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Abstract

This work focuses on a study of missile guidance in the form of trajec-
tory shaping of a generic cruise missile attacking a fixed target which
must be struck from above. The problem is reinterpreted using optimal
control theory resulting in two formulations: 1) minimum time-integrated
altitude and 2) minimum flight time. Each formulation entails nonlinear,
two-dimensional missile flight dynamics, boundary conditions and path
constraints. Since the thus obtained optimal control problems do not ad-
mit analytical solutions, a recourse to computational optimal control is
made. The focus here is on informed use of the tools of computational

optimal control, rather than their development.

Each of the formulations is solved using a three-stage approach. In stage
[, the problem is discretised, effectively transforming it into a nonlinear
programming problem, and hence suitable for approximate solution with
the FORTRAN packages DIRCOL and NUDOCCCS. The results of this
direct approach are used to discern the structure of the optimal solution,
i.e. type of constraints active, time of their activation, switching and jump
points. This qualitative analysis, employing the results of stage 1 and op-
timal control theory, constitutes stage 2. Finally, in stage 3, the insights
of stage 2 are made precise by rigorous mathematical formulation of the
relevant two-point boundary value problems (TPBVPs), using the appro-
priate theorems of optimal control theory. The TPBVPs obtained from this
indirect approach are then solved using the FORTRAN package BNDSCO

and the results compared with the appropriate solutions of stage 1.

For each formulation (minimum altitude and minimum time) the influence

of boundary conditions on the structure of the optimal solution and the



performance index is investigated. The results are then interpreted from
the operational and computational perspectives.

Software implementation employing DIRCOL, NUDOCCCS and BND-
SCO, which produced the results, is described and documented.

Finally, some conclusions are drawn and recommendations made.
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In general, the definitions below apply unless locally specified in the chapter or section.
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minimum altitude

performance index (objective function)
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minimum normal acceleration
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air density
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reference area of the missile
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time

initial time
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angle of attack

variation

flight path angle

auxiliary function

Mayer cost term

Lagrange multipliers or adjoint variables

xii



Chapter 1

Introduction

Cruise missiles are guided weapons designed for atmospheric flight whose primary
mission is precision strike of fixed targets. This can be achieved only by a judicious
approach to guidance, navigation and control (GNC). Navigation is the process of
establishing the missile’s location. Based on the location, guidance pfoduces the tra-
jectory the missile should follow. Finally, control entails the use of the actuators, so
that the missile indeed follows the desired trajectory.

This work deals with an approach to cruise missile guidance known as trajectory
shaping. The essence of the approach is to compute an optimal trajectory together with
the associated control demand. In other words, for given launch and strike conditions,
find a missile trajectory which:

e hits the target in a pre-defined way
o shapes the missile’s flight in an optimal fashion
e defines control demand for the optimal flight.

This setting leads naturally to expressing the guidance problem as an optimal con-
trol problem. Hence the solution approach for the trajectory shaping involves com-
putational optimal control. This is a set of techniques which combines the theory of
infinite dimensional optimisation with numerical methods of finite-dimensional opti-
misation and boundary value problem solvers. Both the optimal control theory and
the numerical algorithms involved are rather non-trivial in nature, and their interaction



1. INTRODUCTION

adds another layer of complexity. This work focuses on informed use of computational
optimal control rather than development of either theory or numerics.

The theoretical and computational tools are used to elucidate the features of the
special case of cruise missile trajectory shaping, the terminal bunt manoeuvre, defined
in detail in Section 1.1 below. The tools are both powerful and complex. Their power
gives insights into optimisation of the manoeuvre—operationally valuable knowledge.
The complexity not only challenges the analyst, but uncovers the limitations of the ap-
proach and—crucially—elucidates the trade-offs between operationally desirable and
computationally tractable. Hence the aims of this work were as follows:

e to formulate several operationally useful variants of trajectory shaping of the

terminal bunt manoeuvre

e to analyse the formulations from the point of view of the solution structure, e.g.
type of control demand, number and duration of active constraints etc.

e to compute the actual solutions

e to assess the results from the point of view of the analyst, i.e. insights offered

and difficulties encountered.

The remainder of this introduction is structured as follows. Section 1.1 defines the
terminal bunt manoeuvre and its variants considered later. Section 1.2 is a brief sketch
of the historical context and salient features of computational optimal control. Section

1.3 is the outline of the thesis and Section 1.4 summarises its contributions.

1.1 Problem Formulation

Trajectory shaping of a missile is an advanced approach to missile guidance which
aims at computing the whole trajectory in an optimal way. The approach underpins
this work, focussing on the example of the bunt shaping problem for a cruise missile.
The mission is to hit a fixed target while minimising the missile exposure to anti-air

defences or minimising the flight time.
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mg

Figure 1.1: Definition of missile axes and angles
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The problem is to find the trajectory of a generic cruise missile from the assigned
initial state to a final state either: 1) with the minimum altitude along the trajectory or
2) in minimum time. The first objective can be formulated by introducing the perfor-

mance criterion:

ty
J=/ ht, (1.1)
to

while the second objective is:
ts
J= dt. (1.2)

Jtg
The performance criterion is subject to the equations of motion, which may be written

as:
. T-D . L g cosy
¥ o= 7 sina + — cosa — v (1.3a)
. T-D , .
V = — cosa—-;sma—gsm'y (1.3b)
T = Vcosy (1.3¢)
h = Vsiny (1.3d)

where t is the actual time, tp < t < 5 with £ as the initial time and ¢; as the final
time. The state variables are the flight path angle «, speed V, horizontal position x and
altitude h of the missile. The thrust magnitude T and the angle of attack ¢ are the two
control variables (see Figure 1.1). The aerodynamic forces D and L are functions of
the altitude h, velocity V' and angle of attack a. The following relationships have been
assumed [29]:

Drag. The drag D is written in the form

1
D(h,V,a) = -§Cde25ref , (1.4)
Cy A1a2+A2a+A3 (1.5)

Lift. The lift L is written in the form

L(hV,a) = 1c,pWS,e, (1.6)

2
C[ B1(1+ BQ, (].7)
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where p is air density given by
p=C1h* + Coh + Cs (1.8)

and S,y is the reference area of the missile; m denotes the mass and g the gravitational

constant.

Boundary conditions. The initial and final conditions for the four state variables are

specified:
¥0) = % (1.9a)
V(ts) Vg (1.9b)
V{(0) Vo (1.9¢)
Vity) = Vi, (1.9d)
z(ts) Ti, (1.9)
h(0) ho (1.9g)
hty) = hy, . (1.9h)
In addition, constraints are defined as follows:
e State path constraint
Vmin < V < Vm,am (]10)
hmin < h (1.11)
e Control path constraint
Thin €T € Thae (1.12)
e Mixed state and control constraint (see equations (1.6)—(1.8))
L
Lmin < - < Lma:z (113)
mg

where Loin and Ly, are normalised, see Table 1.1.
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Table 1.1: Boundary data, constraint data and physical constants.

| Quantity Value Unit || Quantity Value Unit |

V,m-n,f 250 m/s Lmin —4

Vinin. 200 m/s Lomaz 4

Vinez 310 m/s Ay —1.9431

m 1005 kg A —0.1499

g 981 m/s? Aj 0.2359

Swe; 03376 m? B 21.9

Tonin 1000 N By 0

Traz 6000 N Ci 3.312.1079 kg m8

Pomin 30 m C, ~1.142-10"* kgm™*
Cs 1.224 kg m~3

1.2 Historical Context of Computational Optimal Con-
trol

The history of optimal control problems could not be scparated from the history of
the calculus of variations. The history of optimal control reaches back to the famous
brachistochrone problem which was proposed by the Swiss mathcmatician. Johann
Bernoulli in the seventeenth century, and might be formulated as an optimal control
problem (see Bryson [20], Sussmann and Willems [102], Pesch and Bulirsch [78] and
Sargent [93]). The problem is to find the quickest descent path between two points
with different horizontal and vertical positions. In other words, the problem can be
stated as an optimisation problem which is to find y(z) that minimises the objcctive

Ty 2
J=/ 1+@ dz (1.14)
o V dz

subject to boundary conditions. The above calculus of variations problem can be con-

function:

: . . , d
verted into an optimal control problem by introducing u = (—1% as a control. Then, the

problem is to find the control u that minimises the performance criterion:

s
J=/ V14 uldr (1.15)
To
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subject to % = u and the boundary conditions. Following their brilliant solution
of the brachistochrone problem, Euler and Lagrange found a necessary condition for
extremum of a functional which later known as Euler-Lagrange equation. The de-
velopment of the extremum of functional became more sophisticated after Legendre,
Clebsch, and Jacobi found further necessary conditions (the three necessary conditions
of Euler/Lagrange, Legendre/Clebsch, and Jacobi were later proved to be sufficient
for a weak local minimum), and, finally, Weierstrass and Carathéodory found, after
Hilbert’s contribution, sufficient conditions (for a strong local minimum).

A century later, in 1919, Goddard considered the calculus of variations as an im-
portant tool to analyse the performance of the rocket trajectory [30]. Subsequently, the
variational formulation of the flight paths have been developed by Garfinkel [44, 45],
Breakwell et al. [18, 17], Lawden [68] in the formulations of Bolza, Mayer and La-
grange type. The general theory of optimal control was developed by Breakwell [16],
Hestenes [55], Pontryagin et al. [84]. The breakthrough, and consequently the birth of
a new field in mathematics, optimal control, came with the proof of the maximum prin-
- ciple by Pontryagin, Boltyanskii and Gamkrelidze. Incidentally, their new necessary
condition was firstly formulated by Hestenes; his proof, however, still in the context of
calculus of variations and thus not as general as the one done by Pontryagin’s group.
This is because some optimal control problems may be transformed into problems of
the calculus of variations, but even “simple” one, e.g. those with controls appearing
linearly, cannot be transformed. Some classical books on optimal control are Bellman
[5], Bryson and Ho [23], Berkovitz [7], Gamkrelidze [43]. Most early methods were
based on finding an analytic solution that satisfied the maximum principle, or related
conditions, rather than attempting a direct minimisation of the performance criterion
of optimal control problem.

However, the pressing aerospace problems which arose from 1950s onwards did
not have analytical solutions. Thus, while the theoretical necessary and sufficient con-
ditions for optimal control were available, effective computation of solutions was still
a challenge, compounded by the presence of constraints in real-life problems. The
development of digital computer and reliable numerical methods transformed the situ-

ation and ushered the era of computational optimal control: a combination of optimal
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control theory and the relevant numerics.

Initially, the focus was on approximating the underlying infinite-dimensional prob-
lem with a discretised, finite-dimensional version, thus obtaining a nonlinear pfogram-
ming formulation. This approach was given a strong theoretical impetus by the sem-
inal results of Karush and Kuhn and Tucker [4] on optimality conditions for finite-
dimensional constrained optimisation. Subsequently, several numerical methods were
developed, among which the most important is sequential quadratic programming, or
SQP. This method was developed further by many researchers, Powell [87], Gill et al.
[48, 47]. Following the rapid development of the SQP methods, it became feasible to
obtain numerical solutions of the optimal control problem by transforming the original
problem to a nonlinear programming problem. This is done by discretising as state
or/and control variables; the approach is known as the direct method.

Bulirsch [99] achieved a major breakthrough when he developed multiple shoot-
ing software BOUNDSOL (see Keller [61], Osborne [77]), which was applied suc-

-cessfully to solve several two-point boundary value problems. This enabled an alter-
native approach to,compﬁtational optimal control, the indirect method. The essence
of the method is first to use optimal control theory to derive the necessafy condi-
tions for optimality and then to solve the resulting two-point boundary value problem.
Subsequently, BOUNDSOL was developed further by introducing a modified New-
ton method by Deuflhard [32, 31] and generalising the multiple shooting method for
multi-point boundary value problems by Oberle (see the references cited in [76]) which
improved convergence of the underlying multiple shooting method. The resulting soft-
ware BNDSCO became a package of choice and has been used successfully to solve
several optimal control problems via the indirect method.

In this work both approaches of computational optimal control, the direct and in-
direct method, are employed not only for comparison of their pros and cons, but also

due to complementary insights into the solution they offer.

1.3 Outline of the Thesis

The remaining chapters of the thesis are organised as follows:



1.3 Outline of the Thesis

Chapter 2 presents an overview of general optimal control problems and reviews
some numerical methods for solving the problems.

Section 2.1 focuses on the nonlinear optimal control problem formulation.

In Section 2.2 a detail of the variational approach is given. This section discusses
the importance of constraints, in particular control constraint, mixed inequality
constraint and pure state inequality constraint.

In Section 2.3 a nonlinear optimisation approach based on the Karush, Kuhn and
Tucker theorem is considered.

In Section 2.4 numerical solution for the optimal control problem is presented.
This section focuses on the direct method in 2.4.1 and the indirect method in
24.2.

In Section 2.5 summary and discussion are given.

Chapter 3 describes a detailed analysis of the optimal tfajectory of a generic cruise
missile attacking a fixed target where the target must be struck from above while
minimising the missile exposure to anti-air defences.

In Section 3.1 the minimum altitude problem formulation is defined.

In Section 3.2 the computational results of the direct method are used for a qual-
itative analysis of the main features of the optimal trajectories and their depen-

dence on several constraints.

In Section 3.3 the mathematical analysis based on the qualitative analysis is pre-
sented. This section begins with discussing a constraint on the thrust and is
followed by path and mixed constraints.

Section 3.4 presents the indirect method approach. The co-state approximation
issue is addressed in this section. This section is closed by some numerical
solutions using the multiple shooting method package BNDSCO.

Finally, summary and discussion are given in Section 3.5.

Chapter 4 focuses on the optimal trajectories of a generic cruise missile attacking a
fixed target in minimum time.
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In Section 4.1 the problem formulation is defined for the time-optimal control of

the terminal bunt manoeuvre.

Section 4.2 presents some computational results using the direct method and is
followed by a qualitative analysis to reveal the structure of the solution.

Section 4.3 contains the mathematical analysis of the time-optimal control prob-
lem based on the qualitative analysis.

In Section 4.4 the numerical solutions using the multiple shooting package BND-
SCO are obtained and compared with the results of DIRCOL and NUDOCCCS.

Finally, Section 4.5 gives summary and discussion.
Chapter 5 deals with software implementation of the terminal bunt problem using
three different packages.

In Section 5.1 the DIRCOL implementation is given for the case of minimum
time problem.

In Section 5.2 the minimum time problem is solved using NUDOCCCS.
In Section 5.3 the multiple shooting package BNDSCO implementation of the

minimum time problem is shown.

- Chapter 6 presents the conclusions of the thesis and recommendations for future
work.

1.4 Thesis Contributions

- As explained earlier in this chapter, this work focuses on informed use of computa-
tional optimal control for solving the terminal bunt manoeuvre, rather than develop-
ment of either the underlying theory or the relevant numerics. In this context, the main

contributions of this thesis are as follows:

e formulating trajectory shaping missile guidance as an optimal control problem

for the case of terminal bunt manoeuvre

e devising two formulations of the problem:

10



1.4 Thesis Contributions

- minimum time-integrated altitude
— minimum flight time
e proposing a three-stage hybrid approach to solve each of the problem formula-
tions
— stage 1: solution structure exploration using a direct method

— stage 2: qualitative analysis of the solution obtained in stage 1, using opti-
mal control

- stage 3: mathematical formulation of the TPBVP based on the qualitative
analysis of stage 2

e solving each of the problem formulations using the three-stage hybrid approach

— stage 1: by using DIRCOL/NUDOCCCS solvers

- stage 2: by using results of stage 1, understanding the underlying flight
dynamics and employing optimal control theory

- stage 3: by using optimal control theory and the BNDSCO solver

e analysing influence of boundary conditions on the structure of the optimal con-
trol solution of each problem formulation and the resulting values of the perfor-
mance index

e interpreting the results from the operational and computational perspectives,
pointing out the trade-offs between two

e using effectively DIRCOL, NUDOCCCS and BNDSCO and documenting their
use. '

11
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Chapter 2

Optimal Control: Outline of the
Theory and Computation

The main purpose of this chapter is to provide an overview of the aspects of optimal
control necessary to analyse and solve the terminal bunt manoeuvre. The optimal
control problém has been studied in many textbooks (see e.g. Pontryagin [84], Bellman
[73], Athans and'Falb. [31, Kirk [63]. Leitmann [69, 70], Bryson and Ho [23], Lewis
and Syrmos [72], Vinh [107], Betts [11], Naidu [75]) and survey papers (see e.g. Hartl,
Sethi, and Vickson [53], Pesch [79, 80, 81, 82]). These sources have treated the optimal

control problem in depth.

This chapter organised as follows. Section 2.1 concerns the general nonlinear opti-
mal control problem formulation. As an example, a detail of the variational approach
derivation is given in Section 2.2. This section discusses the important issue of con-
straints which are: control constraints in 2.2.1, mixed inequality constraints in 2.2.2
and pure state inequality constraints in 2.2.3. A nonlinear optimisation approach based
on the Karush, Kuhn and Tucker theorem is considered in Section 2.3. Numerical so-
lution for the optimal control problem is presented in Section 2.4. The direct method
approach is considered in 2.4.1, followed by the indirect approach in 2.4.2. Finally,

Section 2.5 presents summary and discussion.

13



2. OPTIMAL CONTROL: OUTLINE OF THE THEORY AND
COMPUTATION

2.1 The Optimal Control Problem

The problem is to find an admissible control u(t), which minimises the performance

index: y
minJ = dla(ty), )] + / Cla(t), u(t), fdt @
u to

with respect to the state vector functions:

X ={x: [0,t] » R*| z;,i=1,...,n,piecewise continuously differentiable},
(2.2)

and the control vector functions:
U= {u: [0,t5]] > U CR™| u;,i=1,...,m, piecewise continuous}, 2.3)

subject to the following constraints:

T = f(z(t),u(t)) f:R*"-SR" (2.4)

z(0) = x €R® xyknown (2.5)
P(x(ts),tf) = 0€RP  ¢Y: R*x Ry — R”, p<n, tyunknown (2.6)
C(z(t),u(t)) < 0eR? C:R"*"™ >R (2.7)
S(z(t)) < 0eR* S:R*-—R° (2.8)

The performance index describes a quantitative measure of the performance of the
system over time. In aerospace problems, a typical performance index gives an appro-
priate measure of the quantities such as minimum fuel/energy, optimal time etc. Here
¢: R**! — Rl and £: R*™ — R! are assumed to be sufficiently often continuously
differentiable in all arguments. The type of performance index (2.1) is said to be in
the Lagrange form when ¢ = 0 and in the Mayer form when £ = 0 (see Oberle and
Grimm [76]). Furthermore, it is in the lincar Mayer form when £ = () and ¢ is lincar.

Minimising J with respect to the control function « must be accomplished in a way
consistent with the dynamics of the system, whose performance is optimised. In other
words, equation (2.4) is the first fundamental equality constraint. The optimal control
u*, when substituted to (2.4), will produce the obtimal state x*, while minimising J.

14



2.1 The Optimal Control Problem

The optimal state x* is further constrained by the boundary conditions (2.5) and
(2.6): in our case the launch and strike conditions. These are point constraints, i.e.
the act only at the selected points of the trajectory—t, and ¢ ;—as opposed to the path
constraints, valid for (¢o,%5) and discussed below. It is a remarkable feature of optimal
control problems that changes in the terminal conditions (2.6) may have a profound
impact on the structure of the solution throughout the whole interval (%, ¢;).

The optimal control u* and optimal state &* are subject to path constraints (2.7)
and (2.8). Unlike boundary conditions (2.5)—(2.6), these conditions must be satisfied
along the trajectory, i.e. on (tg,¢s), which is a more demanding requirement than
for the point constraints. In further contrast to (2.5)—(2.6), the path constraints are
inequality constraints, making their analysis more involved. This is briefly discussed
now, separately for (2.7) and (2.8).

In the case of (2.7), either (i) C = O or (ii) C < 0, and establishing the subintervals
of (to,ts) when (i) occurs is of fundamental importance. If the constraint is active, case
(i), then (2.4) and (2.7) become a system of differential algebraic equations. Indeed,
equation (2.7) then implicitly defines the state = as a function of control u, effectively
lowering the dimension of the original system of controlled ordinary differential equa-
tions (2.4). It is important to note that, when (2.7) is active, the algebraic relationship
between x and u is, at least in principle, clear, provided that the assumptions of Im-
plicit Function Theorem hold.

In the case of (2.8), again, either (i) § = 0, or (ii)) S < 0, and the occurrence of
‘(i) is the key issue. However, the situation is now more challenging compared with
the previous one, C' = 0, because it is not explicit how S = 0 constraints the choice
of u and thus how to modify the search for optimal control. Various approdches are
possible, and are discussed in Sections 2.2.3 and 3.4.2, but it should be noted that the
presence of a pure state constraint (2.8) is always a challenge in the context of optimal
control. By contrast, the mixed (state and control) constraint (2.7) is easier to deal
with, due to the explicit presence of control u.

Finally, it should be mentioned that (2.7) or (2.8) may be active on a subinterval

of (to,ts) or just at a point. In the former case, the constrained (active) subarc will be

15
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characterised by the entry time ¢; and the exit time {3 with £y < t; <t < t5. In the
latter case, the subarc collapses to a single (touch) point, ¢; = t,.

The functions appearing in (2.1)~(2.8) are assumed to be sufficiently continuously
differentiable with respect to their arguments. Note that the definition of U allows
discontinuities in controls and thus implies corners (cusps) in the states, so that X
comprises piecewise smooth functions. This is a practical necessity, as many real-
world applications of optimal control involve bang-bang type inputs.

Problem (2.1)-(2.8) is infinite-dimensional: its solution is not a finite vector of
numbers, but a function. For a real-life application it is impossible to guess the optimal
function, so a recourse to approximate methods is necessary. They attempt to find
a finite-dimensional representation of the solution which is accurate at the nodes of
the representation, has acceptable error between the nodes and converges to the true
function as the number of nodes tends to infinity, if second order sufficient conditions
hold. '

There are two main approaches to the solution of the problem. The direct approach
replaces the continuous time interval with a grid of discrete points, thus approximating
it with a finite-dimensional problem, albeit of high dimension (hundreds of discretised
variables). The indirect approach preserves the infinite-dimensional character of the
task and uses the theory of optimal control to solve it. This is the focus of Section
2.4.2, while the direct approach is treated in Section 2.4.1.

2.2 Variational Approach to Problem Solution

The indirect approach to solution of the optimal control problem is based on a gen-
eralisation of the calculus of variations. Necessary conditions for an extremum are
derived by considering the first variation of the performance index J with constraints
adjoined in the manner of Lagrange. Since the setting is infinite-dimensional, the
familiar Lagrange multipliers are now functions of time, A = A(t), and are called co-
states in analogy to the system state * = x(t). While in the finite-dimensional case
the multipliers are computed from algebraic equations, the co-states obey a differential

equation.
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2.2 Variational Approach to Problem Solution

The necessary conditions thus entail both the original differential equations of the
underlying dynamical system and the associated adjoint differential equations of the
co-states. The end result is a two-point boundary value problem (TPBVP) which is
made up of the state and co-states equations together with the initial and terminal
conditions.

The approach is called indirect, because the optimal control is found by solving the
auxiliary TPBVP, rather than by a direct focus on the original problem.

Here, we consider the general nonlinear optimal control problem given by equa-
tions (2.1)—(2.6). The performance index is given in the Bolza form, so it contains a
final cost function in addition to the general cost function. Introducing the Lagrange
multiplier A and v and adjoining the dynamic equations and the boundary conditions
to the performance index, we obtain the following augmented performance index:

Ja = @la(ts) ts] +vplx(ts), ty]
. ty - : R
+ / [Llz(t), u(t), t] + XT{flx(t), u(t),t] — &}]dt (2.9)
to
The first order necessary conditions can be derived by applying the variational ap-
proaches as follows:

¢ ¢ T oY
6J, = ——0xs+ —0tr+ Ty +07
ox(t;) ' Bty dx(ty) oty

H(L A+ NT(F = &) lemty Oty + (L + N7-(F — &) limsy b0

L.  acC r
+/to [£5m+5—5 +6AT(f — @)

of T Of s \rsq |
508 + A5 0w — AT6a | dt (2.10)

6mf+u

+A7.
Integrate by parts the last term of (2.10)

ty ) ty .
/ “ATéx = AT (t5)oz(t;) + AT (to)dx(to) + / Méxdt (2.11)
t

o to
Since the final time ¢ is free, the variation between the final state, dz; and the state at
the final time, dx(t;) are different and can be defined as follows

&cf = (5$(tf) + :i:(tf).dtf (2.12)

17
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By substituting equations (2.11) and (2.12) into (2.10) we obtain

_ (% s W g ,
6Jo = <8a:(_t,)+u P2 (L)) A (t,))&m,+6u"w

ot; a
FHL+AT(F =) + ATE) oy +AT62(t0)

e[| G raritan)se s (L ea)on

+OAT(f — :i:)] dt (2.13)

The extremum of the functional J is obtained when the first variation §J, vanishes.
Thus the necessary conditions can be established by setting the coefficients of the
independent variations éx, du, 6 and dv of (2.13) equal zero. The initial state z(t,)
and initial time ¢y are given in this case, consequently dx(fy) and 8ty are both zero.
The boundary at the terminal conditions are given by the first and third component of
(2.13). In summary, the necessary conditions for J to have an extremum value are

e State equation

& = flz(t),u(t),t] (2.14)
e Co-state equation

cr OL Of

AT T

A PP A Va (2.15)

e Stationarity condition
0=25, 22 (2.16)
- (’)u Jou )

e Boundary condition

0p 1% _yr| § 99 | 7‘9‘/+11 Sty=0 (2.17
[Bm Oz A Y Tt Oty Oty ! ‘

where [l = L+ AT, f
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2.2 Variational Approach to Problem Solution

If the final time and the final state are both free, the boundary conditions (2.17) can

be rewritten as

N
M = Fany T s
0 v

0 = 'an+V atf'l’H(tf)

z(t)

to ty ty +5t!

Figure 2.1: The difference between 6z and éz(t5)

Similarly, the derivation of the necessary conditions can be done by defining the
Hamiltonian and the auxiliary function as follows

fi>

H(z,u, )
O(x,t,v)

Lz, u) + AT f(z, u) (2.18)
¢(z,u) +vTP(z,u) (2.19)

>
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Here A: [0,tf] — R™ and v € RP” denote Lagrange multiplicrs or adjoint variables.
The following necessary conditions (see references {23], [82]) are obtained:

o differential equations of Euler-Lagrange

s all
= = — 2
AT = -11,,=-ﬂ 2.21)
oz
e minimum principle
u = arg meig H(zx,A) (2.22)
e transversality conditions
M(ty) = Pales, (2.23)
(Pe+ H)lt=e, = 0 (2.24)

If u appears nonlinearly in /1, the control function can eliminated as a function of
x and . This can be obtained in most practical problems explicitly:

u = u(x,A). (2.25)

Otherwise, the solution can be computed iteratively from the implicit equation /1, = 0,
provided that the assumptions of the Implicit Function Theorem hold, too. Note that,
H, and H,, > 0 (positive definite) are sufficient conditions for the nccehsary condi-
tion of the minimum principle (2.22) to hold, if U is an open set. The latter condition
H,, > 0, respectively I, > 0 (positive semidefinite), is also known as the neces-

sary condition of Legendre-Clebsch, respectively strengthened nccessary condition of
Legendre-Clebsch in the calculus of variations.

2.2.1 Control Constraints

In this case the constraint contains the control u(t) only:

C(u(t)) <0.
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2.2 Variational Approach to Problem Solution

Therefore the constraint can be adjoined directly to the Hamiltonian by a Lagrange
multiplier. If w appears linearly in H, firstly we assume that m = 1 and U =
[¥smin, Umaz)- The equation (2.18) can be written in the form

H(x,u, ) = Hi(x,A) + uHy(x, ). (2.27)

H, does not determine the optimal control solution. If the second term Hy(x, A) does
not vanish identically on subinterval [tensry, tesit] Of [0, 5] With tentry < tegst, the min-
imum principle yields

u={ Umaz ifH2<0

Upin If Hy >0

H, is called the switching function associated with the control variable u. However, if
H, vanishes on a subinterval of [0, t;], the control variable u has a singular subarc. In
this case the optimal control variable can be computed by successive differentiation of
the switching function H, with respect to time ¢ until the control variable appears ex-
plicitly (see Bryson and Ho [23, page 110]). The case for vector u is treated similarly,
but may be more involved.

2.2.2 Mixed State-Control Inequality Constraints
In this section, the constraint includes .the state and control vartables:
C(z(t),u(t)) <0.

The mixed inequality constraint can be adjoined directly to the Hamiltonian as in the
previous section. For simplicity, we assume that m = ¢ = 1 and using the augmented
Hamiltonian

H(z,u, ) = L(z,u) + AT f(x,u) + uC(z, u). (2.29)

Necessary conditions for minimising the Hamiltonian then can be derived. The La-

grangian parameter g is
_J0 ifC <0
P=\u>0 ifC=0
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The Euler-Lagrange equations become

Lo— AT ifC <0
T_— —_— R wz
A=l {Cw—,\Ifm—,uC, ifC =0

The control u(t) along the constrained arc can be derived from the mixed constraints:
C(x,u) =0forallt witht; <t<<tandt; <t (2.30)

the control variable can be represented by a function,
u = u(z) (2.31)

if equation (2.30) can be uniquely solved for w. If C, # 0, the multiplier p is given
by (2.22): ‘
' Hy £ L, + X fy + uC,. (2.32)

2.2.3 State Inequality Constraints

We now summarise some results of optimal control theory for problems with a state
variable inequality constraint (2.8) based on the Bryson’s formulation. Consider now
the following equation:

S(x(t)) <0, S:R*-R"

For simplicity, we us assume that m = s = 1 and that the constraint is active on a
subinterval
S(J’J(t)) =0 forall te [tl,tQ] C [0, tf]. (2.34)

We take successive total time derivatives of (2.8) and substitute f(x(t), u(t)), until we
obtain explicit dependence on u. We obtain on [t;, 2]

S(x)=0,8M(z) =0,...,8V(x)=0 (2.35)

' with ST (z,u) = 0. (2.36)

If 7 is the smallest non-negative number such that (2.36) holds, r is called the order

of the state constraint. Here S (z, u) plays the role of C(a, u) in (2.29) so that the

Hamiltonian is
H(z,u,\p) =L+ N f+p8S0, (2.37)
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2.3 Nonlinear Programming Approach to Solution

Again for p we have
0 if S <0
“z{ p>0 ifSM =0
The control u on the constrained arcs can be derived from (2.36) and p from (2.22).
The right-hand sides of the differential equations for the adjoint variables (2.21) are to
be modified along [t;,t5]. In order to guarantee that not only (2.36) but also (2.35) is
satisfied, we have to require that the so-called entry conditions are fulfilled:

NT(z(t), t1) = (S(2(t1)), SP(x(t1)), ..., SV (z(t1)) = 0. (2.38)

Therefore A generally is discontinuous at ¢; and continuous at {;. Sometimes boundary
points occur instead of boundary arcs. If, for example, the order is r = 2, the following

conditions hold:

S(x(ty)) =0  SW(x(ty)) =0. (2.39)

The first condition is regarded as an interior point condition and yields a possible dis-
continuity of A; the second condition determines ¢,. Singular arcs are treated in a
similar manner, leading to multipoint boundary value problems with jump conditions
and switching functions.

2.3 Nonlinear Programming Approach to Solution

As seen from Section 2.2, the indirect approach entails a considerable amount of rather
non-trivial theoretical conditions. The relevant conditions have to be applied judi-
ciously in order to formulate a TPBVP appropriate to the optimal control problem
in question. Then the resulting TPBVP has to be solved and the optimal control u*
calculated from the TPBVP solution including the optimal state £* and co-state A*.

An alternative, aimed at avoiding the above complications, is to discretise the orig-
inal problem (2.1)—(2.8) and interpret the result as a finite-dimensional optimisation
problem. This approximation will result in a nonlinear programming (NLP) problem
- with equality and inequality constraints, possibly of high dimension due to the fineness
of discretisation grid. Hence we begin by recalling the basics of the NLP problem and
associated necessary conditions for optimality.
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Suppose we have the optimisation problem as follows:

min f(x) (2.40a)
subjectto g;(x) <0, i=1,....m (2.40b)

where the objective and the constraint functions (2.40) are assumed to be continuously
differentiable. The problem is to find such a solution * that minimises the objective
function, out of all possible solutions x that satisfy the constraints. Introduce the
Lagrange function £(x, u):

E[a:,u]=f(w)+2uigi(a:), i=1,...,m (241)
i=1
where p;,7 = 1,..., m are known as the Lagrange multipliers.

The theorem of Karush, Kuhn and Tucker gives first order necessary conditions for
a point x to be a local minima.
Theorem Karush-Kuhn-Tucker (KKT) necessary conditions: Given the optimisa-
tion problem (2.40), where f(x),gi(x),? = 1,...,m are differentiable. Let =* be a

point satisfying all constraints, and let Vg;(z*),% = 1,...,m be linearly independent
at z*. If &* is a local optimum of (2.40) then there is exists scalars xf,i = 1,...,m
such that '
V() + ) mVelz') = 0 (2.422)
i=1
pigi(x*) = 0, i=1,....,m (2.42b)
peo> 0, i=1,....m (2.42¢)

The equation (2.42a) is equivalent to the equation V,L(x*, u*) = 0; the scalars y; are
called Lagrange multipliers. For a proof for the above theorem, see e.g. '[4]. Let us
focus on the Mayer type of the performance index of (2.1):

J = ¢lz(ts), 4] (2.43)
. subject to dynamic equations

T = f[w(t)au(t)a t] (2.44)
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2.3 Nonlinear Programming Approach to Solution

Consider the nonlinear programming problem as follows
Y' = [u(t),...,ulty),z(t), . 2(tn)] (2.45)

where: to = t; < t2 < ... < ty = ly, defining hq = t;/N or txy1 = tx + hg. The
equation (2.44) can be approximated by the Euler method:

Ti1 — E(tk)

& = fl(t), u(o), f] » = (2.46)

for sufficiently small hy. The optimal control problem (2.43)—(2.44) can be tréns-
formed as follows: The objective function (2.43) can be rewritten in discrete approach:

J = ¢la(tn)] (2.47)
The dynamic equation (2.46) can be rewritten as follows:

Tk+1 — T(tk) — hafle(ts), u(ts), t] = 0 (2.48)

and becomes an equality constraint. Thus the Lagrangian for the discrete optimal
control above is:

m—1

Llz,p] = gletn)) + Y milerss — 2(te) — haf [@(t), u(te), til] (2.49)

=1

The KKT necessary conditions for the discrete approaches are:

g_;i = Tiy1 — (k) — haflx(te), wlte), tx] = 0 (2.50)
gf (k= fx-1) + hapi gj; =0 .51

g—,i =hdpk825,; =0 (2.52)

3?”?” = Hiy-1+ azi =0 (2.53)

Equations (2.50)—(2.53) can be an estimator of the equations (2.14)—(2.18) by letting
N — oo and hg — 0. Thus the KKT necessary conditions can be used as an estimator
of the optimal control necessary conditions.
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2.4 Numerical Solution of the Optimal Control Prob-
lem

Numerical solution of the optimal control problem can be categorised into two main
approaches. The first approach corresponds to the direct method which is based on
discretisation of state and/or control variables over time, so that an NLP solver can
be used. The second approach corresponds to the indirect method. The first step of
this method is to formulate the appropriate TPBVP and the second step is to solve the
TPBVP numerically.

2.4.1 Direct Method Approach

Direct methods are based on the transformation of the original optimal control problem
into nonlinear programming (NLP) by discretising the state and/or control history and
then solving the resulting NLP problem. A variety of direct methods has been devel-
oped and applied. Gradient algorithms were proposed by Kelley [62] and by Bryson
and Denham [21]. Pytlak solved a state constrained optimal control problem using a
gradient algorithms and applied it for some problems (see [86], [85]). Hargraves and
Paris [52] reintroduced the direct transcription approach, by discretising the dynamic
equations using a collocation method. A cubic polynomial is used to approximate
the state variables and linear interpolation for the control variables. The collocation
scheme was originally used by Dickmanns and Well [33] to solve TPBVPs. Seywald
" et al. introduced an approach based on the representation of the dynamical system in
terms of differential inclusions. This method employs the concepts of hodograph space
and attainable sets (see [67, 95, 94, 96]). Direct transcriptions have been presented in
detail by many researchers, e.g., Betts et al. [11, 12, 13,9, 8, 14, 10, 15], Enright and
Conway [39, 38], Herman [54], Tang and Conway [103], Ross and Fahroo [41, 91, 90],
Elnagar et al. [42, 35, 36, 37].

Based on the discretisation of the state and/or control, direct methods can be cate-
gorised into three different approaches.

The first approach is based on state and control variables parameterisation. Both the

control and the state are discretised and then the resulting discretisation is solved using

26



2.4 Numerical Solution of the Optimal Control Problem

an NLP solver. In Section 2.4.1.1, the direct collocation approach based on the full
discretisation of the state and control is given and compared with partial discretisation
in which just the control is discretised while the state is obtained recursively. In Section
2.4.1.2 the Legendre pseudospectral method is considered. In this method the state and
control variables are approximated using the Lagrange interpolation polynomial.

The second approach is control parameterisation, so that the state and performance
index can be solved by numerical integration. This approach is known as control pa-
rameterisation and will be discussed in Section 2.4.1.3. The idea of control parame-
terisation is to approximate the control variables and compute the state variables by
integrating the state equations. The control variables can be approximated by choos-
ing an appropriate function with finitely many unknown parameters. This method is
presented by Rosenbrock and Storey [88], Hicks and Ray [56] as follows

n

u(t) =Y aigi(t), (2.54)
i=0

where a; denote unknown parameters and ¢;(¢) are some polynomial functions. Hicks
and Ray [56] reported the difficulty of these methods. Brusch [19] introduced piece-
wise polynomials for the control approach in equation (2.54). The modification can
handle constraints efficiently. These methods can be found in many research papers
and books, e.g. Teo, Jennings, Lee and Rehbock [104] have studied control parameter-
isation by introducing variable switching time into equivalent standard optimal control
problems involving piecewise constant or piecewise linear control functions with pre-
fixed switching times. Control parameterisation with direct shooting method has been
studied and applied for mechanical multi-body systems by Gerdts [46] where the con-
trol is parameterised by the B-spline function. Further references include Goh and Teo
[50], Teo, Goh and Wong [106], Teo and Wong [105], Kraft [65, 64].

The third approach is based on the state parameterisation only (see [97]). Jaddu and
Shimemura [58] solved unconstrained nonlinear optimal control problems by trans-
forming them into a sequence of quadratic programming problem and state parameter-
isation. They extended it for constrained nonlinear optimal control problems using the
Chebyshev polynomials for the state parameterisation (see [59, 60]).
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2.4.1.1 Direct Collocation Approach

~ The basic approach for solving optimal control problem by direct collocation approach
is to transform the optimal control problem into sequence of nonlinear constrained
optimisation problems by discretising of the state and/or control variables. Two ap-
proaches will be considered.

The first approach is based on the discretisation of both the state and control vari-
ables. The following derivation is mainly taken from von Stryk and Bulirsch [110].

The duration time of the optimal trajectory is divided into subinterval as follows:
b=t <ta<t3...<tlp =1y (2.55)

The state and control variables at each node is &; = x(t;) and u; = wu(t;), such
that the state and control variables at the nodes are defined as nonlinear programming
variables:

Y = [u(t1),...,u(ty),z(ty), ..., z(t)]. (2.56)

‘The controls are chosen as piecewise linear interpolating functions between u(t;) and
u(tjyr) fort; <t <ty asfollows: '
t—t;

tiv1 —t; [u(tir1) — u(t;)] (2.57)

Ugpp(t) = u(t;) +
The value of the control variables at the centre is given by

u
u (tc,j) =

The piecewise linear interpolation is used to prepare for the possibility of discontinuous
solutions in control.

The state variable 2(t) is approximated by a continuously differentiable and piece-
wise Hermite-Simpson cubic polynomial between x(t;) and x(t;41) on the interval

t; <t <tjpoflengthg;:

Zup(t) = 3 I Y (2.59)
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= z(t;)

= q;f;

=3x(t;) — 2;8; + 32(tj41) — ¢ Fin
= 2x(t;) + ¢;f; — 2x(tj11) + ¢ifin

TR RN -
I

where

i = F(x(t;), u(t;),t;), g =t —t;
tj Ststj+1,j=1,...,k—1

The value of the state variables at the centre point of the cubic approximation

x(t;) + x(tj41) + q(f(t;) + f(tj41))

Tej = ) 8 (2.60)
and the derivative is _
dze; _ _3(@(t) +2(tn)) _ g(F () + £{tiv1)) 2.61)

dt 2q 4

In addition, the chosen interpolating polynomial for the state and control variables
must satisfy the midpoint conditions for the differential equations as follows:

F@app(tes)s Yapp(te)s tes] = Eapp(tes) =0 (2.62)

The equations (2.1)—(2.8) in Section 2.1 now can be defined as a discretised prob-
lem as follows:

min f(Y), (2.63)
subject to
f(mapp(t)a Uapp(t), t) — Tapp = 0 (2.64)
ZTopp(t1) —1 = 0 (2.65)
Y(Tapp(te),tx) = 0 (2.66)
C(Topp(t), Uapp(t),t) < 0 2.67)
S(xapp(t),t) < 0 (2.68)
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where ,,,, Uqy, are the approximation of the state and control, constituting Y in
(2.63). This above discretisation approach has been implemented in the DIRCOL
package which employed the sequential quadratic programming method SNOPT by
Gill et al. [49, 47].

In contrast with the DIRCOL approach, Biiskens and Maurer [27] proposed to
discretise the control only and use an NLP solver with respect to the discretised con-
trol only. The corresponding discretised state variables can be determined recursively
using a numerical integration scheme (e.g. Euler, Heun, Runge-Kutta etc.). This ap-
proach has been implemented in the NUDOCCCS package [26]. NUDOCCCS has
more flexibility in choosing the numerical method approach for both the control and
state variables. For simple problems, low order (e.g. Euler) numerical integration of
the state is sufficient, but for complex problems, especially when a pure state inequal-
_ ity constraint occurs, the numerical integration approach can be more advanced (e.g.

Runge-Kutta). o '

~ One of the main advantages of DIRCOL and NUDOCCCS is that both packages
provide an approximation for the co-state variables A which can then be used as an
initial guess in the indirect multiple shooting approach. Each of the packages uses a
different approach to obtain the co-state va.riables. ‘

In DIRCOL the co-state variables are derived as follows. Consider the equation

(2.63)—(2.68) and define the Lagrangian equation as follows:

L = f(Y)+ A (@app(t), g (t), 1) = Bagp)
+K(wapp(t1) - ) + V‘ob(walm(tk)’ te)
+¢E C(@app(t), Uapp(t), 1) + 0% 1S(Tapp(), 1) (2.69)

By using the necessary conditions and the Lagrange multiplier of the discretised equal-
ity and inequality constraints from the equation (2.69), the co-state variables can be
approximated (see KKT necessary condition on equations (2.50)—(2.53)).

Biiskens and Maurer employed a different way by using a recursive approach to
compute the state variable. In this case, a discretised version of equation (2.69) can be

solved recursively after optimal « and & were obtained (see [27, page 92]). Another
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way of obtaining the co-state approximation is by exploiting the Lagrangian equation:
L = f(Y)+ K(@app(t1) — 21) + V(T (tr), th)
+¢EL C(Tapp(t), Uapp(t), t) + 0Xi_1S(Tapp(t), t) (2.70)
and then determine the derivative of equation (2.70) with respect to the state
A=LP | 2.71)

and use it to approximate the co-state variables. This approach has been implemented
in NUDOCCCS and produces a more reliable and accurate approximation (see [27, pp.
92-93], [28]).

2.4.1.2 Pseudospectral Method for Optimal Control

Among the direct transcription method for optimal control problem is the Legen-
dre pseudospectral method (see Benson [6], Elnagar, Kazemi and Razzaghi [42, 37],
Fahroo and Ross [40, 41, 91, 90]). This method is based on the spectral collocation in
which the trajectory for the state and control variables are approximated by the Nth de-
gree Lagrange interpolating polynomial. The value of the variables at the interpolating
nodes is the unknown coefficients which in this technique are the Legendre-Gauss-
Lobatto points.

Consider the Legendre-Gauss-Lobatto (LGL) points, t;,7 = 0,..., N and dis-
tributed on the interval 7 € [—1,1]. These points can be given by tg = —1, ty = 1
and for 1 < i < N — 1, ¢; are the zeros of Ay, which is the derivative of the Legendre
polynomial, Ay. The transformation between the LGL domain 7 € [—1, 1] and the
physical domain t € [to, 5] can be defined by the following linear relations:

T.—
N Tot+Tf+To

2 2
The approximation for the state and control variables at the LGL points are given by

the Nth degree Lagrange interpolating po]ynomial as follows:

(2.72)

x(t) = Z o (t:) Li(t) (2.73)
1;10

=) u(t;)Li(?) (2.74)
1=0
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where L;(t) are the Lagrange interpolating polynomial of order N and is defined by

L;(t)

2 _ 1)A T
1 (t 1)AN(t)={1 ifl = k, 275

T NN+ DANE) . t—t 0 ifl#£k

The state approximation (2.73) for the dynamic equations must satisfy the condition of
the exact derivative of (2.73) at the LGL points. The derivative of (2.73) is given by

N N
&(tx) = X(tx) = Zm(ti)Li(tk) = Z Dix(t;) (2.76)

where Dy; = L;(t;) are the entries of the (N + 1) x (N + 1) pseudospectral Legendre
derivative matrix and defined by [36]

Rl A fl £k

A

S [53) R N A

Dy = 1 ! 2.77
TR ) ifl=k=N @77

0 otherwise

The objective function 2.1 is discretised using the Gauss-Lobatto quadrature rule

N
minJ = d)[X(tN), tN] + Z C[X(tk), U(tk), tk].wk (278)
k=0
where wy, are the LGL weights. The boundary conditions can be defined by the ap-
proximating of the state variables at X; and Xy :

P(X,, Xn) =0 (2.79)

The optimal control problem now can be solved as the NLP problem by using an
established NLP solver.

The pseudospectral method has been implemented in commercially available soft-
ware DIDO [89] and is, in principle, capable of producing estimates of co-states. How-
ever, recent work by Benson [6] shows that this does not work for the pure state con-
straint case, even for the simple benchmark problem of Bryson 23], see Appendix
A.
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2.4.1.3 Direct Multiple Shooting

The basic idea of the direct multiple shooting method is to transform the original opti-
mal control problem into nonlinear programming problem by coupling the control pa-
rameterisation with a multiple shooting discretisation of the state variables (see Keller
[61], Stoer and Bulirsch [99], Ascher et al. [2]). The control can be approximated
by piecewise functions and the state variables are approximated at the shooting nodes
t; (see Figure 2.2). The initial value x(¢;) for the state variables at nodes ¢; must be
guessed. Then in each interval the state equations must be integrated individually from
t; to t;11. In addition, the continuity conditions (matching conditions) must be satisfied
which require that on each differential nodes the values z(¢;41) should equal the final
value of the preceding trajectory.

81 \
[
|

1 1

So :/\82 | KN ] :
|
|
]
|
t
'
'
|

to t t2 ln_1 ty =t

Figure 2.2: Multiple shooting

Consider now the following boundary value problem.
& = flz(t),ut)], rle(t),z(ts)] =0 (2.80)
The basic idea of the multiple shooting is to find simultaneously the values

si=z(t), i=1,...,n, - (2.81)
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for the solution of the boundary value problems (2.80) at the discretised nodes
t0<t1<t2<...<tn=tf. (282)

We assume that the discretisation nodes for the control parameterisation are the same
as for the state parameterisation. Suppose x[t; s;, v;] is the solution of the initial value
problem:

& = flt,z,ult,vs)], x(t:)=s; tE€E[ti,tin] (2.83)

The problem now is to find the vector s;,1 = 0,1,...,nandv;,i =0, 1,...,n—1such
that the function z(t) pieced together, continuously, by the following IVP solutions:

z(t) = z[t;s;,v)fort € [titina], i=0,1,...n-1, (2.84)
z(t,) = Sp. | (2.85)

In addition, the boundary condition r[z(ty),z(t;)] = 0 must be satisfied by z(t).
Hence, the boundary value problem 2.80 is solved on the whole interval. Consider
now the following equation X (s):

x[t1; 0, V] — 81
T(ty; 51,01) — 82
X(s) = : =0 (2.86)
Z(tn; Sn1yVn-1] — Sn
rz(s0), 2(sn)]

where the unknown variables

s=] (2.87)

must be found.

The optimal control problem now can be rewritten as an NLP problem.

n-1

min J(s,v) = Z Ji(si,v;) (2.88)

i=0
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* subject to

:c[t,-“;s,-,'vi] -~ Siy1 = 0, i—'-‘—O,].,...,’I’l-—]. (289)
rlz(so),z(sn)] = 0 (2.90)

The path constraints are transformed into vector inequality constraints at the multiple
shooting nodes. The NLP problem result can then be solved by an established NLP

solver.

2.4.2 Indirect Method Approach

Instead of using a direct approach as discussed in 2.4.1, the numerical method of solv-
ing a boundary value problem will be applied to solve the optimal control problem.

2.4.2.1 Multiple Shooting

The mathematical two-point boundary value problem (TPBVP) is best understood on
the simple example of firing a shell. Given the initial barrel orientation and the initial
shell speed, one can compute its trajectory and, in particular, the impact point. This
is known as the initial value problem'(IVP), as all we need to know is the starting
point. The main observation is that for a given initial condition, the terminal condition
(impact point) is uniquely determined, because it follows from integration of the known
differential equation of motion.

However, if both the initial and terminal conditions are specified, then this is a
TPBVP: the trajectory must be a solution of the defining differential equation, but
must pass through prescribed points at both ends (boundaries). In the shell example,
this means that we must find such a combination of barrel orientation and projectile
speed that it indeed lands at the prescribed impact point.

This underpins the idea of the numerical method of shooting. It solves the TPBVP
by repeated uses of readily available procedures (e.g. Runge-Kutta) for solving IVP. A
guess of the initial point is made and the corresponding terminal point is computed. If
it is not the prescribed one, the guess is optimally modified and serves as the starting
point for the next use of an IVP solver. This process is repeated until convergence is
obtained. The procedure illustrated in Figure 2.3 can be explained as follows. The

35



2. OPTIMAL CONTROL: OUTLINE OF THE THEORY AND
COMPUTATION

................................................................................. final poin(

initial point

Figure 2.3: Shooting method procedure

initial point has two parameters: position (always at the origin) and speed (variable).
Trajectory a clearly overshoots the prescribed terminal point, so the speed was mod-
ified to get b which now undershoots. Finally, ¢ shows that systematic improvement
can be attained.

The actual details for a second order equation & = f(t,z, ) are given on Figure
2.4. The initial position zo = z(to) is fixed and so is the terminal one z5 = a(ts) .
Thus the initial speed (¢,) has to be iteratively modified until the end of the trajectory
is within the desired accuracy €.

The first guess s(!) of the initial speed £(¢,) is made to start the procedure and the
corresponding initial value problem (IVP 1) is solved (block 1). The error X between
the thus obtained terminal value z(ts; s1) and the desired one z(¢s) is formed (block
2) and checked against the desired accuracy € (block 3). If the accuracy requirement
is met, the desired trajectory has been found; if not, then the guess of the initial speed
must be improved.

The improvement is based on the idea that, ideally, the error X should be zero. In

other words, we should try to find a value of the guess s of the initial speed (o)
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Y

Start ‘ l.z
& = f(t,z,2)

s z(to) = o

- E(to) = s+ As®)
IVP 2
I ! g
i = [f(tz,%) X (59 + As9) = g(t;; 5O + AsO) —z;

i (to) s P | AX (o) — X (9 + As®) — X (s |6]
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S _ ) X(s9) 7]
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—
-l

Figure 2.4: Shooting method flowchart
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which yields X (s) = z(t; s®) — z; = 0. This is done by the well-known Newton
procedure in block 7. The preceding blocks 4-6 perform the auxiliary computations:
block 6 is the approximation AX of the derivative of X and needs the results of blocks
4 and 5. As a consequence, another IVP must be solved (block 45, so that the compu-
tation becomes more expensive.

The main drawback of the shooting method is the sensitivity of the initial guess,
because of the use of Newton’s iteration (block 7).

To overcome this problem, the trajectory must be split up into subintervals and
apply the same shooting method for each subinterval which is the method of multiple
shooting. The theoretical background for the multiple shooting is the same as direct
multiple shooting in Section 2.4.1.3. However, the indirect multiple shooting solves
the problem using a Newton iteration.

In a highly constrained optimal control problem, the jump and switching conditions
on the co-étate or control variables might occur. In order to handle those conditions,
some new nodes must be inserted into subinterval. Consider the following boundary

value problem (based on page 30 ref. [76]):

z(t) = filt,zt)), &<t<&4, 0<k<s (291a)

(&) = hl(b,z(§)), for k=1,...,s (291b)
ri(z(to),z(ty)) = 0, for 1<i<m (2.91c¢c)
rile, (&) = 0, for i=n;+ 1,...,h+s (2.91d)

In the optimal control framework the equation (2.91a) represents state and co-state
equations which are a piecewise smooth function and §;,7 = 1,...,s is a switching
point. The equation (2.91b) is a jump condition at the switching point &;. The bound-
ary conditions at the initial and final time are described by equation (2.91c) and the
condition at the switching point is given by equation (2.91d).

Suppose S; are the initial guesses for the x(t;) and Z; are the initial guesses for

the switching points §;. Let us define:

y(t) = [w(t)J (2.92)
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and
Y(t) = [‘.S:] (2.93)

The problem now is to find the solution of the IVP:

y(t) = [f(t,(:)l?(t))] y tj _<_ t S tj+1, y(t]) = Yj, ] = 1, N (e 1 (2.94)

where y(t) consists of the switching point £ and must be computed simultaneously in
the numerical processes. A modified Newton method is used to determine y(t).

A professional version of the modified Newton algorithm, tailored to optimal con-
trol applications, has been implemented in FORTRAN and is available as the package
BNDSCO (see Oberle and Grimm [76]). However, it should be emphasised that even
the best TPBVP solver cannot overcome the fundamental problem of a narrow conver-
gence interval inherent in TPBVP.

2.5 Summary and Discussion

This chapter presented an overview of the optimal control problem and its numerical
solution. Real-life nonlinear optimal control problems cannot be solved-analytically,
in general, and must be solved numerically. Numerical solution of continuous optimal
control problems can be categorised into two different approaches: 1) the direct and
2) the indirect method. Direct methods are based on the transformation of the original
optimal control problem into a nonlinear programming (NLP) problem by discretis-
ing the state or/and control history and then solving the resulting problem using an
NLP solver. The indirect method solves the optimal control problem by deriving the
necessary conditions based Pontryagin’s Minimum Principle.

In the indirect method the user must derive the appropriate equations for co-state
variables, transversality and optimality conditions before the problem can be solved us-
ing a boundary value problem solver. Furthermore, the problem is more involved when
the problem contains path constraints. The sequence of the constrained/unconstrained
arcs must be guessed and the corresponding switching and jump conditions must be
derived, which is a non-trivial task. Secondly, the narrow convergence of the muitiple
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shooting method must be considered. Finally, the co-state variables must be guessed
which is a nonintuitive task because the variables do not have physical meaning

In contrast, the direct method is easy to implement because all it requires is a fairly
straightforward discretisation of the original problem. But the accuracy of the direct
method is less than that of the indirect method.
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Chapter 3

Minimum Altitude Formulation

In Section 1.1 the problem formulation for the terminal bunt manoeuvre is given for ‘
the minimum time and minimum altitude problem. This chapter presents analysis and
computation for the minimum altitude version of the terminal bunt manoeuvre. The
cruise missile must hit the fixed target from above while minimising the missile ex-
posure to anti-air defences. This means that the flight altitude should be as low as
possible, but the impact must be achieved by a vertical dive. This leads to the generic
trajectory shapé where the missile initially flies straight and level at the minimum al-
titude. When it approaches the target, it must climb (nose up) to gain enough height
for the final dive (nose down). This up-and-down terminal manoeuvre is known as the
bunt, and establishing its optimal parameters is an example of trajectory shaping.

The quantity to be minimised is the integrated altitude, but this minimisation must
take into account, inter alia, missile dynamics (manoeuvrability constraints of the plat-
form), the final dive specifications and limits on controls (thrust and angle of attack).

This chapter is organised as follows. In Section 3.1 the problem formulation of the
minimum altitude of the terminal bunt manoeuvre is given. The computational results
are based on the DIRCOL package which are then used for a qualitative analysis of the
main features of the optimal trajectories and their dependence on several constraints, as
discussed in Section 3.2. The mathematical analysis based on the qualitative analysis
is presented in Section 3.3. This section begins with discussing the constraint on the
thrust, followed by path and mixed constraints. Section 3.4 focuses on the indirect
method approach. The co-state approximation issue is considered in that section. This
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section is concluded with some numerical solutions using the multiple shooting method
package BNDSCO. Finally, Section 3.5 presents summary and discussion.

3.1 Minimum Altitude Problem

The objective function as given in Section 1.1 is to determine the trajectory of the
generic cruise missile from an initial state to a final state with minimum altitude along
the trajectory. The objective can be formulated by introducing the performance index:

ty
J=/ hodt. G.1)
S .

This objective function is subject to the dynamic equations and some constraints as
defined in Section 1.1.

3.2 Qualitative Analysis

*This section gives a qualitative discussion of the optimal trajectory of a cruise missile
performing a bunt manoeuvre. Subchan et al. [101] presented a qualitative analysis for
the terminal bunt manoeuvre based on Cleminson’s result [29].

The computational results of the terminal bunt manoeuvre are obtained using a
direct collocation method package DIRCOL by von Stryk [109] and then the resulting
nonlinear programming problem solved using the SNOPT solver, which is based on
sequential quadratic programming due to Gill et al. [47, 92]. The important feature of
DIRCOL is that it provides an approximation for the co-state variables.

In this simulation the missile is assumed to be launched horizontally from the min-
imum altitude constraint kg = 30 m. The initial and final conditions can be given as

follows:

Y = 0 deg, Ve, = =90 deg
Vo = 272 m/s, V1, = 250,270,310 m/s
o = 0m, x¢, = 10000 m

hg = 30m, he, =0 m.

!
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Figure 3.1: Comparison of DIRCOL and differential inclusion results for minimum

altitude problem for final speed V;, = 250 m/s.

Figure 3.1 shows the comparison of the DIRCOL and differential inclusion results

which are taken from [29]. It can be seen that the DIRCOL results give a more smooth

solution on the control.  Based on Figures 3.2-3.8, an attempt is made to identify

characteristic arcs of the trajectory, classify them according to the constraints active on

them, and suggest physical/mathematical explanations for the observed behaviour.

The trajectory is split into three subintervals: level flight, climbing and diving.
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Figure 3.2: Computational results for minimum altitude problem using DIRCOL for
Vs = 250 m/s. ¢, is the time when the missile starts to climb, ¢; is the time when the
thrust switches to minimum value and ¢3 is the time when the missile starts to dive.
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Figure 3.3: Altitude versus time histories for minimum altitude problem using
DIRCOL for a varying final speed. Solid line is for Vi, = 250 m/s, dashed line is
for V;, = 270 m/s and dashdot line is for V;, = 310 m/s.
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Figure 3.4: Speed versus time histories for minimum altitude problem using DIRCOL
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m/s and dashdot line is for V3 = 310 m/s.
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Figure 3.5: Flight-path angle versus time histories for minimum altitude problem using
DIRCOL for a varying final speed. Solid line is for V;, = 250 m/s, dashed line is for
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Figure 3.6: Angle of attack versus time histories for minimum altitude problem using
DIRCOL for a varying final speed. Solid line is for V;, = 250 m/s, dashed line is for
Vi, = 270 m/s and dashdot line is for i',/ = 310 m/s.
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m/s and dashdot line is for V; = 310 m/s.
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Figure 3.9: A, versus time histories for minimum altitude problem using DIRCOL for
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Figure 3.11: A, versus time histories for minimum altitude problem using DIRCOL
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Figure 3.12: A, versus time histories for minimum altitude problem using DIRCOL
for a varying final speed. Solid line is for V;, = 250 m/s, dashed line is for V;, = 270
m/s and dashdot line is for V,, = 310 m/s.
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3. MINIMUM ALTITUDE FORMULATION

3.2.1 First arc (flight): minimum altitude flight t; <t < ¢;

The thrust and altitude constraints are active directly at the start of the manoeuvre. In
this case the altitude h of the missile remains constant on the minimum value (h,.;,)
until the missile must start climbing while the thrust is on the maximum value. The
flight time depends to the final-speed V;, (see Figure 3.3). In addition, the flight time
is longer for the smaller final-speed in this case.

Equation (1.3d) equals zero during this flight because the altitude remains constant.
It means the flight path angle v equals zero because the velocity V' is never equal to
zero during flight. In addition, y(t) = 0 for t, < t < t; (see Figure 3.2 for the
definition of 1, t; and t3) causes the derivative of the flight path angle 4 to be equal to
zero. The dynamics equation (1.3) is therefore reduced as follows:

¥ = — sina+£cosa—g=0 (3.2a)
m m

vV = T_Dcosa—ésina (3.2b)
m m

z =V (3.2¢)

h =0 (3.2d)

We now consider the consequences of the right-hand side of equation (3.2a) being
zero. This condition means that the normal acceleration L/m remains almost constant,
because the angle of attack « is very small. The first term on the right-hand side of
equation (3.2a) is small, because sina &~ a ~ 0 and we are left with L/m ~ g due to
cosa = 1.

During this time speed increases, because for small a
T-D

m

V

>0, asT>D.

This in turn means that the angle of attack a slowly decreases in accordance with
equation (1.6) and in order to maintain L/m approximately be equal to g.

3.2.2 Second arc: climbing

This analysis mainly discusses the case for the final-speed 250 m/s because it exhibits
switching in the thrust (see Figure 3.2d). The missile must climb eventually in order to
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3.2 Qualitative Analysis

achieve the final condition of the flight path angle ~;,. This condition occurs between
t; <t <t

3.2.2.1 Climbing: full thrust & maximum normal acceleration (t; < t < ¢9)

At the beginning of the climbing manoeuvre the thrust is on the maximum value. Since
altitude above h,,;,, is penalised, the climb occurs as late as possible, so must be done
sharply and last as short as possible. Hence, at the beginning of ascent the angle
of attack must increase to facilitate a rapid nose up motion and the thrust has the
maximum value.

During this time, the normal acceleration is saturated on the maximum value L,
due to the jump of the angle of attack a. The speed keeps decreasing while the angle
of attack a and altitude h increase. This arc ends at ¢; when the thrust switches to the
minimum value T,,,;,. During this time, the normal acceleration jumps to the minimum
value L, due to the jump angle of attack a.

3.2.2.2 Climbing: minimum thrust ({; < t < t3)

While rapid climbing is necessary, the missile should also turn over to begin its dive
as soon as possible, so that the excess of altitude (above h,;,,) is minimised. Thus, the
thrust should soon be switched to its minimum value and at the same time the angle of
attack shiould be decreased to negative values, further to promote pitching down.

From the computational results (see Figure 3.2d) it follows that the thrust is switched
to the minimum value before turnover. This occurs approximately ¢, after firing. Im-
mediately after the thrust is switched, the flight path angle v decreases rapidly while
the angle of attack o jumps. This causes the normal acceleration to jump, saturating on
the minimum value L,,;,. When the normal acceleration is saturated on the minimum
value, the angle of attack decreases further. At the same time the speed decreases and
the altitude increases until the missile turns over.

The missile turns over when the flight path angle ¥ = 0 and A = 0. At the same
time the thrust switches back to the maximum value to facilitate rapid arrival on the
target.

For the final-speed 270 m/s and 310 mV/s the thrust does not exhibit any switching.
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3. MINIMUM ALTITUDE FORMULATION

Table 3.1: Performance index and final time for the minimum
altitude problem for different terminal speed using DIRCOL

| Final speed V;, (m/s) J ty (sec) grid points
250 13563.3003  40.34704 176
270 16764.8403 40.75616 169
310 - 31562.5639 41.38049 169

3.2.3 Third arc: diving ({3 < t < ty)

The missile starts diving at approximately ¢3 seconds. At the end of the manoeuvre
the missile should hit the target with a certain speed V;,. The speed during turnover is
smaller than final speed V; 42 SO the speed must increase and hence the thrust switches
back to the maximum value for the case V; ;= 250 m/s. It means the thrust will
facilitate the missile’s arrival on the target as soon as possible.

In this case the normal acceleration is on the minimum value. Obviously, the alti-
tude goes down to reach the target (y < 0 — h < 0, see equation (1.3d)), while the
speed goes up to satisfy the terminal speed condition V;,. Finally, the missile satisfies
the terminal condition of the manoeuvre approximately ¢; after firing.

Table 3.1 shows that the objective function is bigger for the greater final-speed.
The performance index for the case Vt, = 310 m/s is twice of the case th = 250 m/s
while the final-time is circa one minute different. The co-state approximation is given
in Figures 3.9-3.12. It can be seen that the co-state approximation for A has a jump
at the exit of the pure state constraint (minimum altitude constraint).

3.3 Mathematical Analysis

The qualitative analysis of Section 3.2 is now made precise using optimal control the-

ory.

3.3.1 Constrained on the Thrust Only

First, we investigate the minimum altitude problem when the initial and final condi-

tions (1.9) are active and the control is constrained on thrust T only (1.12). Necessary
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conditions for optimality can be determined by applying Pontryagin’s Minimum Prin-
ciple [84]. For this purpose, we first consider the following Hamiltonian:

Ay

af =
H h+V

m

L
sina + —cosa — gcos*y:|
m

+A T_Dcosa—£sina— sin
1% s m gsiny
+A:V cosy + ApVsiny, (3.3)

where the co-state variables A = (A, Av, Az, Ar) have been adjoined to the dynamics
system of equation (1.3). The co-state equations are determined by

. OH
A=-— . 4
oz (34
The component of co-state vector A satisfying the preceding equations are:
. Ay .
A, = - Vgsm'y—)\vgcos'y—)\$Vsm'y+/\thos'y (3.5)
. Tsina CypSressina CipSrefcosa g
Av = _{’\7[— Vem om T om vz 87
—Mﬂ [Cd cosa + Cysin a] + Az cosy + Apsin 7} (3.6)
m
A =0 (3.7)
: CaV S;e5sinapy, Sre
- —{l—{-)\.,[— P 7 sin apy +C,V fcosaph]
2m 2m
C4V2S,esc C\V2S, 4 si
+)\v[— 4 seosapy,  C fsmaph] , (3.8)
2m 2m

where:
Ph = 2CIh+C2

The optimal values of the control variables are generally to be determined from the
Pontryagin’s Minimum Principle. A necessary condition for optimal control is the
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3. MINIMUM ALTITUDE FORMULATION

Minimum Principle
min 11/, (3.9)

i.e. the Hamiltonian must be minimised with respect to the vector of controls u. Ap-

plying (3.9) to (3.3) we obtain

A
e = (T—D+La)[vlrr-;cosa—%silla]

A A
—(Da+L)[—-l-sina+—Vcosa] =0 (3.10)
Vm m
with
1 9
La = Epv SrefBl
1 v
D, = §pV2Sref(2Ala + A2)
Since the control T appears linearly in the Hamiltonian, the condition II,;‘.f = () from

(3.11) does not determine optimal thrust. Since T is bounded, the following provides

the minimum of the Hamiltonian:

Tz if HY <0,
Ts in

T= ing if 1137 =0,
Tin  if 113 > 0,
with _
a sin o cos . )
HTf = Ay Vi + Ay — (switching function) 3.11)

e Case when T on the boundary (T' =T, ... or T = T,,.;.)

In this case « can be determined from:

T—D+L(,[/\.,
m

HY = 7 osa = Ay sin a]

o+ L . :
—Dn-:- [:\lsma+/\vcosa] =0

Vv

The value of « cannot be derived in closed form from (3.12), and must be ob-

tained numerically. Note that D, D, and L depend on a.
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e Case when T' = T, , (singular control)
When the switching function H;f becomes zero in an interval (t1,t;) C (to, ty),
the control corresponding to the magnitude of the thrust 7 is singular. In these
circumstances, there are finite control variations of 7" which do not affect the
value of the Hamiltonian.

From Bryson and Ho [23, page 246], the singular arcs occur when:
HY =0 and detH% =0 (3.12)

Substituting (3.3) into (3.12) with component u = (T, a) yields

sin o /\VCOSCY -0 (313)

HY =,
"Vm m

A A
HY = (T—D+D)[——1—cosa——‘-/-sina]
Vm m

Av
—(Da+ L) [—sma+—cosa] =0 (3.14)
m
det Hf, =0 = A\, — Ao =0 . (3.15)
TVm m

Conditions (3.13)—(3.15) cannot be satisfied simultaneously, so we conclude that
there are no singular arcs. However, jump discontinuities in the control 7" may
appear if, at a time ¢, the switching function (3.11) changes sign.

The Hamiltonian is not an explicit function of time, so H%/ is constant along the
optimal trajectory.

3.3.2 Optimal Control With Path Constraints

In section 3.3.1 we derived necessary conditions for optimality by considering only
the boundary conditions and thrust constraint. In this section the level of complexity is
increased by considering some additional constraints as defined in Section 1.1.

The first state path constraint (1.10) can be splitas V,,,;, —V < 0and V-V, < 0.
Both of them are of order 1, because V explicitly depends on the controls, see [23,
pp. 99-100]. Since the speed constraint is not active during the manoeuvre in this
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case, it will not be taken into account in the Hamiltonian (see Figure 3.4 page 45). The
second path constraint (1.11) is of order 2 and the mixed state-control constraint (1.13)
is split as Lypin — ng < 0and fg— — L.z <0, and L depends on the control explicitly.

The Hamiltonian can be defined as follows:
L L "
1 ac = Ila’f —_—— L"lin —— L"lu . ’
+,u1{ g+ }+ﬂ2{mg ,}+/LJ( 1)

The differential equations for co-state vector X = (Ays Av, Az, An) can be written as

: ol
A=— . .
m (3.16)

Since these equations are rather lengthy, they are omitted here. For the Lagrange mul-

tipliers p; = 1,..., 5, there must hold

i = (), if the associated constraint is not active;
* | >0, if the associated constraint is active.

The necessary conditions are completed by deriving the junction conditions at the

switching points £; as follows [23, page 101]

;) = 11“({;“)—19""%—? (3.17)
Mty = ,\T(i;“)+19"'%1¥- (3.18)

which requires finding the additional multipliers 4.

3.3.3 First Arc: Minimum Altitude Flight

In this section we consider only the state path constraint hp;, < I and thrust con-
trol constraint (7" is on the maximum value). In this case we assume that the missile
launches at the initial altitude i = h,,;,. Therefore the constraints are active at the
beginning of the manoeuvre directly. The constraint h,,;, < h has no explicit de-

pendence on the control variables, therefore we must take the time derivative on the
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constraint until, finally, explicit dependence on the control does occur. Consider the

following equations:

h = hmin=0 (3.19a)
h = Vsiny=0 and V #0

=(t)=0 for te [ty ti] (3.19b)
h = Vsin'y +V4cosy=0

= 4(t) =0 for tE€ [to,ti] (3.19¢)

The controls appear explicitly after differentiating the constraint h,,;, < htwice, there-
fore the order of the constraint is 2. Substituting equation (3.19) to the equation of

motion (1.3) we obtain the following reduced state equations:

.- I=Dg, +Lc =0 3.20.

7= — at —~cosa—g= (3.20a)

: T-D L .

V = cosa — —sina (3.20b)
m m

i =V (3.20¢)

h =0 (3.20d)

The angle of attack a can be obtained numerically from equation (3.20a). Then sub-
stituting « to equation (3.20b) and (3.20c), these equations can be solved as an initial
value problem (IVP). Thus we can find the first arc easily, but we do not know how
long it will last. For this purpose we should formulate the appropriate boundary value
problem (BVP) which involves finding co-state variables by defining the Hamiltonian

as follows:

He = H + ,ug{Vsin'y + V"ycosy} (3.21)
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The components of co-state vector A satisfying the preceding equations are:

/'\7 = —{%gsin'y—)\Vgcos'y—)\,Vsin7+/\thos7
dv : dy
= siny + Veosy + 2V cosy — 4V si ] 3.22
+p3[d751n7+ c057+d7 cosy — 4 sm’y} ( )
o Tsina CypSressina  CipSpepcosa q
Av = _{)‘7[— Vim 2m + 2m +V2(Ovy

+ Az cosy + Apsiny

—Avp—:f""f— [Cd cosa + Cysina

dv d¥
3.23
+,u3[dvsm'y+decos7+7(os'y]} ( )
e = 0 (3.24)

/'\h = —{1 - M[Cdsina - C,(-.osa]
2m
)‘V—VQM [Cd cos a + Cysin a]

dv d¥

+p3[d, siny + thcos*y]} (3.25)

Using Pontryagin’s Minimum Principle for (3.21) yields:

A A
n;* = (T—D-l—La)[——l-cosa—-—V-sina]
Vm m
Ay Av
(Dut D[ s + 2 cona]
(Do + L) vmsma+ — cosa

av . d5
+u3 [?1; sin7y + -Jg;Vcos'y] =0.

The thrust is on the maximum values. From (3.19b)—(3.19¢) it follows that ¥ = 0 and

4 = (), so we obtain the following reduced equations:
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e State equations:

. T-D .
¥ = sina+ —cosa—g=>0
.m m
. T-D
V = cosa — —sina
m m
r =V
h = 0

o Co-state equations:

. T—-D L .
Ay = —{—)\vg+)\hV+,u3[ — cosa—asma]}
. CapSressina Tsina CipSepcosa g
= — WY = - 9
Av {(’\7“‘3 )[ om Vem 7 om T V2
—-/\—Vp—::gﬂ[Cdcosa—}—Clsina] +/\x}
A = 0 .
. Ay + u3VIV S, .
M = _{1+( o\l fph[—Cdsma+Clcosa]
2m
s
—M[Cdcosa+Clsina]}
2m

e Optimality condition

H® = (T~D+Ly) [(’\—V” + ng) osa %V sin a]
—(Dq + L) [(/\—‘; + p3V) si;a + -/:’—:- cos a] =0 (327

The angle of attack a can be obtained from equation (3.20a). Lagrange multiplier 3
can be derived explicitly from equation (3.27) and substituted into state and co-state
equations. Since we know the flight path angle and the altitude during this manoeuvre,
the number of differential equations reduces to six. The main difficulty in solving this
problem is that we do not know an initial guess for the co-state variables.
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3.3.4 Second Arc: Climbing

In this analysis we focus on the case of final speed 250 m/s only and consider the thrust
and normal acceleration constraints. From the qualitative analysis in Section 3.2, we
know that the thrust control switches to the minimum value during climbing for final
speed 250 m/s, therefore the switching function must change sign from negative to
positive.

Consider mixed state-control inequality constraints as mentioned in equation (1.13)

as follows:

L
Lmin g —_ g Lmu.t
mg

and L explicitly depends on the control a. The inclusion of the mixed constraints

above leads to the augmented Hamiltonian:
L L
Ilal = Ilaf + [J,l( - - + Lmin) + ﬂQ( - Lmaz) (329)
mg mg

The right-hand side of the differential equations for the co-state equations are to be
modified along subarcs of this second arc. Additionally, we have a nccessary sign

condition for the Lagrange parameter p;,

= () on unconstrained subarcs
H1 . H® m strained sub
= J——ﬂba on constrained subarcs
and
=0 on unconstrained subarcs
H2 _ H,‘:Img trat .
= == on constrained subarcs

The angle of attack a can be determined as follows:

e Optimality condition when normal acceleration is on the maximum value

i = (T—D+La)[%cosa—%sina]

A A L.
—(Da+ L) [ﬁ sina + X cos a] + ,Lz(m) =0 (3.30)
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e Optimality condition when normal acceleration is on the minimum value
A A
H*Y = (T-D+ LQ)[-—700sa - —vsina]
Vm m

A L
—(Do + L) [V_:n sina + %cosa] - ;Ll(—m—‘;) =0 (3.31)
When the normal acceleration constraint is active (L,,q.), the angle of attack can be
determined from (1.6) as
a= zmngaz - B2pV25ref
B BlpV2Sref .

Equation (3.32) is valid until the normal acceleration and the thrust switch to minimum

(3.32)

value (see Figures 3.2c-3.2d).
Below we summarise the results for the case when the normal acceleration is satu-
rated on the maximum value (L,4z)-

e State equations:

3 r-b sina + L L
= 3 o —_— —_ _—
4 = —COSQ = gCosY 0
1% r-po cos L i
= o — — -
- —sina — gsiny
z = Vcosy
h = Vsiny
e Co-state equations:
. Ay .
Ay = — Vgsm’y — Aygcosy — A Vsiny + A\ V cosy
. Tsina CgpSyepsina CpS,epcosa g
= |- - =
Av { g [ Vim om ' om vz e
AvpV Sre .
_2VPY Oref [Cd cosa + Cysin a]
m
. Ly
+Az cosy + Apsiny + po [—]
mg
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Ao = 0
—{1—/\—M[C sina — C,(osa]

M

Lsrefph [Cdcosa + Cysin a] + 112 [mq] }

e Optimality condition
H® = (T-D+L,) [——cosa - %bma]

~(Da+ L) [-Vé— sina + /\—(osa] +u2(L;) =0 (3.34)

where 2mgLos — BapV'2S |
. MG Limaz — 1320 ref
a e (3.35)

~ and the thrust switches to the minimum value when 113 changes sign from negative to

positive.

3.3.5 Third Arc: Diving

In this analysis we consider only the normal acceleration constraint. During this time
the thrust is on the maximum value and normal acceleration is saturated on the mini-

mum value. The angle of attack can be determined from (1.6) as follows:

_ 27n'gLvmn szv Srrf
@ = (3.36)

The Hamiltonian and co-state equations are nearly the same as in the previous scction,

therefore the derivation is omitted here. The equations can be summarised as follows:

e State equations:

5

V = cosa——sma gsiny
m

sma+Lco 1
— SQ — §CosYy %

T = Vcos'y
= Vsiny
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e Co-state equations:

. A
Ay = —{—V"gsin'y — Aygcosy — A;Vsiny + /\thos'y}
. Tsina CygpSrepsina  CipS;epcosa g
Ay = —{/\.,l Vi - + 5 +—‘7300s'y
—A—V&@rﬁ{ [Cd cosa + C)sin a]
m
. L
+A cosy + Apsiny — g [—m_‘;] }
A = 0
C AV S erpn ]
A = —{1 — T[Cdsxna -0 cosa]
2
—M[Cdcosa + G sina] — [-L—h] }
2m mg

e Optimality condition

HY = (T—D+La)[-éj—cosa— i\n—‘f-sina]

Vm
~(Do + L) [\;\_:n sina + %cos a] - ul(;—;) = 0 (3.38)

where \
a = 2mngin - B2PV Sref

Blpv2sref

(3.39)

The schematic representation of the boundary value problem associated with the switch-

ing structure can be seen in Figures 3.23-3.27 on pp. 83-91.

3.4 Indirect Method Solution

BNDSCO is a software package developed by Oberle, for references see [76], which
implements a multiple shooting algorithm (see Stoer and Bulirsch [99], Keller [61]
and Osborne [77]) and is a reliable solver of Multi Point Boundary Value Problem
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3. MINIMUM ALTITUDE FORMULATION

(MPBVP) with discontinuities, specially written for solving optimal control problems.
However, it has the weakness of all shooting methods that it has a narrow domain of
convergence. Therefore initial guesses for the state and co-state variables are crucial
for successful computation, especially the co-state variable which has no physical in-
terpretation. Moreover, the task becomes more difficult when the problem has pure

state constraints.

34.1 Co-state Approximation

Von Stryk [108] shows that the co-state variable can be estimated by the necessary con-
ditions of the discretised problem of the optimal control. He developed the DIRCOL
package [109] based on a direct collocation method and it has been used for solv-
ing several real-life problems (see von Stryk and Bulirsch [110] and von Stryk and
Schlemmer [111], see also section 2.4.1.1). Grimm and Markl [51] estimated the co-
state variables using direct multiple shooting method. Their co-state approximation is
accurate for the unconstrained problem while it does not work well for the constrained
problem. Fahroo and Ross [40] proposed a Legendre pseudospectral method to esti-
mate the co-state variables and presented an accurate estimator for the unconstrained
problem. Benson [6] proposed a Gauss pseudospectral transcription to solve optimal
control problem and use it to approximate co-state variables. Again the co-state ap-
proximation does not give good initial guess for the pure state constraincd problem.

This section presents an example of the pure state constrained problem which is
the first arc of the terminal bunt manoeuvre. In this example, Bryson's and Jacobson’s
formulation are compared and then the DIRCOL package is used to approximate the
* co-state variables.

Jacobson et al. [57] presented a direct adjoining of purc state constraint to the
Hamiltonian while Bryson et al. [22] proposed an indirect adjoining of pure state
constraints to the Hamiltonian. In Bryson’s approach the pure state constraint is dif-
ferentiated until u appears explicitly and then the resulting equation is adjoined to the

Hamiltonian (see section 3.3.3). Consider now the following Bryson’s formulation:
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3.4 Indirect Method Solution

S = h—hpn=0 (3.40a)
SO = h=Vsiny=0 and V #0
=7(t)=0 for te€ [to, ] (3.40b)
S@ = fz=Vsin*y+V‘7cos7=0
=4(t)=0 for t € [to,t1] (3.40¢)

Thus the constraint is of second order, see section 3.3.3, as controls appear in 4 and V/,
see equations (1.3a) and (1.3b) on page 4. The Hamiltonian for Bryson’s formulation

can be defined as:

H? =ABf 4+ uS® (3.41)

In contrast to the Bryson’s formulation, the Hamiltonian for Jacobson’s formulation is

given by
H =X f+uS (3.42)

Note that AZ # X7, in general, because of different definitions of the Hamiltonian.

The direct method approach for optimal control mainly uses Jacobson’s formu-
]ation in the derivation of the Karush-Kuhn-Tucker (KKT) necessary conditions (see
section 2.2). Therefore the co-state estimation from the direct method is accurate for
the problem having a mixed constraint while it may not work well for the problem
having a pure state constraint.

Thus, in general, for a pure state constraint situation DIRCOL will compute A,
while BNDSCO will need Ap. The following example gives some insights into the
different co-state estimation for Bryson’s and Jacobson’s formulation using DIRCOL.
In this example DIRCOL is implemented for the first arc only because the minimum
altitude constraint is active in this arc. Both co-state estimation methods are then used

as initial guesses for BNDSCO but it does not work well. Figures 3.14 and 3.16 show
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3. MINIMUM ALTITUDE FORMULATION

DIRCOL solutions obtained using the following data:

Yo
Vo
Zo

ho

0 deg, Y, = 0 deg

272 m/s, Vi, = 306.324004 m/s
0 m, Ty, = 5813.41774 m
30 m, ht, =30 m.

The following equation shows the differences in the co-state equations for Bryson’s

and Jacobson’s formulation.

e state and co-state equations for the Bryson’s formulation

T-D
m
T-L
m

|4

0

) L
sina@+ —cosa—g=10)
m

coso — —sin o

m

m m

—{ —Af/?g+/\fV+u[T_Dcosa—-é—sina]}

B CapSrepsina Tsina + CipSref cOs

_{(/\5 + 1Y) [ 2m V2m

_ AVOV Sres [
m

0

AB + uV)VS,espn

Cycosa + Cysin a] + /\f}

_{1+<

_ A\l;‘/zs‘refph

2m

[— Cysina + Cjcos a]
2m

[Cd cos a + Csin a] }
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(3.44)
(3.45)
(3.46)

(3.47)

9
+W:|

(3.48)

(3.49)

(3.50)
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e state and co-state equations for the Jacobson’s formulation

\J
Ah

T-D . L gcosvy

— sina + H‘—/—cosa v (3.51)
-D

T cosa — —sina — gsiny (3.52)
m m

V cosy (3.53)

V siny (3.54)

/\J
- Vg siny — A{,gcosy — AV siny + AjV cos y (3.55)
Tsina CygpSpessina  CipS,escosa
_ J| _ _ dPOref 1POref g
{/\7 [ Vim 2m + 2m ty2 vz % 7]

oV S,
_ APV Sre [Cdcosa + Csina
m
0
MV Srespn
—{1 — —l——f—p’[Cdsina -G cosa]
2m

AV V Srcfph

5 [C cosa+Clsma] + }

+ AJ cosy + A siny (3.56)

3.57)

(3.58)

Figures 3.14 and 3.16 show that the computational results for the co-state variables

are very different. It is obvious because the constraint which is adjoined to the Hamil-

tonian differs for both cases. However, the state variables give the same approximate

solutions (see Figure 3.13 and 3.15).

Note that, when solving the TPBVP corresponding to (3.51)—(3.58), finding v in
(3.58) does not lend itself to a systematic iterative procedure, as pointed out by Maurer
and Gillesen [74, Page 111]). On the other hand, u in (3.43)—(3.50) can be found
readily using the conditions 4 = 0 and HZ = 0.

3.4.2 Switching and Jump Conditions

In the previous section we showed that Bryson’s and Jacobson’s formulation produce

very different A, see Figures 3.14 and 3.16. In this section we compare the differences
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Figure 3.13: DIRCOL computational results for the state variables of the Bryson’s
formulation.
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Figure 3.14: DIRCOL computational results for the co-

formulation.
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Figure 3.15: DIRCOL computational results for the state variables of the Jacobson’s
formulation.
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Figure 3.16: DIRCOL computational results for the co-state variables of the Jacobson’s
formulation. Note the different magnitudes compared to Figure 3.14.
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in switching and jump conditions for Bryson’s and Jacobson’s formulations, further to

emphasise the consequences of different definitions of co-state variables A.

3.4.2.1 Bryson’s Formulation

The switching and jump conditions at entry ., and exit ., will be considered. The
jump conditions at entry point can be derived from tangency constraint P(xz) = 0 as

follows. Consider the following equations of Bryson’s formulation

P(x) = [1}3‘1’53] = [ggg] = [hv‘si’;'";"] =0 (3.59)

If we assume the jump occurred at the entry point then the jump conditions are given
by:

At = A" - NTo (3.60)
with
o o [(VveP)T] [ O 0 01
Pe=VaN = [(VEPI)T " |Vcosy siny 0 0 (3.61)

Thus equation (3.60) can be rewritten as:

A (t5) A (te) 0 Vecosy

MEEY [ A(t2) 0 siny o1

M) T )| Tlo 0 | e (3:62)

An(ten) An(t2,) 1 0

or

M(t5) = A(ts) — 02V cosy (3.63a)
M) = A(t) — o2siny (3.63b)
/\I(tz—n = A-’E(tc.'n.) (363C)
Ah(t:n = /\,,(t;n)—a; (363d)
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By substituting 7 = 0 to equation (3.63), the above equation can be reduced as follows:

Mte) = M(te) — 02V (3.64a)
M(ER) = MlEz) (3.64b)

Aot = Aolt) (3.64c)
ML) = Mlts) - o (3.64d)

The switching conditions at the entry point are given by:

h - hmin . '
P(x) = [ V sina ] =0 (3.65)
and
Hf -H_ =0
= —0Vi—ah+ U3 [V siny + V4 cos 'y] =0 (3.66)
with
HD = XA+NV+A i+ Mk (3.67)
HE, = MA+NV+AE+ Ah+ ps [V siny + V4 cos 7] (3.68)

The switching conditions at exit point ¢, are:

HY —HZ = 0

tex tez

= Vsin'y +V4cosy=0 (3.69)

3.4.2.2 Kreindler’s Remarks

Equation (3.19) shows that the altitude constraint is order 2 (¢ = 2). Based on
Kreindler’s remarks in {66, page 244], the constant multipliers o; are unique except

possibly o4_1. If an arbitrary constant £ is added to o,_; then the discontinuity occurs
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at exit point by —¢V . P;. Consider now the following equations:

P, = Vsinvy (3.70)
Vcosny
V.P=| 707 (3.71)
0

Thus the jump conditions at entry and exit points can be derived as follows:

e Jump conditions at entry point

A’Y(t:n) = M(t;) = (o2 + &)V cosy (3.72a)
M(E) = A(t) = (02 + &) siny (3.72b)
Aa(th) = Ao(te) (3.72¢)
Ah(t:n) = ’\h(tc—n) — 01 (372d)
e Jump conditions at exit point
ML) = A(LD) — €V cosy (3.73)
M(tE) = A(tD) - Esiny (3.73b)
A(th) = A(tZ) (3.73¢)
Mr) = ML) (3.73d)

3.4.2.3 Necessary Conditions of Jacobson et al.

In this case the state constraint (3.19a) is adjoined to the Hamiltonian dircctly with
multiplier function v, v 2 0 (see Jacobson and Lele [57] and Krcindler [66]). The

necessary conditions can be derived by defining the Hamiltonian as follows:
I (z,u,\v) = AT f(x,u) + vS(x) (3.74)
The jump conditions at entry and exit points can be derived as follows

A+(t,‘) = A_(t,) - V,‘Sx (3.75)
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3.4 Indirect Method Solution

where the scalar v; is nonnegative,

v 20 | (3.76)
The jump conditions at entry point:
f\vét{n; :\\vgte‘n; 0
v ten _ v t;l 0
Mo | = [ty 1] o 377
An(td) An(ten) 1
or
ML) = () (3.78a)
Ao(th) = A(ts) (3.78b)
Ae(td) = Aalts) (3.78c¢)
)\h(t:n) = /\h(t;n)—lll (3.78d)
The jump conditions at exit point:
) R
v te:c - v t;z 0
o) | = [anesy| bl {o (3.79)
Ah(t::z:) )\h(t;m) 1
or
ML) = A(g) (3.80a)
Aoltl) = Ao(tz) (3.80b)
Altls) = Adlts) (3.80c)
M(ts) = Mlty) - (3.80d)

The jump conditions given by Jacobson et al. are consistent with the DIRCOL re-
sults (see Figure 3.12 on page 49). This is not surprising, because the constraints are

adjoined directly in KKT necessary conditions.
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3.4.3 Numerical Solution

The computational results for the terminal bunt problem were computed by the multi-
ple shooting package BNDSCO [76]. The problem is split it up into two phases: the
first phase is the level flight and the rest of the manoeuvre is the second phase. The
time ¢; at which the transition from phase 1 to 2 occurs must be determined as a part of
the BVP problem. In the presented solution ¢; was estimated from the direct method
approximation. This is a sub-optimal solution obtained using the following data:

Yo = 0 deg, Ye, = =90 deg
Vo = 272 m/s, th = 310 m/s
o = 0m, Ty, = 10000 m

h() = 30m, ht!=0m

where the intermediate time t; = 10.45 sec. The minimum performance index is
40445.48347 m? and final time 41.4789 sec. In the first phase the minimum altitude
h.min constraint is active. The missile starts to climb and then dive to reach the target by
a bunt manoeuvre which is considered in the second phase. The minimum normal ac-
celeration constraint is active during diving. Figures 3.17-3.21 show that the DIRCOL
solutions for the state variables are close enough to the BNDSCO solutions. However,

the co-state approximation does not work well in the first phase.
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Figure 3.17: Altitude versus time histories using BNDSCO.
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Figure 3.18: Speed versus time histories using BNDSCO.
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Figure 3.19: Flight-path angle versus time histories using BNDSCO.
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Figure 3.20: Angle of attack versus time histories using BNDSCO.
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Normal acceleration
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Figure 3.21: Normal acceleration versus time histories using BNDSCO.

3.5 Summary and Discussion

The study of computational results for the minimum altitude of terminal bunt manoeu-
vre with varying final speed is important from the operational viewpoint. Since the
mission is to strike a fixed target while minimising the missile exposure to anti-air
defences, one should consider both the type of target and the exposure of the missile
during the manoeuvre. If the mission to strike a bunker, it is important to hit the target
with the maximum capability of the missile. If the target’s prosecution may lead to
collateral damage, then a more measured impact is advisable, so that the final speed
should be lower. It is always important to avoid anti-air defences during the manoeu-
vre, so optimal exposure must be taken into account. Based on the computational result
using DIRCOL the optimal exposure for maximum speed 310 m/s is more than twice
bigger compared to final speed 250 m/s, while the manoeuvre time is not much dif-
ferent (see Table 3.1, page 52). Hence, if the mission has a risk of collateral damage,
the final speed 250 m/s or 270 m/s is a better choice than 310 m/s, also because the

anti-air defences have lees time to intercept the missile (see Figure 3.3). While the
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Table 3.2: Performance index and final time for the minimum alti-
tude with varying initial altitude using DIRCOL

| Initial altitude hq (m/s) J ty(sec)  grid points
100 16894.4321 40.817911 140
200 17176.9987 40.945641 144
500 18423.3035 41.200737 139

final speed 310 m/s trajectory has higher exposure, it has a comparable flight time, but
much higher terminal kinetic energy.

The above parametric study assumed that the missile launches from a ship, hy =
30m. The second parametric study is by varying initial altitude of the missile. In this
case the missile is assumed to be launched from an aircraft. In this case the missile is
launched at 100m, 200m and 500m (see Figures B.1-B.6 on pp. 172-175). It can be
seen from Table 3.2 that the influence of the initial altitude is not really significant for
the performance index and final time.

Even though the direct collocation does not give an accurate solution, the numecrical
solutions give a starting point to analyse the performance of the missile during the bunt
manoeuvre. The optimal trajectory of the manoeuvre can be split it up into three main
arcs.

The first arc is level flight at the minimum altitude. The thrust is on the maximum
value and the pure state constraint is active which is the minimum altitude constraint.
The flight time is longer for the smaller final speed which means that the missile tries
to climb as late as possible to gain enough power to do the bunt manocuvre to satisfy
the final speed. This arc is the most difficult one to compute because the pure state
constraint is active. DIRCOL package can solve this arc and gives a good insight into
the problem.

In the second arc the missile must climb in order to achicve the final condition.
The thrust is still on the maximum value for some cases while for the case 250 m/s
the thrust switches to the minimum value. The details of the switching structure of the
equations and the constraints can be seen in Figure 3.23-3.27 on pp. 83-91. The nor-

mal constraint is active directly for the case 250 m/s and at the beginning of climbing
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the normal acceleration is on the maximum value. The normal acceleration switches
to the minimum value following the switching of the thrust to the minimum value. It is
important to notice that the DIRCOL solutions produce a free arc (no constraint active
except the thrust saturated on the maximum value) at the beginning of the climbing for
the case 270 m/s and then saturated on the maximum value until the missile approach-
ing to dive. Again for the same case 270 m/s, DIRCOL produces a free arc during
this arc. Just before the missile turns over to dive, the normal acceleration constraint
is active again and is saturated on the minimum value. The thrust is the only active
constraint for the case 310 m/s in this arc.

The third arc is diving. Since the initial diving speed is lower than the final speed,
the missile must gain the power to reach the target. Therefore the thrust is on the
maximum value. It can be seen in Figure 3.23 that the thrust switches to the maximum
value for the case 250 m/s. The normal acceleration is saturated on the minimum value
for the case 250 m/s and 270 m/s, while for the case 310 m/s the minimum normal
acceleration is active for just a few seconds after the missile starts to dive.

3.5.1 Comments on Switching Structure

An intriguing feature of the DIRCOL solutions in Figures 3.3-3.12 is discontinuous
jumps in the angle of attack a, particularly for final speeds 250 m/s and 270 m/s,
see Figure 3.6 on page 46. Both the thrust T and the angle of attack a are controls,
but T enters the Hamiltonian linearly (thus allowing jumps via bang-bang control,
see equation (3.11) on page 54), but o does so non-linearly. Thus, on free arcs (no
constraints active), the optimal value of & must computed from the condition H, = 0,
see equation (3.10) on page 54. However, for constrained arcs one should notuse H, =
0, but an appropriate equality, corresponding to the constraint active. For example, if
the normal acceleration is saturated at L = Ly, then optimal o is computed from
equation (3.32) on page 61; similarly, if L = L, is active, optimal « is obtained from
equation (3.36) on page 62.

Consider now the jumps in the angle of attack a in Figure 3.6, see also Figure 3.2.
These jumps might be caused by multiplicity of solutions of « in the Hamiltonian, see
Figure 3.22 on page 82. While there are three possible solutions of H, = 0, defining

81



3. MINIMUM ALTITUDE FORMULATION

optimal « for a free arc, only the solution closest to zero is physically meaningful,
as the other two are approximately —114.65° and 131.85% clearly infeasible values.
Moreover, if the equation //, = 0 is solved at each time step using the Newton-
Raphson method with an initial guess of o close to (), the very steep slope will prevent
the method from finding the outlying solutions. Thus, we may assume that jumps in
the value of «, observed in Figure 3.6 for 1}, = 250 m/s or i}! = 270 m/s, are not due
to multiplicity of solutions of /, = 0. In other words, the fact that the Hamiltonian is

not regular, does not affect the numerical solution for free arcs.

6 H vsa
x 10 &
15 T T T T T T e e
1k
0.5F
I:
o+ 4
-0.51 8
-1 1 1 1 L 1 1 1
-4 -3 -2 -1 0 1 2 3 4
« (rad)

Figure 3.22: Hamiltonian (3.3) on page 53 is not regular, as the optimality condition
H, = 0, equation (3.10) on page 54, has multiple solutions. The above plot of I1,
versus a, revealing three possible values of optimal o, was obtained for t = 10.45 sec;
similar curves were obtained for other times. Note a very steep slope in the vicinity of
the middle solution (the one closest to zero): the slope is almost vertical, as the tangent
is approximately 500,000.
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Case 270 m/s
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A min
max min max
T
max min
flight climbing diving

Figure 3.23: Switching structure of the minimum altitude for the terminal bunt ma-
noeuvre.
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In order to understand what does cause discontinuities in a in Figure 3.6 let us first
investigate the case of final speed 310 m/s. Since the missile is launched at h = hyppyin,
the first arc (level flight) is directly a constrained arc and therefore optimal « is com-
puted not from I, = 0, but from equation (3.20a) on page 57. After 8.001305 sec, the
first arc ends, as the missile starts climbing, thus beginning the second arc. Although
the altitude increases, see Figure 3.3, the normal acceleration is not saturated during
climbing, because the speed is not big enough, see Figure 3.4, to cause the normal
acceleration to saturate, see Figure 3.8 and equations (1.6)—(1.8) on pp. 4-5. Thus,
while the thrust is saturated on the maximum value, T = T,,.., NO other constraints
are active, so that optimal «a is computed from I/, = 0, see equation (3.10) on page
54, where T, should be substituted for T. From the point of view of calculating
optimal ¢, this is a free arc (note that T' = T,,,,, throughout). During climbing, the
speed V decreases while the angle of attack a increases to facilitate climbing. While
rapid climbing is necessary, the missile should also turn over to begin its dive as soon
- as possible, so that the excess of altitude is minimised. Therefore the angle of attack «
starts decreasing, and reaches a negative value at time 25.21624 sec. During diving the
speed V increases to satisfy the terminal final speed condition. This, in turn, causes -
the activation of minimum normal acceleration constraint L,,;, at time¢ 34.91479 sec,
marking the end of the free arc, which began at 8.001305 scc when the constrained
first arc (level flight) ended, see Figure 3.3. The remainder of the trajectory is another
constrained arc, with L = Ly,;,, so that is computed from equation (3.36) on page
62, see also Figure 3.23 on page 83.

In summary, for the case V; ;= 310 m/s, the thrust T is saturated at 7}, throughout
the whole trajectory, and the trajectory starts with (i) a constrained arc (b = h,,;,,), last-
ing from 0 to 8.001305 sec, followed by (ii) a free arc between 8.001305 and 34.91479
sec, and finishes with (iii) another constrained arc (L = L,,;,). As for optimal ¢, it
is computed from equation (3.20a) on page 57 on (i), then from cquation (3.10) on
page 54 on (ii), and from equation (3.36) on page 62 for (iii). This results in « being a
continuous function of time ¢, but with two poihts of non-smoothness, coinciding with

the (i)—(ii) and (ii)—(iii) transitions, sce Figure 3.6.

84



3.5 Summary and Discussion

For the case of final speed 270 m/s the time of the level flight is longer than for
the case of final speed 310 m/s. It means that the missile has a higher speed at the
end of the first arc, and hence when it starts climbing with a rapidly increasing altitude
the maximum normal acceleration constraint L,,,. is active, after a short free arc on
[t7,t}] (see Figure 3.8). At the start of climbing at t7 = 19.26365 sec, optimal o
is computed from equation (3.10) until it hits the maximum normal acceleration at
tf = 19.58206 sec. Then optimal « is computed from equation (3.32). Note that
the activation of maximum normal acceleration is caused by the high speed of the
missile (see equations (1.6)—(1.8)) while the thrust is T = T,,,,, throughout the whole
trajectory. The angle of attack must decrease to facilitate the missile turnover at t; =
26.26862 sec. While rapid decrease in « is needed, it soon causes the activation of
minimum normal acceleration constraint L,,;, at t7 = 28.49747 sec. It must be noted

-that the thrust is still on the maximum value. The angle of attack « is then computed
from equation (3.36), see also Figure 3.23.

In summary, for the case Vi, = 270 m/s, the thrust T is saturated at T, throughout
the whole trajectory. The trajectory starts with (i) a constrained arc (h = h,,,;,,), lasting
from 0 to 19.26365 sec, followed by (ii) a short free arc between t] and t], then by (iii)
another constrained arc (L = Lp,qz) from t} to t5, then by (iv) another short free arc
on [t , t3 ], and—finally—by (v) the last constrained arc (L = Lpn). This results in o
still being a continuous function of time ¢, but with steep slopes on the short intervals
(t7,t7] and [t7,t3], and non-smoothness points at ¢, t1,t; and t§. As for the case
Vi, =310 m/s, non-smoothness points are due to joining of constrained and free arcs:
(i)—(ii) at £, (ii)—(iii) at tT, (iii)—(iv) at t; and (iv)—(v) at tS.

For the case of final speed 250 m/s the time of the level flight is longer than for the
case of final speed 270 m/s. Now t; and t} merge into one point t,, because the missile
has a very high speed at the end of level flight and the altitude increases rapidly, so that
the constraint L = L, is activated immediately after the end of level flight, i.e. at
t, = 20.68605 sec. Thus, optimal « is computed from equation (3.20a) to the left of ¢,,
and from equation (3.32) to the right, causing a jump in «; note that T = T,,,,, on both
sides of ;. The constrained arc (L = L,,,;) to the right of ¢, continues until speed V'
decreases enough for L < Ly, to become true, see Figure 3.4 and equations (1.6)—
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3. MINIMUM ALTITUDE FORMULATION

(1.8) on page 4-5 (note that V' dominates in equation (1.6)). When L = L,,,, happens
at time 20.68605 sec, two factors contribute to computation of the optimal solution
at that point: 1) the need to decrease speed V further in order to meet the terminal
condition V;, = 250 m/s, 2) occurrence of a free arc as on [t7,t3] for V;, = 270 mys.
To achieve 1), optimal o should decrease rapidly towards negative values (to facilitate
turnover), while satisfying I, = 0 according to 2). However, rapid decrease in a
activates the L = L,,;, constraint and the decrease is limited via equation (3.36). In
the view of the arrested decrease in a, the only other way of facilitating the required
turnover is by a more rapid decrease in speed V. This indeed is achieved by switching
the thrust from 7,4, to Ty, and holding it at T,;, for a short period of time, see
Figure 3.7 on page 47. Hence, the short free arc between t; and ¢, seen for V; ;=270
m/s, collapses now to a point t; = t7 = t, = 28.036943 sec at which optimal « is
computed from H, = 0, or equation (3.10). However, in that equation T changes from
T = Thqq to the left of £, into T' = T3, to the right of ¢, thus effecting a jump in
« at t,. This discontinuity in « at t; immediately activates the L = Lmin constraint
which remains active till ¢5. Still before ts, the thrust switches back to T;,,,;, once its
short-lasting lowering to 7,;, accomplished the necessary faéilitation of the missile
turnover, see also the switching function in Figure 3.24 on page 87.

. In summary, for the case V; ;= 250 m/s, the switching structure of the case V, ;=
270 m/s occurs in a limiting form. In other words, the free arcs [t7,t}] and [t7,17]
collapse each to a point: t] = tf = t; and t; = t§ = t,. In the latter case, a
swi;ch from T, to T, also happens to facilitate the missile turnover—the thrust
was at T},,,. all time for th = 270 m/s. This results in a no longer being a continuous
function of time ¢, but the causes of jumps at t; and ¢, are of different origin. In the
case of ¢, the collapsed free arc does not show itself in the optimal solution: optimal
a is computed from equation (3.20a) to the left of ¢; and from equation (3.32) to the
right of ¢;, while T = T, on both sides of £, (and at ¢,). On the other hand, optimal
a at ty is computed in a more subtle way. To the left of ¢; it is obtained from equation
(3.32) and to the right of to from equation (3.36), but its transition between these two
values takes it through equation (3.10), where T jumps from T4z t0 Tpuin. Thus, the
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3.5 Summary and Discussion

jump in « at t; is caused by the jump in T', affecting it through the optimality equation

for a (collapsed) free arc, H, = 0.

0.02 —T T T T T T T T

01}
-0.12f PR

—0.14} SRR

-0.18 L v
0
time {(sec)

Figure 3.24: Switching function Hy versus time, see equation (3.11) on page 54

3.5.2 Comments on Implementation

DIRCOL worked very well for the whole trajectory, while NUDOCCCS had a conver-
gence problem due to the pure state constraint activation. The direct method results
were then used to feed a multiple shooting method as initial guesses for the state and
co-state variables. It is well known that a multiple shooting requires a very good initial
guess to start a Newton’s iteration. Furthermore, for complex problems the jump and
switching points must be guessed accurately. In this problem we fail to solve the ter-
minal bunt problem with BNDSCO due to the pure state constraint. The initial guess
from DIRCOL is based on Jacobson’s formulation, therefore the pure state constraint is
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3. MINIMUM ALTITUDE FORMULATION

adjoined directly. Since Jacobson’s formulation may be extremely difficult to handle,
Bryson’s formulation is used to derive the necessary conditions. The jump condition
of the DIRCOL solution is the same as the jump condition given by Jacobson’s formu-
lation. These can be seen on Figure 3.12 and equation (3.80).

Due to the difficulty to handle a pure state constraint, the suboptimal trajectory
is given by splitting up the trajectory into two phases. The first phase employs the
reduced equations on the state when the minimum altitude constraint is active and the
rest of the manoeuvre is the second phase. At the second phase the minimum normal
acceleration is active. Each phase is solved using BNDSCO, but the time when the
first phase ends and the second phase begins is taken from the DIRCOL solution, thus
the phases are joined in a suboptimal way. The suboptimal solutions have a slightly
higher performance index compared to the DIRCOL solution.
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3. MINIMUM ALTITUDE FORMULATION

to

P M(ts) = M(t)—€EVcosy
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Figure 3.26: Schematic representation of the boundary value problem associated with

the switching structure for the minimum altitude problem, case 270 m/s.
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to

Yo = 0deg Ay () Ay(t.z) = EV cosy
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Figure 3.27: Schematic representation of the boundary value problem associated with

the switching structure for the minimum altitude problem, case 310 m/s.
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Chapter 4

Minimum-Time Formulation

This chapter focuses on the optimal trajectories of a generic cruise missile attacking
a fixed target in minimum time [100]. The target must be struck from above, subject
to missile dynamics and path constraints. The generic shape of the optimal trajectory
is: level flight, climbing, dive; this combination of the three flight phases is called the
bunt manoeuvre.

In chapter 3 we analysed and solved the terminal bunt manoeuvre of a generic
cruise missile for which its exposure to anti-air defences was minimised. This resulted
in a nonlinear optimal control problem for which time-integrated flight altitude was
minimised. In this chapter we consider the same missile model, but we analyse and
solve the terminal bunt manoeuvre for the fastest attack. This leads to a minimum-time
optimal control problem which is solved in two complementary ways.

A direct approach based on a collocation method is used to reveal the structure of
the optimal solution which is composed of several arcs, each of which can be identified
by the corresponding manoeuvre executed and constraints active. The DIRCOL and
NUDOCCCS packages used in the direct approach produce approximate solutions for
both states and co-states.

The indirect approach is employed to derive optimality conditions based on Pon-
tryagin’s Minimum Principle. The resulting multi-point boundary value problem is
then solved via multiple shooting with the BNDSCO package. The DIRCOL and
NUDOCCCS results provide an initial guess for BNDSCO.
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4. MINIMUM-TIME FORMULATION

This chapter is organised as follows. In Section 4.1 the problem formulation is
defined. Section 4.2 presents some computational results of the minimum-time prob-
lem using the direct collocafion method package DIRCOL, followed by a qualitative
analysis for the resulting optimal trajectory. Section 4.3 focuses on the mathemati-
cal analysis of the problem based on the qualitative analysis. Numerical results using
BNDSCO package is presented in Section 4.4. BNDSCO, DIRCOL and NUDOCCCS
results are compared in that section. Finally, summary and discussion is presented in
Section 4.5.

4.1 Minimum Time Problem

In this section we consider the same missile model as defined in section 1.1 and the
only difference is the objective function.

The problem is to find the trajectory of a generic cruise missile from the assigned
initial state to a final state with the minimum-time along the trajectory. This problem

can be formulated by introducing the performance criterion

ty
J = / dt. ' (4.1)
to .

4.2 Qualitative Analysis

This section gives a qualitative discussion of the optimal trajectory of a cruise missile
performing a bunt manoeuvre.

The computational results are solved using a direct collocation method (DIRCOL)
based on von Stryk [109]. Figures 4.1-4.6 shows the computational results using the

following boundary conditions:

v = 0 deg, Y, = —90 deg
Vo = 272m/s, Vi, = 250,270,310 m/s
To 0m, ¢, = 10000 m
ho = 30 m, hy

,=0m.

94



4.2 Qualitative Analysis

altitude (m)

- V=310 m/s
- V=270 nvs

vV '=250 mvs

time (sec)

Figure 4.1: Altitude versus time histories for minimum time problem using DIRCOL
for a varying final speed.
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Figure 4.2: Speed versus time histories for minimum time problem using DIRCOL for
a varying final speed.
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flight—path angle (rad)

= 5r = V,=310ms
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— V=250 m/s
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Figure 4.3: Flight-path angle versus time histories for minimum time problem using
DIRCOL for a varying final speed.
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Figure 4.4: Angle of attack versus time histories for minimum time problem using
DIRCOL for a varying final speed.
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Figure 4.5: Thrust versus time histories for minimum time problem using DIRCOL for
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Figure 4.6: Normal acceleration versus time histories for minimum time problem using

DIRCOL for a varying final speed.
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4. MINIMUM-TIME FORMULATION

Based on Figures 4.1-4.6, an attempt is made to identify characteristic arcs of
the trajectory, classify them according to the constraints active on them, and suggest
physical/mathematical explanations for the observed behaviour. In this analysis the
missile is assumed to be launched horizontally from the minimum altitude constraint
(ho = 30 m). The trajectory is split into three subintervals: level flight, climbing and
diving.

4.2.1 First Arc (Flight): Minimum Altitude Flight

The missile flies at the minimum altitude with the thrust on the maximum value. Thus
the thrust and altitude constraints are active directly at the start of the manoeuvre. In
this case the altitude A of the missile remains constant on the minimum altitude (A,,.in)
until the missile must start climbing. The cruise-flight time depends on the final speed
V,f (see Figure 4.1).

Equation (1.3d) equals zero during this flight because the altitude remains constant.
It means the flight path angle + equals zero because the velocity V' is never equal to
zero during flight. Obviously, 7(t) = 0 causes the derivative of the flight path angle 4
to be equal to zero. The dynamics equation (1.3) is therefore reduced as follows:

. T-D . L
vy o= — sma+Ecosa—g—0 (4.2a)
. -D
V = T cosa — £ sin o (4.2b)
m m
=V (4.2¢)
= 0 (4.2d)

We now consider the consequences of the right-hand side of equation (4.2a) being
zero. This condition means that the normal acceleration L/m remains almost constant,
because the angle of attack « is very small. The first term on the right hand side of
equation (4.2a) is small, because sina & a =~ 0 and we are left with L/m = g due to
cosa =~ 1.

In this arc, the speed increases, because for small a

VzT_D

>0, asT>D.
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4.2 Qualitative Analysis

This in turn means that the angle of attack o slowly decreases in accordance with

equation (1.6) and in order to maintain L/m approximately be equal to g.

4.2.2 Second Arc (Climbing)

The missile climbs eventually in order to achieve the final condition of the flight-path
~,- Figure 4.1 shows that the missile climbs directly at the beginning of launch for the
case of final-speed V; = 310. The thrust constraint is the only active constraints at the
beginning of climbing. Although the missile needs the full power to reach the target
as soon as possible, the missile must satisfy the final speed at the boundary conditions.
Therefore the thrust switches to minimum value for the case of final-speed 250 m/s and
270 m/s when the missile nearly turns over.

At the end of climbing the angle of attack is rapidly decreasing, while for the case
of final-speed 250 m/s the angle of attack is increasing and then decreasing rapidly.
This makes the maximum normal acceleration constraint active for the case of final-
speed 250 m/s. The minimum normal acceleration is active at the end of climbing

because of rapidly decreasing angle of attack.

4.2.3 Third Arc (Diving)

The missile dives with the minimum thrust at the beginning of diving for the cases of
final-speed 250 m/s and 270 m/s. Furthermore the missile must hit the target a certain
value speed at the end of manoeuvre. In addition, the speed during the tumnover is
lower than the final speed. Therefore the speed must increase and hence the thrust
switches back to the maximum value. It means the thrust will facilitate the missile’s
arrival on the target as soon as possible. .

In this case the normal acceleration is still saturated on the minimum value. Obvi-
ously, the altitude goes down to reach the target (y < 0 — h <0, see equation (1.3d)),
while the speed goes up to satisfy the terminal speed condition V;,. Finally, the missile

satisfies the terminal condition of the manoeuvre approximately ¢y after firing.
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4. MINIMUM-TIME FORMULATION

Table 4.1: Performance index for
the minimum time problem using

DIRCOL

| Final speed V;, (m/s)  J (sec)
250 39.64711
270 39.90681
310 40.90780

4.3 Mathematical Analysis

This section describes mathematical analyéis of the minimum-time terminal bunt prob-
lem by considering qualitative analysis results from Section 4.2. The basic premise of
" the analysis is to exploit the clearly identifiable arcs of the trajectory and obtain the full
solution by piecing them together. The theoretical basis of this approach is Bellman’s
Optimality Principle [73, page118): Any piece of an optimal trajectory is optimal, a
result following easily from a proof by contradiction. While the analysis of trajec-
tory is thus considerably simplified, establishing the length (duration) of each arc still
requires formulation and solution of consistent Boundary Value Problems (BVPs).

In section 4.3.1 the problem with only thrust constraint is considered. Section 4.3.2
explains the derivations relevant to optimal control problems with path constraints.
Section 4.3.3 presents the first arc of the bunt manoeuvre, which is constrained on the
altitude. The climbing manoeuvre is described in section 4.3.4. The last part of the

trajectory, the diving manoeuvre, is discussed in section 4.3.5.

4.3.1 Constrained on the Thrust Only

First, we investigate the problem when the initial and final conditions (1.9) are active
and the control is constrained on thrust 7" only (1.12). Necessary conditions for opti-

mality can be determined by applying Pontryagin’s Minimum Principle [84]. For this
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purpose, we first consider the Hamiltonian for the unconstrained case:

A L
H™ = 1+—1|: sina+——cosa—gcos*y]
m

|4 m
T-D L . ]
+Av cosa — —sina — gsiny
m
+A:V cosy + Ay Vsiny, 4.3)

where the co-states A = (A, Av, Az, Ap) have been adjoined to the dynamics system
of equation (1.3). The co-states are determined by

. OH™
A= — . .
5% 4.4
The component of co-state vector A satisfying the preceding equations are:
‘ Ay .
A, = - —v—gsm'y-—)\vgcosv— AV siny + AV cosy “4.5)
. Tsina CapSregsina  CypSres cos g
Av = ‘{’\’[" Vim om T om T y2e®?
—/\—V%gﬁ Cycosa+ Cysina| + A;cosy + A sin'y} (4.6)
A =0 4.7)
A, = A, [ _ CaV Sressinapy, + CiV Sy cos aph]
2m 2m
+/\V [CdV2Sref COS app + CIV2S,-ef sin aph] (4.8)
2m 2m
where:

Ph = 2Clh+02

The optimal values of the control variables are generally to be determined from the
Pontryagin’s Minimum Principle. A necessary condition for optimal control is the
Minimum Principle

min H™f 4.9)

101



4. MINIMUM-TIME FORMULATION

i.e. the Hamiltonian must be minimised with respect to the vector of controls u. Ap-
plying (4.9) to (4.3) we obtain

H™ = (T-D+ La)[% cosa — ARvsincx]

A Av
—(Dy+ L)| i e = " (4.
(Do + )[V sina + cosa] 0 (4.10)

Since the control T" appears linearly in the Hamiltonian, the condition II;’” = ( does

not determine optimal thrust. Since T is bounded, the following provides the minimum

of the Hamiltonian:
Trae if Y <0,

T =1 Tun, if ;Y =0,
Tonin if I > 0.
with .
S o + Y COos &
TVm Y m

I = (switching function) @.11)

e Case when T on the boundary (T’ =T,z or T = T,:n)
In this case « can be detc_:rmined from:

- T—D+Lah ,
fIa tf _—m—_ [V‘Y cosa — AV sin a]
Do+ LA, .
—— [—‘75ma+)\vcosa] =)

4.12)

The value of a cannot be derived in closed form from (4.12), and must be ob-

tained numerically.

e Case when T = Ty;,, (singular control)
When the switching function 17"/ becomes zero in an interval (5, ;) C (to, ),
the control corresponding to the magnitude of the thrust 7' is singular. In these
circumstances, there are finite control variations of 7' which do not affect the
value of the Hamiltonian.

From Bryson & Ho [23, page 246], the singular arcs occur when:

H™ =0 and det/I™f =0 (4.13)
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Substituting (4.3) into (4.13) with component u = (T, ) yields

sin o cos o
+ Av

HP = A

= Ay 0 4.14)

m

A
H™ = (T—D+Da)[~ic0sa—%sina]

Vm
A A
—(DQ+L)[V—;z-sina+H"cosa] =0 (4.15)
det H™ =0 &= )\, ‘3:‘ - ,\Vs‘:‘n" =0 (4.16)

Conditions (4.14)-(4.16) cannot be satisfied simultaneously, so we conclude that
there are no singular arcs. However, jump discontinuities in the control 7" may
appear if, at a time £, the switching function (4.11) changes sign.

The Hamiltonian is not an explicit function of time, so H™/ is constant along the
optimal trajectory and must be equal zero because of minimum-time problem.

4.3.2 Optimal Control with Path Constraints

In section 4.3.1 we derived necessary conditions for optimality by considering only the
initial and terminal conditions. In this section the level of complexity is increased by
considering some additional constraints as defined in section 1.1.

The first state path constraint (1.10) can be split as Vonin—V < 0 and V — Ve < 0.
Both of them are of order 1, because V explicitly depends on the controls, see [23,
pp. 99-100]. Since the speed constraint is not active during the manoeuvre in this case
therefore it will not be taken into account in the Hamiltonian (see figure 4.2 page 95).
The second path constraint (1.11) is of order 2 and the mixed state-control constraint
(1.13) is split as L — ng < 0 and ;n% ~ Lypar < 0 and % depends on the control
explicitly. The Hamiltonian can be defined as follows:

L L .
H™ = H™ — — 4+ Lpin — — Lppox
+#1{ mg+ }‘th{mg }+u3(h)
The differential equations for co-state vector A = (A,, Ay, Az, M) can be written as

6 Hmtc
or

A= — 4.17)
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Since these equations are rather lengthy, they are omitted here. For the Lagrange mul-

tipliers p; = 1,..., 5, there must hold

= (0, if the associated constraint is not active;
Ha 120, if the associated constraint is active.

From section 4.2 we know that the state path constraint (1.10) is not active during
the entire manoeuvre. Therefore in the following section we consider only altitude and

normal acceleration constraints.

4.3.3 First Arc: Minimum Altitude Flight

In this analysis we consider only the state path constraint h,,;, < h and thrust control
constraint (7" is on the maximum value). In this-case we assume that the missile starts at:
the initial altitude h = h,,;, and T' = T,,,,,. Therefore the constraints are active at the
start of the manoeuvre directly. The constraint hmi,,'g h has no explicit dependence
on the control variables, therefore we must take the time derivative on the constraint
until, finally, explicit dependence on the control does occur. Consider the following

equations:

Y S (4.18a)
h = Vsiny=0=>+() =0 for t€ [to,t] | (4.18b)
= Vsiny+ Vycosy=0= ¥(t) =0 for t € [to,t] (4.18¢)

The controls appear explicitly after differentiating the constraint h,,,;,, < h twice, there-
fore the order of the constraint is 2. Substituting equation (4.18) in the equation of
motion (1.3) we obtain the following reduced equations:

-D
v o= T sina+£cosa—g=0 (4.19a)
m m
. -D
V = T cosa-—ﬁsina (4.19b)
m m
=V (4.19¢)
= 0 (4.19d)
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The angle of attack a can be obtained numerically from equation (4.19a). Then sub-
stituting a to equation (4.19b) and (4.19c¢), these equations can be solved as an initial
value problem (IVP). Thus we can find the first arc easily, but we do not know how
long it will last. For this purpose we should formulate the appropriate boundary value
problem (BVP) which involves finding co-state variables by defining the Hamiltonian

as follows:

H™e = H™ 4 44 { Vsiny + V4 cosv} (4.20)

The appropriate co-state equations must be derived. The necessary conditions for op-
timality is given by

H"® = (T =D+ La) [(-’:-} + ugv) cosx _ %sina]
—(Dg + L) [(—){—} + u3V) Sifna + %cosa] =0

The angle of attack « can be obtained from equation (4.19a) while the Lagrange

4.21)

multiplier 3 can be derived explicitly from equation (4.21) and substituted into state
and co-state equations. Since we know the flight path angle and the altitude during this
manoeuvre, the number of differential equations reduces to six.

4.3.4 Second Arc: Climbing

In this analysis we consider thrust and normal acceleration constraints. From the qual-
itative analysis, we know that the thrust control switches to the minimum value during
climbing for the final speed 250 m/s and 270 m/s cases, therefore the switching function
must change sign from negative to positive. In this section we do not derive optimality
conditions for the “free” arc cases, because we can refer to section 4.3.1 for it.

Consider mixed state-control inequality constraints, as mentioned in equation (1.13):
L
Lmin g _ g Lmaa:
mg
. and L explicitly depends on the control a. The inclusion of the mixed constraints

above leads to the augmented Hamiltonian:

H™ = H™ 4 ul( - —nf—g + me) + ﬂ2(1—nl:§ - Lmaz) 4.23)
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The right-hand side of the differential equations for the co-state equations are to be
modified along subarcs of this second arc. Additionally, we have a necessary sign

condition for the Lagrange parameter y;,

=0 on unconstrained subarcs
ul mtf .
= -’i’#”ﬂ on constrained subarcs
and
=0 on unconstrained subarcs
l_[,z mtf ' .
= —H"L—a’"ﬂ on constrained subarcs
where:

e optimality condition when normal acceleration is on the maximum value

A
H™ = (T-D+ L,) [—i cosa — v sin a]
Vm m

—(Da + L) [% sina + )T‘—’;,- cos a] + 2 (%;—) =0 4.29

e optimality condition when normal acceleration is on the minimum value

A A
mitl Y v .
= (T-D La[——- _vg ]
oy ( + Lg) Vo CO8Q — —sina
Ay A Lo
~(Do+ L) [V—;n sina + EV Cos a] — (m_g) =0 (4.25)
When the maximum normal acceleration L,,,., constraint is active (case 250 m/s), the

angle of attack can be determined from (1.6) as

_ 2mgLpaz — BapV2S,ef

4.26
Blpvzsref ( )

«

Equation (4.26) is valid until equation (4.11) changes the sign to positive.
Below we summarise the results for the case when the normal acceleration is satu-

rated on the maximum value (L,q2)-
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e State equations:

. L 1
= sina + —
07 { mcosa gcos'y}v
vV = cosa——sma gsin~y
m
= Vcos'y
= Vsiny

e Co-state equations:

. A .
Ay, = -—{T/lgsin’y—/\vgcosv—/\zVSin’Y‘*‘)\hVCOS’)’}
. T sin o CdpS,ef sina  C1pS;es cos 9
= —<¢A
Av { | T Ve om  am T2

_éﬂ’_:;_sfﬁ[ [Cd cosa + Cysin a]

) L
+AzCO8Y + Apsiny + po [—V] }
\ mg

A = 0

Ay = {i—gﬁr—"f—ph[C sina — Clcosa]
m.

2m

2 L
—)‘LV—M [C cosa+C’,s1na] +u2[ ;]}

e Optimality condition
A A
H™ = (T—-D+ L) [-—7— cosa — =2 sin a]
Vm m

Ay A L,
—(Dy+ L) [V_m- sina + EV cosa] + o [mg] =0 (4.28)

where
_ 2mgLpaz — BapV?S,ef

BlpV2Sref

and the thrust switches to the minimum value when H:'r"tf changes sign from negative

(4.29)

to positive.
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4. MINIMUM-TIME FORMULATION

4.3.5 Third Arc: Diving

In this analysis we consider only the normal acceleration constraint. At the start of div-
ing the thrust is on the minimum value and then switches back to the maximum value
for the final speeds of 250 m/s and 270 m/s cases. In addition, normal acceleration is
saturated on the minimum value. The angle of attack can be determined from (1.6) as
follows: omglL ByoVS
min — 132 re
a= B8 L (4.30)

The Hamiltonian and co-state equations are nearly the same as in the previous section,

therefore the derivation is omitted here. The equations can be summarised as follows:

e State equations:

. {T—D L }1
¥ = Sina + —cosa — geosy p—
m |4

T

m
V = —Lcosa— sin a sin
I gsm?y
z = Vcosy
= Vsinvy
e Co-state equations:
. Ay .
Ay = — Vgsm'y—)\vgcosv—)\zVsm'y+/\thos'y
. Tsina CgpSressina CipSregcosa g
Ay = —{)\7 ~ Vi o + o +—‘75<,os'y
A Sre L
pr_f[(] cosa+Clsma] + Az cosy + Apsiny — ul[ ‘;]}
de = 0
\ A Te )
Ay = {—V;l—fﬂ[C sina — Clcosa]

__’\L‘_/;%i@ [Cd cosa + C;sin a] - [%] }
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e Optimality condition

A A
mtl  __ _ 2 — _V 1
H™ = (T-D+ L,,,)[Vm cosa — — s1na]
A’Y . AV La
(Da+ L) [Vm sina + P cos a] — [m—g] =0 4.32)

where

_ 2mngin - B2pV25ref
a= TS (4.33)

4.4 Indirect Method Solutions

The multi-point boundary value problem is solved by means of the multiple shooting
code BNDSCO [76] and compared with the DIRCOL and NUDOCCCS results. The
direct method results based on DIRCOL and NUDOCCCS packages give a good ap-
proximation for the state and co-state variables although the problem involves an active
mixed state-control inequality constraint. Figures 4.7-4.15 show the computational re-
sults for BNDSCO, DIRCOL and NUDOCCCS results for the following boundary

conditions.

The initial conditions are:

Yo = 0 deg,

Vo = 272 ms,
g = 0 m,

he = 30 m.

The final conditions are:

Y, = —90 deg,
Vi, = 310 m/s,
x;, = 10000 m,
hy, = 0m.
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- - NUDOCCCS

" NSS! P, | — e J

. L
) 5 10 15 20 25 30 35 40 45

time (sec)

Figure 4.7: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the flight-
path angle versus time, constrained minimum time problem.
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Figure 4.8: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the ve-
locity versus time, constrained minimum time problem.
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altitude (m)
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Figure 4.9: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the alti-
tude versus down-range, constrained minimum time problem.
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Figure 4.10: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the nor-
mal acceleration versus time, constrained minimum time problem.
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Figure 4.11: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the angle
of attack versus time, constrained minimum time problem.
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Figure 4.12: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the A,
versus time, constrained minimum time problem.
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Figure 4.13: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the Ay
versus time, constrained minimum time problem.
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Figure 4.14: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the A,
versus time, constrained minimum time problem.
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Figure 4.15: Comparison of BNDSCO, DIRCOL and NUDOCCCS results of the A,
versus time, constrained minimum time problem.

4.5 Summary and Discussion

The purpose of this chapter was to find the fastest trajectory to strike a fixed target

which must be hit from above. Firstly, the computational results were obtained by us-
ing direct method packages DIRCOL and NUDOCCCS for varying final speed. The

computational results show that varying the final speed produces no significant dif-

ferences in the final time (see Table 4.1). Furthermore, if we consider the minimum

Table 4.2: Performance index for the mini-
mum time problem for the case of final speed

Vi, = 310 m/s

| Software J (sec) |
DIRCOL 40.90780
NUDOCCCS 40.90739
BNDSCO 40.94762
(Switching time 29.79072)
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time only, then the maximum final speed 310 m/s will inflict the greatest damage on
the target. But if we consider both the optimal time and minimum exposure during
manoeuvre, then further analysis must be done.

The minimum time solution gives the flight time less than a second faster com-
pared to the minimum altitude solution, while the exposure during the manoeuvre for
the minimum altitude problem is smaller than the minimum time problem. Hence,
the trade-off between both objectives (minimum time and minimum altitude) must be
taken into account. A

The generic trajectory for the minimum time problem has nearly the same perfor-
mance as in the minimum altitude. Since we only optimise the time, the missile climbs
earlier than in the minimum altitude problem for the saine final speed. Thus the level
flight arc only occurs for the case of final speed 250 m/s. For the cases of final speed
270 m/s and 310 m/s the missile climbs directly at the beginning of launch.

During climbing, the thrust is on the maximum value for the cases of final speed
310 m/s while for the cases of final speed 250 m/s and 270 m/s during climbing the
. thrust switches to the minimum value. The maximum normal acceleration constraints
are active only for the case 250 m/s in the middle of climbing which occurs in a few
seconds. The normal acceleration and the thrust then switches to the minimum value.
For the case of final speed 270 m/s the thrust switches to the minimum value at the end
of climbing followed by the normal acceleration switches to the minimum value.

At the start of diving, the minimum normal acceleration is active while the thrust
is on the maximum value for the case 310 m/s. In the middle of diving for the cases
of final speed 250 m/s and 270 m/s the thrust switches back to maximum value to gain
enough power to achieve the final speed while the normal acceleration saturated on
the minimum. The structure of the equations and switching time is given in Figure
4.16-4.19.

The computational results of the direct method and indirect method are compared
for the case 310 m/s. In this case the minimum normal acceleration constraint is active
during diving. DIRCOL and NUDOCCCS produce nearly the same trajectory for the
state variables. While for the co-state variables, DIRCOL and NUDOCCCS produce

nearly the same for the unconstrained arc, but not for the constrained arc. Furthermore,
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both of them give a good initial guess for the BNDSCO. The minimum time of the
indirect method is greater then in the direct method result. It is possible because in the

direct method the constraints may not be accurately satisfied due to the approximation.

4.5.1 Comments on Switching Structure

Similarly to Section 3.5.1, the jumps in the angle of attack a and the switching structure
of thrust T are investigated here. Consider first Figures 4.1-4.6 on pp. 95-97, where
for the case V;, = 310 m/s the missile climbs directly. Although the altitude increases,
see Figure 4.1 on page 95, and the angle of attack a is relatively constant, see Figure
4.4 on page 96, but the normal acceleration is not saturated during climbing, see Figure
4.6 on page 97. Thus, while the thrust is saturated at the maximum value, T = T,,,4z, NO
other constraints are active, so that optimal « is obtained from I, = 0, see equation
(4.10) on page 102, where T,,,, should be substituted for 7. While rapid climbing
is necessary, the missile should also turn over to begin its dive as soon as possible.
Therefore the angle of attack a and speed V' decreases to facilitate the missile turns
over. The angle of attack « reaches a negative value at time 28.12411 sec, which causes
the activation of minimum nofmal acceleration constraint (L = L,,;,,) at time 30.68085
sec, marking the end of free arc. The remainder of the trajectory is constrained arc,
with L = L,,;,, so that a is obtained from equation (4.30) on page 108.

In summary, for the case V; ; = 310 m/s, the thrust T is saturated at 7,,,, throughout
the whole trajectory, and the trajectory starts with (i) a free arc, lasting from 0 to
30.68085 sec, and finishes with (ii) a constrained arc (L = L,,;,) from 30.68085 sec
till ;. As for optimal a, it is computed from equation (4.10) on (i), and from equation
(4.30) for (ii). This results in a being a continuous function of time ¢, but with one
point of non-smoothness, coinciding with the (i)—(ii) transition, see Figure 4.4.

Let us investigate the case V; ;= 270 m/s. The missile is launched at b = h,,,;, the
first arc (level flight) is directly a constrained arc and therefore optimal « is obtained
not from 11, = 0, but form equation (4.19a) on page 104. The first arc ends at time
1.662784 sec, as the missile starts climbing, thus beginning the second arc. Although
the altitude increases, see Figure 4.1, the normal acceleration is not saturated during

climbing. While rapid climbing is necessary, the missile should also turn over to begin
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its dive as soon as possible. Therefore optimal a should decrease rapidly towards
negative values (to facilitate turnover). However, rapid decrease in o via equation
(4.10) is not sufficient for the required turnover, so it is helped by switching the thrust
from T, t0 T,.:n. The rapidly decreasing o immediately activates the L = L,,;,
constraint which remains active till £;. Still before ¢f, the thrust switches back to
T ax, ONCe it short-lasting lowering to Ty,,;, accomplished the necessary facilitation of
the missile turnover.

In summary, for the case V;, = 270 m/s, the trajectory starts with (i) a constrained
arc (h = huin), lasting from 0 to 1.662784 sec, followed by (ii) a free arc between
1.662784 and 29.09871 sec, and finishes with (iii) aﬁother constrained arc (L = L,;,,).
As for optimal q, it is computed from equation (4.19a) on (i), then from equation
(4.10) on page 102 on (ii), and from equation (4.30) on page 108 for (iii). This results
in a being a continuous function of time ¢, but with two points of non-smoothness,
coinciding with the (i)—(ii) and (ii)—(iii) transitions, see Figure 4.4.

For the case V;, = 250 my/s, the time of the level flight is longer than for the
case of final speed 270 m/s. The first arc (level flight) is directly a constrained arc -
(h = hun) and therefore optimal a is computed from equation (4.19a). The first arc
ends at time 4.955889 sec, as the missile starts climbing, thus beginning the second
arc. Although the altitude increases, see Figure 4.1, and the speed is relatively big, the
normal acceleration is not saturated until 27.77363 sec. The free arc ends when the
maximum normal acceleration (L = L,,,.) is active. During the free arc « is obtained
from equation (4.10). Then a is obtained from equation (4.26) on page 106 for the
time when the maximum normal acceleration (L = L,,.;) is active. Just after that the
thrust switches to minimum value to facilitate the missile turnover. Although the thrust
switches, the normal acceleration is still saturated. However, to facilitate the turnover
the angle of attack «a decreases rapidly and reaches a negative value at time 28.59961
sec, which causes the normal acceleration to switch to saturate at the minimum value
(L = L) at the same time, and remains active till £;. At this time, a is computed
from equation (4.30). Still before ¢, the thrust switches back to Ty, to facilitate the
speed V reaching the final condition.
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In summary, for the case V;, = 250 m/s, the trajectory starts with (i) a constrained
arc (h = hm), lasting from 0 to 4.955889 sec, followed by (ii) a free arc between
4.955889 and 27.77363 sec, then by (iii) another short constrained arc (L = Ly0z)
from 27.77363 to 28.59961 sec, while in between the thrust switches from T,,, to
T nin, and—fipally—by (iv) the last constrained arc (L = L,,;,) again the switches
from Ty, t0 Thaz. As a result, optimal a is no longer a continuous function of time,
having a discontinuity at (iii)—(iv) transition. It also has two other points of non-
smoothness: at the (i)—(ii) and (ii)—(iii) transitions.
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Case 310 m/s
max
T
min
L
climbing diving
Case 270 m/s
min
max : min max
T
min
L
flight climbing . diving
Case 250 m/s
b min
max min max
T
max min
flight climbing diving

Figure 4.16: Switching structure of the minimum time for the terminal bunt manoeu-
vre.
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Figure 4.17: Schematic representation of the boundary value problem associated with

the switching structure for the minimum time problem, case 250 m/s.

120



ISCUSSIon

4.5 Summary and D

— ML) = Mltz) - €V cosy
To = e ML) = (D) - Esiny v, = —90 deg
Vo = 272 m/s /\z(t; - Az(t;;) 1/‘! = 270 m/s
o= om ML) = Mlte) z, = 10000 m
he = 30m H = H hy, = 0m
. & = f(z,u,t) & = f(z,u,t) & = f(z,u.t) z = f(z,u,t)
A B I D) I . aEm . oH™ . _ oH™
A= 3 i - oH™ A= A= — A= = A= =
h = h x oz m = 0 pHy = 0 p = 0 pe = 0
= mén angj L L I
Tj = Thaez 9a = 0—a Lpaz = m_g—)a Lpin = ;l—g—)a Lpin m—g—?a Lypin = m—g—)a
¥ =0-a T = T T = Tnin T = Thin T = Thin T = The:
¢ t
° Ay ! Aty & Ats ta Aty Ats Als s
flight climbing diving

Figure 4.18: Schematic representation of the boundary value problem associated with

the switching structure for the minimum time problem, case 270 m/s.
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Chapter S

Software Implementation

This chapter considers example software implementations performed in order to solve
the terminal bunt manoeuvre as discussed in Chapter 3 and 4. The direct method is
given by DIRCOL and NUDOCCCS packages, while for the indirect method is pre-
sented via the BNDSCO package. Section 5.1 focuses on the DIRCOL implementa-
tion, followed by the NUDOCCCS implementation in Section 5.2. The indirect method
package BNDSCO is discussed in Section 5.3. The three packages illustrate the same

problem which is the minimum time problem for the case of final speed 310 m/s.

5.1 DIRCOL implementation

DIRCOL (a Direct Collocation Method for the Numerical Solution of Optimal Con-
trol Problems) is a collection of subroutines in FORTRAN designed to solve optimal
control problems of the systems described by first order differential equations subject
to general equality or inequality constraints on the control and/or state variables [109].

The direct collocation methods transform the optimal control problem into se-
quence of nonlinear constrained optimisation problems (NLP) by discretising of the
state and control variables. In DIRCOL, the controls are chosen as piecewise linear
interpolating functions and the states are chosen as continuously differentiable and
piecewise cubic function. The NLP results of the transformation are solved by the

sequential quadratic programming method SNOPT [47]. One of the advantages of
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DIRCOL is that it also computes the estimation of the adjoint variables (co-state) [108]
(see Section 2.4.1.1).

This section describes in detail how the terminal bunt manoeuvre problem was
implemented in DIRCOL by displaying and commenting on essential subroutines in
the main program user. £ and two input files DATDIM and DATLIM. This section
does not attempt to explain how to implement the general optimal control problem in
DIRCOL, as this is done in von Stryk’s User’s Guide for DIRCOL [109].

Terminal bunt manoeuvre for minimum time problem ( ft:)’ dt) will be given as an

illustration of how to implement terminal bunt problem in DIRCOL

5.1.1 Main program user. £

e Subroutine DIRCOM

This subroutine defines basic data for the problem such as the gravitational con-
stant g (GRA), the mass m (AM), the reference area of the missile S, (SREF),
the polynomial coefficient for D (equation (1.5)) (CA2, CAl, CAO), the poly-
nomial coefficient for L (equétion (1.6)) (CNO) and the polynomial coefficient of -
air density p (CRHO2, CRHO1, CRHOO). The user can exploit COMMON block
such as /USRCOM/, which may be shared by all problem dependent. The data
of the terminal bunt problem can be described as:

IMPLICIT NONE

Crmmmuen- BEGIN-=-PROBLEM---=cccccacmcaccc e aacccceccccceecmcmcananee
o]
C* COMMON /USRCOM/
o]
Crrmmemmee END- -« ~PROBLEM-=--=+~=cccccccrmeccccecmunmcccemenamnocncaseannn

DOUBLE PRECISION PI,AM,AGRA,SREF,CA2,CAl,CA0,CNO,CRHO2,CRHO1, CRHOO
C .

COMMON /USRCOM/ PI,AM,AGRA, SREF,CA2,CAl,CAQ,CNO,CRHO2, CRHOLl, CRHOO
C --- Konstanten aus der Referenz

PI = 3,141592653589793238D0

AM = 1005

AGRA = 9.8

SREF = 0.3376

CA2 = -1.9431

CAl = ~-0.,1499

CAO = 0.2359

CNO = 21.9

CRHO2 = 3,312D-9
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CRHO1 = -1.142D-4
CRHOO = 1.224

RETURN
END

e Subroutine USRSTV

This subroutine contains the initial estimates of the state and control variable

histories, the control parameters, and initial estimates of the events as provided

by the user. The initial estimates for terminal bunt problem can be given as:
IMPLICIT NONE

INTEGER IPHASE, NX, LU, IFAIL
DOUBLE PRECISION

+ TAU, X(NX), U(LU)
C
C-vmmv--- BEGIN---PROBLEM--------- - cm oo c oo ee e
C
DOUBLE PRECISION PI,AM,AGRA, SREF, CA2,CAl,CA0,CNO, CRHO2, CRHO1l, CRHOO
DOUBLE PRECISION AGAMO, VO, X0, AHO, 20, XF
(o
COMMON /USRCOM/ PI,AM,AGRA, SREF,CA2,CAl,CAQ, CNO, CRHO2, CRHO1, CRHOO
PARAMETER (X0 = 0.D0, AHO = 30.D0, VO = 270.0D0)
PARAMETER (AGAMO = 0.0D0, 20 = 30.0D0, XF = 10000.0DO)
(o}
o] IF (IPHASE .GT. 0) THEN
(o]
C ---=--- Initial estimates of X(t) and U(t)
C
X(1) = AGAMO
X(2) = VO
X(3) = X0 + TAU * (XF - XO0)
X{4) = AHO
U{(l1) = 0.000D0
U(2) = 6000.D0
C
Comemmme- END- - -~ PROBLEM-= = = = = = = o & oo oo o oo oo e oo e
C
RETURN
C --- End of subroutine USRSTV
END

e Subroutine USROBJ

This subroutine contains the objective of the optimal control problem in the
Mayer form (see Section 2.1). The parameter NR below specifies the required
component of the objective in each phase. The objective function of terminal
bunt problem can be defined as:
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IMPLICIT NONE
INTEGER NX, LU, LP, NR, IFAIL
DOUBLE PRECISION

+ ENR, XL(NX), UL(LU), P(LP), FOBJ, XR(NX), UR(LU), TF
C
Cemmmeem- BEGIN---PROBLEM- == ==c-cmommco oo cccmccccacccccccccccesea-
o]
IF (NR .EQ. 1) THEN
FOBJ = TF
ELSE
FOBJ = 0.0DO
END IF
(o]
R END----PROBLEM--==c-eo oo cm e e cecccccccarcameraaanaa
o]
RETURN .
C --- End of subroutine USROBJ
END

e Subroutine USRDEQ

This subroutine provides the right-hand side of the dynamic equations:

IMPLICIT NONE
INTEGER IPHASE, NX, LU, LP, IFAIL

DOUBLE PRECISION

+ X(NX), U(LU), P(LP), T, F(NX)

DOUBLE PRECISION RHO,RHOV,A,AN,COSGAM, SINGAM, COSALP, SINALP, TMA, ANM
DOUBLE PRECISION PI,AM,AGRA,SREF,CA2,CAl,CA0,CNO,CRHO2, CRHO1,CRHOO

C
COMMON /USRCOM/ PI,AM,AGRA, SREF,CA2,CAl,CA0,CNO, CRHO2,CRHO1, CRHOO
C
Cemmmmmn- BEGIN---PROBLEM--cccccccccmcemaaacacacacccccccccccccacceaae~
C
INTEGER I
INTRINSIC COS, SIN
C --- the air density
RHO = CRHO2*X(4)**2+CRHO1*X (4) +CRHOO
C --- 0.5 RHO V"2 SREF
RHOV = 0.5 * RHO * X(2)**2 % SREF
¢ .
C --- the drag
A = (CA2 * U(1)**2 + CAl * U(1) + CA0) * RHOV
o
C --- the lift
AN = CNO * RHOV * U(1)
C
C
C --- the differential equations
c ..........................
C

COSGAM = COS(X (1))
SINGAM = SIN(X(1))
COSALP = COS(U(1))
SINALP = SIN(U(1))
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TMA = {(U(2)-2)/AM
ANM = AN/AM

[of
F(l1) = (TMA*SINALP + ANM*COSALP - AGRA*COSGAM) /X(2)
F(2) = TMA*COSALP - ANM*SINALP - AGRA*SINGAM
F(3) = X(2) * COSGAM
F(4) = X(2) * SINGAM
(o
C---nm=--- END----PROBLEM---c-ccmrmmmcce e mmc e et e e e eemcmmce e me e e
(o}
RETURN
C --- End of subroutine USRDEQ
END
Subroutine USRNBC

This subroutine describes the nonlinear boundary conditions of the problem. The
parameter IKIND below specifies the type of boundary/switching conditions
(explicit or implicit) that has to be computed. The parameter XR is the final
conditions of the state variables that are defined by explicit boundary conditions
for the terminal bunt problem. The following is the subroutine for terminal bunt

problem:

IMPLICIT NONE

(o}
INTEGER IKIND, NRNLN, NX, LU, LP, IFAIL
Cr**» REAL
DOUBLE PRECISION
+ XL (NX), XR(NX), UL(LU), UR(LU), P(LP), EL, ER, RB(NRNLN)
(o}
Commmmmnn BEGIN---PROBLEM- =~ =~ === m o o e e oo
(of
(o This problem doesn’t have any
Cc (nonlinear) implicit boundary/switching conditions
C
C There are some explicit boundary conditions of the second kind.
IF (IKIND .EQ. -1) THEN
XR(1) = -1.57D0
XR(2) = 310.0D0
XR(3) = 10000.0DO0
XR(4) = 0.0D0
END IF
C
C-em--=-=- END----PROBLEM----c-mcocmcmccncccmcmmecmee oo o -
C
RETURN
C ~-- End of subroutine USRNBC
END
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e Subroutine USRNIC

This subroutine provides the nonlinear inequality constraints of the problem.

The following inequality constraints should be defined for terminal bunt prob-
lem:

200< V<310 .1

30 < h (5.2)
1000 T <6000 (5.3)
—4< % <4 (5.4)

- Altitude constraint (5.2). In terminal bunt problem, the final condition of
the altitude is hy, ‘= 0. Therefore the altitude constraint is always con-
trad'ictory to the final condition on the altitude. It is nccessary to give a

condition for the altitude constraint to overcome this problem.

— Normal acceleration (5.4). The normal acceleration constraints can be

2
0<16 - [—L—] (5.5)

myg

rewritten as:

The normal acceleration now can be implemented as one constraint instead

of two.

— Air speed (5.1). The air speed constraints can be split into two incquality

constraints:

0<V-200 and 0310~V (5.6)

The constraints on the thrust are not defined here, as they will be defined as lower
and upper bounds in file DATLIM, see section 5.1.2.

The following subroutine defines the nonlinear incquality constraints of the ter-

minal bunt problem
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IMPLICIT NONE

c

INTEGER NGNLN, NX, LU, LP, IPHASE, NEEDG(NGNLN), IFAIL

DOUBLE PRECISION
C***+* REAL

+ T, X(NX), U(LU), P(LP), G (NGNLN)

DOUBLE PRECISION Rhok, ACCN

DOUBLE PRECISION RHO,RHOV,A, AN, COSGAM, SINGAM, COSALP, SINALP, TMA, ANM

DOUBLE PRECISION PI,AM,AGRA, SREF,CA2,CAl,CA0,CN1,CRHO2, CRHO1, CRHOQ
c

COMMON /USRCOM/ PI,AM,AGRA, SREF,CA2,CAl,CAO,CN1, CRHO2, CRHO1, CRHOO
c
c .
Commmmen- BEGIN---PROBLEM- < == == e o mmmmomococommmmmeoo o
c

Rhok = CRHO2*X(4)*X(4)+CRHO1*X (4)+CRHOO
ACCN = (21.9/2 * U(1) *Rhok*X(2)*X(2) *SREF)/ (1005*9.8)
C --Normal Acceleration Constraint
G(l) = 16 - ACCN*ACCN
C --Altitude Constraint
IF (X(3).LE.7500.0D0) THEN
G(2) = X(4)-30.0D0

ENDIF
C
Commmm---- END-- -~ PROBLEM=- = ===~ — === o mmmcmmemmmmmceea e
[o]
RETURN
¢ --- BEnd of subroutine USRNIC
END

e Subroutine USRNEC

This subroutine describes the nonlinear equality constraints of the problem. The
terminal bunt problem does not have any equality constraint.

5.1.2 . Input file DATLIM

The input file DATLIM is always needed to run DIRCOL. This file prescribes values
at the initial time, final time, lower and upper bounds of the state and control variables
data limits. In this file the lower and upper bounds of the final time are prescribed. The
lower and upper bounds for the fixed final time can be defined by same values of the
lower and uppér bounds.

' YX222222XX 2022222222222 22X 22222222222l s s s 2a R

* file DATLIM *
+ (prescribed values at initial time, final time and switching points, *
* lowexr and upper bounds for all variables X, U, P, E) *

'Y 2SR AR AR AR R RS R X R R R R R RS R R RS RSERES SRR SS R R R 4
*
*+ the NX values of X(1) through X(NX) at E(1)=T0, E(M)=TF are
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, 1, 0.00D0
, 1, 272.0D0

, 1, 0.0DO .
, 1, 30.D0
0, 0.0DO
the LU values of U(1) through U(LU) at E(1)=T0, E(M)«TF are
, 0
, 0

* FO0 0 *RKHRHKMR
<

1. switching point E(2):

the NX values of X(1) through X(NX) at the switching point are

*

the LU values of U(1l) through U(LU) at the switching point are

* % * % %

2. switching point E(3):

*

* the NX values of X(1) through X(NX) at the switching point are
*
* the LU values of U(1) through U(LU) at the switching point are
*
*
* the lower and upper bounds of the events E(2),...,E(M)sTF are
¥ e e e mc e mmstececrecescceemssueseereecemeecceccem e, -
* MIN B MAX

30.0D0 B 50.0D0
*
* 1. phase
¥ cmccvenwa
*

the NX lower and upper bounds of the state variables X are
* X(I)MIN B X{I)MAX

~1.57D0 , 1.57D0
+200.0D0 ; +310.0D0
0.0D0 , +10000.0D0
0.00D0 , +1900.00D0
0.00DO . . +100000.00D0

* the LU lower and upper bounds of the control variables U are
*  U(K)MIN ' U(K) MAX

-0.3D0 , +0.3D0

+1000.0D0 , +6000.0D0

*
M)
el
-3
[
n
(1

*

the NX lower and upper bounds of the state variables X are
X(I)MIN ’ X(I)MAX

the LU lower and upper bounds of the control variables U are
U(K)MIN . U(K)MAX

* % % % % % * *

the LP lower and upper bounds of the control parameters P are

P(K)MIN ; P (K)MAX

* * %

*

*23456789012345678901234567890123456789012345678901234567890123456789012
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5.1 DIRCOL implementation

5.1.3 Input file DATDIM

The input file DATDIM is always needed to run DIRCOL. This file prescribes the fol-
lowing block information:

name of the problem

type of simulation has to be performed by DIRCOL and the maximum nufnber
of iterations

the major optimality tolerance of SNOPT
the nonlinearity feasibility tolerance
major print level

iScale (the type of scaling) and iDiff (the type of finite difference approximations
of nonzero derivatives

the dimension of the state, control, and control parameter
number of phases

number of nonlinear implicit boundary constraints

number of nonlinear inequality and equality constraints
number of grid points

grid point parameter

starting values

estimates of the adjoint variables and the switching structure
name of the state variables

name of the control variables

definition of the constraints for the angle
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e name of inequality constraints

L2222 2SR sl s 22X d 2222222 R 22222222 R0 XXX 1

* file DATDIM hd

* (Dimensions of the parameterized optimal control problem) *
LA 2422222222 X2 X XSRS X222 AR 2222222222222 X222 2222 X222 XXX X

*
* NAME of the OPTIMAL CONTROL PROBLEM

*2345678901234567890123456789* (<-- max. length of name)

Terminal Bunt Manoeuvre
*

* iAction:

¥ ecmcma=
- OPTIMIZATION us8ing NPSOL ...ivevectvenerennnans eese e esaes (0)
- a check of all dimensions of feasibility ..........ovveeee... (1)

- a check of subroutines & computation of starting trajectory . (2)
or computation of .a FEASIBLE TRAJECTORY by

- objective min-maxl / use NPOPT ........ e etaratanas ceeeses (3)

- objective min-maxl / use NPSOL ........ e e tieeieaae, . (4)

- objective min-max2 / use NPSOL ........... e I -3
or actions involving SNOPT:

- OPTIMIZATION usSing NPOPT ....uvereeereenesnceens R (]
.- OPTIMIZATION using SNOPT (dense Jacobian)....... verees (T7)

- OPTIMIZATION using SNOPT (sparse Jacobian)......... ... (8)

FEASIBLE TRAJECTORY using SNOPT (sparse Jacobian)............ {9)
iAction, MajItL = ?,?

0, -5
1

2, -1
4, -1
5, -1
6
7

, -1
, -1

* % % % % % % ¥ ¥ F * F * * * * ¥ * ¥ * ¥ ¥ #
]

¥ ermmceccrrsercrac e -

* Optimality Tolerance EPSOPT = ?

1.0E-9

* .

* Nonlinear Feasibility Tolerance EPSNFT = ?

1.0E-9

*

* Major Print Level (0, 5 or 10) - ?

5

*

* which SCALINGS and DIFFERENCE APPROXIMATIONS are to be used:

L . ok L L .

* iscale:

N cmcom-

* - automatic scaling (but for X, U, E in each phase the same) (0)
* - read scalings from file 'DATSKA’ (1)
* - use no scaling (2)
* - automatic scaling (X, U, E in each phase different) (3)
* - automatic scaling (X, U in each phase the same, but E different) (4)
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5.1 DIRCOL implementation

* *N * % % B % O % % % % BB

* B »

* % % ) % % % A DN B R R R PO * R W

-

* % O * * % % 2 #*

»

* % % =

- forward difference approximations of DIRCOL (default) (0)
- internal difference approximation of NPSOL or SNOPT (-1)

iScale, iDiff = 2,?
, -1

NUMBER of STATE VARIABLES ( NX ),

------ of CONTROL VARIABLES ( LU ),
of CONTROL PARAMETERS ( LP ),

NX, LU, LP = ?

., 2, 0

NUMBER of PHASES Ml ='?

in phases 1 through Mil:
NGNLN(1) , NHNLN(1)

ﬁéNLN(Ml), NHNLN (M1)

.0

NUMBER of GRID POINTS in phases 1 through M1 ( NG(k) >= 3 }:

NG(1)

NG (M1)

GRID POINTs parameters:

istartGrid | ioptGrid (during optimization):
{starting positions): | - fixed grid points (0)
- equidistant (0) | - movable (collocation error) (1)
- as in file DATGIT (1) | - movable (variation) (2)
- as Chebysev points (2) | - movable (no add. eqg. cons.) (3)
istartGrid, iOptGrid = ?,?

, 0

STARTING VALUES of X{t), U(t), P, and E:

- as specified in subroutine USRSTV (0)
- as in files GDATX, GDATU (unchanged number of phases) (1)
- X, U, P as in files GDATX, GDATU and

E as specified in USRSTV (changed number of phases) (2)

133



5. SOFTWARE IMPLEMENTATION .

* ¥ B

ESTIMATES of the ADJOINT VARIABLES an§ of

»

the SWITCHING STRUCTURES of state and control constraints
- are NOT required (0)
- are required (1)

* * H % % #

NAMES of the NX state variables:
L e kI A

* X(1)_Name
*

o .

* X (NX)_Name

*2345678901234* (<-- max. length of name)
gl(t)

s(t)

x(t)

h(t)

z(t)

*+ NAMES of the LU control variables:

* U(1)_Name

* U(LU}_Name

*2345678901234* (<-- max. length of name)
alpha(t)
Thrust (t)

the I-th STATE VARIABLE (I =1,.., NX) is an UNCONSTRAINED ANGLE
and varies only in [ -PI, PI [ : 1 (if yes) or 0 (if not)

the K-th control variable (K = 1,.., LU) is an UNCONSTRAINED ANGLE
and varies only in [ -PI, PI [ : 1 (if yes) or 0 (if not)

* % O # ¢ % #$O0OCOOH % » * #

NAMES of the NGNLN(1) nonlinear INEQUALITY CONSTRAINTS of the 1-st phase:

1-st name

* % ¥

oo

* NGNLN (1) -th name

*2345678901234* (<-- max. length of name)
*

16 - (N/Mg)“2

h - hmin

»

NAMES of the NGNLN(2) nonlinear INEQUALITY CONSTRAINTS of the 2-nd phase:
1-st name

* % % »
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5.2 NUDOCCCS Implementation

*+ NGNLN(1)-th name

*2345678901234* (<-- max. length of name)
*

*

*23456789012345678901234567890123456789012345678901234567890123456789012

5.1.4 Grid Refinement and Dimension of DIRCOL

The grid refinement can be done either by editing the input file DATGIT or increas-
ing the number of grid point at the input file DATDIM. The dimension of the internal
DIRCOL might be changed by editing the file dircol.h. The dimension of the
constraints and the grid can be edited in this file.

5.2 NUDOCCCS Implementation

NUDOCCCS (Numerical Discretisation method for Optimal Control problems with
Constraints in Controls and States) is a collection of FORTRAN codes developed by
Biiskens [26] to solve optimal control problem by discretising the state and control
variables (see Section 2.4.1.1). This section presents the subroutines which must be
prepared before solving the problem using NUDOCCCS. The minimum time problem

is given as an example.

5.2.1 Main Program

In the main program the user must define mainly:
e number of ordinary differential equations
e number of controls
e number of maximum grid points

number of unknown initial values

e number of multiple shooting nodes
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e number of constraints (state and mixed constraints)

e number of inequality constraints related to state and mixed constraints
e number of points equality, e.g. terminal conditions

e maximum precision

e order of the constraints

e initial guess for the control variables, etc.

PROGRAM MAIN

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (
A NDGL = 5, ! #ODE (>0)
‘B NSTEUER = 2, | #CONTROLS (>0)
C  NDISKRET = 201, ! MAX # OF GRIDPOINTS (>1)
D  NUNBE =1, ! #UNKNOWN INITIAL VALUES (>0)
E NSTUETZ = 1, ! #MULTIPLE SHOOTING KNOTES (>0)
F NNEBEN = 1, ! #STATE OR MIXED CONSTRAINTS
G NUGLNB = 1, ! $THEREOF INEQUALITY CONSTRAINTS
H NRAND - 4, ! #POINTEQUALITIES (E.G. TERMINAL CONDITIONS)
I NARTADJ = 1, ! TYPE OF APPROXIMATING ADJOINTS
J IPRINT = 5, ! PRINT LEVEL
K DEL1l = 1.0D-6, ! FINITE DIFFERENCE FOR OPTIMIZER
L DEL2 = 1.0D-4, ! FINITE DIFFERENCE FOR GRIDFIT
M  EPS = 1.0D-12, ! HIGHEST REACHABLE PRECISION OF SOLUTION
N EPS2 = 1.0D-120, ! SMOOTHING OPERATOR FOR TRUNCATION ERRORS
0 EPS3 = 1.0d-6, ! PRECISION OF GRIDREFINEMENT
P NZUSATZ = NUNBE*NSTUETZ,
Q N = (NDISKRET+2) *NSTEUER+NZUSATZ,
R M = NDISKRET*NNEBEN+NRAND+NZUSATZ-NUNBE,
S ME = M-NDISKRET*NUGLNB,
T  MAXIM = M)
DIMENSION
A X (NDGL,NDISKRET),U(NSTEUER, NDISKRET+2) ,DFDU(N),
B G(MAX1M), T (NDISKRET) , UNBE (NUNBE,NSTUETZ),
C UHELP(N),DCDU(MAX1M,N) ,BL (N+M) ,BU (N+M),
D WORK(3*N*N+2*N*M+21*N+22*M) , INORK (4*N+3*M) ,
E MSDGL (NUNBE) ,MSSTUETZ (NSTUETZ) , IUSER (22+NUNBE+NSTUETZ) ,
F USER(10+7*NDGL+NNEBEN+NSTEUER+NDISKRET* (NDGL+NSTEUER+5)),
G ADJ (NDGL, NDISKRET) , ADJH (NDGL) , DISERR (NDISKRET) ,
H U2 (NSTEUER, NDISKRET+2) ,X2 (NDGL,NDISKRET+2) , T2 (2*NDISKRET),
I DSDXH (NNEBEN*NDGL+2*NDGL) , DFDXH (NDGL*NDGL+2 *NDGL) ,
J PDSDX(NDGL) , PD25D2X (NDGL, NDGL) , PDFDX (NDGL, NDGL) ,
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K CONORDER (NNEBEN+1) , CONH (4 *NNEBEN+1)

COMMON/RK/rkeps, tol

C ORDER OF CONSTRAINTS --( OPTIONAL, MUST NOT BE SET)--------
c conorder{l) = 2

C NUMBER OF DISCRETE POINTS --------e--e-c--sescooomoaaaaoo-
write(*,*) 'NDISKRET at the beginning (e.g. 21):’
read(*,*) ndisl !#OF GRIDPOINTS AT THE BEGINNING (>1)

C FIT DYNAMICAL DIMENSIONS ==----=-=-=-=--mccmmooooomeeaooan

N1 = (NDIS1+2)*NSTEUER+NZUSATZ

M1 = NDIS1*NNEBEN+NRAND+NZUSATZ-NUNBE
ME1l = M1-NDIS1*NUGLNB

MAX1M1 = MAX(1,M1)

AEQUIDISTANTE DISKRETISIERUNG-+-----==-=-----ocaoooooouooon
DISCRETIZATION OF TIME --r-==-voc-rcccmcem e mc e e e
HERE: EQUIDISTANT -----------ss-semrommm oo m o mm oo oo
DO 104 I=1,NDiS1
T(I) = 1.040/(NDIS1-1)*(I-1)
104. CONTINUE

e el e]

¢ RKEPS AND TOL ARE ONLY USED FOR NART=8,9,18,19,28,29 ----

C INITIAL STEPSIZE OF RKF -------c-mmomeccmecc e m e cr e -

C IF RKF=0 THEN RADAUS SOLVER IS USED (COMPARE SUBROUTINE MAS)
rkeps = 0.0d0

C TOLERANCE OF RKF- OR DAE-SOLVER -~-=-----<---cccaeoooooann
tol = 1.0d4-8

C INITIAL PRECISION OF SOLUTION ~-=------=-c---c-cammcooanon-
C TENDS TO EPS IF GRIDFIT IS USED SEVERAL TIMES ~----------

epsgit = 1.0d4-5

C STARTSCHAET2UNG DER STEUERUNGEN -----cc-cccccacrcacrcnan-
C INITIAL GUESS FOR CONTROL VARIABLES -~---nes---e-cccooon~
do 202 i=1,ndisl
u(1,i) = 0.0112d0
u(2,i) = 6000.040
202 CONTINUE
C ONLY USED FOR CUBIC INTERPOLATION OF CONTROL ------------
u(l,ndiskret+1) = 0.011d40
u(2,ndiskret+2) = 6000.0d40

C STARTSCHAETZUNG DER FREIEN ANFANGSWERTE UND MEHRZIELKNOTEN
C HERE: NOT USED == ==-cmmcmoco oo o cemme e meeee e
DO 300 I=1,NUNBE
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DO 300 J=1,NSTUETZ

UNBE (1, J)

300 CONTINUE

. « e es e

E

-3

L]
WWOUOOIAUVEE WNEO

NART=10:
NART=11:
NART=12:
NART=13:
NART=14:
NART=15:
NART=16:
NART=17:
NART=18:
NART=19:
NART=20:
NART=21:
NART=22:
NART=23:
NART=24:
NART=25:
NART=26:
NART=27:
NART=28:
NART=29:

writ

oo N Er o NN NoNe NN NN e N N NN N Re N Ne Re N e o R N o oo o o o o N o]

401 write(*,*)

TYPE OF INTERPOLATION,

= 25.0d0

INTEGRATION, OPTIMIZATION-----

NART=0..9 ARE FASTES AND
EULER
HEUN
IMPR. POLY. EULER
IMPR. POLY. EULER
RUKU 4 ENGLAND
RUKU 5 ENGLAND
RUKU 4 ENGLAND
RUKU 5 ENGLAND

RKEPS>0:
RKEPS=0:
: RKEPS>0:
RKEPS=0:
NART=10...

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS

NART=0
NART=1
NART=2
NART=3
NART=4
NART=5
NART=6
NART=7
NART=8
NART=9

BUT
BUT
BUT
BUT
BUT
BUT
BUT
BUT
BUT
BUT

SLOWER
SLOWER
SLOWER
SLOWER
SLOWER
SLOWER
SLOWER
SLOWER
SLOWER
SLOWER

NART=20...29 ARE MUCH

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
e(*

NART=10
NART=11
NART=12
NART=13
NART=14
NART=15
NART=16
NART=17
NART=18
NART=19

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

RKFEHLBERG 7/8
IMPLIC. RADAUS
RKFEHLBERG 7/8
IMPLIC. RADAUS
19 ARE SLOWER BUT SAVER

AND

WITH CENTRAL
WITH CENTRAL
WITH CENTRAL
WITH CENTRAL
WITH CENTRAL
WITH CENTRAL
WITH CENTRAL
WITH CENTRAL
WITH CENTRAL
WITH CENTRAL

WORK WELL FOR MOST PROBLEMS-
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,
INTEGRATION,

NO CONTROL
NO CONTROL

CONST. CONTROL

LIN. CONTROL
LIN. CONTROL
LIN. CONTROL
CUBIC CONTROL
CUBIC CONTROL

CONST. CONTROL
CONST. CONTROL

LIN. CONTROL
LIN. CONTROL

DIFFERENCES 1IF
DIFFERENCES IF
DIFFERENCES IF
DIFFERENCES IF
DIFFERENCES IF
DIFFERENCES IF
DIFFERENCES IF
DIFFERENCES IF
DIFFERENCES IFP
DIFFERENCES IF

SLOWER BUT MUCH MORE SAVE------
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF
OPTIMIZERSETTINGS, PLUS DIF

ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL

,*) ‘NART (e.g. 4):'
read(*,*) nart

C Set before each call to NUDOCCCS

iter

0

ifail = -1

C START OPTIMIZATION
CALL NUDOCCCS (NDGL, NSTEUER, NDIS1, NUNBE, NNEBEN, NUGLNB, NRAND,
1 NZUSATZ,nart,N1,M1,6ME1,MAX1M]1, ITER, IFAIL, IPRINT,DEL1, EPSGIT,
2 X,U,DFDU, FF, G, DCDU, BL, BU, T, UNBE, UHELP,
3 NSTUETZ, MSDGL, MSSTUETZ , INORK, WORK, IUSER, USER)

INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.
INTERPOL.

NECESSARY
NECESSARY
NECESSARY
NECESSARY
NECESSARY
NECESSARY
NECESSARY
NECESSARY
NECESSARY
NECESSARY
F. CHECKS
F. CHECKS
F. CHECKS
F. CHECKS
F. CHECKS
F. CHECKS
F. CHECKS
F. CHECKS
F. CHECKS
F. CHECKS

IN GENERAL BEST RESULTS WITH NART=4

‘NDISKRET for next calculations

{ NO. OF ITERATIONS

ERROR MESSAGE
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C POSTOPTIMAL CALCULATION OF ADJOINTS ------=ssscocomccmocevan
CALL ADJUNG (NDGL, NSTEUER,NDIS1, NUNBE, NNEBEN, NUGLNE, NRAND,
1  NZUSATZ,NART,NARTADJ,N1,M1,MEL,MAX1M1, ITER, IFAIL, IPRINT,DEL1,
2  EPSGIT,X,U,DFDU,FF,G,DCDU, BL, BU, T, UNBE, UHELP, NSTUETZ , MSDGL,
3 MSSTUETZ, IWORK,WORK, IUSER, USER, ADJ, DSDXH, DFDXH, ADJH)

C SAVE RESULTS -~------=-cmrmeeccrcmmecremcacaccccccac e e
CALL AUSGABE (FF,x,adj,UHELP,T, G, NDGL, NSTEUER, NDIS1, NNEBEN,
1 NRAND, N1,M1) -
write(*,*) ‘State, adjoints and control saved.’

C ADAPTIVE AUTOMATIC GRIDREFINEMENT ----------c--c--ccmcoacoooa-

1243 CALL GITTERFIT (NDGL, NSTEUER,NDISKRET, NUNBE, NNEBEN, NUGLNB, NRAND,
NZUSATZ,NART, N1,M1,ME1,MAX1M1, ITER, IFAIL, IPRINT,DEL1,

DEL2, EPSGIT,EPS, EPS3,X,U, DFDU, FF, G, DCDU, BL, BU, T, UNBE, UHELP,
NSTUETZ, MSDGL, MSSTUETZ, IWORK, WORK, IUSER, USER, CONORDER,
NDIS1,N1,M1,MEl,MAX1M1,DISERR,X2,U2,T2,pdsdx, pd2sd2x, pdfdx,
conh, FINISH)

Nk w e

WRITE(*,*) ‘Take new grid and optimize new :<ENTER>’
WRITE(*,*) '<CTRL/C> for termination ...’

READ("*)

GOTO 401

STOP
END

5.2.2 Subroutine MINFKT

This subroutine contains the objective function in the Mayer form (see Section 2.1).

SUBROUTINE MINFKT(X,U,T,MIN,NDGL, NSTEUER, NDISKRET)
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)

DOUBLE PRECISION MIN, LAGINT
DIMENSION U{(NSTEUER, NDISKRET) , X (NDGL, NDISKRET) , T (NDISKRET)

C OBJECTIVE: BOLZA FORMULATION ---=------=--c-=ro-c-ocomnea-
C HERE: Mayer-Formulation -------=---=----cccecrmocesvronoono
min = x(5,ndiskret)

RETURN
END

5.2.3 Subroutine INTEGRAL

This subroutine contains the objective function in the Lagrange form (see Section 2.1).
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SUBROUTINE INTEGRAL(INT,X,U,T,NDGL, NSTEUER)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION INT

DIMENSION U(NSTEUER), X (NDGL)

C CAN BE USED FOR LAGRANGE-PART IN OBJECTIVE----=-ceccc----
C BUT BETTER USE MAYER-FORMULATION =-----=eec-eecceeecanan
c INT=u{l)*u(l)+u(2)*u{2)+u{3)*u(3)

RETURN
END

5.2.4 Subroutine DGLSYS

This subroutine provides the right-hand side of the dynamic equations.

SUBROUTINE DGLSYS (X,U, T, DX, NDGL, NSTEUER)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DOUBLE PRECISION PI,AM,AGRA, SREF,CA2,CAl,CA0,CN1,CRHO2, CRHO1, CRHOO
DOUBLE PRECISION RHO,RHOV,A,AN, COSGAM, SINGAM, COSALP, SINALP, TMA, ANM
DIMENSION X (NDGL),U(NSTEUER), DX (NDGL)

c
¢ --- Konstanten aus der Referenz
PI = 3,141592653589793238D0
AM = 1005.0d0
AGRA = 9.8D0
SREF = 0.3376D0
CA2 = -1,9431D0
CAl = ~-0.1499D0
CAO = 0.2359
CN1 = 21.9D0
CRHO2 = 3.312D-9
CRHO1 = -1.142D-4
CRHOO = 1.224D0
c

C RIGHT HAND SIDE OF DGL SYSTEM --------c-ccoccoccaacmeanan
RHO = CRHO2+*x(4)**2+CRHO1*x (4) +CRHOO

(o]
C --- 0.5 RHO V"2 SREF
RHOV = 0.5 * RHO * x{(2)**2 * SREF
C
C --- the drag
A = (CA2 * u(1l)**2 + CAl * u(1l) + CAO) * RHOV
C
C --- the lift
AN = CN1 * RHOV * u{l)
Cc
C --- the differential equations
c
COSGAM = dcos(x(1))
SINGAM = dsin(x(1))
COSALP = dcos(u(l))
SINALP = dsin{u(1)) b
(o4
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TMA
ANM

dx (1)
dax(2)
ax(3)
dx(4)
dx (s)

RETURN
END

(u(2) -A) /AM
AN/AM

x(S) * (TMA*SINALP + ANM*COSALP - AGRA*COSGAM)/x(2)
x(5)* (TMA*COSALP - ANM*SINALP - AGRA*SINGAM)

x(5) *x(2) *COSGAM

x(5) *x (2) *SINGAM

0

5.2.5 Subroutine ANFANGSW

This subroutine defines the unknown and known initial conditions.

SUBROUTINE ANFANGSW (AWX, UNKNOWN, NDGL , NUNBE)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION AWX (NDGL) , UNKNOWN (NUNBE)

C INITIAL CONDITIONS ---=-=-=----------eommmemooe oo moa e
AWX(1) = 0.0d0

AWX (2)
AWX (3)
AWX (4)
AWX(5)
RETURN
END

272.0d40
0.0d0
30.0d0
unknown (1)

5.2.6 Subroutine RANDBED

This subroutine provides the point equality constraints, i.e. boundary values.

SUBROUTINE RANDBED (X,U,T,R, NDGL, NSTEUER, NDISKRET, NRAND)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION X (NDGL,NDISKRET) , U(NSTEUER, NDISKRET) , R (NRAND)
DIMENSION T (NDISKRET)

C POINTWISE EQUALITY CONSTRAINTS «~c--m==om-mmommemmmmmmmeeooomeae
C HERE: TERMINAL CONDITIONS =«==-===========---cescooocooooomoon

r(l) = X(1,ndiskret) + 1.5740

r(2) = X(2,ndiskret)
r(3) = X(3,ndiskret)

310.0d0
10000.0d40

r{4) = X(4,ndiskret) - 0.040

RETURN
END
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5.2.7 Subroutine NEBENBRED

This subroutine describes the state and mixed constraints, i.e. inequality path con-
straints.

SUBROUTINE NEBENBED (X,U, T, CON, NDGL, NSTEUER, NNEBEN)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X (NDGL) , CON (NNEBEN) ,U(NSTEUER)

C CONSTRAINTS ~--ccccccccccccrcrarecrccnccnnncsvocncnna
C NO BOX CONSTRAINTS OF CONTROLS IN THIS ROUTINE------

PI = 3.141592653589793238D0
AM = 1005.040

AGRA = 9.8D0

SREF = 0.3376D0

CA2 = -1.9431D0

CAl = -0.1499D0

CAO = 0.2359

CN1 = 21.9D0

CRHO2 - = 3.312D-9

CRHO1 = -1.142D-4

CRHOO = 1.224D0

Rhok = CRHO2*X(4)*X(4)+CRHO1*X(4) +CRHOO
ACCN = (21.9/2 * U(1)*Rhok*X(2)*X(2)*SREF)/(1005+9.8)

CON(1l) = 16.0D0 - ACCN*ACCN

RETURN
END

5.2.8 Subroutine CONBOXES

This subroutine prescribes the lower and upper bound for the control and constraint
defined in the subroutine NEBENBED.

SUBROUTINE CONBOXES (NSTEUER, NDISKRET, NNEBEN, BL, BU, BLCON, BUCON, T)
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
DIMENSION BL (NSTEUER) , BU(NSTEUER), BLCON (NNEBEN) , BUCON (NNEBEN)

C LOWER AND UPPER BOUNDS OF THE CONTROL FUNCTIONS «--------cc--c---e
C FOR THIS EXAMPLE NO CONTROL CONSTRAINTS -«-=~--ses-ccccccrscccccn=n

BL(1) = -0.3d0
BU(1) = 0.3d0
BL(2) = 1000.0d0
BU(2) = 6000.0d0

142



5.2 NUDOCCCS Implementation

C LOWER AND UPPER BOUNDS OF THE CONSTRAINTS IN SUBROUTINE NEBENBED-
BLCON(1) = 0.0d0

RETURN
END

5.2.9 Subroutine MAS

This subroutine is used for the problem which contains algebraic equations.

SUBROUTINE MAS (NDGL, AM, LMAS, RPAR, IPAR)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION AM{LMAS,NDGL)
COMMON/MASS/IMAS,MLMAS, MUMAS, idxldim, idx2dim, idx3dim, MLJAC, MUJAC

C ALLOWS TO SOLVE SYSTEMS OF FORM (e.g. DAE SYSTEMS, TIME CONSUMING)
M * x' = £(x,u,t)

WITH CONSTANT (REGULAR OR SINGULAR) MATRIX M
MAS NAME OF SUBROUTINE COMPUTING THE MASS-
MATRIX M.
IF IMAS=0, THIS MATRIX IS ASSUMED TO BE THE IDENTITY
MATRIX AND NEEDS NOT TO BE DEFINED;
SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
IF IMAS=1, THE SUBROUTINE MAS IS OF THE FORM
SUBROUTINE MAS (N, AM, LMAS, RPAR, IPAR)
DOUBLE PRECISION AM(LMAS,N)
AM(1,1)= ....
IF (MLMAS.EQ.N) THE MASS-MATRIX IS STORED
AS FULL MATRIX LIKE
AM(I,J) = M(I,J)
ELSE, THE MATRIX IS TAKEN AS BANDED AND STORED
DIAGONAL-WISE AS
AM(I-J+MUMAS+1,J) = M(I,J).

IMAS GIVES INFORMATION ON THE MASS-MATRIX:
IMAS=0: M IS SUPPOSED TO BE THE IDENTITY
MATRIX, MAS IS NEVER CALLED.
IMAS=1: MASS-MATRIX IS SUPPLIED.

MLMAS SWITCH FOR THE BANDED STRUCTURE OF THE MASS-MATRIX:
MLMAS=N: THE FULL MATRIX CASE. THE LINEAR
ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
0<=MLMAS<N: MLMAS IS THE LOWER BANDWITH OF THE
MATRIX (>« NUMBER OF NON-ZERO DIAGONALS BELOW
THE MAIN DIAGONAL) .
MLMAS IS SUPPOSED TO BE .LE. MLJAC.
MUMAS UPPER BANDWITH OF MASS-MATRIX (>= NUMBER OF NON-

nonoanoaonoaoanonnnconNnonNnoanONNNANOANn0O0NAN
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MLJAC

MUJAC

sReNeNeNoNe N NeoNeNoNeNo N No R N Ro N Ne Ro N Moo Mo e e ol e N o]

ZERO DIAGONALS ABOVE THE MAIN DIAGONAL) .
NEED NOT BE DEFINED IF MLMAS=N.
MUMAS IS SUPPOSED TO BE .LE. MUJAC.
SWITCH FOR THE BANDED STRUCTURE OF THE JACOBIAN:
MLJAC=N: JACOBIAN IS A FULL MATRIX. THE LINEAR
ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
0<=MLJAC<N: MLJAC IS THE LOWER BANDWITH OF JACOBIAN
MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
THE MAIN DIAGONAL).

UPPER BANDWITH OF JACOBIAN MATRIX (>= NUMBER OF NON-
ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
NEED NOT BE DEFINED IF MLJAC=N.

THE FOLLOWING 3 PARAMETERS ARE IMPORTANT FOR
DIFFERENTIAL-ALGEBRAIC SYSTEMS OF INDEX > 1.

THE FUNCTION-SUBROUTINE SHOULD BE WRITTEN SUCH THAT
THE INDEX 1,2,3 VARIABLES APPEAR IN THIS ORDER.

IN ESTIMATING THE ERROR THE INDEX 2 VARIABLES ARE
MULTIPLIED BY H, THE INDEX 3 VARIABLES BY H**2.

DIMENSION OF THE INDEX 1 VARIABLES (MUST BE > 0). FOR

IDX1DIM
ODE'S THIS EQUALS THE DIMENSION OF THE SYSTEM.
DEFAULT IDX1DIM=NDGL. ' :
IDX2DIM DIMENSION OF THE INDEX 2 VARIABLES. DEFAULT IDX2DIM«O,
IDX3DIM DIMENSION:OF THE INDEX 3 VARIABLES. DEFAULT IDX3DIM=0.
c IMAS =0
c MLMAS = ndgl
c MUMAS = ndgl
c MLJAC = ndgl
c MUJAC = ndgl
c idxldim = ndgl
c idx2dim = 0 :
c idx3dim = 0
c do 200 i=1,ndgl
c AM(i-i+MUMAS+1,1i) = 1.0d0

c 200 continue

RETURN
END

5.3 BNDSCO Implementation

In this section, some important aspects of BNDSCO are discussed in the context of the

indirect method implementation of the minimum time problem. Additionally, classical

benchmark problem with a pufe state constraint due to Bryson and Ho [23] is presented
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in Appendix A to highlight other important details of BNDSCO implementation, not
covered here.

The discussion begins with a trouble shooting list in Section 5.3.1 for BNDSCO
. implementation developed in the course of the present work, based on the BNDSCO
manual and hard-won experience with the terminal bunt problem. With this aid in
hand, the actual code for the minimum time formulation is given in Section 5.3.2.

5.3.1 Possible Sources of Error
o Analytical: wrong formulae and/or wrong data.
e Numerical: wrong accuracy, singular data (division by 0).

e Coding: wrong FORTRAN implementation of formulae/data.

5.3.1.1 Analytical Errors: A Discussion

Since the ultimate numerical tool for solving the underlyirig TPBVP is the BNDSCO
package, it is prudent to formulate optimal control problem, and apply Pontryagin’s
Maximum Principle, in the way summarised in the BNDSCO manual [76]. However,
one should remember that the DIRCOL and/or NUDOCCCS packages are also needed,
in general, to generate an initial guess of the solution (especially co-states). Thus, the
formulae must be consistent for both packages. '

With the above in mind, there follows a list of possible analytical errors produced
by a close study of the BNDSCO manual and experience with the terminal bunt prob-
lem; the relevant pages of the manual are given.

1. Bolza — Mayer; page 10

2. Boundary conditions for co-states A, appropriate to the problem (unconstrained,
free-time, state constraint only, etc.): pp. 12-16, 21-22, 24-25,

3. Jump points for co-state A, pp. 22, 24-25.

4. Additional checks: consistency of Hamiltonian etc: page S0.
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5.3.1.2 Numerical Errors: A Discussion

BNDSCO is a reliable solver of MPBVP with discontinuities, specially written for

optimal control problems. However, it has the weakness of all shooting methods that

it has a narrow domain of convergence. In other words, if the data are inaccurate or

finite precision arithmetic errors accumulate, it will fail. Hence, the list below reflects

these premises.

1.

BNDSCO requires that time instants (solution nodes) are different from switch-

ing points; page 31.

Solution nodes need not be equidistant: concentrate them where rapid changes

are expected; page 47.
Accuracy of integration: play with the parameters

e Highly accurate solution of IVP required; page 42.
e Tolerance in integration TOL; page 42.
e Maximum number of iterations ITMAX; page 40.

Accuracy of Newton’s method (inside BNDSCO): play with the EPMACH pa-
rameter; page 49.

. Scaling of boundary conditions (stored in variable W of subroutine R): all com-

ponents should be of the same order; pp. 52-53.

5.3.1.3 Coding Errors: A Discussion

The first check in this category is obvious, i.e. whether the properly derived formulae

and data (constants and initial guesses) were coded correctly into FORTRAN. Assum-

ing that this indeed has been done, the list below addresses more subtle possibilities.

1.

The whole of BNDSCO is written in double precision, so all variables, constants

and data must be in that format, using directive DBLE, when necessary.
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2. The all-important initial guesses are not passed through a COMMON, but via
the array PAR. The entries of PAR and their subsequent use should be checked
carefully; pp. 40, 49.

3. Integer parameter J and L of subroutine F must be consistent with each other;
page 48.

5.3.2 BNDSCO Code

5.3.2.1 MainProgram

T2 2222222222233 2222222222222 ld Rttt iRl il sl s X2 R 2T

Minimum time of terminal bunt manceuvre,

Properly working for unconstrained minimum time problem
GTF = -1.57D0

Vo 272.0D0

VTF 310.0D0

HO 30.0D0

XF 10000.0D0

HF 0.0D0

'Y 222222223222 222 R a2 2 R ARl s sl R RS SRR 2EX2222ER 2 X2

aonaoononoooonNnnNnan

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (MMAX=150,MSMAX=140,MMS=170,NMS=170,NP=96,

* NDW«NMS* (120+MMAX* (120+6*NMS) ) , NDIW=115*NMS)
DIMENSION X (MMS), XS (MSMAX),b Y (NMS,MMS) ,WORK (NDW)
DIMENSION TI (NP),GI(NP),VI(NP),b PI(NP),AI(NP),

* TC (NP) , CG (NP) ,CV(NP) , CP(NP) , CA(NP)

INTEGER JS (MMS, MSMAX) , IWORK (NDIW)

EXTERNAL F, R, DIFSYB

COMMON /QUT/ DALP

COMMON /ITEIL/ ITEIL

COMMON /PARAl/ B1,B2,B3,El,E2,E3,D1,AM,T,GR, SREF,TM™,
+ HGM, HV, HXP, HH, ALP

o] Initial guesses

OPEN(3,FILE='testl.dat’', STATUS='0ld’)
c OPEN(5,FILE='gnuad310.m’,STATUS='0ld’)
C Result file’s name

OPEN (6, FILE='nmin.txt’, STATUS= ' UNKNOWN' )
OPEN (7, FILE='nminp.dat’, STATUS='UNKNOWN" )

Cc Reading the initial guesses
DO I=1,NP
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READ(3,*)TI(I),GI(I),VI(I),PI(I),AI(I),CG(I),CV(I),CP(I),CA(I)

enddo
c ............... - - > A e e Bk ek W e
c Parameters
c
Bl = 3.312D-9
B2 = -1.142D-4
B3 = 1.224D0
El = -1.9431D0
E2 = ~0.1499D0
E3 = 0.2359D0
D1 = 21.9D0
AM = 1005.D0
SREF = 0.3376D0
T = 6000.0D0
GR = 9.8D0
™ = 1.0D0/(2.0D0*AM)
(o
N = 9
M = NP
TOL = 1.,D-06
KS = 1
MS = 1
XS(1) = 0.786818979D0
NFILE = 6
WRITE(6,1000)
C
C --- Iniatial trajectory
Cc

DO 100 K=1,M
X (K) = FLOAT(K-1) /FLOAT (M-1)
Y{1,K) = GI(K)

Y(2,K) = VI{K)
¥(3,K) = PI(K)

Y(4,K) = AI(K)
Y(5,K) = CG(K)
Y(6,K) = CV(K)
Y(7,K) = CP(K)
Y(8,K) = CA(K)

Y(9,K) = 40.9D0
100 CONTINUE

c
KP = 0
ITMAX = 20
CALL BNDSCO(F,R,DIFSYB,X,XS,Y,WORK, IWORK,JS,N,M,6MS,
* KS,TOL, ITMAX, KP, MMAX, MSMAX ,MMS, NMS, NDW,NDIW, NFILE)
IF(KP.LT.0) GOTO 900
Cc
KP = 0
IFEIN = §
NPLOT = 7
IPLOT = 1
ICASE = 1
CALL AWP(DIFSYB,F,X,XS,Y,N,M,MS,
* JS,MMS,NMS, IFEIN, IPLOT, KP, NFILE,NPLOT, ICASE)
c

900 CONTINUE
1000 FORMAT(//’ TERMINAL BUNT PROBLEM:’)
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STOP

5.3.2.2 Subroutine F

The equations of motion for each subarcs are defined in this subroutine.

ctiit'.t"ti'itt't'ttiti.f*it*t’**t*t**i‘t**.iiit****ii**ttttittti*it

SUBROUTINE F(X,Y,DY,J,L,JS,MMS)

c'i""'t'.*"i'tt't*ii'i'*'t**t*it'i***f*l‘*"*l’*ﬁ*****iti*'f**t**ii*ﬁ

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION Y(*),DY(*),6AROOT(2)
INTEGER JS (MMS, *)
COMMON /OUT/ DALP
COMMON /ITEIL/ ITEIL
COMMON /PARAl/ Bl1,B2,B3,El,E2,E3,D1,AM,T,GR, SREF,TM,

+ HGM, HV, HXP, HH, ALP
c _________________________________

GM « Y{1)

v = Y(2)

Xp = Y(3)

H = Y(4)

GL = Y(5)

VL Y(6)

XL = Y(7)

HL = Y(8)

TF = Y(9)
L R R R m— -
C CONSTRAINED PART
L e R S I I I I IR et d

IF (JS(J,1).GT.0) THEN

C ----------------------------------

v2 = V*V

RHO = B1*H*H+B2*H+B3

DRHO = 2*B1*H+B2

ALNN = -8*AM*GR/ (21.9*RHO*V2*SREF)
dalp = alnn

c Y YT2222222A2 X2 X2 R XX 2 222 2222 RRRRRR2 2Rt Rlll]

(o determine mu_1
c 'Y 2222222222323 X282 2222 Rl R iR ln s
A = ((E1*ALNN+E2) *ALNN+E3) *0 .5*RHO*V2*SREF
AA = (E1*2*ALNN+E2) *0.5*RHO*V2*SREF
AN = D1*ALNN*0.5*RHO*V2*SREF
ANA = D1*0.5*RHO*V2+*SREF
CGU = DCOS (ALNN)
SGU = DSIN (ALNN)
COMP1 = GL*CGU/ (V*AM) -VL*SGU/AM
COMP2 = GL*SGU/ (V*AM) +VL*CGU/AM
FAU = (T-A+ANA) *COMP1 - (AA+AN)*COMP2

CONC = - (21.9*RHO*V2*SREF) / (2*AM*GR)
CMUL = -FAU/CONC

c P2 XX RAZE R R X X222 R R RZS XSRS 22X 2 2}

C end determine mu_2
C (P22 AR R 22l S22 22222 ]

cG = DCOS (GM)
SG = DSIN(GM)
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= TF*(({T-A) *SGU+AN*CGU) /AM-GR*CG) /V
= TF*(((T-A)*CGU-AN*SGU) /AM-GR*SG)
DY (3) = TF*V*CG '
= TF*V*SG
= -TF*(GL*GR*SG/V-VL*GR*CG-XL*V*SG+HL*V*CG)

VLC1 = GL*(-T*SA/(V2+*AM) - (ACOEF*SA-D1*ALP*CA) *RHO*SREF*TM
+GR*CG/V2)

VLC2 = -VL* (ACOEF*CA+D1*ALP*SA)*RHO*V*SREF/AM

VLC3 = ~-CMU1*(21,9*ALNN*RHO*V*SREF)/ (AM*GR)

DY(6) = -TF*(VLC1+VLC2+XL*CG+HL*SG+VLC3)
DY(7) = 0.D0O

DRHO = 2*H*B1l+B2

HLC1 = GL*(-ACOEF*SA+D1*ALP*CA)*V*SREF*DRHO*TM
HLC2 = -VL*(ACOEF*CA+D1*ALP*SA) *V2*SREF*DRHO*TM
HLC3 = ~-CMU1l*(21.9*ALNN*0.5*DRHO*V2+*SREF)/(AM*GR)
DY(8) = -TF* (HLC1+HLC2+HLC3)

DY{9) = 0.DO

RHO = Bl
DRHO = 2*
GALP = 0.

*H+*H+B2*H+B3
Bl1*H+B2
02

v2 = V*V

DO 12 I-1,

A =
AA =
AN

3
[
L}

SGU =
COMP1 =
COMP2 =
FA =
1222822222322 222X L)

AAPANX =

I Z2 2 AL ISR 2 RN

100

( (E1*GALP+E2) *GALP+E3) *0.5*RHO*V2*SREF
(E1*2*GALP+E2) *0.5*RHO*V2*SREF
D1*GALP*0.5*RHO*V2*SREF
= D1+*0.5*RHO*V2*SREF

DCOS (GALP)

DSIN{GALP)

GL*CGU/ (V*AM) -VL*SGU/AM
GL*SGU/ (V*AM) +VL*CGU/AM

(T-A+ANA) *COMP1 - (AA+AN) *COMP2

XXX 2AS 2RSSR 22 2

(E1*2+D1) *0.5*RHO*V2*SREF

****iii.tt*tti*ittt***tt"t'*'t""’t

ok Derivative FA wrt alpha T2

(22222 SZXS RS2SR R ]S

R R RN AR R N RN R R AR A AR RN RN

FAP = -AA *COMP1 - (AA+AN)*COMPl- (T-A+ANA) *COMP2-AAPANX*COMP2
XRN = GALP-FA/FAP

ceck = abs(XRN-GALP)

toln = 1.0E-9

if (ceck.le.toln) goto 10

GALP = XRN

12 enddo
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10 ALP = GALP

DALP = ALP
cA = DCOS (ALP)
SA = DSIN(ALP)
ACOEF = (E1*ALP+E2)*ALP+E3
ALP2 = ALD*ALP

C -----------------------------------
AEQ = ACOEF*0.S5*RHO*V2*SREF
ANO = D1¥ALP*0.5%RHO*V2*SREF
CG = DCOS(GM)
SG = DSIN(GM)

DY (1) = TF* (((T-AEQ) *SA+ANO*CA)/AM-GR*CG) /V
DY(2) = TF* (((T-AEQ) *CA-ANO*SA)/AM-GR*SG)
DY(3) = TF*V*CG
DY (4) = TF*V*SG
DY(5) = -TF*(GL*GR*SG/V-VL*GR*CG-XL*V*SG+HL*V*CG)
[ S T I I I I it B I IR )
VLC1 = GL*(-T*SA/(V2*AM) - (ACOEF*SA-D1*ALP*CA) *RHO*SREF*TM
+ +GR*CG/V2)
VLC2 = -VL*(ACOEF*CA+D1*ALP*SA) *RHO*V+*SREF/AM
B A A I it ol e R
DY(6) = -TF*(VLC1l+VLC2+XL*CG+HL*SG)
DY(7) = 0.DO
B S T i R e
DRHO = 2*H*B1+B2
HLC1 = GL* (-ACOEF*SA+D1*ALP*CA) *V*SREF*DRHO*TM
HLC2 = -VL*{ACOEF*CA+D1*ALP*SA) *V2+*SREF*DRHO*TM
DY (8) = -TF*{HLC1+HLC2)
DY(9) = 0.DO
endif
L L T A kb R
RETURN
END

5.3.2.3 Subroutine R

Subroutine R defines the boundary, jump

and switching conditions.

Cttttﬁ'ti'iQttttt'tiit**ii**t*ttt*t**i*tk*t***t*tt***t*tt*tt*ttii*tti

SUBROUTINE R (YA, YB,ZZ,W, NYA,NSK,J,L

. LS, JS, MMS)

Cﬁ***tt.'ti'*i".i.iiitt*t**i**tﬁ*************i****t**i*t**it*****i**

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION YA(*) ,YB(*),2ZZ(*) ,W(*)
INTEGER NYA(*) NSK(*)

INTEGER JS(MMS, *)

COMMON /ITEIL/ ITEIL

COMMON /OUT/ DALP

COMMON /PARAl/ B1,B2,B3,El,E2,E3,Dl

+ HGM, HV, HXP, HH, ALP
o)

GTF = -1.57D0

Vo 272.0D0

VTF = 310.0D0

.AM, T,GR, SREF, TM™,
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HO = 30.0D0
XF = 10000.0DO
HF = 0.0D0

c

C---- Boundary conditions

C
W(1) = YA(1)
w(2) = YA(2)/V0 - 1.D0
wW(3) = YA(3)
w(4) = YA(4)/HO - 1.DO
w(s) = YB(1)/GTF - 1.D0
W(6) = YB(2)/VTF - 1.D0
W(7) = YB(3)/XP - 1.D0
w(8) = YB(4)

Cc
NYA(1l) = 1
NYA(2) = 2
NYA(3) = 3
NYA(4) = 4

C***iﬁ*ﬁ*t***t****i**t'ti*itt'it*t'ft*tit'

(o) Hamiltonian at final time
ctti*ttt*itit**f*ti*t**tt****tt*iﬁiiﬁii*'t
YB2 = YB(2)*YB(2)
ROI = B1l*YB(4)*YB(4)+B2*YB(4)+B3
DROI = 2*B1l*YB(4)+B2
ALPI = -8*AM*GR/(21.9*ROI*YB2*SREF)

(o 222220222222 R s ot lRaREl ]

o determine mu_1

C ft**ﬁt’*ﬁtt*tti*itittttiitittﬁttit'tt'*tﬁﬁitt'
A = ((E1*ALPI+E2)*ALPI+E3)*0.5*ROI*YB2*SREF
AA = (E1*2*ALPI+E2)*0.5*ROI*YB2*SREF
AN = D1*ALPI*0.5*ROI*YB2*SREF

ANA = D1*0.5*ROI*YB2*SREF

CGU = DCOS (ALPI)

SGU .= DSIN (ALPI)

COMP1 = YB(5)*CGU/(YB(2)*AM) -YB (6) *SGU/AM
COMP2 = YB(5)*SGU/ (YB(2) *AM) +YB (6) *CGU/AM
FAU = (T-A+ANA)*COMP1 ~ (AA+AN)*COMP2
CONC = -(21.9*ROI*YB2*SREF) / (2*AM*GR)
CcMUL = -FAU/CONC

C (22 Z R XX RSS2SR S22 R R 2R ARl Rl

c end determine mu_1
C * ARt R AR RN RRARANIA AN IR A A A AR IR R AR AN RN
(o
CAI = DCOS (ALPI)
SAI = DSIN(ALPI)
ACOEFI = (E1*ALPI+E2)*ALPI+E3
c
ATFRI = ACOEFI*0.S5*ROI*YB2*SREF
ANTFI = D1*ALPI*0.S5*ROI*YB2*SREF
SGTFI = DSIN(YB(1))
CGTFI = DCOS(YB(1))
HGMI = {((T-ATFRI) *SAI+ANTFI*CAI)/AM-GR*CGTFI)/YB(2)
HVRI = ((T-ATFRI)*CAI-ANTFI*SAI)/AM-GR*SGTFI
HXPRI = YB(2)*CGTFI
HHRI = YB(2) *SGTFI
COMU = -CMU1*({21.9*ALPI*0.5*DROI*YB2+*SREF)/(AM*GR)+4.D0)
CONA = YB(5) *HGMI+YB(6) *HVRI+YB(7) *HXPRI+YB(8) *HHRI+COMU+1
c -
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C.".'itii'."ti‘i**"i*tiii*ti*itﬁt*i*'**t*f*i**

C Determine alpha using Newton at Initial
C"'t'iitt'tﬁttittii'itttttt***tittiti*t******t**
YA2 = YA(2)*YA(2)
RHO = B1*YA(4)*YA(4)+B2*YA(4)+B3
DRHO = 2*B1*YA(4)+B2
GALP = 0.02
DO 12 I=1,100
A = {-0.328*GALP*GALP-0.0253*GALP+0.03982) *RHO*YA2
AA « (-0.328*2*GALP-0.0253) *RHO*YA2
AN = 3.69672*GALP*RHO*YA2
ANA = 3,69672*RHO*YA2
CGU = DCOS (GALP)
SGU = DSIN (GALP)
COMP1 = YA(5)*CGU/(YA(2)*AM) -YA(6) *SGU/AM
COMP2 = YA(5)*SGU/ (YA (2) *AM) +YA (6) *CGU/AM

FA = (T-A+ANA) *COMP1 - (AA+AN)*COMP2
P L 2 L 22 R L R T Ry Y R Y 2 32222222 2]
AX = (-0.656*GALP-0.0253) *RHO*YA2

AAPANX = 3.04072*RHO*YA2

P 2122 22232 2R 22 2R AR AR ARl 2]

uw {derivative FA wrt alpha} 222228
'ttt"!"ii*itt*'t*t*it***ti***'ﬁ*i***********i**tt**i*t**i****iti*********t
FAP = -AX *COMP1l - (AA+AN) *COMP1- (T-A+ANA) *COMP2-AAPANX*COMP2
XRN = GALP-FA/FAP
ceck = abs(XRN-GALP)
toln = 1,0E-9
if (ceck.le.teln) goto 10
GALP = XRN
12 enddo

10 ALPB = GALP

c""""'.'.**i*iﬁtﬁ'tt**.t**i"**tt't**i

c Hamiltonian at initial time
Ctt'tttiﬁiiitiﬁt*iit*titt*i*i****i**t****
CAR = DCOS (ALPB)
SAR = DSIN (ALPB)
ACOEFR = (E1*ALPB+E2) *ALPB+E3

ATFR = ACOEFR*0.S5*RHO*YA(2)*YA(2)*SREF

ANTFR = D1*ALP*0.S5*RHO*YA(2)*YA(2)*SREF

SGTFR = DSIN(YA(1l))}

CGTFR = DCOS(YA(1))

HGMR = ({({T-ATFR) *SAR+ANTFR*CAR) /BM-GR*CGTFR) /YA (2)
HVR = ((T-ATFR) *CAR-ANTFR*SAR) /AM-GR*SGTFR

HXPR = YA(2)*CGTFR ’

HHR = YA (2) *SGTFR

CONB = YA(S)*HGMR+YA(6) *HVR+YA (7) *HXPR+YA (8) *HHR+1

W(9) = CONA-CONB
c‘*iiﬁt*'i'*'*"'*i*t***!**“*i*i*l"**i*******ﬁ**it********t**t*

222 = ZZ(2) %22 (2)

ZRHO = B1*2Z(4)*ZZ(4) +B2*2Z(4) +B3

ALPI = -8*AM*GR/ (21.9%ZRHO*Z22*SREF)

W(10) = -(21.9*ALPI*0.S5*ZRHO*2ZZ2*SREF)/ (AM*GR) -4 .0D0

NSK(10) = 1

RETURN
END
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Chapter 6

Conclusions and Recommendations

This thesis presented a study of the optimal trajectory of a generic cruise missile at-
tacking a fixed target where the target must be struck from above, subject to missile
dynamics and path constraints. Two objective functions were considered. The first
objective was to minimise the exposure of the missile to anti-air defences. This re-
sulted in a nonlinear optimal control problem where time-integrated flight altitude was
minimised. The second objective was to attack the target in the fastest possible time.
This led to a time-optimal control problem. The generic shape of the optimal trajectory
was: level flight, climbing, diving; this combination of the three flight phases is called

the bunt manoeuvre.

6.1 Three-stage Manual Hybrid Approach

In this work a combination of a direct and an indirect approach (and the relevant codes)
was used resulting, in effect, in a hybrid approach. The main direct solver, DIRCOL,
was used to discern the solution structure, including characteristic subarcs, constraints’
activation and switching times. Whenever possible, DIRCOL results were compared
with those of another direct solver, NUDOCCCS. Both codes produce initial guesses
for the co-state, an essential feature to enable subsequent use of the BNDSCO code for
TPBVP.
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The DIRCOL/NUDOCCCS approximate solution was used to aid the qualitative
analysis of the optimal trajectory and to initialise BNDSCO. The hybridisation was
done manually, i.e. DIRCOL/NUDOCCCS was run first, the results analysed to help
formulate an appropriate TPBVP, and then the results were fed to BNDSCO as an
initial guess. _

There are two main reasons for opting for the manual hybrid approach.

Firstly, the three-stage approach:

e direct solution (NLP via DIRCOL/NUDOCCCS)

e analysis (optimal control theory, TPBVP formulation)
¢ indirect solution (TPBVP solution via BNDSCOQ)

offers valuable insights into the problem, its solution structure, the role of constraints
and boundary conditions. The focus of this work is trajectory shaping, i.e. not just
computing a bunt manoeuvre, but exploring a family of terminal bunt problems. Thus,
insights into the influence of constraints and boundary conditions on the solution struc-
ture (e.g. the number of switching pointé, the number of constraints active, duration of
their activation) is of significant operational and engineering importance.

Secondly, trajectory shaping of the bunt manoeuvre naturally Icads to a pure state
constraint formulation, a difficult type of optimal control problem. The arising diffi-
culties can be handled—if not fully resolved—due to the gradual progression of the

three-stage, manual hybridisation approach.

6.2 Generating an Initial Guess: Homotopy

The main difficulty in the indirect approach is due to ﬁnding a converging initial guess
for the state and co-state variables. In some problems, inserting new shooting points
might help, but for complex problems this strategy may not work. In addition, con-
tinuation, or homotopy, method can be employed to overcome these difficulties (see

Allgower and Georg [1]).
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6.2 Generating an Initial Guess: Homotopy

The homotopy methods solve the original problem via the solution of the “family”
problem. It means that the original problem is embedded into a family of problems
characterised by a parameter. However, the selected parameter is the crucial aspect in
this method. If the selected parameter is physically appropriate and mathematically
convenient, then the family of problems will include the original problem. The param-
eter is then used to find the solution of the original problem by correcting gradually
the parameter until the required solution is achieved. The progress is done by using
the previous solution as an initial guess for the next problem, starting with a parameter
value for which the corresponding problem is tractable.

For a highly constrained optimal control problem, Bulirsch [99, chapter 7, page
563] has warned that the parameter must be an intrinsic parameter to the problem, as
opposed to an artificial parameter. If a simple or arbitrary parameter that has nothing
to do with the problem is used, one may not succeed to solve the problem. A natural
par'ameter which is related to the problem may give a good starting solution. In addi-
tion, one may need more than one natural parameter to be used to find the solution for
the original problem (see Steindl [98]). |

Ehtamo et al. [34] proposed a final time as a natural parameter to solve the mini-
mum time problems. They converted the minimum time optimal control problem into a
sequence of terminal cost minimisation by fixing the terminal time. The starting point
is to use a small value for the fixed final time and then by using an appropriate search
procedure, gradually, the final time for the original problem is found. They applied
these continuation methods for the minimum time flight of an aircraft.

Bulirsch et al. [25] and Pesch [81] proposed a combination of the Chebyshev and
Bolza functional as the objective function to find the solution of the abort landing in
windshear problem. Both functionals are originally derived form the minimax opti-
mal control problem, therefore they are related naturally (see Bulirsch et al [24, page
4]). They solved the unconstrained problem and then gradually the constraints were
activated until the original problem was solved.

Three different formulations might be employed to overcome the problem consid-
ered in this thesis. Firstly, consider the minimum altitude problem in Chapter 3. We

can begin by solving the unconstrained problem, which means that we neglect con-
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straints especially the difficult state constraint b > h;,, and retain only a constraint
on the thrust 7". Thus, the missile immediately dives and “hits” the ground (or “goes
underground”, followed by climbing and—finally—finished by divihg to reach the tar-
get. The next step is finding a touch point (A = hioyucer) on the minimum altitude (iL =0,
h > 0) on the unconstrained trajectory from the previous step. This way, the difficult
state constraint b > h,,;, is put back into the problem formulation, albeit with lower
hmin than required, i.e. with b = hy,,en. This introduction of a touch point results
in computation similar.to the unconstrained case, but a new switching point must be
introduced. The following steps consist in gradual “lifting” the minimum altitude con-
“straint from hy.0n, activating a boundary arc starting from a short boundary arc close
. to the touch point (b = hsouer, + Ah), and—finally—by increasing Ah the problem

can be solved for a fully constrained formulation.

Another approach would be to retain all the constraints, but to shorten the distance
between the launch point and the target. Then the down-range is squeezed so that the
missile directly climbs, which avoids the activation of the minimum altitude constraint.
The next step is to increase the down-range gradually, activating the constraint at a
point, a short arc etc, 'until the original problem is solved. Effectively, this simply is

homotopy on z(ty), one terminal condition.

Finally, a new objective function can be introduced which is a combination of both

cases, minimum altitude and minimum time. Consider the following new objective

_|(1=¢) e Y
J—[ . t,+n/0 hdt] ©.1)

where (2 has a big value and 0 < ¢ < 1. This approach starts by solving the minimum

function

time problem where the minimum altitude constraint is not active (¢ = (). Then the

original problem is solved by gradually increasing €.
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6.3 Pure State Constraint and Multiobjective Formu-

lation

As explained in Chapter 1, a guidance strategy based on trajectory shaping lends itself
to optimal control interpretation. In the context of a cruise missile required to perform
the terminal bunt manoeuvre the resulting optimal control leads naturally to pure state
constraints. The presence of such constraints is a source of significant difficulties for
the indirect method approach to solution, as explained in Section 2.1 and illustrated
in Section 3.4. Indeed, even the direct method solver NUDOCCCS had convergence
problems in that case, so it was not possible to use its approximate solution to compare
it with that of DIRCOL and use it to initialise BNDSCO. Theoretically, there are a few
ways of dealing with the pure state constraint, see e.g. Section 3.4.2, but none of them
offers a magic bullet and, besides, the theoretical results must be numerically practical
which is not always the case (see Maurer and Gillesen [74, Page 111]).

Thus, pure state constraints are best avoided, but can they be—they arise naturally
for the terminal bunt problem? This leads to the issue of problem formulation.

From the user (operational) point of view, it is natural to impose inequality con-
straints on state variables—it is intuitively clear and practically desirable to limit the
missile altitude and speed. It is also transparent to have a simple performance index,
e.g. penalise altitude or flight time only, for it is obvious what it means, and its value is
meaningful for the user. Moreover, if a parametric study is conducted, say, by varying
the terminal speed, the resulting changes in the performance index are easy to compre-
hend.

From the analyst (computational) point of view, it is more desirable to have as few
constraints as possible, particularly if they are path constraints and especially if a pure
state constraint is involved. On the other hand, the performance index can be complex,
because this can be handled easily.

How, then, can one practically reconcile the user’s preference for many constraints
and a simple performance index with the analyst’s desire for the converse?

The key observation is that, for a given problem, the user would benefit more from
establishing bounds on the state variables rather than imposing them a priori. Indeed
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for all the cases in this study the missile speed constraints are never activated, but must
be included when the relevant TPBVP is formulated. Therefore, it would be perhaps
more desirable to make finding bounds on the states a part of the optimisation process
at the outset. How can this be done? Including states in the performance index in order
to minimise then together with, say, flight time is not satisfactory, for the resulting
combination of disparate variables produces a scalar measure of performance lacking
transparency (what would be the units and meaning of such a performance index?).
However, a vector performance measure preserves transparency by having separate
entries for each variable of interest thus allowing natural units and avoiding mixing of
incommensurable variables. -

The resulting mﬁltiobjective formulation [71, 83] can be handled computationally
and has at its core partial ordering of the vector performance index. The solution is
expressed through a Pareto set which contains trade-off points only. For example, if
there are two objectives to be minimised simultaneously, say, the flight time t; and
the time-integrated square deviation from minimum altitude § = f (h = hynin)?dt, then
the Pareto set will be comprised of pairs (¢}, d*) such that any further minimisation
of ¢; would increase (worsen) ¢* and conversely. Analysing the pairs (t},4") would
give the user insights into inherent trade-offs between the duration of the attack and the
exposure to anti-air defences. Computationally, replacing the state constraint 2 2 h,;,,
with the second objective will simplify problem solution considerably. If * solutions
result in b < Ay, subarcs, the integrand (h — h,,;,)? can be modified to include a
suitable barrier function for penalising the h < h,,,;,, solution more than the h > h;p
ones.

6.4 Summary and Discussion

A three-stage hybrid approach was used to explore the terminal bunt problem. The
main benefit of the approach is that it produces valuable insights into the problem by
forcing the user to understand the structure of the boundary value problem and the
corresponding switching structure of the optimal trajectory. However, the occurrence
of pure state inequality constraints caused difficulties during computation.
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To overcome the above problem a homotopy method might be implemented to
gcneréte an initial guess for the state and co-state variables in the indirect multiple
shooting. But finding the family of the problem is a non-trivial task.

As an alternative multiple objective optimal control might be considered. This
method might be used to reintefpret the pure state constraint as an entry in the vec-
tor performance index. However, solving the resulting multiobjective optimal control
problem adds another layer of complexity. Also, practice may be needed to understand
and interpret multiobjective results.
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Appendix A

BNDSCO Benchmark Example

This BNDSCO benchmark example is taken from Bryson and Ho [23] and is worked
out in detail below as a complement to the implementation issues covered in Section
5.3. Consider the following state variable inequality constraint problem. Let z and
v define the position and velocity of a particle in rectilinear motion. Find the control
history a(t),0 < t < 1, such that the objective function

1 .
1
J = / —a’(t)dt (A1)
0o 2
is minimised subject to the following constraints:

e dynamic equation

T o= v (A.2)
v o= a (A3)
e boundary conditions
2(0) = a(1)=0 (A4)
v(0) = —v(l)=1, (A.5)
e state inequality constraint
z(t) <l for 0<t<L1 (A.6)
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A.1 Analytic Solution

By introducing an additional state variable z, the problem can be transformed into a
Mayer problem as follows:

min J := z(1) (A7)
subject to the constraints
e dynamic equation
I = v (A.8a)
v = a .« (A.8b)
= %a'-' (A.8¢)
e boundary conditions
z(0) = z(1) =0, (A9)
v(0) = —v(1)=1, (A.10)
2(0) = 0 (A.11)

and the state inequality constraint (A.6) remains the same. Following the BNDSCO
manual notation [76), let y := (x, v, z) and the Hamiltonian can be defined by

H=MNv+Aa+ %/\zaQ. (A.12)

The co-state equations can be given by

_ ’ Az 0
A= —Ilyr = || == (A.13)
A; 0
The stationary condition is given by
611 _/\ y
— =Mt ha=0—a= -, A.14
5a AtAa=0—a W ( )
From transversality condition we obtain
o
A(T)=——==1. A.l5
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Substituting equation (A.15) to equation (A.14) gives a = —A,. Consider now the case
when the state inequality constraint S = = — [ is active. The first and second total time
derivative of S yield

S=z-1 (A.16)
S=i=v (A.17)
S=i=aqa (A.18)

Thus, the state inequality constraint is a second-order constraint. The solution can be
a touch point or a constrained arc depending on the value of . In this example, the
constrained arc problem will be discussed. '

Based on the second order state constraints (A.16), the Hamiltonian is given by

; 1
H = \v+ Ao+ 5,\za2 + ua. (A.19)
The stationary condition yields:

e unconstrained

H:vic = 0 A'u
=0 a=—-=, u=0 (A.20)
e constrained
H;“’"c =0 .
S—_—O } a:O’ u:—Av (A.21)

At the beginning of the constrained arc, we obtain
z—1
N(z(t1)) = [ v ] =0 (A.22)

Based on the equation 20, p. 21 of [76], the discontinuity at the jump conditions at the
entry point ¢, is given

MEN" = M) = o Ny = A(#7)" = [01,02,0] (A.23)
The Hamiltonian at the both switching points is continuous

H(tf)=H(t]), i=1,2 (A24)
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A.1.1 Unconstrained or Free Arc (I > 1/4)

In this case the constraint £ < [ is not active along the optimal trajectory. Based on
equations (A.8) and (A.13) the differential equations can be given by

i = v - DY(1)=Y(Q) (A.252)
b = a=-), — DYQ)=-Y(4) . (A.25b)
. = —  DY(3)=0.0D0 (A.25¢)
b = =X — DY) =-Y(3) (A.25d)

The above equations (A.25) correspond to equation (2.91a) and must be implemented
in subroutine F. The initial and final conditions are given by

z(0) = 0 — W(1)=YA()-X0 — NYA(l)=1 (A.26a)
z(1) = 0 —  W@)=YB(l)-XF (A.26b)
v(0) = 1 - W@)=YAQ)-VO — NYAQ)=2 (A.26c)
(1) = -1 — W@)=YBQ)-VF (A.26d)

The equations (A.26) correspond to equation (2.91c) and must be implemented in sub-
routine R and the corresponding initial conditions have to be marked by defining NYA
(see page 51 [76] for more detail).

The following are the notation based on equation (2.91). The state and co-state
variables are (N = 4):

T 0
L2 adi')
Azl >y
/\v Y4

(A.27)

The boundary conditions can be defined as

0)=0] —»r — W)

: 0O)-1] — — W(2
o) = [P0 ol 27 D)
v(1)+ 0] - ry — W@

(A.28)

where r1, 75, r3 and 74 are initial and final conditions.
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A.1.2 Touch Point Case (1/6 <! < 1/4)

In this case the optimal trajectory for x touches the constraint at only one point. The
differential equations are:

T = v — DY) =¥(2) (A.29a)
P = a=-X — DYQ)=-Y@) (A.29b)
A =0 — DY(3)=0.0D0 (A.29¢)
o = =X — DY@ =-Y(3) (A.29d)
Iy, =0 — DY(5)=0.0D0 (A.29)

The boundary conditions are:

z(0) = 0 — W()=YA(1)-X0 — NYA(l)=1 (A.30a)
z(l) = 0 —  W@)=YB(1)- XF (A.30b)
v(0) = 1 — W@2)=YAQ2)-VO — NYAQ)=2 (A.30c)
(1) = =1 — W@=YBQ)-VF (A.30d)

Switching and jump conditions at touch point ¢, are:

z(ty) = | — W(5)=ZZ(1)/PAR(l)- 1.D0 — NSK(5)=1(A.31a)
v(ty) = 0 — W(6)=2ZZ(2) ~ — NSK(6)=1(A31b)
A(t) = A(ty) —lo — ZZ(3)=ZZ(3) - ZZ(5) (A.310)

The equations (A.29) correspond to equation (2.91a) and must be placed in subroutine
F while the equations (A.30) and (A.31) are in subroutine R. The'equations (A.30)
correspond to equation (2.91c) while equations (A.31a)-(A.31b) correspond to equa-
tion (2.91d). The jump condition in equation (A.31c) corresponds to equation (2.91b).
In this case the user must prescribe NYA and NSK accordingly. The following are the
notation based on the equation (2.91). The state and co-state variables are (N = 5):

Tl —U

vl Y2

y= || 2 U3 (A.32)
Av| = Ys

bi—y —&
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The boundary conditions can be defined as

r(y(0), (1))

— T
— T2
—)7‘3
T4
— Ts
— T

— W(1)
— W(2)
— W(3)
— W(4)
— W(5)
— W(6)

(A.33)

where ry, 72, 3 and 4 are initial and final conditions while 5 and g are for switching

conditions at touch point ¢,.

A.1.3 Constrained Arc Case (0 <! < 1/6)

The constraint z < [ is active in the optimal trajectory. The constrained arc is active

on the state variable z for a finite time ¢; < ¢t < t,. The differential equations can be

written as

v
01

op)

—

—

DY(1) = Y(2)
DY(2) = -Y(4)
DY(3) =0.0D0
DY(4) =-Y(3)
DY(5) = 0.0D0
DY(6) = 0.0D0

(A.34a)
(A.34b)
(A.34¢c)
(A.34d)
(A.34e)
(A.34f)

The above equations (A.34) correspond to equation (2.91a) and must be puf into sub-

routine F. The initial and final conditions based on equations (2.91c) can be given by

z(0) = 0
z(l) = 0
v(0) = 1
v(l) = -1

L

W(1)=YA(1)- X0 — NYA(l)=1
W(@3) = YB(l) - XF
W(2) = YA(2) - VO — NYA(2)=2
W(4) = YB(2) - VF
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A.1 Analytic Solution

The switching and jump conditions at £, are:

z(ty) = I — W(5)=27ZZ(1)/ PAR(1) - 1.DO — NSK(5)=1(A.36a)
v(ty)) = 0 — W(6)=ZZ(_2) — NSK(6) = 1(A.36b)
Ao(ty) = 0 — W(7) =ZZ4) — NSK(7)=1(A.36¢)
A(tF) = (7)) — 0y — ZZ(3) =ZZ(3) - ZZ(5) (A.36d)
M(tT) = M(t]) — 02 — ZZ(4) = ZZ(4) - ZZ(6) (A.36e)

and the switching conditions at ¢, are:
Ao(te) =0 — W@ =ZZ4) — NSK@)=2 (A.37)

Equations (A.36a)—(A.36c¢) and (A.37) correspond to equation (2.91d), while equations
(A.36d)—(A.36¢) correspond to equation (2.91b). Equations (A.35), (A.36) and (A.37)
"must be placed in subroutine R. The initial conditions, switching point and jump
conditions must be prescribed in NYA and NSK.
The following are the notation based on the equation (2.91). The state and co-state
variables are (N = 6):

pe -

Tl —Y
V| — Y
_ Az ¥
y= Al = (A.38)
oil—y —&
[02] =Y — &2
The boundary conditions can be defined as
[ 2(0)=0] —r, — W()
v(0) =1 | - re — W(Q)
£(0) =0 | =13 — W@3)
O = | w2 e (A.39)
v(t1) =0 | =g — W(6)
Ao(ty) =0 =17 — W()
..’\”(t2) - 0_ —rg — W(8)

where 1y, 79,73 and 74 are initial and final conditions while 5,16, 77 and rg are for

switching conditions at ¢; and ¢;.
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Appendix B

Computational Results

B.1 Initial Altitude Above h,,;,

The DIRCOL implementation for the missile launches above the minimum altitude
hmin is presented. Figure B.1 shows that the missile dives directly after launching,
so that the excess of the altitude is minimised. The diving manoeuvre is ended when
the missile hits the minimum altitude h,,;,. The missile then flies on the minimum
altitude until it has to start climbing in order to hit the target from above. Then the
same structure of the optimal trajectory will follow as explained in Section 3.2. In this
simulation the missile is assumed to be launched horizontally (7, = 0) by varying the
initial altitude hy. The initial and final conditions can be given as follows.

The initial conditions are:

Y = 0 deg,
Vo = 272 m/s,
g = Om,

ho = 100,200,500 m.
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The final conditions are:

Y, = —90 deg,
Vi, = 270 m/s,
7, = 10000 m,
hy = 0m.

" - hy=100m

1000+

altitude (m)

500

=

1 T n L - i = A '
0 5 10 15 20 25 30 35 40 45

time (sec)

Figure B.1: Altitude versus time histories for minimum altitude problem using

DIRCOL for a varying initial altitude.

172



B.1 Initial Altitude Above £,,,,

speed (m/s)

10 15 20 25 30 35 40 45

time (sec)

Figure B.2: Speed versus time histories for minimum altitude problem using DIRCOL

for a varying initial altitude.

flight-path angle (rad)

—T 1 I L = = " i

10 15 20 25 30 35 40 45

time (sec)

Figure B.3: Flight-path angle versus time histories for minimum altitude problem using

DIRCOL for a varying initial altitude.
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Figure B.4: Angle of attack versus time histories for minimum altitude problem using

DIRCOL for a varying initial altitude.
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Figure B.5: Thrust versus time histories for minimum altitude problem using DIRCOL

for a varying initial altitude.
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| - h0=100m
- h0=200m
— h,=500m

normal acceleration

time (sec)

Figure B.6: Normal acceleration versus time histories for minimum altitude problem

using DIRCOL for a varying initial altitude.
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