of the Idiotope matrix The Idiotope matrix

represents which combinations of antigen and antibody
are considered harmful in some sense for the unmanned
vehicle. Taking this sense and, considering each row of
the matrix for each behavior and each column related
to each antigen; the matrix is initialized. Using previous
knowledge of pairs of antibody-antigen that are supposed
to be harmful, a positive value is assigned to the corre-
sponding position within the idiotope matrix, if certain
pair is a prioriunknown to be dangerous for the vehicle
or not, a value of zero is assigned to the corresponding
position in the matrix. In order to initialize the matrix at
first, it is considered that the sum across each row, i.e. for
each behavior, has to be equal to 1, or 0 if the behavior
is not taken as harmful, and; a practical way to allocate



the values in the matrix, if no previous knowledge of
how harmful one of the vehicle’s behavior regarding the
different antigens is, is to take an average among those
behaviors that are seen as detrimental for the vehicle’s
operation.

2) Initialization of the Paratope matrix The paratope
matrix shows affinity between the different behaviors and
antigens, indicating which behavior is more suitable to
tackle the encountered antigen.
A random initialization is proposed, in order for each
agent within the unmanned fleet to learn as they are
developing their mission or tasks.
Following the work in 4, the paratope matrix can be
initialized as follows. Considering first that no negatives
affinities are possible, hence, a behavior that is not
suitable for a certain task will have a value of 0 allocated
in the corresponding position of the paratope matrix; the
matrix is initialized with numbers ranging from 0.5 to
0.75, modifying them so that the average value across
each row, i.e. for each behavior, is equal to 0.625.

3) Antibody concentrations Regarding antibody (behavior)
concentrations, they are initialized with a value of 1
and total concentration on-board each fleet agent is kept
constant during its whole mission. So, after each time
Farmer’s equation is used and the concentration of each
behavior is updated, they are all normalized so the sum of
the concentrations of all the behaviors remain the same.

4) Development of Farmer’s equation After setting the
initial idiotope and paratope matrices and the antibody
concentrations for each unmanned vehicle, it is possible
to implement Farmer’s equation in order to simulate the
evolution of antibody concentration so the vehicle is able
to select its most appropriated behavior with regard to the
local knowledge of the world available to it.

5) Learning scheme
In order for the fleet to adapt and evolve as its mission
progresses, it is necessary for each unmanned agent, that
composes the system, to evaluate its chosen behavior,
after coping with an encountered antigen, with regard to
certain metric that will depend on the unmanned fleet
and its mission; leading to an increase in the behavior’s
associated paratope matrix value if the metric evaluation
is successful or to a decrease in said value if the opposite
happens.

6) Idiotypic Network algorithm for a whole fleet
Taking now the description on how to implement a full
artificial immune system for each vehicle, it can be easily
expanded for the whole fleet as explained next.
The fleet’s mission starts with each vehicle performing
an initial behavior up until one of them encounters an
antigen. Once, an antigen has been encountered by a
certain unmanned vehicle, it selects its most appropriate
behavior as a result of the different stimulations and
suppressions of antibodies as aforementioned.
Next, it communicates to those vehicles within its com-
munication range that an antigen has been found by

sending vector G, which encloses the priority order if
more than one antigen is encountered as the same time. If
any of those unmanned vehicles that have received vector
G is already taking care of an antigen, it will disregard
the communication until it has finished performing its
current task.
Apart from vector G, each vehicle, that is able to go
cope with the encountered antigen, will communicate its
current idiotope and paratope matrices to those others that
are available to cope with the encountered threat.
As each vehicle receives the others’ idiotope and paratope
matrices, they mount bigger ones by stacking those that
each has received one after another
Following, each vehicle computes the Idiotypic Network,
by making use of the new matrices that has built: first
calculating the antigenic antibody using Pglobal, as its
paratope matrix, to obtain next, the induced stimulations
and suppressions. After calculating Tg , the behavior that
has greater value from the first piece of Tg , which
corresponds to those behavior available for the vehicle
is selected as the suitable behavior for the considered
antigen situation.
Allowing communications for a predefined period of
time results in each vehicle within the fleet to receive
information regarding the encountered set of antigens and
the other vehicles current immune system matrices, gen-
erating a network that makes use of the local knowledge
available to each vehicle to organize itself.
More than one vehicle can select the same behavior and
try to cope with the encountered antigen at the same
time. A binding affinity function can be defined, that takes
into account distance to the antigen, maximum speed of
the vehicle and remaining endurance among others; so,
between those vehicles that select the same behavior to
cope with the antigen, it is possible for them to decide
which one or ones go cope with the antigen.

VI. UNMANNED FLEET SIMULATION

In order to assess the suitability and performance of the pro-
posed decentralized control algorithm a Search and Suppress
mission-type simulation has been conducted, with two differ-
ent Unmanned Combat Aerial Vehicle fleet configurations.

The proposed mission requires the fleet to search a 20 ×
20km square, with unknown threats, in order to find the main
objective that has to be destroyed. The environment is set with
SAM sites and enemy UAVs that patrol the environment, hence
the fleet has to cope with these threats as they are being found
until the main objective is found. A possible configuration for
the environment can be seen in 1.

Figure 1 shows with a star the main objective, with circles
the considered range of the SAM sites and the blue eight-
shaped lines represent the enemy UAVs flight path as they
patrol around the main objective of the mission.

Considering now the UCAV fleets, they are the same regard-
ing the aerial platform, but different regarding the capabilities
on-board each vehicle. One fleet is composed of multi-tasking



Fig. 1: Enemy environment.

platforms, hence being homogeneously build; and the other
is heterogeneous, since different capabilities are set on each
vehicle.

Each multi-task vehicle is capable of searching and cop-
ing with ground and aerial enemy targets; whereas for the
heterogeneous fleet the vehicles that compose it are divided
into three different groups, depending on the capabilities of
each platform, search specialized, ground target specialized
and aerial target specialized ones.

Since a 2D simulation has been performed as the first step
to assess the complex and cooperative emergent behaviors
reachable by the novel decentralized architecture proposed in
this paper, some simplifications have been taken into account:

• The SAM sites’ detection range has been reduced when
compared with real ones as no complex maneuvers are
achievable in a 2D environment.

• Different hitting probabilities are taken into account in
order to assess whether a fleet member of an encountered
threat is destroyed, when they meet.

• Considering the same budget for each vehicle within
the fleet, it is feasible to assume that the agents among
the heterogeneous fleet would have enhanced capabilities
when compared to those on the homogeneous fleet, as the
budget for each vehicle within the heterogeneous fleet is
employed to provide them with the required capabilities
for one specific task.

• Each agent within the homogeneous fleet has the follow-
ing set of behaviors:

– Search.
– Attack SAM site.
– Attack UAV.
– Refuel.

• Each search specialized vehicle within the heterogeneous
fleet is capable of:

– Search.
– Communicate ground target found.

– Communicate UAV found.
– Refuel.

• The ground target specialized agents can:
– Loiter.
– Attack ground target.
– Avoid enemy UAV.
– Refuel.

• The UAV target specialized UCAVs can:
– Loiter.
– Attack UAV.
– Avoid SAM site.
– Refuel.

Regarding mission development for each fleet, different
approaches, taking into account the differences between both
fleet configurations are made: homogeneous fleet and hetero-
geneous fleet.

VII. SIMULATION RESULTS

A Monte Carlo simulation has been conducted for both
fleets in order to evaluate each fleet performance, taking first
the percentage of missions that are successfully completed,
i.e. the main objective is found and destroyed; followed by an
evaluation of the time taken to complete said mission and the
number of fleet members that survive the mission.

Different fleet sizes have been considered, so it would be
possible to corroborate the clear idea that as the fleet size
increases the number of completed missions increases as well.

Figure 2 shows the percentage of successful missions ac-
complished by both fleets; although the trend is the same as the
fleet size increases; the heterogeneous fleet is able to complete
the mission a higher percentage of the times.

Fig. 2: Percentage of successful missions.

The number of remaining fleet members and the time taken
for the fleet to complete the mission are displayed in figures
3 and 4 respectively. Where the mean value and the standard
deviation are shown.

It is obvious the enhancement that the immune system
implementation and the heterogeneous distribution of the fleet
can achieve, as the generated complex emergent behaviors and
the different capabilities on-board each UCAV make the fleet



Fig. 3: Remaining fleet members.

Fig. 4: Mission times.

capable to adapt to the unknown and changing environment,
making it much more resilient to enemy attacks and environ-
mental threats that the typical homogeneous configuration.

VIII. CONCLUSIONS

The main aim of this research has been focused in the
development of a fully decentralized control system for a
fleet of unmanned vehicles, aiming to achieve the flexibility,
robustness and fault tolerance requirements that a system like
that is required to have.

The immune system has been chosen as source of inspi-
ration due to its inherent flexibility regarding the different
behaviors and antigens that it can cope with, as it is not limited,
since it is possible to keep adding behaviors and antigens,
meaning new different platforms and threats or situations to
cope with; without having to make nothing but slight changes
in how the system works.

The robust capabilities that a distributed system needs to
have, regarding failure or destruction of some of the fleet
members; have been assessed through the Monte Carlo simu-
lation leading to the conclusion that the developed algorithm
can be highly scalable for greater fleet sizes as each vehicle
acts with regard to its available local knowledge of the
environment, while influenced by those neighbors within its

communication range. As well, as the limited communication
and computational requirements that are needed on-board each
vehicle to obtain the global idiotope and paratope matrices to
select its most appropriate behavior, contribute to the algorithm
scalability.

Even though the simulation has been carried out choosing
a fleet composed of the same aerial platform but with differ-
ent capabilities, the proposed framework opens the door to
the employment of more complex fleets. Being possible to
combine different sorts of platforms, ranging from aerial to
ground ones, and even groups of people, where their different
actions can be considered as antigens that may trigger new
behaviors on the unmanned vehicles. Hence, more complex
collaborative group behaviors can be achieved, which can be
really useful in other kind of mission, such as Search and
Rescue or Surveillance ones.

A new approach to fleet configurations is proposed as well,
where the fleet would be composed heterogeneously, opposed
to the current trends of having more expensive multi-task
platforms.

The results shown by the Monte Carlo simulation drive
to the conclusion that the usage of an heterogeneous fleet,
instead of the common homogeneous ones, can enhance the
performance without increasing the fleet size, but combining
different sorts of platforms. Making it possible to generate
complex group behaviors that would be seen as unexpected for
the enemy, decreasing this way the fleet’s weakness; whereas
with homogeneous fleets where all the agents behave in the
same way, being predictable, the heterogeneous fleet is not.

The proposal of an heterogeneous fleet, can lead to a
decrease in total fleet cost, as cheaper unmanned vehicles can
be used as first in order to unveil the possible threats that
the environment hides; in order to keep those that are more
expensive due to its payload in a safe place until they are
strictly needed to cope with those tasks that the cheaper ones
are not able to carry out.
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