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SUMMARY

This report describes the analysis of a series of experiments on prieumatic tyres
which were designed to test the various hypotheses: regarding the deformed shape of a
tyre during the steering process.

The experiments consisted of several separate tests first described in Ref. 1 and 2,

a) The application of a point lateral force or a moment at one position on the tread band

which is restrained at the centre of the wheel, and the measurement of the resulting
lateral deflection of each point of the tyre perimeter.

b) The application of a uniform force around the tyre perimeter on a hollow cylindrical

former and applying a load at the centre of the wheel.

¢) Direct determination of tread band tension by cutting the tread band and bridging the

=i cut by a dynamometer,

d) Estimation of the bending modulus of the tread band by test on sections cut from the
- tread band.

The analysis of the experiments is carried out by first transforming the test results

into a Fourier series and determining the spectral content of the bending line with an

harmonic analysis. Transfer functions of beam and string models are derived and applied

to the test results. A method of considering a three parameter model is described.
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1 Introduction

The lateral deflection of the tyre relative to the wheel durmg cornering
is the most significant feature of the mechanism by which a lateral force is
generated. In order to provide a starting point for the development of a
theory of the cornering power of a tyre several models have been proposed.
These tyre models divide the tyre into two distinct parts each with separate
properties. The walls of the tyre are assumed to act as a spring attaching
the tread band to the wheel rim, while the tread band itself has been
variously assumed to act as a taut string, a beam, or a beam under the action
of tensile forces, ’

While this arbitrary division of the tyre into separate regions can be
supported by inspection there has been little attempt to justify the selection
of a particular model and all the analysis has been made with the object of
obtaining lateral force versus angle of steer relationships which can be said
to agree with a particular set of test data,

An early attempt to justify the selection of a particular model is given
in reference 1. Here tests are described and a theoretical analysis developed
of the pneumatic stiffness of the tyre wall and the bending stiffness of the tread
band while the lateral deflection of the tread band due to the application of
a "point" load in the lateral direction is measured and attempts are made
to relate this deflection to the bending stiffness and tension of the tread band.
These experiments are continued in reference 2, where, additionally, the tension
is measured directly by means of a dynamometer. The present report describes
the analysis of the tests made in these references.

Typical bending lines for the laterally load tyres are shown in Fig. 1 and

Fig. 2. These tyres have similar overall dimensions, two of the tyres are cross
bias construction and two are radial ply.

2 The tyre model

The general model is described by the differential equation:-
Blay/ gt - Ta2y/ 4,2 + ky = q(x) Eq. (1)

-EI is the bending stiffness, T is the axial tension and k is the stiffness
of the elastic foundation., These parameters are assumed to be constant with respect
to x. In the special case where bending stiffness is ignored then the model
is referred to as the "taut string'' model.

- szy/dx'z + ky = c.l(x)

A typical solution of equation (1) is tedious because the continuity of
the tread band requires that end conditions be satisfied and a solution of
transcendental form is obtained. The linear dependence of load and deflection has
been demonstrated by the experiments of reference 1 and 2 thus it is possible
to suggest that analyses of the experiments may be carried out in the transformed
domain with the bending lines expressed as a trigonometric series. All the lateral
deflections are symmetrical about the load point hence the Fourier series will contain




only cosine terms. Also the requirement of symmetry demonstrates that only
derivatives of even order can exist in the mathematical model.

The Fourier coefficients of the bending spectrum S (n) which correspond
to the deflected shape of the tyre y(x) are obtained by means of an harmonic
analyser, Load spectra Sq(n) corresponding to point like load distributions
g{x) are derived in Appendix 1, where a discussion on how far a real load
distribution may be assumed to be a point load is also given.

The tyre spectrum is defined as:-

S¢(n) = Sy(n)lsq(n) : . Eq. (2)
From the experimental data it may be seen that the applied load is, to
all intents, a point load, for which all the spectral lines are of constant

height.

Hence Sq(n) =_F n=1,2,3.......... ) Eq. (3a)
aRA ‘ ‘

except that the average value (n = 0.) is :

Sq(0) =_F | ‘ Eq. (3b)

Fig. 3, 4 are the normalized tyre spectra; the normalized amplitude a; (n)
is defined as:-

at(n) = Si(n)/ g (q) Eq. (4)
2T
Where $,(0) = sy(0) = RA/ Y dg Eq. (5)
Sq(0) 7

Equation (2) defines a tyre spectrum which contains only the characteristics
of the tyre itself and is independent of the external loading.

The transfer functions of equation (1) may be obtained by the Laplace
transformation. '

L{y) _ 1

L(q) Els? - Ts? + k

Eq. (6)

In general s = a + iw. Set a = 0 and give descrete values to w so that
the ''mormalized frequency' is a multiple of the tyre periméter.

w=2r.n. 1 =mn/Rp Eq. (7)
27RA

Hence the spectrum of equation (6) is :-
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Smin) = 1 Eq. (8)

4y 4 2y,2

(EI/gy in* + (N/Rp“In® + k
or amlin) = 1 Eq. (9)
4 2

A4'0 + AZ,On +1
where a,,(n) = Sm(n)/sm(o) = K.S,(n) Eq. (10)
The constants are defined as:-

A B 4 _ 2

Consider the ‘beam' model, then as n tends to infinity we have:-

Lt. ap(n) = 1 Eq. (12a)
n Yo A4_0r17I

or in logarithmic terms,

Lt log a,(n) = - log Ay 4 - 4 log n. ' Eq. {12b)
n % o

For the "aut string' model:-

Lt amin) = 1 Eq. (13a)
B e Ag.on

or Lt log ay(n) = - log Ay g - 2 log n. Eq. (13b)
n %o :

Hence if the envelope of the spectrum is plotted on log-log paper a 'beam' model
will have a slope which tends io 4:1 as n tends to infinity while the 'taut string'
model will have a slope of 2:1 in similar circumstances. Examination of Fig, 3,
4, shows that the cross bias tyre is adequately represented by a taut string model,
and the radial cord tyre by a beam model,

3 Derivation of model parameters from test data

The tyre spectra of Fig 3 and 4 will now be compared with the spectral
curves of a beam and taut string model in order to evaluate the parameters k,
Ay o and Ay 5 so that a best fit is obtained between the deflected shape of
the mathematical model yp(x) and the test data y(x). The most usual conditions
will be:-

2T
f (y - yp)d¢ = 0 Eq. (14a)
(4]




(Ay)z = -2—%/ (y - yp) d¢ — MIN! Eq. (15)

The parameter k xﬁay be determined either by the test illusirated in Fig. 1 when,
F/y = 2oRpk ' Eq. (16a)
or from integration of the lateral deflection due to a point load, when,
27
1k = RA/ Fly.d¢ Eq. (16b)
[+

Equation (15) states the minimum R.M.S. error condition which, when
transformed into the spectral domain resulis in Parseal's equation.

1 EX n =a? 2
=2 - 24¢ = i § / - ’/
o n=1

Eq. (17)
Substituting equations (2) and (3a) ,
o 2
by = —— |3 | S¢(n) - S (n)] - MIN! Eq. (18)
y ‘?'WRA 2 | m v ! q'
J m=t |
o _ 2
Ay _ 1 _ .
or F ° ZaRAk Z [at(n) am(n)J - MIN! Eq. (19)
n=1
Equation (9) is a function of the parameters Ay o and Ag g hence simultaneous
a——f—;—él = 0 and 5319_}:. = 0 ' Eq. (20)
4.0 2,0
also the conditions
a®ay > 0. 3%y > O. 8%ay . 8'ay sy > 0.
2 2 2
3840 8Ag g 8A4,0 BAg.0 9 A4 g%y ¢

are sufficient to ensure that y is a mimimum. Differentiating equation (18) with ,
respect to the parameters defined in equation (9) leads to two simultaneous conditions
for A4.0 and AZ‘D:

2
ZJ Z at{n) - am(n‘)/[nam(n).? =0
n=1 '
-~ — —_ 2
Z [ at(n) - amin) / Z nzam(n)7 -0

n=1
Where ai(n) are the measured normalized tyre spectral amplitudes and ap(n)

are the model amplitudes.

Eq. (22)




It will be assumed that the conditions of equations (21) are satisfied and
no check calculation 'is offered.

In order to arrive at some simple conclusions it will be initially assumed that
either one parameter or the other dominates the deflection spectrum.

Cross bias tyres “amp(n) = 1 Eq. (23a)
A
on + 1
Radial cord tyres am(n) = 1 Eq. (23b)
R ,
Agn” + 1

Where A, and A2 replace Ay g and Ag o respectively.
Then a single condition replaces equations (22)

m
Z[at(n) - 21 ]/ 2 ] =0 Eq. (24a)
198 Agn™ + 14 - A2n2 + 1

n=1
oo -
ZZ an) - — ]Z n 7 = 0 < Eq. (24b)
'1 A4n4 + 1 A4n4 + 1
ns= ' .

For practical analysis the series wmust be finite and in view of the limited
accuracy of the experimental data only a few terms need be considered. m = 8
is a reasonable limit and it can be shown by digital computation that this produces

errors less than 0.5% in Ay or A,,

Further approximations are now wmade.

1 o 1 ~
Aznz + 1 A2n2 >
n > m
1 " 1
A4n4 + 1 A4n4

Equations (19) now take the form:-

[ m —2 >
1 . 1 \" 4
Ayl = —— [ ) La - e/ + =5 1/,
V2aRpK / n=1 2 nTm+1
J Eq. (26a)




m — 2 ®
N ' 1 ‘ 8
bylg “VF?IITBAk Llat(n) - am(nl/ + KE— Z 1/,° Eq. (26b)
- : n=1 i : n=m+1

The values of Ag and Ay are found from an iterative procedure which starts
from the determination of the upper and lower boundaries for these parameters and
continues until eondition (24a,b) is satisfied. Figs. 5,6,7,8 show the results.

All parameters depend on’inflation pressure. From this it is concluded that the
parameter EI is dominant for radial cord tyre, whereas T is the major parameter
for cross bias tyres, The pneumatic stiffness k has a content due to the stiffness
of the tyre construction and will be dependent on the tyre shape as demonstrated
in‘reference 1. '

‘4 Three parameter models

Equation (1) shows a tyre model dependent on both bending stiffness and
tread band tension and so far the condition for either bending stiffness or tension
has been considered with the inference that in the one case tension is unimportant,
and in the other case that no bending stiffness exists,

The next step is, therefore, to separate the bending and tension terms.
It is known from reference 2, that direct measurement of the tread band tension
is possible and the experiment indicates that T is a linear function of inflation
pressure. Consider Tp, as a ''standard" tension related to a pressure pg,
therefore at any other pressure, .

T = ‘5; (Tp,) ' | : Eq. (27)

also assume EI = constant.

In this analysis the curves A, = constant Fig, 12 were plotted for six
inflation pressures, but the ordinate is multiplied by K.Rp ', hence, from equation
11, the diagram Fig. 9 then shows EI as a function of inflation pressure and
Ay o- This parameter, Ay o is given by equations (11) and (27) and its
development is shown in the lower part of Fig. 13. Tp is the slope of the
straight line in the lower right quadrant and this is foungbby trial and error
to suit the condition EI = constant, Different functions EI = f(p.Tpo) are plotted
in the upper left quadrant of Fig. 9., The condition EI = constant is satisfied for
the two tyres considered if the following values of Tp, and EI are used.

Tzre
D. 6.50 - 16 RB Tp, = 220kp
E® - 205000kp cm?
M. 6.00 - 16 X T, = 210kp
Ef° - 150000kp cm?

The model spectra and tyre spectra are now compared for one tyre.
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Tyre M. 6.00 - 16 X p = 2.5 kp/cm?
n 1 2 3 4 5 6
a,(n) .895 . 296 . 056 . 0189 . 009 . 0008
am(n) 772 . 349 .1202 . 0517 .024 .012
ay - a + .123 . 053 . 0732 - .0328 .015 - .0102

It will be noted that the first harmonic of the tyre bending spectrum is
considerably greater than given by the spectral form of equation (1). This
discrepancy is difficult to explain except by assuming that a hoop like deformation
occurs in which the tread band tilts on the side walls,

A direction comparison of tread band tension obtained from this analysis
with experimental data obtained in an experiment in which the tread band was
cut and then held in position by a dynanometer gives the following results:

6.00 - 16 Tyre Bending line analysis Tpe 210 kp

1

Experiment Tp 193 kp

o]

5 Conclusions

An analysis of the experimental bending line measurements by spectral
techniques suggests that the dominant terms in the tyre model of equation (1)
are:- '

For a radial cord tyre - bending stiffness,

For a cross bias tyre - tread band tension

a) Pneumatic stiffness

The experimental measurements predict that the pneumatic stiffness is a
function of inflation pressure and indicate the presence of a residual stiffness in
the tyre walls, Reference 1 predicts that the pneumatic stiffness is also a function
of the tyre profile, unfortunately it has not been possible to test the hypothesis
since all the tyres available are of approximately similar cross section.

b) Tread band tension

Analysis of the measured bending lines indicates that the tread band tension
is the dominant term in the tyre model when this is applied to cross bias tyres.
Reasonable agreement is obtained between the measured value of tension and that
obtained from a curve fitting technique,.

c) Bending stiffness

Values_of EI of 205000 kp cm2 for a 6.50 - 16 radial cord tyre and
150000 kp cm” for a 6.00 - 16 radial cord tyre are in reasonable agreement with
tests described in reference 1 in which a section removed from the tread band of a




similar tyre gave a value of E = 11,400 1«:p/cm2 and a bending stiffness on
a section 1.9 cm in the direction of bending of EI = 650 kp em?2,

and EI as measured on a test section are, from reference 1, E = 70 kp/cm2
and with a test section 2.06 cm in the direction of bending. EI

d)

suitable method of estimating the parameters of the tyre model used previously,
without justification, by a number of authors.

and analyses.,
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Appendix 1: Spectra of Quasi Point Loads

Table AI.1 shows a collection of symmetric loading functions and the
corresponding spectra, and for discussion, the asymptotic behaviour of the
envelope of the spectrum, the so called corner frequency n., the amount of
the envelope at this point, and its difference from unity are included.

Definitions:
2#Rp
1. Total loading force P = ./ q{x)dx ) (AI.1)

0

3. The corner frequency of the envelope is obtained from the intersection of
2q(o) and q(x)
n» o

i.e. from 2g{o) = q(x) (AI.2)
n oy o

In this case n is assumed continuous.

From table AI.1 it can be seen that the diminution of the envelope at the
corner frequency is related directly to the smoothness of the transient of the
loading function q(x).

If we assume that the amount of the 8th harmonic of a tyre spectrum is

less than one percent of the lst harmonic but the corner frequency should be
higher than the number of the above harmonic then we may estimate the

width 2¢, of a loading function which is just permissible as an approximation of
a distributed load by a point load. Reversing the expression for the corner
frequency in table 1 we have

If the tyre radius is about Rp = 32 cm as in the case of the tyres tested then
the maximum permissible loading width is

2¢1,2"Ra = 8cm (AL 4)

Analogous to this estimation an estimation of the effect of the hump very
close to the point. of load application can be made (Fig. AIL1) ’

Appendix II. Effect of the "Third Parameter"

It is the purpose of this Appendix to enable a separation of a non-dominating
"third" parameter from a determined effective parameter of a two-parameter
model. This will be performed by determination of a function which expresses
the effective parameter of a two-parameter model in terms of given dominating
and non-dominating parameters of a three-parameter model. The inverse of this
function is the solution required.
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By normalized notation the numbers of parameters are reduced by one
‘supposing that both models have equal parameters K. Due ifo the condition
of minimum RMS-error between bending lines of these two models we have
to satisfy the following equation for a string like model,

Q0

T 1 1 n o

LAn4+A 71 " Anfii/\AamEs1) "0
40 20" 2n 2"

n=o

and for a beam-like model

o8]
1 1 \ nz z _
nZ()(A4On4 + Aggn® + 1 T Am* 4 1) <A4n4 +1 >

These equations were derived in Sect. 3 (see appropriate conditions given by equation
(24a, b).

1
o

The functions Ag = f{Agqg, Agg) and Ay = f{A,gy, Agg) were computed in an
iterative precedure as mentioned in Sect 3,, and they are plotted in Figs.
(AIL.1) and (All.2). From these the inverse functions Agg = f(Ag, Ag4q)
and Aygg = f(Ay, Ay,) were obtained by graphical means. Figs. AIL3

and All.4 show the required inverse functions and a family of curves for

constant amounts of A .
40
23
20
Appendix III, Slope of Spectrum Envelope

In Sect 2 the spectrum of a beam model in normalized notation was derived
as

1
+ Azonz + 1

amin) = 4 (AIII. 1)

A40n

Considering now the envelope of this spectrum we put n as continuous
and using the abbreviation = n%* - VA4, we obtain

1
apn(n) = (AIIL. 2)
nt . A2092 4
V840
and in logarithmic representation as shown in Fig (AIIl. 1), we have
4 %20 5
lgam(n) = - 1g <r; +m—;-5- n“ + 1) (AIIL. 3)
The slope of the envelope on such a log-log plot is
dlga dlga
m
- = (AIIL 4)

dign "' dn

Applied to equation (AIIl. 3) and with use of equation (AIL.2) we have




-12--

dlga p AZO 5 .
= - 1 - .
and equation (AIII, 2) solved for n2 yields
2
A A
n2 _ _ _20 _\/ 2°-<1___1_> (AIIL. 6)

By substitution of this expression into equation (AIIl.5) the final result

el 4[ c - C.apy (AIIL. 7)

where

A%y,
c-1+am 4A40"

From this it follows that at a given amplitude a,, the slope
of a spectrum envelope plotted on log-log paper is only dependent on the
ratio 9 YAgq . This fact may be used for determination of this ratio

Az0 ’
from a given log-log plot of a beam-like spectrum. For this purpose
the curves corresponding to equation (AIIL.7) were plotted in Fig. AIIL 2.

Appendix IV: Calculation of Tread Band Tension,

The following calculation will be made under the assumption that the cross
section of the tread band is a circular arc and that the tread band itself

is rigid. If the sidewalls are cut from the tread band and the latter is cut

in twc opposite sections as shown in Fig (AIV.1) then the equilibrium condition
for the remaining annulus is

7]- N
2N = pAg - 2/ NggcosO singd ¢ (AIV.1)
(o]

where p is the inflation pressure and the other symbols are explained by
Fig (AIV.1). The shaded area is

Ag = 4G(Rp - RlG) + 2(}.R1 sinfqg + 2R (-2~ -8 qg) (AIV.2)
Substituti g
ubs 1tut1ng RIG = COSBG

We obtain
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w
9 "8G
2 - sinbg - ;2:—6;6—6
AG = 4RAG - 2G ) (AIV.3)
cosﬁG

After the integration of the second term of equation (AIV.1) is carried out we
have to substitute the following expressions from A, S.A.E. Report No. 1.

12 2
1 Ra b
Ng =p —
2r (AIV.4)
1 1 ,
Ry, -A =Rp-A (AIV.5)
and
al omyt - (AIV.6)
which yields
w
2 [NchoseGsin¢er¢ = 2pAl <2(RA - A) + A1>COSGG (AIV,7)

0

Combining now equation (AIV.3) and equation (AIV.7) we obtain the result

. 2 " 6G
" 2 - sin G ~ cose
N = pZZRA(G - Alcostg) + AM(2A - A)lcosey - G2 G ]
cosGG
(AIV. 8)
where from A.S.A.E, Report No. 1.
1 - sin®
ppp— (A—G-—-———-e——‘-3> (AIV,9)
sing cos®

Example:

A tyre similar to the measured M6,00-16X of same manufacture was given
as an example in above mentioned report of the author. Its geometrical

data were:
cross section height: A = 55 mm
. ¢ross section width: 2B = 150 mm
tread band width: 2G = 120 mm

from this data the angle 0, = 50° was computed. Taking now into account
the radius, which is Ry = 320 mm, the tread ba_mg tension may be computed
by use of equations (AIV.8, 9). At p = 1 kp cm ~ the result is

N = 214 kp.
Reference should be made to a paper by BIDERMAN (19860).
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Appendix V: Hoop on Elastic Foundation

A point load F acting on a rigid hoop on elastic foundation as shown in
Fig (AIV.1) may be made up from two parallel forces each of magnitude
iF and from a couple Ry .F, where Rp is the radius of .the hoop. The
parallel forces mentioned above give rise to the average of the deflection
line

F

Yno * R,

(AV.1)

where k is the modulus of elastic foundation. The equilibrium condition
with respect to the couple is, for small deflections,

w
2

RAF = 4[ kYn1(¢)RACOS¢d¢

1]

and the deflection line is cosine-shaped

Yni{¢) = Y cos¢ (AV.3)

nlmax
Substituting this in the above integral and integrating we obtain

F

Ynlmax = k#R 5

{AV.4)

Combination of equations (AV. 1,3,3) yields the deflection line of the hoop

F
Y, = WRA (1 + 2cos¢) . . (AV.5)

which is shown in Fig (AV.2). The corresponding bending spectrum simply
is

B

sy(o) = “k-27rRA
. F (AV.6)
Y T kawRp
Referring to equation (3a, b) of Sect 2 the hoop spectrum is
3 1
spl0) = s,(1) = - (v.7)

i.e. there are only two spectral lines of constant height equal to the inverse
of the modulus -of glastic foundation.
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FIG, 3 NORMALIZED TYRE SPECTRA OF CROSS BIASED TYRES AT
VARIOUS INFLATION PRESSURES p (E = ENVELOPE OF SPECTRUM)

a, tyre D6, 70 - 16 b. tyre M6, 00 - 16
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FIG, 4 NORMALIZED TYRE SPECTRA OF RADIAI, CORD TYRES AT VARIOUS
INFLATION PRESSURES p (E = ENVELOPE OF SPECTRUM)

a, tyre D6, 50 - 16RB b, tyre M6, 00 - 16X
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FIG. 5 MODEL PARAMETER k = k{p)
a. tyre D6, 70 - 16 b, tyre M6, 00 - 16
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FIG, 6 MODEL PARAMETER Negp = Ngpe(p) OF CROSS BIASED TYRES
a, tyre D6,70 - 16 b, tyre M6, 00 - 18
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FIG, 7 MODEL PARAMETER EIeff = EIeff(p) OF/RADIAL CORD TYRES

a, tyre D6, 50 - 16RB b, tyre M6, 00 - 16X
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FIG. 8 RMS - ERRORS —I— OF MODEL BENDING LINES
max

a. tyre D6, 70 ~ 16 b, tyre M6, 00 - 16
c. tyre D6, 50 - 16RB d.  tyre M6, 00 -~ 16X
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FIG, 9 SEPARATION OF PARAMETER N = 13P-Np FROM THE EFFECTIVE

PARAMETER ©
Eleff (example chosen: tyre D6, 50 - 16RB)
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FIG, AV, 1

RIGID HOOP ON ELASTIC FOUNDATION SUBJECTED TO
A LATERAL POINT LOAD F (DASHED ARROWS = COMPONENTS
OF F) ,
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FIG, AV,2 DEFLECTION LINE OF A RIGID HOOP ON ELASTIC FOUNDATION

(CURVE a) COMPARED WITH A BENDING LINE OF A RADIAL
CORD TYRE OF TYRE M6, 00 - 16X

(p = 1,5 curve b),
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