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SUMMARY 

This report describes the analysis of a series of experiments on pneumatic tyres 
which were designed to test the various hypotheses: regarding the deformed shape of a 
tyre during the steering process. 

The experiments consisted of several separate tests first described in Ref. 1 and 2. 

a) The application of a point lateral force or a moment at one position on the tread band 
which is restrained at the centre of the wheel, and the measurement of the resulting 
lateral deflection of each point of the tyre perimeter. 

b) The application of a uniform force around the tyre perimeter on a hollow cylindrical 
former and applying a load at the centre of the wheel. 

c) Direct determination of tread band tension by cutting the tread band and bridging the 
cut by a dynamometer. 

d) Estimation of the bending modulus of the tread band by test on sections cut from the 
tread band. 

The analysis of the experiments is carried out by first transforming the test results 
into a Fourier series and determining the spectral content of the bending line with an 
harmonic analysis. Transfer functions of beam and string models are derived and applied 
to the test results. A method of considering a three parameter model is described. 
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1 	Introduction 

The lateral deflection of the tyre relative to the wheel during cornering 
is the most significant feature of the mechanism by which a lateral force is 
generated. In order to provide a starting point for the development of a 
theory of the cornering power of a tyre several models have been proposed. 
These tyre models divide the tyre into two distinct parts each with separate 
properties. The walls of the tyre are assumed to act as a spring attaching 
the tread band to the wheel rim, while the tread band itself has been 
variously assumed to act as a taut string, a beam, or a beam under the action 
of tensile forces. 

While this arbitrary division of the tyre into separate regions can be 
supported by inspection there has been little attempt to justify the selection 
of a particular model and all the analysi s has been made with the object of 
obtaining lateral force versus angle of steer relationships which can be said 
to agree with a particular set of test data. 

An early attempt to justify the selection of a particular model is given 
in reference 1. Here tests are described and a theoretical analysis developed 
of the pneumatic stiffness of the tyre wall and the bending stiffness of the tread 
band while the lateral deflection of the tread band due to the application of 
a "point" load in the lateral direction is measured and attempts are made 
to relate this deflection to the bending stiffness and tension of the tread band. 
These experiments are continued in reference 2, where, additionally, the tension 
is measured directly by means of a dynamometer. The present report describes 
the analysis of the tests made in these references. 

Typical bending lines for the laterally load tyres are shown in Fig. 1 and 
Fig. 2. These tyres have similar overall dimensions, two of the tyres are cross 
bias construction and two are radial ply. 

2 	The tyre model 

The general model is described by the differential equation:- 

EId4 Yidx4 	Td2  Yidx2 	ky 	q(x) 
	

Eq. (1) 

El is the bending stiffness, T is the axial tension and k is the stiffness 
of the elastic foundation, These parameters are assumed to be constant with respect 
to x. In the special case where bending stiffness is ignored then the model 
is referred to as the "taut string" model. 

- Td2 
Yidx2 

 1 ky 	q(x) 

A typical solution of equation (1) is tedious because the continuity of 
the tread band requires that end conditions be satisfied and a solution of 
transcendental form is obtained. The linear dependence of load and deflection has 
been demonstrated by the experiments of reference 1 and 2 thus it is possible 
to suggest that analyses of the experiments may be carried out in the transformed 
domain with the bending lines expressed as a trigonometric series. All the lateral 
deflections are symmetrical about the load point hence the Fourier series will contain 
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only cosine terms. Also the requirement of symmetry demonstrates that only 
derivatives of even order can exist in the mathematical model. 

The Fourier coefficients of the bending spectrum Sy(n) which correspond 
to the deflected shape of the tyre y(x) are obtained by means of an harmonic 
analyser. Load spectra Sq(n) corresponding to point like load distributions 
q(x) are derived in Appendix 1, where a discussion on how far a real load 
distribution may be assumed to be a point load is also given. 

The tyre spectrum is defined as: - 

St(n) = Sy(n)/
sq

(n) 	 Eq. (2) 

From the experimental data it may be seen that the applied load is, to 
all intents, a point load, for which all the spectral lines are of constant 
height. 

Hence 
	

Sq(n) = F 	 (n = 1, 2, 3 	  ) 	Eq. (3a) 
TrEA 

except that the average value (n = 0.) is :- 

S (0) =  F 
	

Eq. (3b) 

24TBA 

Fig. 3, 4 are the normalized tyre spectra; the normalized amplitude at (n) 
is defined as:- 

at(n) = St(n)/ st(0) 	 Eq. (4) 

Where 	St(0) = Sy(0) = RAf Y d 	 Eq. (5) 
Sq(0) 0 

Equation (2) defines a tyre spectrum which contains only the characteristics 
of the tyre itself and is independent of the external loading. 

The transfer functions of equation (1) may be obtained by the Laplace 
transformation. 

L (y)  
L (q) 

1 
Eq. (6) 

EIs4  Ts2  

In general s = a + iw. Set a = 0 and give descrete values to w so that 
the "normalized frequency" is a multiple of the tyre perimeter. 

w = 2/r.n. 	1 	= of 1{A 
	 Eq. (7) 

217-RA 

Hence the spectrum of equation (6) is :- 
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Sm(n) = 	 1 Eq. 

Eq. 

(8)  

(9)  

(EI/ RA
4)n4 	(NiiiA2)n2 + k 

or 	am(n) = 	 1 

A4. 0 n
4 + A2  Ong +1 

where am(n) = Sm(n)/ sm(o) 	= K.S ( 	) (10)  Eq. 

The constants are defined as:- 

A4.0 = EI/ERA
4 	

A2.0 = TiRRA
2 

Consider the 'beam' model, then as n tends to infinity we have:- 

Eq. (11)  

Lt. 	am(n) = 	1 

log n. 

Eq. 

Eq. 

(12a)  

(12b)  

n 	4 co A4. 0n4 

or in logarithmic terms, 

Lt log a 	( ) = - log A40  - 4 
n 

For the 'taut string' model:- 

Lt am(n) = 	1 

log n. 

Eq. 

Eq. 

(13a)  

(13b)  

n 	4 co 	 2 
A 2. On  

or 	Lt log am(n) = - log A20  - 2 
n 	+ co 

Hence if the envelope of the spectrum is plotted on log-log paper a 'beam' model 
will have a slope which tends to 4:1 as n tends to infinity while the 'taut string' 
model will have a slope of 2:1 in similar circumstances. Examination of Fig. 3, 
4, shows that the cross bias tyre is adequately represented by a taut string model, 
and the radial cord tyre by a beam model, 

Derivation of model parameters from test data  

The tyre spectra of Fig 3 and 4 will now be compared with the spectral 
curves of a beam and taut string model in order to evaluate the parameters k, 
A4.0  and A20  so that a best fit is obtained between the deflected shape of 
the mathematical model ym(x) and the test data y(x). The most usual conditions 
will be:- 

2/r 

f
(y - ym)(10 = 0 	 Eq. (14a) 
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, , 	1 

y)
2 
 = Tv! (y - yid dO MIN: Eq. (15) 

The parameter k may be determined either by the test illustrated in Fig. 1 when, 

F/y  = 2,rBAk 	 Eq. (16a) 

or from integration of the lateral deflection due to a point load, when, 

ar 
1/k = BA].  F/y.d0 	 Eq. (18b) 

0 
Equation (15) states the minimum R.M.S. error condition which, when 

transformed into the spectral domain results in Parseal's equation. 

Ay 

n =ab 

E
2 

[sy(n) - 	MIN: 
n = 1 

Eq. (17) 
Substituting equations (2) and (3a) 

Ay 2w
F 
R A 

_ 	1 or F 2,011Ak 

2 

[St(n) - Stn(n)7 	MIN! 	 Eq. (18) 

2 

[at(n) - am(n)] --) MIN: 	 Eq. (19) 

Equation (9) is a function of the parameters A4.0  and A2.0  hence simultaneous) 

- 0 	and 	a - 0 	 Eq. (20) a A4.0  	 8A2. 0 

also the conditions 

eta 	> 0. 	ett y  > 0. 	0 2 6 y . as  Ay  a=o y 	> 0. 

a A4.
2
o 	3A2.

2  
0 	8A4.2o 	aA2.0 	a A4. OaA2. 0  

are sufficient to ensure that y is a mimimum. Differentiating equation (19) with 
respect to the parameters defined in equation (9) leads to two simultaneous conditions 
for A4.0  and A2.0:  

SP 	r- 

at(n) - am(n2j[nam(n)] = 0 
n = 1 

2 
	

Eq. (22) 

[at(n) - atn(ng[n2atn(n)] = 0 

n = 1 
Where at(n) are the measured normalized tyre spectral amplitudes and am(n) 

are the model amplitudes. 

2 



Equations (19) now take the form:- 
: 

AY/F = 	 
1  

2/rRAk 

1 

A2 /n4  
n = m + 1 
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It will be assumed that the conditions of equations (21) are satisfied and 
no check calculation is offered. 

In order to arrive at some simple conclusions it will be initially assumed that 
either one parameter or the other dominates the deflection spectrum. 

Cross bias tyres 	am(n) = 	1 	 Eq. (23a) 

A2n'+ 1 

Radial cord tyres 	am(n) = 	1  

A4n4 + 1 

Eq. (23b) 

Where A4  and A2 replace A4 0  and A2. 0 respectively. 
Then a single condition replaces equations (22) 

m 

yrat(n) 
1  

A2n2 + 1—/Z. A2n2  + 
n = 1 

m  

A4n4  + rA4n4  + 

1  
at(n)  

= 0 	 Eq. (24a) 

= 0 	 Eq. (24b) 

For practical analysis the series must be finite and in view of the limited 
accuracy of the experimental data only a few terms need be considered. m = 6 
is a reasonable limit and it can be shown by digital computation that this produces 
errors less than 0.5% in A4  or A2, 

Further approximations are now made. 

1 	 1 

A2n2  -F 1 	A2n2  

n > m. 

1 	 1  

A4n4 
+ 1 	A4n4  

Eq. (26a) 



YIF 	

1  

/2n-BAk 

— 2 

at(n) - arn(n)/ + ;It 

n=.1 n = m + 1 

The values of A2  and A4 are found from an iterative procedure which starts 
from the determination of the upper and lower boundaries for these parameters and 
continues until condition (24a, b) is satisfied. Figs. 5,6,7,8 show the results. 
All parameters depend on inflation pressure. From this it is concluded that the 
parameter. EI is dominant for radial cord tyre, whereas T is the major parameter 
for cross bias tyres, The pneumatic stiffness k has a content due to the stiffness 
of the tyre construction and will be dependent on the tyre shape as demonstrated 
in.reference 1. 

4 	Three parameter models  

Equation (1) shows a tyre model dependent on both bending stiffness and 
tread band tension and so far the condition for either bending stiffness or tension 
has been considered with the inference that in the one case tension is unimportant, 
and in the other case that no bending stiffness exists. 

The next step is, therefore, to separate the bending and tension terms. 
It is known from reference 2, that direct measurement of the tread band tension 
is possible and the experiment indicates that T is a linear function of inflation 
pressure. Consider Tpo  as a "standard" tension related to a pressure po, 
therefore at any other pressure. 

T = 	
(Tpo) PO  

also assume El = constant. 

Eq. (27) 

In this analysis the curves A4  = constant Fig. 12 ware plotted for six 
inflation pressures, but the ordinate is multiplied by K. RA , hence, from equation 
11, the diagram Fig. 9 then shows El as a function of inflation pressure and 
A2.0. This parameter, A2.0  is given by equations (11) and (27) and its 
development is shown in the lower part of Fig. 13. Tp  is the slope of the 
straight line in the lower right quadrant and this is lona by trial and error 
to suit the condition El = constant. Different functions El = f(p.Tp0) are plotted 
in the upper left quadrant of Fig. 9. The condition El = constant is satisfied for 
the two tyres considered if the following values of Tpo  and EI are used. 

Tyre 

D. 6.50 - 16 RB 	TPo = 220kp 
EI = 205000kp cm2 

M. 6.00 - 16 X T = 210kp 
El°  = 150000kp cm2  

The model spectra and tyre spectra are now compared for one tyre. 

lin' q. (26b) 



7 

Tyre M. 6.00 - 16 X 
	

p = 2.5 kp/cm2  

n 1 2 3 4 5 6 

at(n)  .895 .296 .056 .0189 .009 .0008 

am(n) .772 .349 .1292 .0517 .024 .012 

at -axn + .123 - 	.053 - 	.0732 - 	.0328 - 	.015 - 	.0102 

It will be noted that the first harmonic of the tyre bending spectrum is 
considerably greater than given by the spectral form of equation (1). This 
discrepancy is difficult to explain except by assuming that a hoop like deformation 
occurs in which the tread band tilts on the side walls. 

A direction comparison of tread band tension obtained from this analysis 
with experimental data obtained in an experiment in which the tread band was 
cut and then held in position by a dynanometer gives the following results: 

6.00 - 16 Tyre 	Bending line analysis 
	

TPo = 210 kp 

Experiment 
	

Tp0  = 193 kp 

5 	Conclusions  

An analysis of the experimental bending line measurements by spectral 
techniques suggests that the dornigant terms in the tyre model of equation (1) 
are:- 

For a radial cord tyre - bending stiffness. 
For a cross bias tyre - tread band tension 

a) Pneumatic stiffness  

The experimental measurements predict that the pneumatic stiffness is a 
function of inflation pressure and indicate the presence of a residual stiffness in 
the tyre walls. Reference 1 predicts that the pneumatic stiffness is also a function 
of the tyre profile, unfortunately it has not been possible to test the hypothesis 
since all the tyres available are of approximately similar cross section. 

b) Tread band tension  

Analysis of the measured bending lines indicates that the tread band tension 
is the dominant term in the tyre model when this is applied to cross bias tyres. 
Reasonable agreement is obtained between the measured value of tension and that 
obtained from a curve fitting technique. 

c) Bending stiffness 

Values of EI of 205000 kp cm2 for a 6.50 - 16 radial cord tyre and 
150000 kp cm2  for a 6.00 - 16 radial cord tyre are in reasonable agreement with 
tests described in reference 1 in which a section removed from the tread band of a 
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similar tyre gave a value of E = 11,400 kp/cm2  and a bending stiffness on 
a section 1.9 cm in the direction of bending of El = 650 kp cm2 , 

No analysis is presented for fabric cord tyres but the values of E 
and EI as measured on a test section are, from reference 1, E = 70 kp/cm2  
and with a test section 2.06 cm in the direction of bending. El = 97 kp cm2 . 

d) 	General 

The method of analysis demonstrated here would appear to be a 
suitable method of estimating the parameters of the tyre model used previously, 
without justification, by a number of authors. 

Satisfactory agreement has been demonstrated for a limited number of tests 
and analyses. 
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Appendix 1: 	Spectra of Quasi Point Loads 

Table Al. 1 shows a collection of symmetric loading functions and the 
corresponding spectra, and for discussion, the asymptotic behaviour of the 
envelope of the spectrum, the so called corner frequency nc, the amount of 
the envelope at this point, and its difference from unity are included. 

Definitions: 
2.7)-RA 

1. Total loading force 
F 
	J q(x)dx 

0 

 (AI. 1) 

3. The corner frequency of the envelope is obtained from the intersection of 
2q(o) and q(x) 

n r co 

i.e. from 
	

2q(o) = q(x) 	 (AI.2) 
n 4 oo 

In this case n is assumed continuous. 

From table AL 1 it can be seen that the diminution of the envelope at the 
corner frequency is related directly to the smoothness of the transient of the 
loading function q(x). 

If we assume that the amount of the 8th harmonic of a tyre spectrum is 
less than one percent of the 1st harmonic but the corner frequency should be 
higher than the number of the above harmonic then we may estimate the 
width 295L  of a loading function which is just permissible as an approximation of 
a distributed load by a point load. Reversing the expression for the corner 
frequency in table 1 we have 

1 	1 
L 	 7,150 

If the tyre radius is about RA  = 32 cm as in the case of the tyres tested then 
the maximum permissible loading width is 

295 L2irRA = 8cm 	 (AI.4) 

Analogous to this estimation an estimation of the effect of the hump very 
close to the point. of load application can be made (Fig. AI. 1) 

Appendix II. 	Effect of the "Third Parameter" 

It is the purpose of this Appendix to enable a separation of a non-dominating 
"third" parameter from a determined effective parameter of a two-parameter 
model. This will be performed by determination of a function which expresses 
the effective parameter of a two-parameter model in terms of given dominating 
and non-dominating parameters of a three-parameter model. The inverse of this 
function is the solution required. 
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By normalized notation the numbers of parameters are reduced by one 
supposing that both models have equal parameters K. Due to the condition 
of minimum EMS-error between bending lines of these two models we have 
to satisfy the following equation for a string like model, 

CO 

, (A40r111- A20n2  + 1  

1 

n = o 

and for a beam-like model 

1 

A21-1 + 1, (A2n2  + 1 )3- 
0 

CO 

 

1 

 

2 
	 ( 	 

A4n4  + 1) A4n4  + 1 

 

   

0 

	 A40n4  
n = o 

+ A20n2  + 1 

These equations were derived in Sect. 3 (see appropriate conditions given by equation 
(24a, b). 

The functions A2  = f(A20, A40) and A4  = f(A40 , A20) were computed in an 
iterative precedure as mentioned in Sect 3„ and they are plotted in Figs. 
(AII. 1) and (AII.2). From these the inverse functions A20 = f(A2 , A40) 
and A40  = f(A4 , A20) were obtained by graphical means. Figs. AII.3 
and AII.4 show the required inverse functions and a family of curves for 
constant amounts of 	11-A

40 • 

Appendix III. 	Slope of Spectrum Envelope 

In Sect 2 the spectrum of a beam model in normalized notation was derived 
as 

1  
am(n) A404 + A20n2  + 1 

	
(AIII.1) 

Considering now the envelope of this spectrum we put n as continuous 
and using the abbreviation n = n4  - IA40  we obtain 

am(n) 	  
4 A 2 + 20 	+ 1 

(AIII. 2) 

and in logarithmic representation as shown in Fig (AIII.1), we have 

A
20 

lga  ( Ti) 	lg  (114  + 	
2 	1) 

477 

The slope of the envelope on such a log-log plot is 

d lgam 	d lga
m 

 
	 - 	 
d lg 	

n . 
d 

Applied to equation (AIII.3) and with use of equation (AII.2) we have 

(AIII. 3) 

(AIII. 4) 

2 
A 20  
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d lgam  A  20 9 
- 	1 - am(n ) I 	n- + 

'40 )1 (AIII. 5) 
dlgn 

 

and equation (AIII. 2) solved for n 2 yields 

A
20 	

A220 
2 - - 21A

40 	4A40 ( 1  - )- a m  
(AIII. 6) 

By substitution of this expression into equation (AIII. 5) the final result 

 

d igam 	 A
20 

?? - 
	4

L 
 c 

dig  21A-4-0 

  

 

. am_7 	 (AIII. 7) 

where 

A220 
c . 1 + a 	

4A40 	
1 

  

From this it follows that at a given amplitude am  the slope 
of a spectrum envelope plotted on log-log paper is only dependent on the 

rA-74°  ratio 2  
	

This fact may be used for determination of this ratio 

A20 
from a given log-log plot of a beam-like spectrum. For this purpose 
the curves corresponding to equation 	7) were plotted in Fig. AIII. 2. 

Appendix IV: 	Calculation of Tread Band Tension. 

The following calculation will be made under the assumption that the cross 
section of the tread band is a circular arc and that the tread band itself 
is rigid. If the sidewalls are cut from the tread band and the latter is cut 
in two opposite sections as shown in Fig (AIV. 1) then the equilibrium condition 
for the remaining annulus is 

2N = pAG - 2 j NeGcos0 Gsincbd 	 (AIV. 1) 

0 

where p is the inflation pressure and the other symbols are explained by 
Fig (AIV.1) . The shaded area is 

AG  = 4G(RA - B10)  + 2G11 GsinOG + 21i120 	- 0 G) 	 (AIV. 2) 

Substituting 	R = 	 
1G 	cosO  G  

We obtain 
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1 	BA - rb 

NB = p 

RA1  - Al  = RA - A 

Al =  A 	rb 

and 

2r (AIV. 4) 

(AIV. 5) 

(AIV. 6) 
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AG = 4RAG - 2G 

IT 

2 	e  G 
2 - sinOG 

2 	 cos 8 a 
(AIV. 3) 

 

cosO G  

 

After the integration of the second term of equation (AIV. 1) is carried out we 
have to substitute the following expressions from A.S.A.E. Report No. 1. 

which yields 

IT 

2 
/ 

NeGeosO osinOrGd96  = 2pA1  (2(RA - A) + Al)coseG 
	

(AIV, 7) 

0 

Combining now equation (AIV.3) and equation (AIV.7) we obtain the result 

OG 
2 - sine_ 	 

coseG  
2RA(G Al cosOG) Al(2A - A)l cosOG - G2  

cosOG  

(AIV. 8) 

where from A.S.A.E. Report No. 1. 

1 - sine
G Al - 

1 	
A 

sineG 
	G 	

cos 0 
 (AIV, 9) 

Example.: 

A tyre similar to the measured M6. 00-16X of same manufacture was given 
as an example in above mentioned report of the author. Its geometrical 
data were: 

cross section height: A = 55 mm 
cross section width: 2B = 150 mm 
tread band width: 2G = 120 mm 

from this data the angle eG  = 50°  was computed. Taking now into account 
the radius, which is RA = 320 mm, the tread bang tension may be computed 
by use of equations (AIV.8, 9). At p = 1 kp cm 	the result is 

N = 214 kp. 

Reference should be made to a paper by BIDERMAN (1960). 
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Appendix V: 
	

Hoop on Elastic Foundation 

A point load F acting on a rigid hoop on elastic foundation as shown in 
Fig (AIV. 1) may be made up from two parallel forces each of magnitude 
-IF and from a couple RA.F, where RA  is the radius of •the hoop. The 
parallel forces mentioned above give rise to the average of the deflection 
line 

Yno 	k2,„EA 
	 (AV. 1) 

where k is the modulus of elastic foundation. The equilibrium condition 
with respect to the couple is, for small deflections, 

2 

RAF = 4  f kYn1(0)RAcos0d0 

and the deflection line is cosine-shaped 

YI11(0)= Ynlmaxc°s° 

Substituting this in the above integral and integrating we obtain 

Ynlmax = ki
F  
rit A  

(AV. 3) 

(AV.4) 

Combination of equations (AV. 1 , 3, 3) yields the deflection line of the hoop 

Yn 	k2 R
A 
	 (1 + 2cosq5) 	 (AV. 5) 

which is shown in Fig (AV.2). The corresponding bending spectrum simply 
is 

s (o) - 	 
Y 	k • 21-(11A  

s (1) - 	 
Y 	kwRA 

Referring to equation (3a, b) of Sect 2 the hoop spectrum is 

(AV. 6) 

sn(°) = sn(1) 	117 	 (V.7) 

i.e. there are only two spectral lines of constant height equal to the inverse 
of the modulus of elastic foundation. 
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