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ABSTRACT 

This research conducted a two-pronged approach to study the effects of 

taphonomic processes by conducting analysis of experimental burials of porcine 

femora and parallel analysis of ancient human archaeological remains from 

geologically distinct cemeteries.  The aim of this study was to identify the major 

degradative factors from depositional environments that affect the bone 

composition and the retention and retrieval of nucleic DNA from archaeological 

bone.  Four different experimental burial environments of clay, compost, lime and 

sand were designed, displaying different properties of soil type, pH, water content 

and organic content.  Analysis of the burial mediums and bones were conducted at 

regular intervals over an 18 month period.  Observations of changes in the burial 

medium, comparisons of the rates and degree of soft tissue decomposition, bone 

diagenesis from compositional assessment, and bone colour change were made 

and analysed in correspondence with the different environments.  The analytical 

data collected on the diagenesis of the archaeological bone from both studies, was 

compared to the DNA profiling success rates. 

The research and optimisation of sample preparation and DNA analysis enabled 

the most cost-effective and appropriate methods to be identified and utilised in 

accordance with the preservation state of the bone samples.  This allowed the 

analysis of ancient archaeological bone to be analysed in-line with forensic 

protocols, to enable a uniform accessible approach to produce comparable results 

across different laboratories.  

Drawing together the results from the various analytical techniques made it 

possible to identify the variables that affect bone diagenesis and the survival of 

nuclear DNA, and provide evidence that the rate of decomposition and bone 

degradation is affected more significantly by the burial environment than duration 

of burial, as stated in the research hypothesis.  The presence of water, sand and the 

level of organic content were found to be the most degradative variables within the 

experimental burial conditions; causing changes in bone crystallinity, and 

infiltration of contaminants into the bone.  The presence of lime, chalk or limestone 
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in an environment was found to have preserving properties in both the porcine 

and human burials, by retarding the rate and degree of soft tissue decomposition, 

and reducing the diagenetic changes in bone composition evident from the other 

environments. 

Despite previous reports of success using analytical techniques as predictive 

models for DNA and bone preservation, no correlations with DNA survival could be 

established.  However the use of a multi-disciplinary approach enabled the 

detection and identification of soil contaminants affecting the bone structure and 

the ability to amplify DNA, in relation to burial environments.  This research 

highlighted the importance of utilising multiple analytical techniques, such as 

colourimetry, ATR-FTIR, XRF and genetic analysis in order to avoid 

misinterpretation and false reporting of the state of bone diagenesis or 

preservation and the survival of DNA, due to environmental contaminants within 

the hard tissue. 

The research confirms the idea that in order to establish optimised sampling and 

DNA analysis of archaeological bone, it is imperative that certain protocols are 

adhered to.  Precautions must be implemented from excavation through to 

laboratory analysis to avoid contamination; and correct recording of burial 

environment is essential to enable consideration of extrinsic factors and 

contaminants when reporting results. 

 

Keywords:  

ancient, ATR-FTIR, burial, capillary electrophoresis, colourimetry, diagenesis, DNA, 
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 INTRODUCTION Chapter 1:

1.1 Background 

As DNA technology advances the possibility of profiling samples which were 

previously too small in quantity, too degraded or too contaminated by inhibitors to 

analyse, has increased.  These improvements in technology have allowed 

information to be gained from not only trace forensic samples (Fattorini et al., 

1999; Prinz et al., 2007; Senge et al., 2011) but also more generally from skeletal 

remains – both forensic (Prado et al., 1997; Alonso et al., 2001; Bille et al., 2004) 

and archaeological (Colson et al., 1997; Paabo et al., 2004; Schotsmans et al., 2011). 

The term archaeological can be defined as the excavation and the study of past 

populations through human remains, artefacts and sites (Stevenson, 2010). 

The ability to analyse trace samples in forensic cases has improved the 

investigative powers of the police allowing a higher number of positive 

identifications of victims and perpetrators to be made, from analysis of biological 

stains or trace evidence left at crime scenes (Mann and Ashworth, 2006).  In cases 

where human skeletal remains are present, information that can now be gained 

from the analysis of samples enables identifications to be made from minute or 

damaged DNA (Jeffreys et al., 1992; Gill et al., 1994; Edson et al., 2009; Ambers et 

al., 2013; Maeda et al., 2013).  The development of these DNA techniques has also 

enabled researchers to study ancient DNA from hard tissue samples revealing 

information on phylogenetics, migration, pathological conditions and familial 

relationships providing a new perspective on the history of our ancestors (Salo et 

al., 1994; Mays et al., 2001; Kaestle and Horsburgh, 2002). 

Extensive research has been carried out into the process of decomposition of 

human remains (Gill-King, 1997; Haglund et al., 2002; Dent et al., 2004; Wilson et 

al., 2007; Adler et al., 2011; Schotsmans et al., 2011) but there are still unanswered 

questions about the interactions between the hard tissues, their burial 

environments and the effect on DNA survival.  Pokines (2014a) in particular has 

highlighted the need for in-depth investigations of these processes in order to 

develop a better understanding of these interactions. 
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Cranfield Forensic Institute accommodates an extensive collection of analytical 

equipment, so by utilising various technology, as discussed later, it was possible to 

conduct a multi-disciplinary investigation into the different aspects of bone 

diagenesis and the effect on biomolecules. 

1.2 Applications of research 

The results from this research can be used across the disciplines of archaeology, 

anthropology, forensic science, ancient DNA research and archaeological history.   

1.2.1 Forensic applications 

In the majority of murder and coronial cases, the identity of the deceased is 

already known, but in cases where this is under dispute, establishing the identity is 

at the forefront of the investigation (National Centre for Policing Excellence, 2006).  

In cases where the remains of an unknown individual are found there can be 

limited resources available to attempt an identification of the deceased, depending 

on the state in which the remains are recovered.  Whether a body is subjected to 

burial or exposure, decomposition of the soft tissue occurs as one of the first 

processes.  Depending on the deposition environment, the post-mortem interval at 

the time of discovery and recovery, and more importantly – the state of decay, it is 

possible that fingerprinting, facial recognition, odontology (Cattaneo et al., 2006, 

Stavrianos et al., Hartman et al., 2011) or identification by clothing, tattoos and 

personal effects may not be successful, due to a lack soft tissue, or ante-mortem 

records for comparison.  If soft tissues are still present, these are generally the 

preferred choice to attempt the recovery of DNA, due to the complicated and time 

consuming preparation required for bone or teeth extraction.  If the presence of 

pink, deep muscle tissue is evident at post-mortem examination, this is generally 

the sample of choice (Zehner, 2007).  However in cases of multiple interments, or 

in situations where a number of bodies are stored together such as mass disasters, 

contamination can occur within both the bone marrow and soft tissue due to the 

infiltration of putrefaction fluids from surrounding bodies (Zehner, 2007).  In cases 

where this type of contamination is possible, no soft tissue is present, or where soft 

tissue has already undergone degradation via cellular autolysis or formation of 
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adipocere; it is necessary to attempt identification by the analysis of DNA extracted 

from the bones and teeth. 

The fragile nature of decomposing soft tissue is a commanding reason why 

improvements to the analysis of hard tissue are vital in forensic investigations for 

the identification of unknown individuals; however hard tissue profiling causes a 

challenge for forensic providers due to the differences in methodologies from trace 

forensic samples.  The majority of forensic samples submitted to laboratories 

consist of trace samples suitable for automated processes, however this process is 

not suitable for the most part of DNA extraction from hard tissues.  At present it is 

a commonly held belief in forensic science that when profiling from hard tissue, a 

tooth is best for analysis (Gaytmenn and Sweet, 2003; Higgins and Austin, 2013) 

however this is not always possible, especially within an archaeological context.  If 

a tooth is found loose at the bottom of a grave it may not be possible to 

conclusively assign to a particular individual therefore cannot provide a positive 

identification.  This problem is compounded still further in the case of multiple 

interments such as mass graves, where association of skeletal elements may be 

difficult, or remains may be incomplete due to trauma, secondary deposition or 

scavenging (Haglund, 2002; Ubelaker, 2009; Moraitis and Spiliopoulou, 2010; 

Hines et al., 2014).  However, with technical advancements in DNA analysis and 

more comparative studies being conducted, recent research shows that femurs 

provide a better yield of nuclear DNA than teeth, even from degraded skeletal 

remains (Johnston and Stephenson, 2016). 

A better understanding of the decomposition processes in relation to individual 

skeletal elements from different environments, enable relationships between 

variables and degradation factors to be identified.  Acknowledgement of these 

factors will enable practitioners to be better informed when it comes to sample 

selection depending on the nature of the burial, and could subsequently result in a 

higher number of positive identifications through the use of DNA from 

archaeological bone for both forensic purposes, and provide better results for 

interpretation from anthropological and historical contexts.  
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1.2.2 Archaeological applications 

Whilst osteoarchaeological techniques have traditionally been used to estimate the 

sex of remains, there are instances where this is not possible.  For example, the 

absence of grave goods in Christian burials, indeterminate morphological traits 

such as where the pelvis and skull are missing, or infant/juvenile remains make 

this estimate challenging if not impossible.  Current methods for the sex estimation 

of juvenile remains such as the base of the skull, long bones and vertebrae 

elements are possible but these bones can be missed during excavations due to the 

small size from lack of fusing and failure to recognise incomplete elements.  Other 

methods include elements that are sexually dimorphic in adults such as the sciatic 

notch in the pelvis, the shape of the cranium, and the shape of the mandible, but 

these tend to only be useful around the adolescent period (Dirkmaat and Sienicki, 

1995). 

Anthropological methods to assess the sex of skeletal remains have also been 

found to be subject to cognitive bias (Nakhaeizadeh et al., 2014).  For these 

reasons, it has recently become necessary to turn to DNA analysis to provide 

answers (Colson et al., 1997; Faerman et al., 1998; Fregel et al., 2011; Seidenberg 

et al., 2012; Bauer et al., 2013). 

At the beginning of the project, it was hoped that information obtained from 

analysing Iron Age remains from Fin Cop Hill Fort in Derbyshire would shed light 

on the nature of this non-normative deposition and associated events that 

occurred on the site by providing sex identification and possible familial 

relationships between the remains. 

It was hoped that analysis of the skeletal remains from the Eriswell Anglo-Saxon 

cemetery at RAF Lakenheath, Suffolk would provide information for the 

investigation into the historical burial practises, and identification of any familial 

relationships.  In addition, the nature of the geology of the Eriswell cemetery, 

discussed later, offered an unparalleled opportunity to consider DNA survival over 

a range of deposition environments.  The dramatic contrast between sand and 
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chalk burial environments at Eriswell, provide an opportunity to contrast DNA 

survival in hard tissue. 

1.3 Aims, objectives and hypothesis 

This section provides the overall aims of the research in order to answer the 

research question of whether different burial environments affect the taphonomic 

changes that result in bone diagenesis, and changes in the biomolecules contained 

within.  The objectives set out how the research will be conducted in order to 

answer this question. 

1.3.1 Aims of the research 

The overall aims of this research project is to improve the understanding of the 

chemistry of the degradation of nuclear DNA (nDNA) by investigating differences 

in environmental taphonomic effects on specific skeletal elements from different 

burial sites.  In so doing this research hoped to discover the best practises to 

improve success rates of nDNA from degraded hard tissue samples, and produce 

sampling strategies for nDNA extraction across a range of environments and 

skeletal remains.  By implementing the use of analytical techniques in the 

investigation of diagenesis of the bone, considering aspects such as composition, 

colour change, and compromise of outer cortex, it was hoped that possible 

predictors of DNA survival can be identified and studied, ultimately providing 

techniques that might triage and optimise archaeological DNA research. 

1.3.2 Objectives of the project 

1. To collect information on the degradation of nuclear DNA, and identify 

which variables affect this process.  

2. To determine how the degradation of nuclear DNA is related to the mineral 

and organic components of the bone. 

3. To measure the interactions between different burial environments and 

various skeletal elements by quantifying colour change, collagen content 

and DNA survival.  

4. To improve sampling strategies for the best DNA recovery from hard tissue. 
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5. To quantify and consider the utility of predictive modelling when related to 

success rates of nuclear DNA extraction. 

6. To suggest a triage system for bone sampling and analysis, in relation to the 

burial environment, that could be utilised by archaeologists to optimise 

nuclear DNA extraction success from recovered human remains. 

1.3.3 Research hypotheses 

The hypotheses of the research for the porcine samples, and human samples stated 

prior to commencement of the work are detailed in the following section. 

1.3.3.1 Null hypothesis 

1.a. There will be no significant difference in the quantity and quality of 

amplifiable DNA in bones buried in different environments. 

1.b.  There will be no significant difference in the quantity and quality of 

amplifiable DNA from different skeletal elements of femur and metatarsal 

from the human burials. 

1.c. There will be no significant difference in the quantity and quality of 

amplifiable DNA in bones buried for different durations. 

1.d. There will be no quantifiable relationship between the nature of physical 

characteristics observed in bone and the survival of DNA. 

1.3.3.2 Alternative hypothesis 

2.a. The bones buried in alkaline soil will retain more amplifiable DNA than 

those buried in acidic soil.  Bones buried in the lime environment will show 

the best preservation of DNA.  Bones buried in the sand environment will 

show the worst level of preservation of DNA. 

2.b. There will be differences in the quantity of DNA retained by the human 

femora in comparison to the metatarsals.  

2.c. The longer the burial duration of the bones, the lower the quality and 

quantity of amplifiable DNA. 
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2.c. There will be a quantifiable relationship between the nature of physical 

characterisation observed in bone and the survival of DNA. 

1.4 Project overview 

The purpose of this section is to introduce the project, with an overview of what 

each chapter contains.  This project took a two-pronged approach to encompass 

information from both human remains and human analogues from different burial 

environments, in an effort to improve the understanding of how burial 

environments affect decomposition rates, diagenetic alterations of bone, and the 

preservation of biomolecules.  The results from controlled burials of porcine bones 

in containers of clay, compost, lime or sand over varying durations were compared 

to results from analysis of ancient human remains from similar burial 

environments to identify any correlations found due to the burial environment.  By 

examining the manner in which decomposition and diagenesis occur within 

different environments, a comparison with similar environments over an 

exaggerated timescale such as ancient remains, enable patterns to be identified. 

This chapter provides an introduction to the research, with the aims and 

objectives, and the application of the completed project.  The two-pronged 

approach of using human archaeological remains and human analogue burials is 

explained, with a brief introduction to the analysis conducted.  

The current understanding of bone biology and diagenesis is detailed in chapter 

two, with an introduction to bone structure and how it differs between elements, 

and a literature review on the presence of DNA in bone.  The section concludes 

with a discussion on taphonomy – encompassing the decomposition process, both 

in terms of human remains and biomolecules. 

Chapter three provides a literature review on burial environments, and the current 

understanding on how different variables such as pH, water content and soil type 

can affect decomposition and the taphonomic processes of bone.  The two 

archaeological sites studied during the research are then presented, with 
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archaeological and geological information pertaining to the environments in which 

the human remains were buried. 

A literature review of past and current methods used within archaeological 

science, and DNA analysis – both forensic and ancient, are presented in chapter 

four with critical reviews of their use within this research.  The chapter continues 

with a section on the optimisation of current established methods conducted, in 

which protocols, and methods were tailored to meet the objectives set out in 

chapter one.  The concluding section of chapter four presents the selected methods 

used to analyse the human archaeological remains, and the experimental 

procedures conducted with the human analogue samples, and subsequent analysis 

of the bones and burial environments. 

Chapter five is separated into two parts presenting the results from this research.  

Part A presents the results from the buried human analogue samples, with data 

from the soil analysis, colour determination, composition information and DNA 

analysis.  The results are presented independently according to environment in 

order to allow detailed investigation, prior to comparison between all burials at 

the end of each section.  Part B presents the human archaeological results, 

beginning with the results of analyses conducted on skeletal elements from the 

Iron Age burial site at Fin Cop in Derbyshire; and secondly the Anglo-Saxon site at 

Eriswell in Suffolk.  The colour, composition and DNA analysis results are 

presented for each site, prior to a cross-comparison at the end of the chapter.  

Interpretation of the DNA results in relation to sex determination, familial 

relationships or burial practise are also discussed. 

Chapter six discusses the results from the research, encompassing information 

from both approaches to the investigation, and identifies the different 

environmental variables responsible for the diagenetic alterations to bone, and the 

DNA degradation. 

The conclusions from the research are detailed in chapter seven, along with details 

of the contribution to science that this research has provided.  Details of future 

work are also described. 
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Supplementary information is provided in Appendix A for the human analogue 

data, and Appendix B for the human archaeological data. 

1.5 Chapter summary 

This chapter has detailed the necessity for a better understanding of the 

taphonomic processes in relation to burial environment in order to optimise 

sampling and analysis of bone.  The applications of the research for both forensic 

and archaeological contexts have been presented, and the research hypothesis and 

objectives have been outlined. 
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 BONE BIOLOGY AND DIAGENESIS Chapter 2:

The previous chapter detailed the introduction to the research, and outlined the 

necessity for a better understanding of taphonomic processes in relation to 

changes observed in human bone.  This chapter provides an introduction to DNA, 

bone biology, and taphonomy, detailing previous research that has contributed to 

the understanding of bone diagenesis.  Bone diagenesis by definition means the 

alteration of bone after burial, including chemical, physical and biological changes 

due to intrinsic and extrinsic factors (Lyman, 2001). 

2.1 Cell biology and DNA 

Each human body contains billions of cells, which with the exception of red blood 

cells, all contain genetic material in the nucleus, called deoxyribonucleic acid 

(DNA).  Due to the location of this DNA, it is referred to as nucleic DNA, as opposed 

to mitochondrial DNA which is contained with the mitochondria of the cell, outside 

of the nucleus (Butler, 2001; Alberts and Johnson, 2014) as shown in Figure 2-1. 

 

Figure 2-1: Diagrams depicting: a) a cell containing a nucleus and nuclear DNA from 

Heintzman (2013); b) a cell showing the location of mitochondrial DNA from Heintzman 

(2013);  c) a double stranded DNA helix with complementary base pairs from Pray (2008) 
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DNA is responsible for storing information for cell replication and development, 

and also provides a genetic program to be passed on to future generations.  

Nuclear DNA (nDNA) is found within chromosomes which reside in the nuclei of 

cells in the body, providing the genetic information for the living organism which is 

passed down from both parents.  Along the length of the chromosome are genes 

found at specific points or ‘loci’.  At any given locus, the coding region of DNA is 

referred to as an allele.  It is the location of these alleles that can be used to 

determine genotypes and population statistics used in forensic DNA studies 

(Cattaneo et al., 2006; Prinz et al., 2007; Jakovski et al., 2010). 

Mitochondrial DNA (mtDNA) is located outside the nucleus, in the cells cytoplasm 

and is present in abundance compared to nDNA.  This larger quantity of genetic 

information, and therefore higher survivability rate, means mtDNA is used more 

commonly in archaeological analysis where DNA degradation is likely, and nDNA 

may be limited.  Despite this, cases have been reported of the successful 

amplification of nucleic DNA from archaeological samples that did not yield any 

mitochondrial DNA (Chilvers et al., 2008).  The natural repetition of mtDNA within 

the cell means that whilst copies might suffer damage and degradation just as 

nDNA might, they are unlikely to be damaged in the same locations, allowing 

resulting ‘gaps’ to be filled and the ultimate effect to be one of greater resilience 

and longevity.  

Despite these advantages of mtDNA over nDNA, the limitations also need to be 

acknowledged.  Due to its location, mtDNA generates free radicals, which leads to 

advanced degeneration of the DNA (Hochmeister et al., 1991) due to oxidative 

damage, and the analysis is a laborious process lacking the automation of the 

forensic nDNA system.  As mtDNA is passed to the offspring solely by the mother, 

its analysis is useful for tracing maternal lineage, which can be useful for 

archaeologists and forensic practitioners, but it is inadequate for discriminating 

identification of individuals due to the wide-scale homogeneity across population 

groups (Biesecker et al., 2005). 
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As the aim of this research was to facilitate forensic investigations of unidentified 

individuals rather than familial lines, the focus was on nDNA rather than mtDNA, 

but an understanding of the archaeological literature drawing on mtDNA analysis 

remains apposite to this work where the effect of environmental factors coincide 

in its survival. 

2.2 Bone biology and structure 

Bone is composed of an organic matrix (20-40% total live mass), an inorganic 

mineral component (50-70%), cellular elements (5-10%) and lipids (3%).  The 

organic matrix of the bone consists of different types of collagen that are 

interwoven to stabilise the matrix, whilst hydroxyapatite is the predominant 

molecule of the inorganic mineral component which provides rigidity (Li and Jee, 

2005) as illustrated in Figure 2-2. 

 

Figure 2-2:  The structure of bone, illustrating the collagen and 

hydroxyapatite bone crystals matrix (Rho et al., 1998) 

Research has shown that there is a significant difference between the composition 

of modern and archaeological bone due to the effects of diagenetic changes (Reiche 

et al., 1999).  These changes occur to bones of the skeleton during decomposition, 

in the form of exchange of ions between the bone and surrounding soil, an uptake 

of ions and circulating organics, a breakdown of collagen, an alteration of mineral 

matrix, infill of mineral deposits and microbiological attack (Hedges, 2002).  

However, due to the physical and chemical barrier properties of the 

protein/mineral matrix of bone, it can be the most efficient biological tissue to 
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attempt DNA extraction because of the protection it provides from environmental 

and biological deterioration and attack (Loreille et al., 2007). 

2.2.1 Skeletal elements 

When choosing skeletal elements for targeted extraction, the general process of 

skeletonisation should be considered as different bones have different decay rates, 

both in terms of soft tissue loss and diagenetic bone loss.  Generally, the first 

element to be defleshed and reduced to hard tissue is the cranium, followed by 

clavicles and sternum; cervical vertebrae; arms and hands; thoracic and abdominal 

region, vertebral column, ribs; and lastly legs and feet (Rolsandic, 2002).  This 

suggests lower regions of the body may yield a higher quantity/quality of DNA as 

they have been subjected to environmental degradation less than other elements 

of the skeleton.   

This research focusses on DNA in bone, however, researchers and practitioners 

conducting both forensic and ancient DNA analyses have also used teeth as a 

source of DNA - particularly with archaeological or badly degraded human remains 

due to the good survival rate in archaeological conditions due to the protective 

qualities of the enamel and position in the jaw from extrinsic contaminants 

(Alonso et al., 2001; Gaytmenn and Sweet, 2003; Ricaut et al., 2005; Rohland and 

Hofreiter, 2007; Kitayama et al., 2010; Adler et al., 2011; Higgins and Austin, 2013; 

Higgins et al., 2015; Hughes-Stamm et al., 2016).  Other incidences where teeth 

may be more beneficial for analysis than bone include human remains that have 

been subjected to fires or explosions (Sweet and Sweet, 1994; Williams et al., 

2004).  However, femurs have been known to survive fires, better than other 

skeletal elements in the body, and one case reports the ability to obtain an 

identifying DNA sample from a decomposed and charred femur from a major forest 

fire in Galicia, Spain (Fondevila et al., 2008). 

Researchers have been comparing the DNA content in different skeletal elements 

for many years, as discussed in this section.  Perry et al (1988) who found that 

when comparing the DNA degradation in a clavicle bone with a rib bone from the 

same individual, the DNA in the clavicle had degraded slower.  However these 
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bones were not from an archaeological context, instead were incubated in a 

laboratory setting using humidity as the environmental factor, as a means of 

assessing the DNA degradation in relation to the time interval since death.   The 

quality and quantity of DNA recovered from a bone can also be affected by the 

state of putrefaction (Hochmeister et al., 1991) as the accumulation of body fluids 

can affect specific bones or aspects of bone depending on the body position or 

deposition type. 

The distribution of cortical and cancellous bone differs between different bones in 

the body:  Short bones such as carpals, and irregular bones such as vertebrae are 

blocky in shape and consist of cancellous bone surrounded by cortical bone;  Flat 

bones such as scapulae are flat and tabular consisting of cancellous covered by 

cortical bone; Long bones such as femora consist of a shaft of tubular medullar 

cavity surrounded by compact bone, whilst the ends are cancellous bone which is 

covered by cortical bone (Parsons and Weedn, 1997).  These differences in bone 

structure also affect the level of DNA contained within.  Cortical bone contains high 

molecular weight (HMW) DNA, up to 1μg per gram of bone, whereas cancellous 

bone can yield 10-20 times greater DNA quantities, but does not survive over long 

periods of time (Hochmeister et al., 1991). 

Another aspect to consider is the structural strength of the element, and how this 

may affect the integrity and subsequent preservation.  The cranium and scapulae 

are often fractured in the context of a burial (Moraitis et al., 2009) most likely due 

to the inability to withstand force due to the hollow sphere or plate-like structure 

and the associated pressure of soil overlying the burial.  However the petrous 

bone, part of the temporal bone in the cranium, is a very dense bone and shows 

good survival rates in archaeological contexts (Pinhasi et al., 2015).  Fractures and 

post-mortem breaks allow further degradation to occur due to the penetration of 

the surface and therefore most likely affect the survival of DNA.  Long bones 

display a weakness of a different kind, due their hollow rod structure (Currey, 

1984).  By contrast, elements such as carpals and tarsals are more compact and 

structurally denser so can withstand a greater force, although phalanges which 

display a rod-like shape are relatively easily broken (Darwent and Lyman, 2002). 
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With regards to archaeological skeletal remains, or those subject to surface 

deposition, factors may affect the availability/presence and feasibility of the 

recovery and collection of certain bones.   

The action of scavengers can affect by the rate of decomposition by consuming soft 

tissue, and can affect skeletal remains by disarticulating, dispersing, damaging and 

destroying skeletal elements (Moraitis and Spiliopoulou, 2010; O'Brien et al., 

2010).  Interference from scavengers can be affected by the depth of burial, degree 

of clothing and also the location of the body in relation to human presence 

(Kjorlien et al., 2009).  Skeletal components which are small in size and those rich 

in marrow are also more likely to be subject to scavenging by animals (Pokines, 

2014b) whereas flat bones could be lost due to the movement of water through the 

remains (Gill-King, 1997).  Taking these factors into account, although tarsals may 

appear to be a good element to target for DNA extraction, it is possible they will 

not be present at deposition sites (Janjua and Rogers, 2008).  In addition to loss of 

elements from single burials, disassociation of elements such as phalanges within 

an internment of multiple individuals, may be misidentified and be hard to 

individuate, resulting in the potential for multiple profiles of the same individual.  

The absence of target elements may often be an issue when sampling from 

archaeological sites, and highlights the necessity to target several skeletal elements 

for analysis, subject to cost and authorisation for destructive analysis. 

In addition to the variables discussed, a host of other factors can potentially affect 

the preservation or degradation of soft and hard tissue such as the depth of the 

burial (Campobasso et al., 2001), the presence or absence of a coffin (Dent et al., 

2004), and possible root action which disturb the remains (Tibbett and Carter, 

2009). 

2.3 Genetic material in bone 

Currently we lack a definitive understanding of the location of DNA in bone, and 

different researchers have posed counteracting hypotheses.  Brundin et al. (2013) 

concluded the survivability of DNA in bone is due to its affinity to hydroxyapatite; 

whilst Campos et al. (2012) detailed the importance of considering both the 
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collagen, and the hydroxyapatite for bound DNA for analysis.  Research on the use 

of sodium hypochlorite as a means of eliminating exogenous contaminants from 

bone, proposes that the DNA binds to the hydroxyapatite – the component which 

provides rigidity to the bone structure (Kemp and Smith, 2005), a belief shared by 

others (Parsons and Weedn, 1997).  Therefore, bones containing high levels of 

hydroxyapatite should yield the highest levels of intrinsic DNA. 

One commonly held belief is that compact bone it is thought the majority of the 

DNA present resides in the osteocytes which saturate the matrix at 20,000 to 

26,000 cells present per cubic millimetre, higher than that in cancellous bone, 

therefore providing adequate DNA for extraction (Hochmeister et al., 1991).  For 

this reason, compact bone is often regarded the preferential sample for DNA 

analysis (Parsons and Weedn, 1997; Milos et al., 2007; Latham and Madonna, 

2013). 

Recent research by Pinhasi et al. (2015) investigated endogenous DNA content in 

the dense part of the temporal bone, the petrous bone.  The results showed even 

when poor yields were found from other skeletal elements, the dense petrous bone 

could still yield high levels of endogenous DNA from the same skeleton.  Different 

areas of the bone were also found to contain different levels of DNA, showing the 

location of sample site is just as important as the element itself. 

In terms of identifying appropriate sites on the bone for analysis, it has been 

highlighted by several researchers over an extended period that there is a lack of 

information regarding the relative amounts of DNA contained within different sites 

on bone (Perry et al., 1988; Adler et al., 2011).  This presents difficulties in the 

estimation of quality and quantity of potential DNA to be retrieved, and how 

different sampling techniques could affect the results. 

2.3.1 Predictors of DNA in bone 

Due to the expensive, laborious, destructive, and sometimes less than successful 

process of DNA analysis, many researchers have tried to establish procedures to 

predict whether a bone sample will yield DNA.  These indicators include gross 

morphology, nitrogen and collagen content. 
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There is evidence that suggests observations of the surface of the bone can be 

utilised as predictors of DNA integrity in that sample (Haynes et al., 2002).  If 

cracks, surface pitting and poor histology are visible then it is probable that no 

DNA can be profiled due to the degradation of the biomolecules (Al-enizi et al., 

2008).  Bollongino et al (2008) suggested estimating the presence of well-

preserved DNA, by checking physical signs of the bones that can be characteristic 

to those of good samples; stating that heavy and hard compact bones, that have no 

or few cracks, and no signs of microbial activity yield the best results. 

Microscopy has been used as a common method for histological examination of 

preservation state of DNA (Hedges and Millard, 1995; Richards et al., 1995; Colson 

et al., 1997) where a fragment of bone is embedded in epoxy resin, polished and 

viewed at 100x magnification.  However, this method is both destructive and time 

consuming. 

Other methods to assess the state of bone preservation include assessing the 

quantity of collagen survival within the bone via measurement of the nitrogen 

content by the use of mass spectrometry (Hedges and Millard, 1995; Colson et al., 

1997).  Research indicated that high levels of nitrogen, similar to those seen in 

modern bone, could be used as an indicator to the level of DNA in archaeological 

bone (Hiller et al., 2004), however more recent research has shown that the 

nitrogen content in bone cannot be used as a predictor in bone as it is a poor 

indicator of the preservation state of the molecules (Al-enizi et al., 2008). 

Bone mineral is considered an important factor in the preservation of 

biomolecules within archaeological bone and over time screening methods have 

been developed to investigate this further.  Fourier-Transform Infrared (FTIR) can 

be used to calculate changes in crystal indices (Lebon et al., 2010; Squires et al., 

2011; Hollund et al., 2013; Grunenwald et al., 2014), PIXE (Particle-Induced X-ray 

Emission) examines any chemical changes within the mineral structure(Elliott and 

Grime, 1993; Reiche et al., 1999), and XRD (X-ray Diffraction) can be used to 

identify the composition of the crystal (Stathopoulou et al., 2008; Adamiano et al., 

2013). 
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Further research into the collagen content in bone has shown that there is a clear 

correlation between the high content and thermal stability of the organic phase 

and the successful amplification of DNA (Hiller et al., 2004; Gilbert et al., 2005; 

Koon et al., 2008; Fredericks et al., 2012a) which suggests that the assessment of 

collagen can be used as an indicator for successful profiling of archaeological 

samples.  However, due to the exchange of ions that occurs during the 

recrystallization of bone, compounds from surrounding burial environments and 

groundwater, such as calcium, phosphate and carbonate can be incorporated into 

the bone mineral (Wright and Schwarcz, 1996; Hollund et al., 2013) which can 

affect the results of the diagenetic analysis. 

Other methods used to assess molecular preservation include amino acid 

racemization and is commonly within ancient DNA research to screen bones prior 

to conducting DNA analysis (Bada et al., 1994; Poinar et al., 1996; Kolman and 

Tuross, 2000; Hofreiter et al., 2001).  However this technique is not cost effective 

in terms of time or equipment (Haynes et al., 2002) 

In order to interpret how the post-mortem duration affects the bone structure and 

DNA content it is necessary to first understand the taphonomic processes which 

lead to the diagenetic changes in bone. 

2.4 Taphonomy 

Taphonomy was first conceptualised as a scientific discipline by Efremov (1940) 

and can be described as the study of the processes which occur to an organism 

from the moment of death to the point of detection.  The interest in taphonomy 

first began with the analysis of fossils, and the investigation into processes of 

preservation by geologists and palaeontologists (Pokines, 2014a).  Focus turned to 

the decomposition and preservation of remains from bone depositions and post-

mortem changes in bone structure was identified (Jans et al., 2004).  The 

taphonomic processes which occur are all affected by a number of factors to be 

discussed later in this section, such as the rate and progression of decomposition 

of soft tissue (Damann and Carter, 2014), differences in the structure/size of 

skeletal elements (Lyman, 2014), environmental influences, (Pokines and Baker, 
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2014) and any interference by animal or human activity (Pokines, 2014b).  In a 

forensic context, taphonomic processes, decay, and depositional environments are 

all studied for information which may assist investigations (Pokines, 2014a) 

collated with information provided by the anthropologists and archaeologists. 

Traditionally human analogues such as pigs are used in order to study the 

taphonomic effects, due to the similar composition of soft tissue and fat 

composition.  Other animal analogues that have been used include sheep, dogs, 

rats, deer and bison all of which have been shown to display differences in the 

manner and rate of decomposition when compared to human cadavers (Stokes et 

al., 2013).  

Although porcine bone is close to human bone in a structural sense, there are 

differences in the micro-structure (Pearce et al., 2007) and therefore may be 

different interactions within burial environments so this needs to be considered 

when analysing results.  Research has highlighted these differences and shown 

that in an archaeological context bacterial attack is twice as likely to occur within 

human bone, than it is in animal bone (Lee-Thorp and Sealy, 2008), which is most 

likely due to the de-fleshing of the animal bone, whereas human burials are 

generally whole bodies (Bell et al., 1996).  Despite these differences, pig cadavers 

are often used in taphonomic studies due to the ease of availability and the ‘sterile’ 

nature of the animal due to its presence in the food chain. 

More recently, these taphonomic processes are being investigated at taphonomic 

facilities containing human cadavers, such as the Anthropological Research Facility 

at the University of Tennessee (Bass and Jefferson, 2003) therefore eliminating the 

problem of differences in composition, and the structure of bone that exists 

between species.  These facilities provide a means of obtaining vital information to 

develop understanding and knowledge in taphonomy, by studying the different 

stages of decay and decomposition, and identifying the variables which affect these 

processes. 
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2.4.1 Decomposition 

Decomposition of a human body begins as a sequence of events shortly after death, 

the rate  and order of which are dependent on the surrounding environmental 

conditions, and can cause exceptions such as peat-bog bodies (Painter, 1991) and 

mummification (Weitzel, 2005).  Different authors suggest variants to the stages of 

decomposition but generally the process of decay has been identified as four 

different stages: fresh, bloat, decay and dry, although some researchers refer to a 

fifth stage in regards to buried remains of disintegration between decay and dry 

(Tibbett and Carter, 2009).  The first stage begins with the break-down of cells 

within the body, due to a process referred to as autolysis.  This involves the action 

of intrinsic enzymes digesting cells, causing the rupture and subsequent release of 

cellular fluids.  This action marks the beginning of the putrefaction stage, where 

intrinsic bacteria residing within the intestinal tracts breaks down surrounding 

soft tissue (Parkinson et al., 2009).  Gases are produced due to the bacterial action, 

which lead to bloating of the body, and subsequent rupture, releasing gas and 

decomposition fluid into the surrounding environment.  Active decay is the next 

stage in the sequence which involves the decomposition of soft tissue due to 

bacteria and insect activity.  The final ‘dry’ stage refers to the skeletal state of the 

remains, from which the bone diagenesis will continue (Pokines and Baker, 2014) 

and will subject the bone to staining, weathering and fragmentation (Dupras and 

Schultz, 2014; Junod and Pokines, 2014). 

In terms of the sequence of skeletonisation, again this is dependent upon the 

surrounding environment, general observations were published by Dirkmaat and 

Sienicki (1995) from decomposition of human remains from an open air 

deposition.  Due to the accessibility for flies and insects into orifices, the cranium is 

the first element to skeletonise, followed by the clavicle and the sternum, the 

vertebrae, the pelvis and ribs, and lastly the legs and the feet.  

In some cases, and dependent of surrounding conditions, soft tissue may survive in 

the form of desiccation or adipocere.  Soft tissue desiccation can be identified as 

dark and leathery in texture, which are formed due to the rapid drying of tissue, 

due to a dry environment or exposed to airflow (Aturaliya and Lukasewycz, 1999).  



Chapter 2:  BONE BIOLOGY AND DIAGENESIS 

22 

The formation of adipocere occurs in anaerobic conditions where sufficient 

moisture is available for bacteria to convert subcutaneous fat into a grey-white 

lipid solution, which can progress into a shell covering the remains (Schotsmans et 

al., 2011; Forbes et al., 2005).  

2.4.2 Diagenetic changes in archaeological bone 

The term diagenesis in anthropology refers to any post-mortem changes that occur 

affecting the physical, chemical and composition of the bone, (Jans et al., 2004) 

which alters the bone from its original ante-mortem state.  Such changes include 

adsorption, mineral replacement, and precipitation and dissolution (Elliott and 

Grime, 1993).  The presence of these changes and the extent to which they occur 

will depend on not only the intrinsic factors, but also extrinsic factors provided by 

the surrounding burial environment (Fernández-Jalvo et al., 2010). 

The intrinsic changes that take place in the post-mortem interval, are subject to the 

morphology of the bone, in terms of size, shape and structure.  The diagenesis of 

the organic matrix of the bone involves the decomposition of proteins into amino 

acids due to the hydrolysis of the proteins and subsequently the peptides.  The 

inorganic phase of the bone also undergoes changes in structure, becoming more 

crystalline which in turn weakens the protective matrix.  This alteration leaves the 

bones vulnerable to ion substitution, infiltration of soil contaminants from the 

environment, and loss of proteins and minerals (Henderson, 1987). 

The extrinsic factors that affect the bone diagenesis involve water movement, soil 

type and soil pH.  Collagen is thought to be most stable within a pH of 3-7.5, but 

any changes in this level can increase or decrease the rate of naturally occurring 

hydrolysis.  The mineral component can also be affected by any pH change 

deviating from its optimal survival level of pH 7-8 (Turner-Walker, 2007). 

The importance of more detailed research into the degradation of bone is 

imperative for the ability of researchers to identify which skeletal elements have 

the potential to provide DNA (Adler et al., 2011). Researchers have concluded that 

the organic content of ancient bone is significantly lower than that in modern bone 
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(Ariffin et al., 2007) which may relate to the abundance of DNA. But it remains 

unclear whether this is a simple association or a more complex relationship. 

2.4.3 The breakdown of DNA  

“As a highly reactive chemical residue, DNA is the target of several physical agents 

and chemical reactions” (Alaeddini et al 2010, p.149).  These processes involve 

those of a chemical nature which break down the helical spines of the DNA 

molecule leading to the loss or alteration of nucleotide bases (Campos et al., 2012).  

In life the process of cell growth and regeneration limit the degradation of DNA, 

and in bone the action of osteoblasts and osteoclasts ensure a homeostatic 

‘turnover’ of skeletal material.  After death there are no mechanisms to repair the 

DNA therefore the actions of endogenous and exogenous nuclease activity, 

oxidative nucleotide modifications and hydrolytic cleavage result in strand 

breakage and the DNA degrades into short fragments of linked base pairs (Martín 

et al., 2006a; Adler et al., 2011). 

2.4.4 Ancient DNA  

The investigation of ancient DNA (aDNA) can be used in association with other 

techniques to provide information about sex estimation, pathology, population 

migration, community interaction and interbreeding and genetic analyses of our 

ancestors (Faerman et al., 1998; Hofreiter et al., 2001; Götherström et al., 2002; 

Adachi et al., 2004; Bollongino et al., 2008; Gamba et al., 2008; Haile et al., 2010; 

Adler et al., 2011; Hanna et al., 2012; Hofreiter et al., 2012; Kirsanow and Burger, 

2012).  

The field of ancient DNA analysis stemmed from an interest in our ancestors and 

the manner in which they lived.  This diverse field now includes on-going research 

and advances in scientific knowledge regarding bioarchaeology, human and animal 

evolution and even forensic identification.  The first article to be published in 

ancient DNA regarded animal evolution and detailed the cloning of DNA of an 

extinct equid known as a Quagga (Higuchi et al., 1984) followed a year later by 

Svente Paabo who reportedly cloned human DNA from a 2,400 year old Eqyptian 

mummy (Pääbo, 1985).  After DNA previously reported to be that from a dinosaur 
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and a dinosaur egg (Woodward et al., 1994) was later reported to be human DNA 

due to contamination (Hedges and Schweitzer, 1995), the field of ancient DNA 

attracted stricter controls and precautions to confirm authenticity of findings. 

Studies with aDNA have continued to develop and have allowed the analysis of 

samples previously stored such as natural history specimens (Mulligan, 2005), 

have attempted to shed light on familial relationships within burial grounds 

(Chilvers et al., 2008), to corroborate historical records of people and animal 

movements (Haile et al., 2010) and to solve the puzzle of multiple skeletons used 

to construct one individual (Hanna et al., 2012).  Most recently, aDNA analysis has 

been used to determine the origins of those buried in previously undocumented 

cemeteries (Ozga et al., 2016; Santana et al., 2016).  

Ancient DNA has also been used within forensic science since 1991 when DNA 

extracted from bone was used to identify a murder victim (Hagelberg et al., 1991).  

In 1992 aDNA analysis of buried remains was able to positively identify the 

suspected grave of The Angel of Death, Josef Mengele in Brazil (Jeffreys et al., 

1992), and analyses conducted in 1994 and 2007 positively identified the remains 

of the Romanov family (Gill et al., 1994).  Some forensic protocols are now using 

techniques designed by the aDNA community for the purpose of DNA repair from 

degraded forensic samples (Hall et al., 2016). 

But the study of aDNA comes with both more and greatly exacerbated problems 

compared with the analysis of modern DNA.  DNA from recent remains which has 

not been subject to the extremes of environmental damage, can be found saturated 

within soft tissue and bone alike, whereas aDNA is less abundant and also 

irregularly distributed due to diagenetic changes and degradation.  In addition, the 

survival of archaeological soft tissues is rare and is practically unheard of without 

the action of physical and cellular alteration (Turner-Walker and Peacock, 2008).  

These changes can not only lead to base modifications in the DNA sequence but 

also will shorten the DNA fragments, breaking the ‘ladders’ of preserved linked 

base pairs still further (Kirsanow and Burger, 2012).  
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The most significant issue concerned with that of aDNA analysis is the risk of 

contamination of samples with modern DNA as detailed previously.  

Considerations of this problem and precautions required to limit the probability of 

this occurrence is discussed later in section 4.1.3. 

In addition to overcoming the potential complications it is also necessary to prove 

the authenticity of the aDNA.  This links to the consideration of contamination, and 

the importance of obtaining reference/elimination samples.  In a forensic context, 

the process of taking and analysing reference samples from individuals who have 

processed the sample, from the scene to the laboratory, is common place.  

However, in a historical archaeological context, when the number or identity of 

individuals that have had contact with the skeletal remains is unknown, the 

process of eliminating reference DNA from a potentially contaminated piece of 

evidence is difficult.  Without taking proper precautions, archaeological DNA 

analysis runs the risk of extracting, amplifying and sequencing the modern DNA of 

all individuals involved in the process of excavation, storage and osteological 

analysis. 

In an effort to limit the risk of incorrectly reporting contaminant DNA as aDNA,  

Cooper and Poinar (2000) proposed a ‘criteria of authenticity’ in order to establish 

guidelines for researchers working with ancient DNA, however these guidelines 

have been deemed unreasonable by many due to the multiple extractions and PCR 

reactions expected when dealing with minute samples (Chilvers et al., 2008).  

There is no definitive timeline for the differentiation between aDNA and modern 

DNA in forensic situations as the categorisation refers to the state of the 

biomolecules, rather than a set period of time.  This is not dissimilar to the 

distinction between remains deemed forensic or ‘of coronial interest’, or those 

regarded as archaeological, which varies country to country.  As interest increases 

in archaeology of World War I and II with the inevitable recovery of remains, the 

discipline of forensic and archaeological DNA analysis form a continuous spectrum 

distinguished by cellular survival rates, rather than set periods of time. 
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Parsons and Weedn (1997) state that DNA preservation is more dependent on the 

interactions between the sample and its environment rather than time elapsed, 

and therefore the age of the sample will not dictate the quality or quantity of the 

DNA within.  As protocols differ between aDNA and modern DNA, this statement 

suggests it is more important to base the differences of protocols on the 

preservation state of the bone rather than the age of it, again, this refinement of 

understanding tows a similar line to archaeology, where concepts of time-derived 

degradation (Ascher, 1968) were replaced with a more complex understanding of 

site formation processes (Schiffer, 1983).  Therefore the development of a reliable 

method of preservation identification needs to be established, to enable 

researchers to select the most relevant protocol for the sample. 

2.5 Chapter summary 

This chapter has introduced the structure of DNA and bone, and how diagenetic 

alterations enable analytical techniques to be applied in order to establish 

information of taphonomic changes. 

In historical archaeological contexts, the capability of DNA investigation can 

provide an insight into the burial practises of previous populations, offer 

information regarding the migration and lifestyles of the past, and provide 

supporting evidence for human evolution hypotheses.  

The ability to detect and interpret DNA in bone has advantageous effects on the 

positive identification of unknown individuals in a forensic context.  Whether the 

circumstances are down to mass fatalities or single deaths, the emphasis on 

identifying the individual(s) is paramount.  Improvements and advances in DNA 

technologies are enabling increasing success with degraded samples, but 

knowledge surrounding the decomposition and diagenesis processes are still not 

understood. 
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 BURIAL ENVIRONMENTS Chapter 3:

Where the last chapter detailed decomposition, the taphonomic effects on DNA 

degradation and bone diagenesis, this chapter introduces the ways in which burial 

environments affects those taphonomic changes. 

When bodies are subjected to burial, environmental conditions change the 

elemental composition of bone by processes of degradation due to uptake of 

chemical components or erosion as a consequence of contamination from soil 

(Reiche et al., 1999). 

Initial taphonomic variables relate to the manner of disposal of the remains – 

whether they were buried, scattered, surface, submerged or frozen (Gill-King, 

1997) these variations make a huge difference in the nature and extent of 

decomposition, the long term preservation of tissues that comprise the remains, 

and ultimately the abundance of extractable DNA.  Burials conducted in air-tight 

coffins or wrapped in clothing have been found to slow the rate of decomposition 

(Ross and Cunningham, 2011) by creating a barrier between the soft tissues and 

the burial environment.  But by the same token, a coffin will retain decomposition 

fluids, and produce an increase in temperature and microbial activity in the 

environment due to the decomposition and fermentation of the wood. 

If the remains are buried, the environment will affect the preservation of the bone 

and therefore the denaturation of the DNA contained.  The environmental factors 

which may affect the preservation of the bone and in turn that of DNA, include the 

available oxygen, the pH and type of soil, the presence and movement of water, and 

the activity of soil microbes (Burger et al., 1999; Campos et al., 2012).  It has been 

suggested that the environmental conditions surrounding skeletal remains have 

more of an influence on the DNA preservation than time elapsed (Burger et al., 

1999).  Despite the findings of published research in this area, Pokines (2014a) 

stated there is still an absence of a comprehensive study of taphonomic processes 

across different environment conditions that identifies and explains the variables 

which cause the alterations. 
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Research conducted to date has identified the main environmental variables as 

temperature, water and oxygen, pH, soil type and content, and microbial activity. 

3.1 Temperature 

Temperature plays a fundamental role in the preservation of DNA in 

archaeological bone, which will vary depending on location, season, and depth of 

burial.  An increased temperature in the surrounding environment encourages the 

development of microorganisms, in the form of bacteria and fungi, which 

metabolise the collagen and DNA; and also accelerates the chemical decomposition 

of the bone (Bollongino et al., 2008).  Consistently low temperatures of 

approximately 8oC in the surrounding burial environment, have been shown to 

preserve DNA exceptionally well (Burger et al., 1999), whereas a 10oC increase can 

double the rate of chemical reactions (Henderson, 1987). 

3.2 Water and oxygen 

The presence and movement of water in the deposition site of the body has long 

been thought to be the main degradative factor and influence on survival for bone, 

due to the leaching effect.  Water is known to dissolve bone apatite, encourage the 

growth of microorganisms and supports their metabolism, and can lead to damage 

caused by hydrolytic and oxidative reactions (Turner-Walker, 2007; Bollongino et 

al., 2008).  The existence of water in soil provides a medium for the majority of 

chemical reactions that occur (Turner-Walker, 2007), however its presence is also 

thought to act as a buffer between tissue and the acidity/alkalinity of the 

environment, and has a stabilising effect on the surrounding temperature so 

therefore can also reduce the rate/intensity of decomposition (Gill-King, 1997).  

In the context of assessing survival over archaeological durations, it is important to 

separate considerations of water and oxygen. Whilst free-draining soils might be 

subject to high levels of oxygenated water, other environments such as standing 

bodies of stagnant water are likely to feature different chemical effects.  This 

variation in preservation states due to chemical effects of mineral-rich and 

mineral-poor groundwater was reported by (Turner-Walker and Peacock, 2008) 
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when investigating the diagenetic changes in bone of the ‘bog bodies’ from 

Scandinavian bogs.  

It is not just the presence or absence of water that will affect the survival rate of 

bone, but also the fluctuation of that water that will lead to either poor 

preservation or permanent saturation of the skeletal material.  Burials that are 

below the water table, will result in permanent submersion of bones in water, 

which once the bones become porous, will allow the penetration of calcium and 

potassium ion saturated water.  Once these ions have saturated the pores of the 

bones, they will resist any water flow out (Turner-Walker, 2007).  This submersion 

can be beneficial for the preservation of the bone, as long as the water level is 

stable, the water and contained ions will remain in the pores.  In free-draining 

environments such as sand and gravel, once the soil dries, hydraulic potential 

occurs drawing the water, and associated ions from the bone (Hedges and Millard, 

1995).  If this process is repeated with the rising and receding water levels leading 

to reoccurring submersion and drying, total leaching of the bone will occur with 

the removal of all ions from the bone itself and possible total disintegration of 

skeletal material as seen in the ‘sand bodies’ at Sutton Hoo (Carver, 2000). 

In respect of the oxygen content in burials, the depth of the burial will affect the 

level of not only temperature but also aeration of the remains.  Higher levels of 

oxygen in an environment will encourage a faster rate of decay than burials in a 

deeper and less aerated environment.  This effect can also be seen depending on 

the aeration of the soil type – light porous soils with a higher oxygen content are 

more likely to provide an environment conducive to decomposition, in contrast 

with dense soils such as clay.  In this instance, it is also necessary to consider the 

difference in pressure between a heavy clay soil and light porous soil, and how it 

may affect the preservation of the bone (Henderson, 1987). 

3.3 pH 

When considered in the context of soil science, the term pH refers to the level of 

hydrogen ions (H+) in relation to concentration of hydroxide ions (OH-) in the soil 

composition.  The more H+ ions present, the lower the concentration of OH- ions, 
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therefore a lower pH and an acidic soil.  The opposite is true for alkaline soils – a 

higher pH due to a higher quantity of OH- ions in comparison to H+ ions. 

The pH of the soil in which a burial is contained makes an impact on the erosion of 

the bone surface (Fernández-Jalvo et al., 2010) and decomposition of bone, with 

preservation thought to be best in neutral or slightly alkaline pH (Henderson, 

1987).  Acidic soils are known to destroy the bone apatite by dissolving the 

calcium phosphate, whilst alkaline soils stabilise the apatite by acting as a buffer 

against the effects on carbonic acid of rainfall in a permeable groundsoil or in the 

event of it being a surface deposition (Bollongino et al., 2008).  The optimal 

conditions for the preservation of DNA are thought to be neutral or slightly 

alkaline, cool, dry, anaerobic conditions (Burger et al., 1999; Bollongino et al., 

2008). 

The pH of any water present is also a factor when discussing bone diagenesis, as 

this will ascertain the level and type of ions that are present, and also the function 

capability of soil bacteria (Schotsmans et al., 2012).  The type of ions present in 

water in burials will affect the bone mineral due to the ability of providing ion 

exchange (Turner-Walker, 2007). 

3.4 Soil type and content 

The presence of humic and fulvic acid in the surrounding soil, found naturally due 

to the decomposition of organic material, can result in a decreased success rate of 

DNA typing from bone as these substances infiltrate the bone matrix and act as 

inhibitors during PCR (Burger et al., 1999).  Humic substances also affect the 

properties of soil, providing aeration, microbe support, water holding capacity, ion 

exchange and the reduction of contaminant metals (Lovley and Coates, 1997).  

Urea present in the soil has also been found to encourage DNA damage by reducing 

its stability within the bone matrix (Burger et al., 1999). 

Research conducted into bone diagenesis in bogs concluded that soil content can 

play a significant role in the degradation of bone.  Bones submerged in a peat-rich 

environment displayed rapid demineralisation and considerable loss of calcium 
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and phosphorous (Turner-Walker and Peacock, 2008).  DNA analysis conducted on 

degraded skeletal remains from a lime burial environment also stated evidence of 

degradation, detailing the inability to identify and amplify DNA within (Parsons et 

al., 2007).  The term lime refers to an alkaline calcium containing substance 

derived from limestone or chalk (Oates, 1998). 

3.5 Microbial activity 

If the deposition site is in an area of cultivation, it is likely that increased organic 

material and bacteria will be present in the soil which will lead to accelerated 

decomposition of the soft tissue (Haglund et al., 2002), depending on the chemicals 

used this could also have a detrimental effect on the preservation state of the hard 

tissues.  Soil contaminants may affect the ability to amplify the DNA from a sample, 

although if the bone is intact and well-preserved the contaminant should not 

penetrate the surface of the bone (Bollongino et al., 2008).  Bones may also be 

dispersed from their original deposition site or damaged due to the use of 

machinery.  If the remains are deposited on the surface, or partially buried in 

shallow graves rather than securely interred in deep ones, decay will tend to be 

more rapid due to the exposure to insects and scavengers (Rolsandic, 2002).  In the 

past it has been known for forensic cases to show curious processes of degradation 

due to bacterial action from depositions in manure and potting composts, but this 

information is currently unpublished.  In contrast, Child (1995) states it’s not the 

microbiology that affects bone preservation, but rather the soil chemistry. 

3.6 Burial environments of case studies 

The archaeological human skeletal remains used in this research were excavated 

from two different sites in the UK, an Iron Age burial ground in Derbyshire and an 

Anglo-Saxon cemetery in Suffolk.  These sites were chosen due to the difference in 

time scales since burial of the human remains, the dissimilar burial environments, 

and the authorisation to use destructive techniques for the purpose of DNA and 

compositional bone analysis.  An introduction to the sites and the burial 

environments are presented in the following section. 
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3.6.1 Fin Cop 

‘Fin Cop’ comes from Old English meaning a high point in the landscape, and is the 

location of the remains of an Iron Age hillfort situated on a hilltop overlooking 

Monsal Dale in Derbyshire.  Radiocarbon dating suggests that the hillfort was 

constructed 440-390 BC and the destruction of the site occurred less than two 

hundred years later (Waddington et al., 2011). 

Evidence of burial practice through the Iron Age shows a diverse practice of 

cremation burials, and inhumations in single graves, together in cemeteries, or 

placed in barrows (Hedeager, 1992).  It is believed that the comparative lack of 

human burials as seen from other time periods is because rather than burial in a 

grave, bodies were left to decompose on the surface, or discarded in pits (Bradley, 

1984).  Towards the end of the Iron Age, there was a change in rituals, and 

cremation burials and inhumations with grave goods became more common place.  

Figure 3-1 shows the ditch burial of Skeleton 8 from the 2010 excavation season at 

Fin Cop. 

 

Figure 3-1:  Skeleton 8 from the 2010 excavation at Fin Cop 

(Waddington, 2011) 
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Since 2009, three seasons of excavations have been conducted at Fin Cop, and to 

date remains have been found representing a minimum of thirteen individuals.  

The interpretation of these findings and anthropological assessment suggests that 

these individuals are women and children that have been deposited in the ditch of 

the hillfort with rocks from the wall placed on top.  Information pertaining to the 

depth of the burials and the body positions of the individuals was not available. 

The underlying geology at Fin Cop is Carbonifierous Limestone bedrock with 

overlying loamy base-rich fertile soils which are mostly humose, sometimes 

calcareous with relatively shallow topsoil (Waddington et al., 2011).  This 

environment would provide an alkaline pH, which would suggest the preservation 

state of the bones from this site may be fairly good, but more than likely 

contaminated with humic substance.  The preservation of the bones and the degree 

of fragmentation is discussed in Chapter 4.  

3.6.2 Eriswell 

Four Early Saxon cemeteries were first excavated in the late 1980’s at RAF 

Lakenheath, Suffolk, and have uncovered 426 inhumations and 17 cremation 

burials. Analytical techniques have dated these remains between 475AD and 

625AD, with many of the burials also containing grave goods that were 

characteristic of that era (Caruth and Anderson, 2005). 

Prior to the migration of the Germanic people from Angeln, Saxony and Jutland on 

the North Sea coast of modern day Germany and Denmark, the post-Roman 

populations of the eastern UK tended towards cremation as the dominant form of 

mortuary practise. With the arrival of Saxon influence, either through 

displacement of incipient native populations or through the dispersion of new 

mortuary rites, the balance of practice altered to Saxon inhumation at first pagan 

in character with associated grave goods, and later markedly Christianised with 

graves orientated east-west largely devoid of any other items (Härke, 1990). 

From the 6th Century the Anglo-Saxon society burial ‘rule’ is thought to have been 

‘as in life, so in death’ (Brown, 1978) with the burial style being associated with the 

social class of the individual, (Härke, 1990; Williams, 1998) for the men: the 



Chapter 3:  BURIAL ENVIRONMENTS 

34 

swordsman, the spearman and the unarmed man.  The swordsmen would have 

been members of the aristocracy, buried with swords and shields and were the 

least common of all the burials.  The spearmen were average men in society buried 

with spears, knives, and furnishings of the belt, and these were the most common 

type of burials found.  The unarmed men would have been slaves with an absence 

of weapons in the grave (Thurlow, 1913).  The social class of the women could also 

be suggested by the burial style.  All women were buried with iron knives tucked in 

a waist belt, with beads and brooches around their neck.  The average woman 

would have two brooches and beads, more than this would indicate the burial of an 

aristocrat (Brown, 1978).  The design of the brooch suggests the age and origin of 

the deceased (Thurlow, 1913). 

The start of the 8th Century saw the open country Pagan cemeteries being mainly 

abandoned as the Church took control over the burial of the dead with acceptance 

of Christianity across the country (Brown, 1978; Thurlow, 1913).  Whilst some 

open burials still continued, they did so without the deposition of grave goods 

(Thurlow, 1913).  The orientation of the human remains could also be used as an 

indicator of the religion of the deceased.  As Anglo-Saxons accepted the Christian 

faith, the remains were buried with the head to the west and feet to the east, 

although there is evidence for mis-aligned burials alongside (Thurlow, 1913; 

Williams, 1998).  The orientation of the burials at Eriswell cemetery can be seen in 

Figure 3-2 which illustrates the different areas of the burials. 
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Figure 3-2:  The burial site at Lakenheath showing the different areas of 

Eriswell cemetery, with the location of the human burials (Caruth and 

Anderson, 2005) 

Soil analysis at RAF Lakenheath shows three distinct contexts.  The lowest 

excavated context displays calcareous sands and chalk, topped with a sub-soil of 

non-calcareous sandy loam with chalk, and a topsoil of non-calcareous loamy sand.  

The variation of the soil type throughout the site at Lakenheath suggests a varying 

state of preservation of the skeletal remains depending upon the context it was 

excavated from, with remains from the calcareous sands and chalk expected to 

have the best preservation. 

3.7 Chapter summary 

This chapter has presented the different aspects involved within a burial 

environment and how those variables may affect human remains.  A brief 

introduction to the human archaeological sites at Fin Cop and Eriswell have also 

been presented. 
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 MATERIALS AND METHODS  Chapter 4:

The previous chapters have introduced and discussed published research 

regarding archaeological remains, and the general taphonomic effects associated 

with burial environments.  This chapter focusses on the materials and methods 

that are currently being used, how they were optimised for this research, and 

finally the methodologies selected for the research and analysis. 

Preliminary reading at the beginning of this research exposed the wide variety of 

techniques and methods used by researchers, for the identification of human 

remains, and the investigation into decomposition and diagenesis.  This literature 

review highlighted the necessity for researchers around the world to be able to 

compare results, especially with ancient DNA, and therefore it is necessary to 

establish optimisation of methods in order to standardise the manner in which 

they are reported. 

This chapter sets out the process of research into different methodologies and 

techniques available for the analysis of forensic and ancient archaeological human 

remains.  The optimisation of the chosen techniques are reported in this project, 

which allow effective, economical and time-saving methodologies that will allow 

data to be compared, and collaborative research to be produced to achieve a 

common goal.  The methods chosen for this project are detailed at the end of this 

chapter in section 4.3. 

4.1 Method research 

Many different processes and techniques are currently used on archaeological 

bone for DNA extraction, screening methods and compositional analysis, although 

it is still unclear how these may affect the recovery of DNA.  Adler et al., (2011) 

conducted a trial examining the common techniques used to recover DNA and 

concluded many of the methods are damaging to the genetic material. These 

findings underlined the need to research and choose the right methods for this 

project, in order to gain informative data. 



Chapter 4:  METHODS 

38 

It is the intention of this research to provide a better understanding of the 

taphonomic and diagenetic processes that human remains undergo during burial 

in relation to different environments, in the hope that the knowledge will lead to 

improved results for human identification and forensic investigation. 

4.1.1 Ethical considerations 

Prior to selecting and sampling of any skeletal elements, the factor of ethics must 

be considered.  Recommendations for the destructive sampling and analysis of 

archaeological human remains for the purpose of scientific research has been 

published by the Advisory Panel on the Archaeology of Burials in England, in an 

attempt to curb any unnecessary work and provide guidance to guardians of 

skeletal collections.  The main recommendations include a weighing up of the 

scientific knowledge that will be gained in contrast to the destruction of the 

remains; the consideration of whether any other non-destructive techniques could 

be used instead; how the destructive methods could prevent future research of the 

material; and the experience and competence of those conducting the work (Mays 

et al., 2013).  

These guidelines were used during the planning and sampling phase of this 

research, and affected the decisions that were made.  Small window cuts were 

sampled from the bone, taking as less material as possible for the analysis; areas 

on the bone that displayed any pathology, trauma or of anthropological interest 

were avoided; the cutting and use of tools was first conducted on animal bone to 

ascertain a suitable method prior to sampling of human bone; and methods were 

chosen based on small sample size (FT-IR) and non-destructive techniques 

(colourimetry). 

4.1.2 Sample selection 

At present there is no standard protocol that is used by all researchers that has 

been peer reviewed regarding which skeletal element is best for obtaining a DNA 

profile.  The standard operating procedure produced by International Commission 

on Missing Persons (ICMP) presents a list of preferred bones to be sampled 

(Vennemeyer et al., 2015) however no information pertaining to the research or 
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process of how this list was generated is provided.  Skeletal sample selection for 

the identification of soldiers who died in the Battle Of Fromelles 1916, states two 

samples should be taken from each individual – a tooth and a bone.  Priority is 

given to the selection of whole bones to reduce contamination issues, and 

metacarpals and metatarsals are listed first for ease of transportation due to the 

small size.  Femurs are listed as last resort after fibula and other long bones (Loe et 

al., 2014).  A study of past and present literature regarding DNA extraction from 

forensic or archaeological bone shows that a majority of researchers use long 

bones, especially the femur for analysis (Kaestle and Horsburgh, 2002; von 

Wurmb-Schwark et al., 2003; Gilbert et al., 2005) however there is no justification 

by any author as to why this is used in preference to other bones.  Much of the 

research examined does not state which bone was used stating simply ‘human 

bone fragments’ (Alonso et al., 2001; Alonso et al., 2004; Bille et al., 2004) 

therefore no conclusions can be made about the success in terms of individual 

bones. 

Some researchers have named long bones as the most successful bones from which 

to retrieve DNA, but not mentioned which other elements were tested, whereas 

Anðelinoviæ et al (2005) goes into more detail regarding the identification work 

conducted on skeletal remains in Bosnia, Croatia and Herzegovina from the 

conflicts during 1991-1995.  The majority of the analysis was conducted on long 

bones with the results showing the femoral bones giving the best DNA result, with 

good results also from the fibula.  Alonso et al., (2001) also stated preferential use 

of long bones after finding the quality of DNA obtained is higher than that 

extracted from skulls or ribs. 

Conflicting information was reported by Desmyter and Greef (2008) who 

described a significantly higher DNA yield from the os coxae, as compared to the 

femur, fibula, phalanges, humerus, and scapula. Nevertheless, full profiles were 

obtained from all skeletal elements. Prado et al., (1997) also reported the success 

of DNA extraction from the pelvis with the successful amplification of nine 

microsatellite loci from the iliac bone. 
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Bollongino et el (2008) stated that in order to obtain a good quality DNA profile, 

the analysed bone needs to possess a compact structure (cortical) such as the 

diaphysis of long bones; as opposed to the porous spongy structure (trabecular) of 

skeletal elements such as the vertebrae, scapulae, pelvis and parts of the skull.   

Use of compact bone, as opposed to cancellous bone, was also recommended by 

Imaizumi et al., (2005) and Anðelinoviæ et al (2005).  

Zoledziewska et al. (2003) obtained high quality DNA samples from human rib 

bones, but the samples were not from an archaeological collection, so had not 

suffered the damage and fragmentation frequently found from burials.  

Research conducted over the last decade shows greater robusticity of comparative 

analyses between skeletal elements in relation to DNA recovery.  Imaizumi et al., 

(2005) analysed the femur, humerus, rib, parietal, talus, tibia, proximal foot 

phalange and mandible, and succeeded in extracting and sequencing DNA from all 

the elements.   

Staiti et al. (2008) investigated the analysis of degraded DNA and found the highest 

DNA quantities were obtained from the femur, tibia, humeral epiphyses and the 

cranial theca.  The ischial tuberosity of the pelvis gave fairly good profiles, whereas 

only partial profiles were obtained from the glenoid cavity of the scapula, distal 

epiphysis (styloid process) of the radius, olecranon of the ulna, body and tranverse 

process of the cervical vertebra, lateral side and transverse process of the thoracic 

vertebra, body of the lumbar vertebra, rib shaft, acromial end of the clavicle, 

diaphysis of the fibula, and articular process surface and anterior side of the sacral 

bone.  

A selection of the elements researched for the suitability for DNA analysis over the 

last 15 years is presented in Table 4-1.  While the skeletal terms listed are not 

presented in standard anthropological nomenclature the elements are described as 

per the original publications. 
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Table 4-1:  Table of skeletal elements used by other researchers for DNA 

analysis 
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Skull           X X X         X 

Mandible             X     X    X 

Clavicle            X X        X X 

Scapula            X         X X 

Humerus  X         X X X      X   X 

Ulna            X X        X X 

Radius            X X    X   X X X 

Metacarpal            X     X   X X X 

Rib      X     X  X        X X 

Sternum                      X 

Vertebrae            X     X   X X X 

Pelvis  X          X         X X 

Sacrum                     X X 

Femur X   X X    X X X X X    X X X X X X 

Patella             X         X 

Fibula         X   X         X X 

Tibia           X X X    X X  X X X 

Tarsal           X          X X 

Metatarsal            X X        X X 

Phalanges           X           X 

Not stated   X    X X      X X

X 

X       

 

Milos et al. (2007) highlighted the need for a more in-depth analysis and examined 

15 different skeletal elements for success rates.  The results obtained are displayed 

in Table 4-2, alongside the positive identification rates from DNA analysis on 
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different fragmented elements as reported by Mundorff (2009) when analysing a 

subset of samples from the World Trade Centre Human Remains Database. 

 

Table 4-2:  Success rates in percentage of DNA amplification and 

identification from DNA extracted from human bone, with the sample 

size of each skeletal element displayed within brackets 

Skeletal element Amplification success rate 

Milos et al., 2007 

Positive identification rate 

Mundorff., 2009 

Skull 40% (757) 47% (494) 

Mandible Not analysed 65% (46) 

Clavicle 26% (128) 54% (97) 

Scapula 57% (35) 54% (92) 

Humerus 46% (2415) 61% (110) 

Ulna 23% (444) 61% (87) 

Radius 25% (469) 60% (120) 

Metacarpal 61% (18) 44% (211) 

Hand phalanx Not analysed 57% (83) 

Rib Not analysed 64% (1301) 

Vertebrae 62% (146) 61% (72) 

Pelvis 53% (185) 63% (62) 

Sacrum Not analysed 59% (27) 

Femur 87% (11356) 71% (143) 

Patella Not analysed 80% (83) 

Fibula 63% (160) 60% (159) 

Tibia 76% (1329) 70% (125) 

Tarsal Not analysed 51% (37) 

Metatarsal 33% (120) 72% (257) 

Foot phalanx Not analysed 80% (25) 

 

Results from Milos et al. (2007) showed the femur, tibia and fibula as the top three 

for the best success rates, followed by vertebrae, metacarpals, scapulae, 

mandibular body, and illium; with the metatarsals, arm bones and clavicle showed 

the lowest success rates.  Whereas Mundorff (2009), reported the patella, foot 

phalanx and metatarsal providing the highest percentage of positive identification 

from DNA analysis, followed by the femur and tibia at 71% and 70% respectively.  

Remaining elements were between 50-70% successful, with the lowest 

identification success rate from metacarpals at 44%. 



Chapter 4:  METHODS 

43 

The results reported by numerous researchers appear contradictory on the 

success rates of amplification and the obtaining of full profiles, but this is expected 

due to the varying nature of the samples.  For example, Milos et al. (2007) reports 

on skeletal elements from different geological locations from mass graves resulting 

from the conflicts in the former Yugoslavia in the 1990s; whereas Mundorff (2009) 

reports on fragmented skeletal remains recovered after the World Trade Centre 

disaster in 2001.  

As previously discussed at the beginning for this section, details of which bone the 

researcher has used is often omitted from publications, therefore limited the case 

studies with ancient DNA studies that can be compared for methodologies and 

skeletal element success.  However, the following case studies all include detailed 

information of samples used.  Ancient and forensic DNA analyses were used to 

confirm the removal and deposit of human remains from the tomb of Francesco 

Petrarca.  Confirming the anthropological assessment, the DNA results from the 

skull and ribs confirmed the skull belonged to a female, and the rest of the skeletal 

remains belonged to a male (Pilli et al., 2008).  Another case of utilising ancient 

DNA analysis to confirm the sex of a skeleton comes from an archaeological site in 

Pompeii. A selection of eight femora, four tibia and one humerus were used for 

amplification of the sex marker amelogenin and a Y-specific sequence which only 

DNA from males would display - DNA results were obtained from all elements 

(Cipollaro et al., 1998). 

Despite the apparent differences, there appears to be a trend in the success of 

lower limbs for positive DNA amplification.  It is possible that these weight-bearing 

bones provide a higher amount of DNA than non-weight bearing bones.  This 

would explain why the lower limbs especially the femur tend to contain more DNA 

than the humerus, even though they have similar bone structures of compact bone.  

Femurs also tend to survive better than most other bones due to its stronger 

composition of compact bone (Mays, 2010).  The foot bones can also in some 

circumstances, be better protected from degradative elements and fracturing due 

to the covering of boots or shoes (Cox et al., 2007).  By this rationale, the femur and 
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foot bones are likely to provide an optimal DNA sample for successful amplification 

and analysis. 

In conclusion, when choosing skeletal elements to analyse, the factors that need 

consideration are: the preservation state of the bone – the best samples need to be 

heavy, hard and show little evidence of microbial activity; the elements need to 

contain a high percentage of compact bone; the selected elements need to be those 

that survive well in a burial environment to ensure the samples are as intact as 

possible; and if using skeletal remains from a museum collection or similar, 

samples need to be of low anthropological interest (avoiding the skull and pelvis) 

and sampling needs to be discreet. 

After considering all the factors discovered in the relevant literature regarding the 

successful amplification of DNA from skeletal elements, the two skeletal elements 

chosen to be analysed in this project are femora and metatarsals.  These elements 

have been chosen based on the criteria mentioned earlier: heavy, hard and show 

little evidence of microbial activity; contain a high percentage of compact bone, 

and need to have good survivability in a burial environment.  Although metatarsals 

can be absent in archaeological contexts, a main reason for this is the excavation 

methodology – small bones can be lost if the grave sides cannot be found or the 

appropriate level of care and attention is not applied to the process (Tuller and 

Đurić’, 2006).  By choosing the largest metatarsal, it is hopeful that the majority of 

skeletons to be investigated will have a metatarsal present and therefore 

comparative data can be obtained. 

4.1.3 Contamination precautions 

Due to the fragile nature of ancient DNA molecules, anti-contamination controls 

need to be tightly monitored or modern DNA may infiltrate the sample and 

overpower the original ancient DNA sequence in the sample.  These potential 

contamination risks make the extraction of ancient DNA from archaeological bone 

very challenging, and depending on the stage of decay of the bone and the 

denaturation of DNA, the process of obtaining a profile is a complicated and not 

always successful one. 
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These contamination issues also exist with forensic DNA samples where strict 

guidelines need to be followed in order to eliminate the risk of contamination and 

provide results that are admissible in court (von Wurmb-Schwark et al., 2008).  

By acknowledging and understanding the factors of the contamination associated 

with ancient DNA, in particular those associated with bone analysis these 

challenges can be addressed.  Table 4-3 outlines the contamination issues affecting 

ancient DNA analysis, and methods that can be used to mitigate the risks. 
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Table 4-3:  Contamination issues affecting aDNA analysis (after (Kirsanow and Burger, 2012) 

Contamination source Manner of contamination Mitigating methods 

Excavation, transportation, 

washing and 

anthropological assessment 

Close contact between personnel and the skeletal 

material. 

Contamination can be transferred via touching, 

breathing, shedding of cellular components or 

washing with water. 

Ensure all personnel are aware of the risks. 

Protective clothing to be worn – clothes, lab 

coats/suits, gloves, face masks. 

Use brushes to remove dirt. 

Sampling of the bone Drilling / sawing of the bone, and removal of the 

bone surface exposes previously protected areas of 

the bone to the environment. 

Cleaning of the bone surface and using a 

decontamination process on the bone surface. 

Laboratory equipment and 

consumables 

Any piece of equipment / workspace/ consumable 

in the lab has potential to become contaminated 

with modern of sample DNA. 

All equipment needs to be assigned to a particular 

process and thoroughly cleaned before and after 

each use. 

Blank controls to be run to pinpoint any 

contamination occurring. 

General environment and 

storage environment 

Movement of people in the laboratory causing a 

build-up of molecular material. 

Restricted access to the laboratory and storage sites. 

Storage bags / boxes clean of DNA. 

Amplification products The cross over between previously amplified 

products and new samples. 

Processes split between a ‘clean room’ and ‘dirty 

room’ to contain PCR products. 
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4.1.4 Sample preparation 

In order to process bone samples it is necessary to cut, drill, or powder the 

samples, however these physical methods can be detrimental to the quality and 

quantity of DNA recovered due to the associated increase in temperature (Adler et 

al., 2011).  In order to combat these difficulties, precautions were taken with the 

preparation of bone samples. 

Researchers (Adler et al., 2011) have investigated the effects of physical sampling 

methods on the recovery of DNA and concluded that providing the build-up of heat 

is kept to a minimum by drilling at a maximum speed of 100 RPM, excess DNA 

damage can be avoided. One way of reducing the temperature is to use a water 

coolant system but this can introduce more contaminants to the sample, especially 

in the case of archaeological bone where the surface may be compromised. 

Many protocols for DNA extraction use bone powder (Colson et al., 1997; 

Götherström et al., 2002; Hartman et al., 2011) however powdering of bone can 

lead to airborne contamination between samples (Kitayama et al., 2010). Instead 

of powdering the bone for analysis, thin slices can be used in order to decrease the 

amount of physical preparation (Caputo et al., 2013).  However, by not powdering 

the bone, there is a risk that the sample may not be homogenous and by not using a 

uniform method it will be harder to produce comparable results between samples.  

When the archaeological human skeletons in this study were excavated, DNA 

analysis was not considered, therefore no precautions were in place to limit DNA 

contamination.  By not enforcing anti-contamination measures, the possibility of 

contamination of exogenous DNA from archaeologists and anthropologists on the 

bone surface is high, and therefore is a critical issue for this study.  Importantly 

though, this manner of unprotected excavation and handling of skeletons is 

common place within archaeology, so therefore an important aspect of this 

research.  

A literature review was conducted on the impact of DNA contamination on bone 

samples which showed that providing an adequate cleaning protocol of the bone 
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surface was followed, contamination from individuals touching the bones did not 

reproduce any STR signals (von Wurmb-Schwark et al., 2008).  Therefore choosing 

the appropriate cleaning method for this research is imperative. 

4.1.4.1 Bone cutting vs drilling vs milling 

The cutting, drilling or milling of bone sections all have their advantages and 

disadvantages as described in Table 4-4.  Methods that result in the generation of 

bone dust must be carefully contained with suitable apparatus and PPE. Although 

heat will unavoidably be produced which can lead to denaturation of DNA and 

changes to the bone structure and composition, measures can be taken to minimise 

this effect.  

Table 4-4:  Advantages and disadvantages of different sample 

preparation techniques 

 Advantages Disadvantages 

Bone cutting Less preparation time 

Lower risk of contamination 

Heat and dust generation 

Longer analysis period 

Bone drilling Homogenous sample 

Less destructive for bone 

Contamination risk 

Heat and dust generation 

Bone milling Homogenous sample 

Quicker analysis period 

Contamination risk 

Heat generation 

 

4.1.4.2 Surface decontamination vs surface removal 

Many researchers have used the addition or submersion of bones into water or 

chemical solutions in order to remove the possible exogenous DNA and other 

contaminants from the surface (Richards et al., 1995).  Amory et al., (2012) found 

that extensive testing of soaking bone samples in 10% bleach (0.5% sodium 

hypochlorite) to remove surface contaminants proved that this method does not 

damage the DNA residing within the internal matrix of compact bone, but whilst 

some methods of soaking have been shown to remove contaminants, these 
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methods also provide a medium of transportation, and risk conveying impurities 

into the bone cortex from the surface, or in cases of bone with bad preservation, 

could cause irreparable damage to the biomolecules themselves.  For this reason, 

this method may not be possible on highly degraded archaeological samples due to 

the fragility of their structure.  

Other researchers chose to remove the surface of the bone, (Lambert et al., 1990; 

Gamba et al., 2011; Ambers et al., 2013) either as an alternative to sodium 

hypochlorite submersion or as a pre-cursor (Bauer et al., 2013). Bouwman et al., 

(2006) intentionally contaminated ancient bone with modern DNA and found that 

by removing the top 1-2 mm of the bone surface the contaminants were removed. 

Surface removal can be achieved with a sander that can be cleaned and de-

contaminated between each sample to ensure there is no carry-over of bone 

material, and can achieve removal of contaminants without the addition of harsh 

chemicals or by providing a method of passage for water to possibly damage 

biomolecules or the bone.  Although heat will be generated using this method, by 

using for short durations, any damage by heat can be minimised. 

The removal of the bone surface not only removes contaminates in a safer manner, 

but also enables colourimetric analysis of the bone cortex to be conducted, 

therefore this method was chosen to be implemented in this research. 

4.1.5 Demineralisation 

Demineralisation of a bone sample is essential due to the mineral properties acting 

as a physical barrier to extraction reagents, which therefore prevents the release of 

DNA molecules.  By digesting the mineral fraction of the bone, more DNA will be 

accessible, and the DNA bound to the hydroxyapatite mineral matrix of bone will 

also be made accessible (Götherström et al., 2002; Amory et al., 2012).  

Loreille et al. (2007) proposed a protocol for DNA extraction from bone involving 

complete demineralisation of the sample by full physical dissolution of the sample.  

Results showed this method produced significantly higher DNA yields in 

comparison to standard extraction methods, and produced adequate DNA 
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quantities from small amounts of material. This is vital for obtaining profiles from 

degraded skeletal elements. 

In order to ascertain to what degree of demineralisation would be suitable for the 

biological material in this research, tests were conducted on both porcine and 

human archaeological bone samples. 

4.1.6 Extraction 

There are many variations on detergents, chemicals, methodologies, and available 

commercial kits for DNA extractions, however there is a general protocol that 

many adhere to. These steps are detailed in Table 4-5. 

Table 4-5:  General DNA extraction protocol 

Stage Description  

1 
Tissue is sectioned, ground or sonicated to break open cells in order to 

expose contained DNA 

2 Various detergents are added in order to remove the membrane lipids 

3 The enzyme Proteinase K is added to remove proteins 

4 DNA is precipitated in alcohol to form a pellet for analysis 

 

Desmyter and Greef (2008) tested the efficiency of the extraction methods 

mentioned previously by Loreille et al. (2007) and a method by Rohland and 

Hofreiter (2007), on eight human bone fragments derived from forensic casework.  

The bone fragments used included femur, fibula, os coxae, phalanges, humerus and 

scapula.  Results suggested that the complete decalcification of bone in the 

presence of the detergent SDS (sodium dodecyl sulphate) resulted in the recovery 

of more DNA from standard protocols but also enabled full STR profiling for all 

samples.  By contrast, decalcification without the addition of SDS yielded even 

higher quantities of DNA and STR profiling was still of high quality.  The addition of 

the bond cleaver PTB (N-phenacylthiazolium bromide) decreased DNA yield and 
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resulted in incomplete or absent STR profiles.  The highest yield of DNA was 

recovered from the os coxae, but full profiles were obtained from all samples after 

the decalcification of the bones.  This suggests that all skeletal elements mentioned 

above are worth considering for extraction even though long bones and teeth are 

the most commonly recommended. 

4.1.7 Amplification using polymerase chain reaction (PCR) 

The choice of technique available for the extraction and subsequent analysis of the 

DNA is dictated by the quantity and quality of the DNA available.  For this reason 

and the fact that many if not all of the samples for this project were degraded or 

minute, techniques such as RFLP (Restriction Fragment Length Polymorphisms) 

was not  possible. Polymerase Chain Reaction (PCR) is a technique used to amplify 

a DNA segment by the use of numerous cycles of denaturing and annealing of DNA 

and primers which results in replication of the target DNA (Parsons and Weedn, 

1997). Using PCR is an obvious choice and often stated as essential (Ariffin et al., 

2007). 

The concept of the PCR technique was established in 1983 by Kary Mullis by the 

amalgamation of the synthesis of oligonucleotides (single strands of DNA) and 

using target-specific synthesis to amplify the region between them on 

complementary opposite strands of DNA (Bartlett and Stirling, 2003).  Advances in 

the technique have improved dramatically and PCR is now routinely used in all 

forensic DNA laboratories to amplify small traces of DNA. However, the use of PCR 

does require care as the prevalent risk of contamination can easily be moved 

around a workspace and contaminate pre-PCR samples.  For this reason it is 

essential to restrict all PCR work to a designated room and control the personnel 

and workflow from this space. 

In order to recover DNA from bone with a sufficient quality and quantity to 

produce a profile, STR (short tandem repeat) system markers can be used. Due to 

their ability to improve results from low template (LT) DNA they are used 

extensively in forensic DNA analysis (Lopes et al., 2009).  The multiplex STR typing 

kits simultaneously amplify up to 17 loci, generating amplicon sizes from 100-450 
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base pairs (bp).  In cases of severe DNA degradation, even STR profiles may only be 

a partial, or exposed to stochastic effects (Pizzamiglio et al., 2006). This problem 

can be overcome or improved by using mini-STRs – primers which use smaller 

amplicons of less than 150bp by implementing markers closer to the coding 

region, allowing for additional genetic information to be retrieved (Martín et al., 

2006b). 

In cases where STRs and mini STRs fail to analyse autosomal DNA samples, mtDNA 

analysis can be conducted in order to gain information (Catelli et al., 2008). SNPs 

(single nucleotide polymorphisms) can be used in forensic DNA typing for 

amplicons ranging from 40-50bp. SNP analysis looks at the variations of specific 

single points in the genome and are therefore very useful for degraded DNA 

samples (Senge et al., 2011). 

4.1.8 PCR inhibitors 

One of the most complex problems with aDNA extraction from bone is the large 

presence of PCR inhibitors. These inhibitors if not removed, can interfere with the 

amplification of the aDNA (Rohland and Hofreiter, 2007) by binding or competing 

with reaction components, or inactivating the polymerase (Eilert and Foran, 2009). 

These inhibitors can be present in the burial environment, occur due to intrinsic 

processes or as a result of the laboratory techniques. The most common PCR 

inhibitors are calcium ions, Maillard products, molecular damage, humic 

substances and chelating agents such as EDTA (Simón et al., 2012). 

Maillard products are the result of a Maillard reaction of an amino acid and a 

reducing sugar, such as glucose, which can cause breakage of the DNA strands 

(Hiramoto et al., 1995). These products cause cross-linking of the DNA molecules 

which act as PCR inhibitors by obstructing the PCR reaction (Simón et al., 2012). 

As discussed earlier in section 2.4.3, molecular damage occurs when the organism 

dies, due to oxidation and hydrolysis which degrades the DNA. 

Humic substances that act as PCR inhibitors include humic acid, fulvic acid and 

tannin – all which are components of soil.  The presence of humic substances in the 
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excavated archaeological bone samples can be indicated by colour, and depending 

on the concentration, can lead to total inhibition of the PCR reaction (Simón et al., 

2012). 

Chelating agents such as EDTA are introduced to the bone during the 

demineralisation process, but act as PCR inhibitors if not completely removed 

(Simón et al., 2012). 

Calcium ions can be found in acidic soil and in the human remains themselves, and 

can act as PCR inhibitors by precipitating with DNA (Simón et al., 2012). 

4.1.9 DNA separation methods  

After amplification, the DNA sample consists of many copies of different lengths 

and areas of genetic code, depending on the primers used. In order for the 

amplified PCR products to be meaningful, the DNA needs to be separated into mini-

STR fragments enabling each allele to be identified.  It is the differences in these 

alleles that differentiate individuals from one another. 

In order to achieve separation by the size of the target fragments, a method called 

electrophoresis is used.  This method applies an electrical charge to negatively 

charged DNA molecules, causing them to migrate from a negative electrode 

(cathode), towards a positive electrode (anode) (Butler, 2001).  As the smaller 

molecules will migrate faster than large molecules, separation of the DNA 

fragments is achieved. 

During this research, two types of electrophoresis were used - slab gel 

electrophoresis and capillary electrophoresis, both of which will now be discussed. 

4.1.9.1 Slab gel electrophoresis 

Slab gels are composed of a solid matrix, agarose gels were used in this case, which 

contain pores through which the DNA molecules pass during electrophoresis.  For 

this research agarose was used, which is presented in powder form, but when 

added to a buffer solution such as TBE (Tris/Borate/EDTA) and heated, the 

agarose dissolves into the solution, enabling the mixture to be poured into a tray to 

set.  Toothed combs are placed into the molten liquid in order to generate wells in 
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the set gel upon removal.  The gel is then submerged into a tank containing 

running buffer such as TBE, which provides a cooling system once the current is 

applied.  DNA is loaded into the wells in a solution containing a dye enabling 

visualisation of the DNA, and sucrose to ensure the samples remain at the bottom 

of the well.  Positive and negative controls are run alongside the samples to 

provide confidence that the technique is working and the absence of 

contamination; and DNA of known molecular weight is injected into lanes either 

side of the samples to provide a ‘ladder’ to compare lengths of unknown DNA to. 

Following the loading of the samples, a lid is placed onto the tank, and electrodes 

are attached at either end to enable the flow of current through the gel and 

migration of DNA.  The size of the DNA molecules and pore size of the agarose gel, 

as well as the level of voltage applied will dictate the duration that the electric 

current is applied in order to achieve separation of DNA. 

Once the electrophoresis is complete, the gel is removed from the tank and placed 

under a ultra-violet light in order to visualise the dye attached to the DNA.  

Photographs can then be taken for analysis purposes and record keeping. 

This technique was used throughout this research to confirm the absence or 

presence of DNA in the porcine samples, and also provide an indication into the 

length of remaining DNA fragments.  However, a major drawback to this technique 

with determining the quantity of aDNA is that the quantity will be very low and 

therefore may not be visible by using the standard dye of ethidium bromide, other 

dyes such as SYBR Green or SYBR Gold may need to be used (Rohland and 

Hofreiter, 2007).  Therefore, for the ancient human DNA samples, capillary 

electrophoresis was used to separate the DNA molecules and identify the alleles 

present. 

4.1.9.2 Capillary electrophoresis 

Capillary electrophoresis works on the same principle to that of slab gel 

electrophoresis, with the application of electric current to separate DNA molecules 

by causing migration from a cathode to an anode.  However, instead of samples 
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passing through a gel, this is replaced by a polymer which runs through a capillary 

between two buffers. 

PCR products are added to a loading cocktail of internal lane standard which will 

provide the ‘ruler’ of DNA strand size, and Hi-Di formamide which re-suspends the 

DNA and assists with the denaturation of the DNA required for separation. The 

samples are loaded onto the auto-sampler tray along with a negative and positive 

control and an allelic ladder to verify the calibration and correct ‘calling’ of alleles. 

One at a time, the samples are automatically injected into the capillary, and 

migrate past an oven heated to 60oC, which heats the samples facilitating the 

separation of the PCR products. These products are then separated by mobility and 

pass through a detection window in size order.  The fluorescent dyes which were 

added during the PCR process to label the STR markers are excited by a laser, at a 

primary excitation wavelength of 488 nm. The light emitted by this excitation is 

separated by a diffraction grating into a colour spectrum which illuminates the 

CCD (charge-coupled device) camera. When each photon of light hits the millions 

of pixels in the CCD, it is converted to an electron, of which the intensity is 

recorded by data collection software which converts the signal intensity to a value 

known as the Reflective Fluorescence Unit (RFU). Analysis software such as 

GeneMapper, displays these RFUs of the STR PCR products as colour-separated 

peaks on an electropherogram, which can then be analysed for the interpretation 

of the biological profile. 

4.1.10 Electropherogram interpretation 

Due to the combination of hardware components, chemicals and dye-labelled 

fragments within a capillary electrophoresis system such as the ABI 310, artefacts 

and noise are generated which can appear on the electropherogram as pull-up 

peaks and electrical spikes.  It is not possible to remove this background noise so 

careful interpretation of the data must be undertaken.  Figure 4-1 shows a typical 

electropherogram of a full profile from a single source, showing heterozygous 

alleles at all loci apart from D22S1045 which has a homozygous peak.  The peaks 

show good morphology with -4 and +4 stutter peaks.   
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Figure 4-1:  Electropherogram showing a characteristic full DNA profile 

from a single source, with alleles displaying at each loci. 

Figure 4-2 shows an example of pull-up from peaks in vWA into D18S51, and 

electrical spikes caused by fluctuations in the equipment. 

         

Figure 4-2:  Electropherograms displaying a) pull-up of peak signal, and 

b) electrical spikes displaying on all dyes. 

a) b) 
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One way to discriminate between real allelic peaks and noise is to set a RFU 

threshold, so the data collection software will only detect peaks above a certain 

value, hence ignoring the baseline noise. The manufacturers default setting is 50 

RFU, and this is the level many laboratories adhere to.  In cases of degraded DNA 

analysis where it may be necessary to look below the 50 RFU threshold for true 

peaks, peak height can be used to calculate a ratio – where peak height of alleles 

should be at least three times greater than the background noise. 

The nature of PCR amplification, the addition of primers, and the process of 

capillary electrophoresis can result in the production of signal which can appear 

on the electropherogram as artefacts, such as stutter, pull-up, spikes and dye blobs.  

By recognising these artefacts they can be eliminated from the analysis, leaving 

just true alleles to be identified.  

One way to determine true heterozygous peaks is to perform a Peak Height Ratio 

(PHR) calculation, which compares the heights of peaks to provide an estimate of 

heterozygosity.  A common equation used for this calculation is shown below: 

(Leclair et al., 2004). 

 

𝐿𝑜𝑤𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐴𝑙𝑙𝑒𝑙𝑒 (𝑅𝐹𝑈)

𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐴𝑙𝑙𝑒𝑙𝑒 (𝑅𝐹𝑈)
 × 100 

(4-1) 

 

The value of the cut-off of the PHR value to determine whether a peak is 

heterozygous or not, varies from researcher to researcher (Butler, 2015) and when 

analysing DNA in low concentration and quality, preferential amplification can 

occur causing peak imbalance between heterozygous sister peaks.  Due to the 

degraded nature of the samples involved in this research, performing PHR 

calculations may not be useful, due to this phenomenon and therefore tests were 

performed to establish whether a suitable PHR threshold could be set. 
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4.1.11 Analytical techniques 

In addition to DNA analysis the bones involved in this research were also assessed 

using colourimetry to determine any staining on the bone, and to approximate the 

depth at which contamination may have occurred.  Additionally compositional 

analysis was performed using FT-IR to identify diagenetic changes. 

4.1.11.1 Colourimetry 

Determination of colour has been used for decades by using human visual 

perception in many industries (Ansorena et al., 1997; Wilson et al., 2008; Korifi et 

al., 2013; Sharifzadeh et al., 2014) including its application in soil analysis to 

determine composition (Viscarra Rossel et al., 2009; Aitkenhead et al., 2013) and 

in archaeology with the use of Munsell Colour charts for the colour determination 

of soil (Hester et al., 1997). 

The determination of bone colour has been used previously as an interpretative 

tool in the investigation of distinguishing human cremated bone from animal 

origins (Devlin and Herrmann, 2008), and estimating the maximum temperatures 

reached on heated bone (Shipman et al., 1984).  Previous research has also found it 

a useful technique to indicate the presence of Maillard reactions and cross-linking 

which will affect the amplification and profiling of DNA samples (Koon et al., 

2008). 

The problem with using human colour perception is that everyone perceives 

colours differently, and slight differences may not be detectable (Wilson et al., 

2008).  Hence for this research a colourimeter was used in order to record colours 

in a numerical form, by using one of the most common colour spaces: CIE L*a*b*.  

The colourimetric system converts colours into coordinates in a colour space as 

detailed in Figure 4-3. 
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Figure 4-3: The CIE L*a*b* colour space, showing the three axis of 

lightness, hue and chroma after Williams (2002) 

L* represents the lightness variable of a colour, with an axis white to black, where 

0 corresponds to black and 100 corresponds to white.  The other axis represent the 

hue and the chroma of the colour, where: a* defines the red (+127) and green (-

128), and b* represents the yellow (+127) and blue (-128). 

By using the CIE L*a*b* colour coordinate system, not only can numerical values of 

colours be recorded, but it is also possible to calculate the colour differences and 

changes that occur to the samples, by using the equation (4-2): 

 

∆𝐸 ∗ = √∆𝐿∗2+ ∆𝑎∗2 + ∆𝑏∗2 (4-2) 

Where ∆ is the difference between the sample and the standard of the 
particular coordinate. 

 

 

The use of the CIE L*a*b* system for this project will enable the overall differences 

in colour due to the burial conditions of the porcine bone to be calculated, and also 

variations in bone colour from the human archaeological samples.  These 

documented colour changes and differences in lightness, chroma and hue allow 

another aspect of comparison to the compositional and structural changes 

detected by the other techniques mentioned in this section. 
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4.1.11.2 Fourier Transform Infrared Spectroscopy 

As this research seeks to document variables of the bone that have changed in 

relation to burial environment, it is necessary to assess the structural state of the 

bones in order to determine the state of diagenesis. 

In archaeological science, the possible relationship between diagenetic indicators 

such as the ratios of the mineral and organic portions, and the splitting factor, in 

relation to burial environments have been studied intently (Hedges and Millard, 

1995; Wright and Schwarcz, 1996; Lozano et al., 2002; D'Elia et al., 2007; Trueman 

et al., 2008).  Wright and Schwarcz (1996) concluded using FTIR permitted 

alterations in bone carbonate, and crystallinity to be detected and used as a 

screening tool for diagenesis.  Trueman et al (2008) did not find any correlations 

with carbonate, but summarised that differences were observed in the splitting 

factor between the surface and sub-surface of weathered bone, which increased in 

severity the longer the post-mortem duration. 

The technique chosen to assess this diagenesis is Fourier Transform Infrared 

Spectroscopy (FTIR) as it provides structural information about molecules in a 

sample, by passing infrared radiation through the sample and collecting the 

absorbance and transmission data that is produced.  As different bonds and groups 

of bonds within molecular compounds vibrate at different frequencies, energy will 

be absorbed at different frequencies depending on the compound and a spectrum 

is produced that can be compared to known molecules in a library.   

An example of an FTIR spectrum of bone is shown in Figure 4-4, with the 

identification of major peaks and vibration bands, and functional groups reported 

in Table 4-6 with approximate wave numbers. 
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Figure 4-4:  FTIR spectra of a typical bone sample with major peaks and 

characteristic vibration bands identified (Chaumat et al., 2011)  

 

Table 4-6:  Wavelength and functional group of major bone components 

(after Thompson et al., 2013) 

Approximate wave number  Functional group 

565 V4PO4 phosphate 

605 V4PO4  

632-650 OH group 

874 V2CO3
2- group 

960 V1(PO4) apatite 

1028-1100 V3(PO4) apatite 

1400-1550 CO3
2-

 groups (lattice carbonate) 

1630-1660 Organic tissue and water 

3400 OH water 

3573 OH group 
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FTIR analysis is used widely across many disciplines, but for the purpose of this 

research, the main areas to be investigated are the integrity, maturity and content 

of collagen in a bone, by assessing the mineral and the matrix components.  

Researchers have used FTIR in the past to estimate the carbonate content by 

assessing the ratio of carbonate to phosphate peaks, and assessed the crystallinity 

of hydroxyapatite in phosphate as an estimate of diagenetic change (Weiner and 

Bar-Yosef, 1990; Wright and Schwarcz, 1996; Nielsen-Marsh et al., 2000; 

Fredericks et al., 2012b).  In addition to using FTIR to establish diagenetic 

information from crystallinity, it can also be used to identify contamination such as 

humic acid (D'Elia et al., 2007), carbon minerals such as calcite (Lee-Thorp and van 

der Merwe, 1991; Trueman et al., 2008), and francolite (Shemesh, 1990; Wright 

and Schwarcz, 1996) and can be used as a screening tool for the likelihood of DNA 

success from heated bone (Fredericks et al., 2012b). 

Over the last few years, researchers such as D’Elia et al (2007) have been using a 

combination of FTIR and ATR (attenuated total reflectance), which is the addition 

of an ATR unit in the form of a crystal, to an FTIR.  As the infra-red beam 

penetrates the surface of the sample, the ATR measures the intensity loss as the 

sample absorbs the energy (Thompson et al., 2011; Hollund et al., 2013).  This 

provides a higher sensitivity due to the direct contact between the crystal and the 

sample (Hollund et al., 2013) therefore a better identification of the presence of 

collagen, and an improved ability to identify contaminants present in the bone 

sample.  Other advantages over using standalone FTIR include the reduced sample 

preparation time (Thompson et al., 2011) by negating the need for pellet 

preparation, eliminates the risk of damage the preparation can do to the sample, 

which affects the splitting factor (Surovell and Stiner, 2001) and a smaller sample 

mass is required. 

It is due to these advantages over standard FTIR, that ATR-FTIR was chosen to be 

used to analyse the archaeological samples in this research. 
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4.1.11.3 X-ray Fluorescence Spectrometry (XRF) 

The fundamental principles of XRF are founded on the interactions of atoms with 

radiation and how this affects their behaviour.  When radiation is applied to a 

material, it becomes ionised due to the energy of X-rays, which when high enough, 

will displace electrons making the atom unstable.  This is achieved by the 

movement of tightly bound inner shell electrons, which are replaced by outer 

electrons, causing radiation emission.  It is the measure of this release of energy, 

also known as fluorescent radiation or fluorescence that identifies the 

compositional nature of a sample by comparing the energy differences to a library 

from known elements (Shackley, 2010). 

The use of XRF within the archaeological community has increased over the years 

for elemental composition analysis, due to its non-destructive nature, minimum 

preparation of samples, and ease of use. 
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4.2 Method optimisation 

Due to the numerous techniques and methods currently used, the lack of detailed 

methodologies discussion in published material, and the limited samples available, 

it was necessary to thoroughly investigate, develop and ascertain methods that 

would not only work for this study, but could also provide assistance and guidance 

to other researchers. 

After the method research had been conducted, as discussed in section 4.1, the 

optimisation of chosen methods began in order to identify the most successful, 

time effective, and possible due to tight resources and available equipment.  The 

results from this method optimisation section led to the selection of protocols to be 

used on the research material.  This optimisation process is detailed in the 

following section. 

4.2.1 Colourimetry tests 

As discussed in section 4.1.11.1, colour analysis was used to assess bone colour in 

comparison to different burial environments, identify areas of possible soil 

contamination, and investigate any correlations with DNA survival and bone 

diagenesis. 

Where possible, colour tests would be performed on the flattest part of the bone, 

however tests were performed on a pipe section of similar curvature to that of 

bone, in order to calculate the possible error limits associated with a curved 

surface. 

Tests were performed using two different masks in order to optimise the best 

results with the lowest standard deviation, and conducted 10 times, using 10 

measurements per reading.  The results from the tests are shown in the following 

tables: Table 4-7 and Table 4-8. 
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Table 4-7:  Colourimetry error tests on a flat surface 

  SAV mask (6 mm) on a flat surface   MAV mask (11 mm) on a flat surface 

  SCI SCE   SCI SCE 

  L* a* b* L* a* b*   L* a* b* L* a* b* 

1 95.12 1.49 -6.60 95.06 1.62 -7.11  94.88 1.38 -6.64 94.81 1.51 -7.18 

2 95.08 1.52 -6.69 95.02 1.64 -7.20  95.13 1.40 -6.49 95.06 1.53 -7.03 

3 95.02 1.46 -6.73 94.96 1.58 -7.25  95.09 1.39 -6.43 95.02 1.52 -6.97 

4 95.08 1.49 -6.71 95.02 1.61 -7.22  94.93 1.39 -6.71 94.86 1.51 -7.25 

5 95.07 1.48 -6.71 95.01 1.60 -7.22  94.91 1.39 -6.72 94.84 1.51 -7.25 

6 94.96 1.48 -6.92 94.90 1.60 -7.44  94.85 1.37 -6.68 94.77 1.49 -7.21 

7 94.88 1.44 -6.87 94.83 1.56 -7.38  94.98 1.37 -6.63 94.90 1.49 -7.16 

8 94.96 1.48 -6.84 94.90 1.61 -7.35  94.88 1.38 -6.69 94.80 1.51 -7.23 

9 94.94 1.48 -6.85 94.88 1.60 -7.36  94.99 1.42 -6.61 94.91 1.54 -7.14 

10 94.89 1.44 -6.85 94.84 1.56 -7.36   94.93 1.40 -6.71 94.86 1.52 -7.25 

Mean 95.00 1.48 -6.78 94.9 1.60 -7.29  94.96 1.39 -6.63 94.88 1.51 -7.17 

St. Dev. 0.09 0.02 0.10 0.08 0.03 0.10   0.09 0.02 0.10 0.09 0.02 0.10 

 

As the table shows, there is negligible difference between using the SAV mask and 

MAV mask on a flat surface.  The standard deviation is the same for the SCI 

readings, and only slight differences with the SCE readings.  

 

Table 4-8:  Colourimetry error tests on a curved surface 

  SAV mask (6 mm) on a curved surface   MAV mask (11 mm) on a curved surface 

  SCI SCE   SCI SCE 

  L* a* b* L* a* b*   L* a* b* L* a* b* 

1 94.84 1.30 -6.45 94.73 1.41 -6.95  94.63 1.24 -6.24 94.54 1.35 -6.73 

2 94.83 1.32 -6.47 94.76 1.42 -6.95  93.73 1.33 -6.35 93.67 1.44 -6.81 

3 94.82 1.30 -6.40 94.75 1.40 -6.89  94.45 1.22 -6.19 94.39 1.33 -6.66 

4 94.85 1.34 -6.42 94.80 1.45 -6.89  94.59 1.23 -6.19 94.51 1.34 -6.67 

5 94.74 1.32 -6.18 94.67 1.42 -6.64  94.73 1.26 -6.18 94.65 1.37 -6.67 

6 94.14 1.36 -6.45 94.04 1.46 -6.91  93.22 1.26 -6.15 93.10 1.36 -6.59 

7 93.26 1.35 -6.26 93.18 1.45 -6.82  94.20 1.26 -5.99 94.11 1.36 -6.45 

8 93.48 1.34 -6.18 93.26 1.44 -6.61  94.77 1.21 -6.06 94.37 1.31 -6.55 

9 92.62 1.40 -6.07 92.38 1.50 -6.48  93.72 1.25 -6.05 93.59 1.35 -6.51 

10 94.08 1.35 -6.22 93.95 1.45 -6.67   92.14 1.25 -5.94 91.99 1.34 -6.37 

Mean 94.17 1.33 -6.31 94.05 1.44 -6.78  94.02 1.25 -6.13 93.89 1.36 -6.60 

St. Dev. 0.80 0.03 0.14 0.85 0.03 0.17   0.84 0.03 0.12 0.84 0.03 0.13 
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The variation observed from the measurements taken from the curved surface 

versus the flat surface show an increase, especially on the L* coordinate, however 

deviation is still minimal. 

Colourimetry readings were taken on the flattest part of the bone in order to 

reduce this error.  As the error levels between the SAV mask and the MAV mask are 

negligible, the SAV mask was used in order to accommodate some of the smaller 

bone samples to be used, without the issue of background incorporation. 

For the purpose of this research, the SCE readings were measured, as this excludes 

the reflectance from the sample, and therefore resembles the way the human eye 

perceives a colour, better than SCI. 

4.2.2 Sample preparation and DNA extraction 

In order to decide upon the best sample preparation and extraction method that 

would provide the highest yield of DNA, and also keep the contamination risk to a 

low level, research was conducted into the available commercial extraction kits.  

The two kits that were chosen for comparative tests were Genial First-DNA all-

tissue DNA-extraction kit due to the successful reported by Fredericks (2011) and 

PrepFiler® BTA Forensic DNA Extraction Kit (Applied Biosystems®) due to their 

proposed ability to extract DNA from degraded hard tissue in the presence of 

inhibitors, whilst using less tube transfers than comparable kits – reducing the risk 

of contamination.  

Due to the limited availability of human bone, porcine bone was used to conduct 

the tests.  Variables were changed and tested in order to ascertain the most 

optimal method for extraction from the archaeological bone.  For all conditions 

tested, the surface of the bone had been removed in order to reduce any inhibitors 

associated with soil contact, or potential DNA contamination.  The variables and 

samples tested are listed in Table 4-9. 
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Table 4-9:  Preparation and extraction kit samples 

Sample number Extraction kit Physical state Demineralised? 

1. Prepfiler Powder No 

2. Prepfiler Powder Yes 

3. Prepfiler Shavings Yes 

4. Genial Powder Yes 

5. Genial Shavings Yes 

 

Bone samples were sectioned with a Dremel hand tool and a diamond cutting 

wheel, which was decontaminated prior to, and after each sample, with 10% 

bleach. 

Samples that were to be de-mineralised were then placed into 50 mL tubes, and 

submerged in EDTA.  Tubes were placed onto a roller mixer with the EDTA which 

was changed daily for 5-7 days.  When the bones had become pliable, they were 

rinsed repeatedly with distilled water and cut into slithers with disposable forceps 

and scalpels and placed 100 mg was placed into labelled sterile 2 mL Eppendorf 

tubes. 

The remaining samples were milled using a Retsch mixer mill, running two 

minutes at a time, with a two minute break to ensure there was no detrimental 

effect from any heat generated.  100 mg powdered bone sample was weighed into 

labelled sterile 2 mL Eppendorf tubes for extraction. 

Individual manufacturer’s extraction protocols were followed for both the 

Prepfiler and the Genial kits.  Once extracted these samples were stored at 4oC 

overnight to be amplified the next day. 

Amplification was performed using the PCR technique as detailed in section 

4.3.8.2, and were separated and visualised by gel electrophoresis as stated in 

section 4.3.9.  The results are shown in Figure 4-5. 
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Figure 4-5:  Extraction kit test results 

The results of the extraction kits showed Prepfiler to be more effective compared 

to Genial for the skeletal material, and that demineralising the sample prior to 

extraction provided a higher yield of DNA.  Lanes 2 and 3 showed a similar 

quantity of DNA, despite different preparation methods, resulting in the decision to 

use shavings of bone rather than powdered due to the lower contamination risk. 

Based on these findings, the chosen method for the extraction of the porcine 

samples is detailed in Table 4-10. 

Tests were also run on ancient human archaeological samples, using the Fin Cop 

skeletal samples. Preparation for extraction was conducted using two different 

methods – demineralisation and non-demineralisation.  

Due to the structural differences of ancient human archaeological bone compared 

to modern porcine bone, the results from demineralisation were significantly 

different.  The ancient samples disintegrated in the EDTA resulting in difficulty in 

the changing of the EDTA, and increasing the risk of loss of material.  Due to the 

fragile nature of the bones, milling was not necessary, as the bones could be 

powdered with a pestle and mortar.  This not only reduced the risk of heat damage 

from the millers, but also limited the risk of contamination, as the equipment could 

be thoroughly decontaminated and dried between each sample. 

 

1.Prepfiler/Powder/Non-demin 

 

2.Prepfiler/Powder/Demineralised 

 

3.Prepfiler/Shavings/Demineralised 

 

4.Genial/Powder/Demineralised 

 

5.Genial/Shavings/Demineralised 

 Ladder     1        2         3         4       5      +ve      -ve    Ladder 
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All extractions were analysed on the ABI 310 genetic analyser to provide a 

comparison of how techniques affect the ability to amplify alleles.   

Of the 20 samples analysed, five returned no amplified alleles, all of which were 

demineralised prior to extractions. The sister samples of the same skeletal 

elements that had not undergone demineralisation prior to extraction, all returned 

amplified alleles. 

By comparing the number of amplified alleles across the number of different loci, a 

comparison can be made of the successful amplifications from different elements, 

and different preparation techniques.  

 

 

Figure 4-6:  Comparison of a) number of amplified alleles, and b) number 

of loci from different sample preparation on metatarsals and femora, 

expressed as a percentage. 

 

As Figure 4-6 illustrates, the femur samples that did not undergo demineralisation 

prior to extraction, showed the highest percentage of successful amplified alleles, 

across the highest number of loci, whilst the demineralised metatarsal samples 

showed the least success of amplification.  Based on these findings, the Eriswell 

samples were not demineralised prior to extraction, and the methods chosen for 

preparation and DNA extraction from the human bone samples is detailed in Table 

4-10. 

a) Demineralised
Femur

Non-
demineralised
Femur

Demineralised
Metatarsal

Non-
demineralised
Metatarsal

b) 
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Table 4-10:  Methods for sample extraction for porcine and human 

archaeological samples 

Stage Porcine samples Human samples 

Treatment: 
Demineralised into EDTA for 5-7 

days 
No prior demineralisation 

Preparation: 
Sliced into shavings prior to 

extraction 
Powdered with a pestle and mortar 

Extraction kit: 
PrepFiler® BTA Forensic DNA 

Extraction Kit 
PrepFiler® BTA Forensic DNA 

Extraction Kit 

 

4.2.3 PCR optimisation 

Validation of the porcine PCR protocol was required prior to any sample testing.  

By running a series of dilutions of known concentration DNA, altering the number 

of cycles, and changing the annealing temperature, it was possible to identify a 

protocol which provided the strongest amplified DNA sample. 

By adjusting variables one at a time, it was possible to determine the ideal PCR 

thermal parameters and the number of cycles for the chosen primers, which 

enabled good quality bands for all three primers, as seen in Figure 4-7.  The 

protocol is detailed in 4.3.8. 

 

 

Figure 4-7:  Optimisation of 500, 300 and 100 base pair primers 

 Ladder     500bp primer        300 bp primer            100 bp primer          -ve      +ve   Ladder 
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By performing serial dilutions of known quantity calf thymus DNA, it was possible 

to achieve amplification of control samples down to 1 ng/μl, as shown in Figure 

4-8. 

 

Figure 4-8:  Optimisation of PCR sensitivity 

Due to the costly nature of the PCR components chosen for the analysis of the 

human archaeological samples as discussed in section 4.3.8.1, tests were 

conducted to ascertain whether reduced volumes could be used for the research in 

order to analyse a higher number of samples for the same cost. 

Serial dilutions were prepared using 2800M Control DNA (Promega), and reactions 

were set up as directed in the manufacturers protocol, in addition, half volume 

reactions were prepared from the same serial dilution stocks.  Results verified 

using half volume reactions would be as effective, if not more so, than the standard 

volume - as shown in Figure 4-9. 

 

Figure 4-9:  Comparison of average RFU from serial dilutions using 

standard volume reactions and half volume reactions 
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4.2.4 Fragment analysis optimisation 

The analysis parameters used with the Applied Biosystems ABI Prism 310 were 

validated by the adjustment of injection time, injection volume, polymer type and 

software and compared to peak height and correct calling of known alleles of 

known DNA as shown in Figure 4-10.  The optimised settings decided upon and 

used are discussed in section 4.3.10. 

 

 

Figure 4-10:  The ladder sample showing correct calling of all alleles 

 

Tests using 2800M control DNA (Promega) were performed to establish the rate of 

allelic drop-out across various loci at different concentrations of DNA, and to verify 

whether Peak Height Ratio (PHR) calculations could be used to determine the 

relationship of peaks and probability of heterozygosity for the ancient DNA 

samples. 
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Table 4-11:  Peak Height Ratio results from serial dilutions of control 

DNA, with drop-out occurrence, expressed as a percentage 

Marker 0.5ng/µl 0.1 ng/µl 0.01 ng/µl 0.001 ng/µl 

Amelogenin 82.00 90.67 21.25* Drop-out 

D3S1358 86.01 99.36 53.75* No alleles 

D19S433 82.24 99.21 58.18* 91.67 

D2S1338 88.09 92.28 58.51* 75.00 

D16S539 86.51 87.56 99.38 20.00* 

D18S51 94.04 91.53 49.88* No alleles 

D1S1656 92.80 96.45 92.77 90.41 

D10S1248 85.52 89.92 65.25 No alleles 

D2S441 98.02 94.75 97.98 No alleles 

TH01 66.28 88.64 91.24 66.67 

vWA 99.08 77.61 75.21 Drop-out 

D21S11 96.38 61.57 91.86 No alleles 

D12S391 83.61 98.03 32.89* Drop-out 

D8S1179 99.94 79.57 72.10 No alleles 

FGA 95.63 94.67 52.29* 93.63 

Average 89.08 89.45 67.50 72.90 

*Value below the threshold of PHR for heterozygous peaks 

Results in Table 4-11 illustrate that when analysing DNA of a concentration of 

0.1ng/µl to 0.5ng/µl the PHR calculations indicate a high probability of 

heterozygosity, and therefore the peaks are of similar height as no preferential 

amplification is taking place. 

The tests using 0.01ng/µl DNA showed peak imbalance due to preferential 

amplification at the seven of the 16 markers: Amelogenin, D3S1358, D19S433, 

D2S1338, D18S51, D12S391, and FGA, resulting in a probability of less than 60% 

and therefore below the threshold used to estimate the heterozygosity of peaks.   

Analysis of the 0.001 ng/µl sample showed allelic drop-out occurring at three 

markers: Amelogenin, vWA, and D12S391, where only one allelic peak was present 

at the loci.  No allelic peaks were seen at six of the 16 markers: D3S1358, D18S51, 

D10S1248, D2S441, D21S11 and D8S1179. 

These tests illustrate that if the DNA samples from the human archaeological 

collection are below 0.1ng/µl, preferential amplification will occur, making PHR 

calculations and the determination of heterozygous peaks difficult.  Analysis of 
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samples ~ 0.001 ng/µl, will likely display allelic drop-out, and absence of peaks at 

several markers. 

Surprisingly, it appears that the base pair size of the target DNA fragment does not 

have an effect on the allelic drop-out, as this phenomenon occurs at the smallest 

marker - amelogenin (80-100 bp) from a concentration of 0.01 ng/µl, whereas at 

the largest loci - D2S441 (325-375bp), no evidence of drop-out occurs until a 

concentration of 0.001 ng/µl. 

The PHR threshold is illustrated in Figure 4-11, and shows how heterozygote 

peaks would be incorrectly eliminated due to preferential amplification and allelic 

drop-out, as the concentration of the DNA in the sample decreases. 

 

Figure 4-11:  Illustration of PHR values across the loci, where allelic 

drop-out and peak absence is represented by zero, and the PHR 

threshold of 60% is represented by a red line. 

 

This possible inability of utilising the PHR calculations for means of identifying 

heterozygote peaks could cause issues in interpreting of data when more than one 

contributor is suspected.  Other methods of data interpretation would need to be 

used. 

0.5ng/µl 0.1ng/µl 0.01ng/µl 0.001ng/µl

Amelogenin D3S1358 D19S433 D2S1338 D16S539

D18S51 D1S1656 D10S1248 D2S441 TH01

vWA D21S11 D12S391 D8S1179 FGA
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4.3 Selected methodologies 

This section details the methodologies used as a result of the previous literature 

review and the optimisation tests that were conducted. The methods were chosen 

based on available equipment that would provide an analysis of multiple aspects of 

bone diagenesis, non-destructive methods were chosen where possible to enable 

multiple analyses to be made with a small sample, and techniques that were time 

effective and cost-effective were used in an attempt to make analysis available to a 

wider community.  Figure 4-12 shows a flowchart of the methodology used. 

 

Figure 4-12: Flowchart of methods 

Archaeological Human Remains 

Surface removal and colourimetry 

Human Analogue Burials 

Photography and colourimetry 

Excavation, photography & colourimetry 

Burial of bones and photography 

Soil tests 

Bone sectioning and bone milling 

Fragment Analysis and Genotyping Gel electrophoresis 

Collection of bones 

Analytical techniques: ATR-FTIR, XRF 

DNA analysis: Demineralisation, Extraction, Amplification 
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4.3.1 Contamination precautions 

In order to minimise the risk of DNA contamination, as discussed in section 4.1.3, 

the following precautions were taken. 

4.3.1.1 Laboratory personnel and personal protective equipment (PPE) 

Access to the DNA laboratory was strictly limited to a small number of authorised 

personnel; all of whom had reference samples taken in order to be able to 

eliminate individuals in the case of sample contamination. 

In order to limit the potential contaminations of exogenous DNA onto the samples, 

full PPE was worn at all time when handling or working on either the porcine or 

archaeological human bones; face mask, clean laboratory coats, and double gloves.  

To eliminate the transfer of DNA between samples, gloves were changed between 

each sample. 

Due to the nature of the skeletal material, and the lack of PPE worn during 

excavation and handling, it is possible that contamination from exogenous DNA 

has already occurred, and therefore removal techniques will need to be applied. 

4.3.1.2 Laboratory protocols 

All laboratory protocols for extraction, amplification, gel electrophoresis analysis 

and fragment analysis included positive controls and negative controls to detect 

any evidence of contamination that may have occurred during the procedures. 

4.3.1.3 Laboratory layout and equipment 

Work was carried out in dedicated clean rooms or laboratories that had been 

cleaned and decontaminated prior to, and after all work had been completed. 

The laboratory made use of the two existing rooms to separate the processes into 

pre-amplification (clean) and post-amplification (dirty) rooms and a one-way 

system was adhered to, in terms of samples and personnel. Pre-amplification work 

was conducted in the clean room in the morning, and post-amplification work was 

conducted in the afternoon in the dirty room with no re-entry into the pre-

amplification laboratory on the same day or in the same clothing. 
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Laboratory equipment was designated to particular processes and only used for 

either pre-amplification or post-amplification work. Equipment was cleaned and 

decontaminated with 10% bleach and 70% ethanol prior to and after every use. 

4.3.2 Archaeological human remains 

Excavated archaeological human remains were collected from two archaeological 

sites from distinctly different geological environments in order to investigate if 

burial variables influence the colour, composition and the state of DNA contained 

within. 

4.3.2.1 Sample selection 

With the previous research taken into consideration, the elements chosen to be 

investigated in this study were metatarsals and femora.  Metatarsals were chosen 

due to the small compact nature of the element, meaning they are less likely to 

have been crushed or damaged in the burial environment and subsequent 

excavation.  Femurs were chosen because of their robusticity and composition, and 

a higher percentage of compact bone than other elements. 

4.3.2.2 Sample collection 

The human remains from Eriswell and Fin Cop had been excavated prior to 

knowledge of this study; therefore no influence could be made over the procedure 

for excavation of the remains, the use of PPE, or the facilities in which the human 

archaeological bones have been stored.  Some of this handling was documented 

(i.e. anthropological work), but general handling, by whom, movement and storage 

was undocumented.  All these factors may have had a detrimental effect on the 

level of preservation, the state of DNA contained within the bone, and levels of 

exogenous DNA contamination, therefore must be taken into account when 

discussing any results. 

Fin Cop 

The skeletons from Fin Cop were stored at the premises of the Archaeological 

Research Services Ltd in Bakewell, Derbyshire, and were chosen on the basis of 

available material. Two of the available skeletons were neo-natal and as such 
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sampling would have consumed the whole skeleton, therefore only six skeletons 

were selected for sampling.  The samples were bagged, labelled and placed in a 

protective box for transportation back to the DNA laboratory for sampling and 

analysis. 

Table 4-12 details an inventory of the skeletons sampled for investigation 

presenting information on condition, age at death, sex estimation and a 

preservation score as analysed and provided by the standard anthropological 

assessment (exact method used unknown) prior to collection (Waddington et al., 

2011).  Skeleton 6 was originally collected in two separate parts, before being 

assigned as one. 
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Table 4-12:  Inventory of sampled skeletons from Fin Cop  

 

Skeleton 
number 

Burial 
Environment 

Condition 
Overall 

preservation 
score* 

Sex estimation Age estimation 
Elements 
sampled 

Preservation 
of element 

Skeleton 1 
 

 

 

 

 

Lime-rich 
sediment and 

limestone 
boulders over 

limestone 
geology 

Articulated, 
fragmented, 65% 

recovered 

3 Probable female Young adult 

25-35 years 

Femur 

Metatarsal 

3 

2 

Skeleton 3 

Articulated, very 
fragmented, almost 

entire skeleton 
recovered 

3 Probable female Young adult 

20-30 years 

Femur 

Metatarsal 

3 

3 

Skeleton 5 
Disarticulated, only 

small percentage 
recovered 

4 Indeterminate 
due to lack of 

elements 

Young adult 

20 – 30 years 

Femur 

Metatarsal 

5 

3 

Skeleton 6 

(1 & 2) 

Commingled 
skeletons, fragile 

and fractured 

3.5 Not possible due 
to young age 

~ 40 weeks pre-
natal - neonate 

Femur 4 

Skeleton 7 
Disarticulated and 
commingled with 

skeleton 5 & 6 

3 Indeterminate 
due to young age 

  1 year 4 months 
–    2 years 8 

months 

Femur 3 

Skeleton 8 Articulated 
3 More likely male 

(many indicators 
indeterminate) 

15-16 years Femur 

Metatarsal 

3 

3 

* Where grade 0 bone has a clear visible morphology with no modifications, and 5+ shows heavy modifications and erosion.
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Eriswell / Lakenheath 

The human skeletons available for sampling at Lakenheath totalled 425 rendering 

a whole site analysis impossible due to time and resources.  Selection of the 

material was prioritised on the basis of results from other analytical techniques, 

such as C14 dating, carbon and nitrogen isotope analysis, or those identified by 

excavation as being of special interest from an archaeological or bio-archaeological 

context (double burials, wealthy burials, or those displaying non-metric traits). 

From this priority list 60 skeletons were selected for investigation, from across the 

entire site including all 3 cemeteries, (as introduced in Figure 3-2) ensuring 

samples from different burial environments.  This number was chosen to provide a 

diverse sample range whilst adhering to time and cost restrictions. Where 

possible, both femora and metatarsals were sampled from the same skeleton.  The 

exception being skeleton 4222 whose remains were largely unobtainable due to its 

presence in a museum display in Suffolk, therefore available samples were limited 

to a femur fragment and a sternum fragment.  In order to follow protocol, the 

sternum fragment was sampled to enable two samples to be analysed per skeleton.  

This resulted in the collection of 57 femur samples, 47 metatarsal samples and one 

sternum fragment.  The collected bones were bagged, labelled and stored in a 

protective box for transportation to the DNA laboratory for sampling and analysis. 

Due to the expense of DNA analysis, genetic investigation concentrated on 

cemetery 104, since this was the location of the skeleton 4222 whose wealthy 

grave contained a sword and horse skeleton, and appeared to be of high status and 

a centre-piece in the cemeteries.  From cemetery 104, 35 skeletons were analysed 

for DNA, testing both femora and metatarsals where possible, totalling 63 

elements.  Table 4-13 provides an inventory of the skeletons from Eriswell 

cemeteries that were selected for investigation along with information regarding 

the reason for sampling (from the skeletal collection guardians), preservation 

condition, and other anthropological data such as estimated sex and age at death 

(Caruth and Anderson, 2005).  Methods used for estimations are unknown.  Unless 

otherwise stated all burials were single inhumations. 
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Table 4-13:  Inventory of sampled Eriswell skeletons  

Skeleton Cemetery 
Burial 

environment 
Overall 

condition* 
Elements sampled Criteria for sampling Age Sex 

DNA 
analysis 

0067 104 Sand & chalk 4 Femur & metatarsal Isotopes, C14 dating c.20-23 Female Yes 

0145 46 Sand & Chalk 4 Femur & metatarsal Child with brooch c. 8-9 Child  

0158 46 Sand & Chalk 4 Femur & metatarsal Non-metric traits Y-MA Female  

0201 46 Sand & Chalk 5 Femur & metatarsal Isotopes MA-Old Male  

0203 46 Sand & Chalk 7 Femur & metatarsal Isotopes Y-MA Female  

0235 104 Chalk 5 Femur & metatarsal Isotopes, wealthy burial MA-Old Male Yes 

0241 46 Sand & Chalk 7 Femur Isotopes MA Male  

0251 46 Sand & Chalk 5 Femur & metatarsal Non-metric traits Y-MA Female  

0255 46 Sand & Chalk 6 Femur & metatarsal Isotopes, C14 dating c.18-20 Male  

0259 46 Chalk 3 Femur & metatarsal Double burial MA-Old Female  

0309 46 Chalk 5 Femur & metatarsal Isotopes, C14 dating MA? Female  

0310 46 Sand & Chalk 6 Femur Isotopes MA Female  

0317 46 Sand & Chalk 5 Femur & metatarsal Non-metric traits MA Male  

0318 114 Sand & Chalk 5 Femur & metatarsal Isotopes, non-metric traits Y-MA Male  

0326 104 Chalk 7 Femur & metatarsal C14 dating Y-MA Male? Yes 

0343 46 Chalk 5 Femur & metatarsal Wealthy burial c.15-16 Child  

0346 46 Chalk 5 Femur & metatarsal C14 dating MA-Old Male  

0363 114 Sand & Chalk 4 Femur & metatarsal Isotopes, related to others? Y-MA Male  

0392 114 Sand & Chalk 5 Femur & metatarsal Isotopes, C14 dating Y-MA Male  

0395 46 Sand & Chalk 3 Femur & metatarsal Isotopes, non-metric traits Y-MA Female  

0425 104 Unknown 3 Femur & metatarsal 
Double burial 

c.11-13 Child Yes 

0426 104 Unknown 5 Femur & metatarsal c.15 Child Yes 
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Skeleton Cemetery 
Burial 

environment 
Overall 

condition* 
Elements sampled Criteria for sampling Age Sex 

DNA 
analysis 

0474 114 Sand & Chalk 2 Femur Related to others? Y-MA Male  

0477 104 Chalk 4 Femur & metatarsal Non-metric traits c.12 Child Yes 

0554 104 Sand & Chalk 3 Femur C14 dating Young Male  

0570 104 Chalk 6 Femur & Metatarsal Isotopes, C14 dating MA-Old Female Yes 

0571 114 Sand & Chalk 3 Metatarsal Related to others? c.8 Child  

0580 114 Sand & Chalk 6 Femur & metatarsal Isotopes c.20-23 Female  

0612 104 Chalk 6 Femur & metatarsal Isotopes, non-metric traits Young Female Yes 

0692 104 Chalk 3 Femur & metatarsal 
C14 dating, wealthy burial  

near skeleton 4222 
MA Female Yes 

0717 104 Chalk 4 Femur & metatarsal Non-metric traits c.15 Male? Yes 

0759 104 Chalk 6 Femur & metatarsal Isotopes, C14 dating Old Male Yes 

0791 104 Chalk 4 Femur & metatarsal 
Isotopes, C14 dating, non-

metric traits 
Old Female Yes 

0799 104 Chalk 4 Femur & metatarsal Isotopes MA? Female Yes 

0808 104 Sand & Chalk 3 Femur & metatarsal Isotopes, non-metric traits MA Female Yes 

0809 104 Chalk 5 Femur & metatarsal Non-metric traits Young Male Yes 

0851 114 Sand & Chalk 4 Femur & metatarsal Isotopes, C14 dating,  Y-MA Female  

0888 104 Chalk 3 Femur Wealthy burial Old Female  

0907 114 Sand & Chalk 4 Femur Isotopes, C14 dating MA Female  

0991 104 Sand & Chalk 6 Femur & metatarsal Non-metric traits Y-MA Female? Yes 

0994 104 Chalk 4 Femur & metatarsal Effect of coffin MA Male Yes 

4040 104 Chalk 3 Femur & metatarsal Related to others? Young Female Yes 

4046 104 Chalk 2 Femur & metatarsal Non-metric traits Y-MA Male Yes 

4067 104 Chalk 6 Femur & metatarsal Isotopes MA? Male Yes 
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Skeleton Cemetery 
Burial 

environment 
Overall 

condition* 
Elements sampled Criteria for sampling Age Sex 

DNA 
analysis 

4095 104 Chalk 4 Femur Multiple burial, Isotopes, C14 
dating, Related to others? 

c.4-5 Child Yes 

4098 104 Chalk 4 Femur MA+ Female? Yes 

4099 104 Chalk 6 Femur & metatarsal Isotopes, non-metric traits MA Male Yes 

4191 104 Sand & Chalk 3 Femur Related to others? MA-old Male Yes 

4127 104 Sand & Chalk 1 Metatarsal Non-metric traits Y-MA Male  

4222 104 Chalk 7 Femur & sternum 
Isotopes, wealthy burial, 

sword & horse 
Young Male Yes 

4226 104 Chalk 4 Femur & metatarsal C14 dating, non-metric traits c.20 Male? Yes 

4288 104 Unknown 4 Femur & metatarsal Good bone c.20-23 Male? Yes 

4291 104 Chalk 4 Femur Isotopes, related to others? Old Male Yes 

4295 104 Sand & Chalk 2 Femur Related to others? Y-MA Male Yes 

4340 104 Chalk 4 Femur & metatarsal Non-metric traits 16-18 Male? Yes 

4411 104 Chalk 6 Femur Non-metric traits  c.8 Child Yes 

4462 104 Sand 2 Femur & metatarsal Related to others? Y-MA Male Yes 

4473 104 Chalk 2 Femur Non-metric traits MA Male Yes 

4503 104 Chalk 3 Femur & metatarsal Related to others? Adult Male Yes 

4561 104 Chalk 4 Femur & metatarsal Isotopes, non-metric traits Young Male Yes 

* Where grade 0 bone has a clear visible morphology with no modifications, and 5+ shows heavy modifications and erosion 

 

Key for age estimation: Y = young 

MA = middle aged 
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4.3.2.3 Sample preparation 

Bones were cleaned by removing the dried dirt with clean soft brushes.  Water was 

not used for cleaning the bones as this can lead to further degradation of the 

structure of the bone, and can also provide a medium for contamination to travel 

inside the bone as discussed in section 4.1.4.  No record had been kept as to how 

bones may have been previously cleaned.   

A Dremel hand-tool with a sterilised diamond cutting blade was used to section a 

‘window-cut’ from the shaft of all the bones, avoiding any areas of apparent 

pathologies, landmarks or post-mortem damage.  Areas of staining or possible 

contact with any metal grave goods were also avoided.  Where the mid-shaft was 

missing, another area of the shaft was sampled.  The blade and Dremel were 

decontaminated with bleach between each sample to ensure no carry-over of 

material from bone to bone and gloves were changed.  The cutting was conducted 

within a custom-made Perspex box to contain bone dust and provide protection 

from the environment.  Bone samples were stored in individual sealable labelled 

plastic bags prior to colourimetry analysis described in section 4.3.4. 

 

Figure 4-13:  Example of Eriswell right femur pre- and post-sectioning 

After colourimetry analysis had been conducted, 1-2mm of the surface of the bone 

was stripped using a sandpaper attachment on the Dremel hand-tool, in order to 

remove contamination caused by soil interaction and potential exogenous from 

prior handling from individuals.  Colourimetry of the exposed cortex of the bone 

was then conducted in order to estimate the penetration of colour and potential 

contaminates through the bone. 
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The surface-exposed bone was then sectioned for different analytical techniques.  

A section was returned to the individual labelled plastic bags to await DNA 

analyses, and a section was milled using a Retsch M2000 ball mill and sieved 

through a 106 µm stainless steel mesh.  The homogenous powders were stored in 

individual labelled sterilised glass jars with airtight plastic lids at room 

temperature, until required for downstream analysis such as FT-IR. 

4.3.3 Human analogue burials 

The human analogue samples used for the study were Sus scrofa or Sus scrofa 

domesticus (domestic pigs) due to the comparable bone composition to that of 

humans as discussed in section 2.4, and easy availability due to presence in the 

food chain which also negates the concern over disease when handling the 

samples.  In total, 60 porcine femurs were used for the research. 

4.3.3.1 Sample collection 

The porcine samples were obtained from the local butcher, to ensure kill dates 

could be determined and that no processing or cooking of the bones had occurred. 

All bones were stored in the fridge in labelled bags, processed within 3-5 days of 

the kill date, and pigs were aged between 8 and 12 months at time of death. 

4.3.3.2 Sample preparation 

If an excessive amount of soft tissue was still found to be covering the bone shaft 

surface, this was removed with a scalpel to ensure exposure of the bone to the 

burial medium.  Soft tissue was left in place at the bone diaphysis, and this is the 

tissue referred to later when observations of decomposition are noted.  Soft tissue 

was also removed from the control bones so that the bone could be examined with 

no other variables. 

4.3.3.3 Burial conditions 

Different burial conditions are known to have varying effects on the rate of 

decomposition of soft tissues, as discussed in Chapter 3, but there is limited 

research available regarding these effects on the different components of the bone 

and the subsequent effect on the endogenous DNA. This study will concentrate on 
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the effects of differing pH in soils, soil type and the duration of burial on the 

composition and colour of the bone, and quality and quantity of the DNA retrieved 

from the buried porcine bones.  All burial mediums were purchased from 

gardening stores. 

Dependent variables 

The elements of the study which remained constant for all trials: 

- The location of the trials: a dark room with no access to sunlight or 

exposure to heat sources, close to the DNA laboratory with restricted access 

- The ratio of soil to bone: all bones were placed surrounded by the burial 

medium of the same volume to ensure no other factors such as air 

- The containers: 4 litre plastic containers with airtight plastic lids and sealed 

with parafilm, all wrapped in black plastic – all brand new and cleaned prior 

to the study to ensure no added bacteria / moisture. 

Independent variables 

Elements of the study independent to each trial: 

- Soil type: clay, compost, hydrated lime or sand. 

- pH: varied depending on soil type  

- Moisture content: varied depending on soil type 

- Organic content: varied depending on soil type 

- Duration of burial: 1.5 months, 3 months, 6 months, 12 months, 18 months. 

Control samples 

The control samples consisted of samples stored in the same conditions but 

without the burial medium, and were analysed in parallel with identical time 

durations to the tested variable samples. 

List of burials 

Pig bones were buried in duplicate for each burial medium / duration period in 

order to duplicate data recovered.  The categories of burials and sample names are 

listed below in Table 4-14. 
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Table 4-14:  Porcine burial sample categories and sample names 

Burial duration Controls Clay Compost Lime Sand 

0 months C0m  0mCl  0mCo  0mLi  0mSa  

1.5 months C1.5m  1.5mCl  1.5mCo  1.5mLi  1.5mSa  

3 months C3m  3mCla  3mCo  3mLi  3mSa  

6 months C6m  6mCl  6mCo  6mLi  6mSa  

12 months C12m  12mCl  12mCo  12mLi  12mSa 

18 months C18m  18mCl  18mCo  18mLi  18mSa  

4.3.3.4 Burial methodology 

Porcine bones were photographed and bone surface colour recorded prior to 

burial, as discussed in section 4.3.4.  To house the bones within distinct burial 

environments, individual four-litre plastic containers were half-filled with the 

appropriate burial medium, the bone was placed on top, and the container filled 

with the same medium, ensuring no air voids at the top.  The containers were 

sealed with an airtight plastic lid, sealed with parafilm, labelled with sample name, 

burial and excavation date and wrapped in black plastic before being stored in a 

dark room. 

 
Figure 4-14:  Photographs depicting porcine burial methodology of the 

porcine bones, in plastic boxes filled with the chosen medium, sealed with 

parafilm and labelled with burial/excavation date and burial medium 
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4.3.3.5 Excavation recording methodology 

At the end of the specified time period, chosen in order to provide a snapshot of 

the processes over the available time frame, the samples were removed from the 

dark room and unwrapped from the black plastic.  Prior to removing the lid and 

during the excavation process, visual observations of presence of water, 

condensation and mould were made and recorded, along with observations of any 

odours present. 

The burial medium was removed using standard archaeological excavation 

techniques, removing layers with a trowel and recording any observations, such as 

presence and appearance of mould, condensation, olfactic observations of odour 

and general appearance.  Once the bone was uncovered, in-situ photography was 

conducted, and the bone was carefully removed, prior to photography and soil 

sample collection from directly under the bone. 

Soil samples were stored in labelled 50mL plastic screw-top tubes prior to 

undergoing soil testing, as discussed in section 4.3.3.6.  Bones were cleaned with 

sterile clean brushes, moistened with deionised water, and placed into individual 

labelled plastic sealable bags and stored at 4oC prior to analysis described in the 

following sections. 

4.3.3.6 Soil analysis 

Soil analysis was conducted on the control soil samples of clay, compost, lime and 

sand prior to any experimental work in order to provide reference values to 

calculate any change due to the burials.  The experimental soil samples were tested 

in the same way, after each burial. 

Three different tests were performed on each sample - water content 

determination, organic content determination and pH.  All mass readings were 

recorded in grams and measured to 2 decimal places. 
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Water content determination 

The protocol for the water determination test followed the standard reference 

ASTM D 2216 – Standard test method for laboratory determination of water 

(moisture) content of soil, rock, and soil-aggregate mixtures (Tan, 2005). 

Clean, dry, labelled crucibles were weighed prior to the addition of 1-3g of either 

clay, compost, lime and sand, and weighed again.  The crucibles were then placed 

into a wire holding rack and placed into a pre-heated furnace at 105oC, and left for 

24 hours.  After this time, the crucibles were re-weighed immediately, and the 

mass recorded. 

 

Figure 4-15:  Crucibles containing control soils after 24 hours at 105oC 

 

Using the different measurements and the following equations - (4-3)(4-4)(4-5), 

the water content can then be determined as a ratio percentage to that of the soil 

solids. 

 

To determine the mass of soil solids: 

MS = MCDS −  MC (4-3) 

where MS is the mass of soil solids, MCDS is the mass of the crucible 

containing dry soil and MC is the mass of the dry crucible 

To determine the mass of pore water: 
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MW =  MCWS −  MCDS (4-4) 

where MW is the mass of pore water, and MCWS is the mass of the 

crucible containing wet soil 

To determine the water content: 

W =  
MW

MS
 × 100 

(4-5) 

where W is water content in percentage  

Organic matter determination 

The protocol for the organic matter determination test followed the standard 

reference ASTM D 2974 – Standard Test Methods for Moisture, Ash, and Organic 

Matter of Peat and Organic Soils. 

Clean, dry, labelled crucibles were weighed prior to the addition of a dried soil 

sample, and weighed again.  The crucibles were then placed into a wire holding 

rack and placed into a furnace with a gradual increase of temperature to 440oC, 

and left for 24 hours.  After this time, the crucibles were cooled prior to being re-

weighed. 

 

Figure 4-16:  Crucibles containing control ‘ashed’ soils after 24 hours at 440oC 

 

Using the different measurements and the following equations - (4-6)(4-7)(4-8) 

and (4-9), the organic matter can then be determined as a ratio percentage to that 

of the dry soil solids. 
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To determine the mass of the dry soil: 

MD =  MCDS − MC (4-6) 

where MD is the mass of dried soil 

To determine the mass of the ashed soil: 

MA =  MCA −  MC (4-7) 

where MA is the mass of ashed soil, and MCA is the mass of the crucible 

containing ashed soil 

To determine the mass of the organic matter: 

𝑀𝑂 =  𝑀𝐷 −  𝑀𝐴 (4-8) 

where MO is the mass of the organic matter 

To determine the organic matter content (%): 

𝑂𝑀 =  
𝑀𝑂

𝑀𝐷
 × 100 

(4-9) 

where OM is organic matter in % 

pH determination 

The pH of the soil samples was determined using a standard soil:water suspension 

test and a pH meter and pH electrode.  The pH meter was calibrated, using ph4, 

pH7 and pH10 buffers - depending on the soil type being tested. 

Solutions of the soils were prepared in 50 mL plastic tubes in a suspension of 1:5 

soil:ionised water, and placed on a roller mixer for one hour.  After this time, the 

electrode was submerged into the solution, and once equilibrium was reached, the 

value was recorded.  The electrode was thoroughly rinsed between each sample. 

4.3.3.7 Bone sectioning 

Following excavation and cleaning of bones, a Dremel hand-tool with diamond 

cutting blades were used to section the bones. As mentioned earlier in section 
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4.3.2.3 a custom-made Perspex box was used to contain the bone dust and protect 

the bones from the environment. The Dremel blade and Perspex box was 

decontaminated between each sample with bleach to ensure no-carry-over of 

material from sample to sample. 

Visual examination and recording of the bone marrow colour and consistency was 

conducted as a means of comparative data between bone samples.  Bones were 

sectioned in preparation for various analytical investigations – a section for 

colourimetric analysis (section 4.3.4) and demineralisation (section 4.3.7.1) and 

downstream DNA analysis (section 4.3.7) and a section to powder for ATR-FTIR 

analysis (section 4.3.5). 

4.3.4 Colourimetric analysis 

The colourimetric analysis was conducted with a Konica Minolta 

Spectrophotometer CM-700d/600d using the following parameters detailed in 

Table 4-15. 

 

Table 4-15: Display conditions for colourimetric analysis 

Target Mask: SAV  Illuminant 2: None 

Colour space: L*a*b*  Mode: SCI and SCE 

Equation: dE00  Wait time: 0.0 

Colour index: YI (E313-73)  Auto average: 10 

Observer: 10o  Manual average: 1 

Illuminant 1: D5    

 

In order to minimise error and deviation in colour determination, a total of 30 

measurements were taken on the flattest part of the bone, enabling the calculation 

of a mean average and standard deviation of the data. 

4.3.5 Fourier-Transform Infra-Red Spectroscopy (FT-IR) 

A Bruker Alpha Fourier Transform Infrared (FTIR) spectrophotometer coupled 

with a platinum diamond ATR module was used to analyse the bone samples to 
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investigate the mineral and organic components.  Data was analysed with OPUS 

software, version 7.2. 

A small sample of powdered bone was placed onto the diamond, pressure was then 

applied by the anvil to allow good contact between the diamond and the bone 

sample. A scan resolution of 2 cm-1 was used for each run within the range of 400-

2000cm-1, performing 16 scans on each sample. 

 

Three peak ratios were chosen in order to estimate: the splitting factor 

(crystallinity), collagen content and carbonate content of the bone, as illustrated in  

Figure 4-17.   

 

 

Figure 4-17:  ATR-FTIR spectra identifying the peaks used for calculation 

of collagen (Am/P) and carbonate (C/P), and splitting factor; where A 

and B indicate the phosphate peaks, and C indicates the trough.            

After Hollund et al.,( 2013) 

 

To establish the splitting factor, the height of the two phosphate peaks at ~565 cm-

1 and ~605 cm-1 were summed and divided by the trough between the peaks at 

~590 cm-1 (Weiner and Bar-Yosef, 1990).  To estimate the collagen content, the 

ratio between the height of the amide peak at ~1640 cm-1, and the height of the 
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phosphate peak at ~1030 cm-1 was calculated (Trueman et al., 2008).  To estimate 

the carbonate content, the ratio between the phosphate peak at ~1030 cm-1 and 

the carbonate peak at ~1415 cm-1 was calculated (Wright and Schwarcz, 1996). 

4.3.6 X-ray Fluorescence Spectrometry (XRF) 

A Seiko SII SEA60000VX Fluorescent X-ray Analyser was used for XRF analysis on 

a selection of the bone samples.  A small sample of bone fragments were placed 

onto a sticky sheet on a Plastazote white plastic board and placed onto the sample 

platform.  Measurements were taken in triplicate using the measurement 

parameters seen in Table 4-16. 

 

Table 4-16: Measurement parameters for XRF analysis 

Measurement system: SEA60000VX  Tube voltage (kV): 50 

Measurement time (seconds): 30  Tube current (uA): 589 

Live Time (seconds): 17  Filter: OFF 

Environment: Air  Focus: Normal 

Collimator: 1.2mmx1.2mm  Peaking time: 1.0usec 

 

 

The samples were run against a library of known elements commonly found in 

soils, in order to identify any contaminants present in the bone samples.  The 

elements that were checked are detailed in Table 4-17.  The results from the 

analysis were expressed as peak intensity measured in counts per second (cps) 

which relates to the concentration of elements. 
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Table 4-17:  Elements searched for within XRF analysis to identify 

possible soil contaminants in bone samples 

Element Element Name Line ROI keV 

Si Silicon Ka 1.60- 1.88 

P Phosphorus Ka 1.88- 2.15 

Ca Calcium Ka 3.54- 3.84 

Ti Titanium Ka 4.35- 4.67 

Fe Iron Ka 6.23- 6.57 

Mn Manganese Ka 5.73- 6.07 

Cu Copper Ka 7.86- 8.23 

Zn Zinc Ka 8.44- 8.82 

Sr Strontium Ka 13.92-14.36 

Zr Zirconium Ka 15.51-15.98 

Cr Chromium Ka 5.25- 5.58 

Ni Nickel Ka 7.29- 7.65 

K Potassium Ka 3.16- 3.46 

 

4.3.7 DNA extraction 

The most effective commercial DNA extraction kit for the purpose of this research 

was found to be BTA Forensic Extraction kit (Promega) as established by tests 

performed and described in section 4.2.2.  The same extraction kit was used on 

both the porcine and human bone samples, but with slightly different protocols at 

the initial stage.  Porcine bones and Fin Cop samples were demineralised prior to 

DNA extraction as described in the next section. 

The processing of human bone samples followed the manufacturers’ protocol, with 

the exception of using double the recommended bone powder.  Therefore 100mg 

of whole bone powder was weighed on an analytical scale and transferred into a 

sterile 2 mL Eppendorf tube. 

 

Lysis buffer was prepared according to the reaction number detailed in Table 4-18 

and mixed gently.  230 µL buffer was added to each sample, tightly capped and 

sealed with parafilm.  The tubes were then vortexed for 5 seconds, centrifuged 

briefly and placed in a shaking water bath at 1100 rpm at 56oC for 2 hours. 
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Table 4-18:  Lysis buffer preparation per reaction plus 5% excess for 

pipetting error 

Reagent 
Number of reactions 

1 1 + 5%excess 8 + 5% excess 16 + 5% excess 

BTA Lysis buffer 220 µL 231 µL 1848 µL 3696 µL 

DTT 3 µL 3.15 µL 25.2 µL 50.4 µL 

Proteinase K 7 µL 7.35 µL 58.8 µL 117.6 µL 

Total 230 µL 241.5 µL 1932 µL 3864 µL 

 

After incubation, the sample tubes were removed and allowed to equilibrate to 

room temperature prior to centrifugation at 10,500 rpm (10,000 x g) for 90 

seconds to separate the lysate from the sediment.  This lysate was then pipetted 

into a 1.5mL tube without disturbing the pellet at the bottom of the tube. Add 300 

µL of Lysis Buffer was added and vortexed briefly to mix. 

In order to bind the genomic DNA, 15 µL of magnetic particles were pipetted into 

each sample tube, which were capped and vortexed for 10 seconds.  300 µL 

isopropanol was added to each tube individually, capped and vortexed for 5 

seconds before briefly centrifuging to collect any liquid from the sides and lid of 

the tube.  Tubes were placed in a shaker at 20oC at 700rpm for 10 minutes 

To wash the DNA now bound to the magnetic particles, the tubes were vortexed for 

10 seconds and briefly centrifuged to collect any residual contents.  The tubes were 

then placed in a magnetic stand for 10 minutes until the particles formed a pellet 

against the back on the tube.  The liquid phase was then aspirated and discarded 

and 600 µL Wash Buffer A was added to each tube, which was then capped, and 

removed from the stand to vortex for 15 seconds, and returned to the stand for 1 

minute. 

This process was repeated again with 300 µL Wash Buffer A, and again with 300 µL 

Wash Buffer B.  The tubes were then centrifuged briefly, placed back on the 
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magnetic stand for 60 seconds, and any residual liquid was collected using a 20 µL 

tip and discarded. 

Bound and washed DNA was then eluted by pipetting 50 µL of Elution Buffer to the 

sample DNA tube and vortexed until the pellet had re-suspended.  Tubes were 

placed in a shaking water bath at 900rpm, and 70oC, for 10 minutes.  The sample 

tube was then vortexed until there were no visible magnetic particles, and 

centrifuged to collect any residual contents. 

Tubes were then placed back into the magnetic stand for 5 minutes until the pellet 

size stopped increasing.  The isolated genomic DNA was then transferred into 

1.5mL tubes and stored at 4oC for up to one week or at -20oC for longer storage. 

 

 

Figure 4-18:  Photographs depicting the different stages of DNA 

extraction from bone, a) bone cut into slithers and placed into tube,        

b) bone being lysed, c) DNA adhering to magnetic beads, d) DNA 

resuspended in elution buffer. 

 

4.3.7.1 Bone demineralisation 

Bone samples were placed into 15 mL plastic tubes with corresponding labels and 

filled to the 14 mL marker with 0.5M EDTA pH 7.5.  The tubes were sealed with 

screw-top plastic lids and parafilm and placed onto a roller mixer for 5-7 days 

(until the bone was pliable) with daily changes of EDTA.  

a) b) c) d) 
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Samples were then repeatedly washed with distilled water and returned to the 

roller mixer four times for 15 minute durations to remove any residual EDTA 

which may affect downstream analysis. 

For the porcine samples, sterile scalpels and forceps were used to take shavings of 

the bone which were placed into 2 mL Eppendorf tubes ready for DNA extraction.  

For the Fin Cop samples, the demineralisation led to, in most cases, complete 

disintegration of the sample, therefore slicing was not necessary. 

4.3.8 PCR amplification 

PCR amplification was conducted on all extracted DNA samples in order to amplify 

specific areas of the DNA strand.  The areas of interest differed between the 

archaeological human samples and the human analogue samples so different 

primers and conditions were used as discussed in the following sections. 

4.3.8.1 Archaeological human amplification 

Due to the degraded nature of the archaeological human DNA samples, the 

Powerplex ESI 16 Fast system (Promega) was chosen for the analysis.  This 

multiplex system amplifies 16 loci and has been specifically designed for low 

quality and quantity of DNA with small base pairs, as shown in Figure 4-19. 

 

 

Figure 4-19:  PowerPlex® ESI loci as miniSTRs, showing size and in base 

pairs Sprecher et al (2009) 
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As discussed in section 4.1.7 half volumes of the multiplex kit were used in order to 

lower the cost of analysis, and no additional water was added during the reaction 

in order to prevent the DNA sample being diluted.  Aside from these modifications 

the manufacturers’ protocol was followed. 

An amplification mix containing 2.5µl PowerPlex® ESI Fast 5X Master Mix, 1.25µl 

PowerPlex® ESI 16 Fast 10X Primer Pair Mix, was gently mixed and 3.75µl was 

pipetted into individual 0.2ml reaction tubes, before adding 9µl sample DNA. 

Controls were prepared at the same time, replacing sample DNA with 0.5ng 2800M 

Control DNA for the positive control, and amplification grade water for the 

negative controls. 

The sample tubes were placed into a G-Storm thermocycler, software version 

3.4.0.1 using the following program, with the ramp speed set at maximum. 

96°C for 1 minute 

96°C for 5 seconds 

60°C for 35 seconds  30 cycles 

72°C for 5 seconds  

60°C for 2 minutes 

4°C soak 
 

After completion of the thermal cycling protocol, the amplified samples were 

stored at –20°C in a light-protected box to protect against the production of 

artefacts, in a freezer in the post amplification laboratory. 

4.3.8.2 Human analogue amplification 

Amplification of the human analogue DNA samples was conducted in order to 

assess the length of surviving DNA strands, as opposed to specific loci used for the 

human archaeological samples.  Primers designed by researcher Fredericks (2012) 

were used to amplify sequences of certain amplicon lengths; 131 bp, 290 bp and 

506 bp.  
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1µl forward primer and 1µl reverse primer were added to an amplification mix of 

7.5µl ReddyMix PCR Master Mix (ABgene) and 4.5µl PCR grade water (Severn 

Biotech), before adding 1µl sample DNA. 

The 0.2mL sample tubes were then amplified using the following PCR protocol as 

determined during optimisation, as detailed in section 4.2.3: 

94°C for 5 minutes 

94°C for 30 seconds 

55°C for 30 seconds  34 cycles 

72°C for 30 seconds  

72°C for 10 minutes 

4°C soak 

Post-amplification samples were stored in a freezer in the post-amplification 

laboratory prior to DNA quantitation. 

4.3.9 DNA quantitation 

Gel electrophoresis was used to visualise and confirm the presence of the amplified 

human analogue DNA samples by running on a 2% agarose gel for 30 minutes. 

Positive and negatives controls were used to confirm the analysis was working 

correctly, and to confirm the absence of contamination. 

The completed gel was then recorded using a Photodoc-it gel recording system 

(UVP) and the results were recorded as either negative or positive. 

As multiplex DNA amplifications do not tend to illuiminate well on agarose gels, 

quantitation of the human DNA samples was established using peak height 

determination from the capillary electrophoresis results as detailed in section 

5.6.3 and section 5.7.3. 

4.3.10 Fragment analysis 

An ABI PRISM 310 genetic analyser (Applied Biosystems) was used to analyse the 

amplified archaeological human DNA samples, following the manufacturers’ 

protocol as detailed in the following section. 
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A loading cocktail was prepared by combining the thawed and vortexed CC5 

Internal Lane Standard 500 Pro and Hi-Di™ formamide as follows: 

 

[(2.0μl CC5 ILS 500 Pro) × (# samples)] + [(23.0μl Hi-Di™ formamide) × (# samples)] (4-10) 

 

The loading cocktail was vortexed for 10–15 seconds to mix, before combining 

25.0μl with 1.0μl of amplified sample (or 1μl of PowerPlex® ESI 16 Fast Allelic 

Ladder Mix). 

The samples and ladder were then denatured just prior to loading onto the ABI 

310, by heating at 95°C for 3 minutes, and immediately chilled on crushed ice for 3 

minutes.  Tubes were then placed in the appropriate autosampler tray and the tube 

positions detailed in the software with sample details. 

The run was conducted using POP-6™ polymer, and the GS STR POP4 (1mL) 

G5v2.md5 module, with the following parameters: 

Inj. Secs: 5 

Inj. kV: 15.0 

Run kV: 15.0 

Run °C: 60 

Run Time (minutes): 50 
 

Data analysis was conducted using GeneMapper v3.2 (Applied Biosystems) where 

the generated electropherograms were analysed in accordance with guidelines.  

Interpretation guidelines as those described in 4.1.10 were followed to separate 

the identification of true peaks from background noise and analysis artefacts such 

as pull-up, spikes and dye blobs. 

The height or Relative Fluorescence Unit (RFU) of each peak was recorded, not 

only as a means of quantitation, but also to allow calculations for the identification 

of heterozygous alleles.  This information was then used to establish the presence 
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or absence of modern contamination, and to identify or exclude any possible 

familial relationships between individuals. 

4.3.11 Limitations of selected methodologies 

Whilst care was taken to choose the best methods for this project, as discussed in 

sections 4.1 and 4.2, every technique and protocol comes with limitations.  The 

main limitations of methods for this research was the necessity for the destructive 

sampling of the archaeological human remains.  By following guidelines and 

sampling the smallest amount of material possible, the choice of methods and 

available results became more limited.  For this reason, the DNA analysis of the 

human remains was limited to duplicate or triplicate analyses and no additional 

work was conducted in outside laboratories to provide confirmation of results. 

Due to the nature of ancient archaeological human remains, interpretation of 

results is limited to not being able to confirm the identity of the individuals – if 

forensic samples from known individuals could be used, the DNA methodology and 

results could be interrogated at a much more in-depth level.  The quantitation of 

the DNA also had limitations due to using a standard PCR machine, rather than a 

more up-to-date qPCR machine which would have provided a ‘real-time’ 

concentration of DNA in the sample during PCR. 

For the analytical techniques such as colourimetry, a limitation includes the 

analysis of only a small area – this was reduced by doing multiple readings along 

the area of the sample and taking an overall average.  Use of the XRF provided high 

sensitivity analysis and therefore included information on all elements, whether 

found naturally in the bone or contamination from the ground. 

The method design for the experimental burials in contained units, can be argued 

that without all the other factors such as rainfall and temperature change 

experienced outside, the processes would not be representative of ‘real life’, 

however enabled this methodology provided the opportunity to study individual 

aspects of the environments at one time. 
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Due to the form of the data this research produced, it was not possible to conduct 

any statistical analysis on the findings, however to combat this, the levels of 

accuracy were assessed via repetitions of experiments, and the use of averaged 

results with standard deviations and error bars where necessary. 

4.4 Chapter summary 

This chapter has provided a critical review of the methods presently used in 

similar research, and identified those suitable for this research.  The method 

optimisation section has explained the process of developing suitable protocols, 

with the selected methods then presented.  Data interpretation of the different 

analytical techniques used, including electropherograms for DNA analysis has also 

been explained.  The next chapter presents the results from the research split into 

two parts.  Part A presents the human analogue burial data, and Part B shows the 

human archaeological results. 





 

105 

 RESULTS  Chapter 5:

This chapter is separated into Part A which presents the results from the human 

analogue burials and Part B where the results from the human archaeological 

results are presented. 

Part A:  HUMAN ANALOGUE BURIALS 

This chapter presents the results from the analysis of the controlled human 

analogue burials, conducted as described in Chapter 4. 

A total of 60 porcine femora used as a human analogue were buried in differing 

controlled environments for varying durations, in order to assess diagenetic 

changes in comparison to the unburied control bones.  Analytical techniques were 

used to assess the changes in the environment; and how the decomposition rates, 

and diagenetic changes were affected by the burials.  Analysis of changes in colour, 

composition, and DNA content and quality were measured to identify the 

differences due to burial environments and varying durations of burial. 

The chapter begins with the results from the analysis of the soil control samples 

and the soil samples taken from the each burial during excavation.  Observations 

recorded at excavation of the bones in terms of presence/absence of mould, 

moisture and smell are discussed, and the manner in which the bones are observed 

to change over time within each environment.  The pH, organic content and water 

content of each sample are presented, with a comparison of the differences 

between the environments. 

Following this, the colour analysis of the control and buried bones are presented, 

along with the changes in colour that occur in the different environments over the 

range of durations of burial.  Observations of changes in the bone marrow are also 

detailed.  The results from the composition analysis of the bones are then 

described, showing the differences found from the different burials, and how these 

changes differ to those seen in unburied bones.  Results from the DNA analysis of 

the bone samples are then presented, which provide an indication of the 

survivability and success of the extraction and amplification of the genetic 
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material.  Finally, the results from the four aforementioned sections are collated to 

provide an overview of the different interactions between the analysed 

components of the research. 

5.1 Soil Analysis 

Soil analysis was conducted as per protocols stated in Chapter 4.  Prior to burial, a 

small sample of each burial medium – clay, compost, lime and sand were taken and 

analysed – the information was then used as controls for comparison to assess the 

level of change, if any, from the separate burial mediums and different time 

intervals. 

5.1.1 Control soil samples 

The control samples were analysed for water content, organic content, pH, and 

colour, the results of which are presented in the following sections. 

5.1.1.1 Composition analysis of control soil samples 

Soil analysis of each of the control samples were conducted in triplicate, in order to 

provide reference values for the assessment of taphonomic effects of the burial 

mediums.  The results of the analysis to determine the water content, organic 

content and pH of the samples are detailed in Figure 5-1. 

 

Figure 5-1 Soil analysis of control soil samples, with water and organic 

content shown in percentage from the primary axis, and pH shown in 

logarithmic scale on the secondary axis. 

Clay Compost Lime Sand

Water content % 24.9 65.25 0 0.2

Organic content % 3.93 93.76 9 0.6

pH 9.63 6.25 13.07 8.48
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All values show a low standard deviation from the mean, (as illustrated by the 

error bars on the figure) identifying the clay, compost, lime and sand tested were 

homogenous samples. 

Compost contained the highest percentage of water, followed by clay, sand and 

finally the lime which showed almost no water content.  This information is 

important as water presence in the burial medium is thought to be an important 

aspect contributing to changes in taphonomy, as previously discussed in section 

3.2. 

Compost showed the highest organic content, suggesting the bones buried in this 

medium would be most likely to display evidence of microbial action; in contrast to 

sand which showed a very small presence.  The organic content reported for the 

lime sample is thought to be misleading as this may be due to the loss of tightly 

bound water as a result of the heat treatment. 

The results from the pH tests showed a range from strong alkaline in the lime 

sample, to a medium alkaline in clay, sand at slightly alkaline, and compost at a 

slightly acidic value. 

In order to assess any changes in pH, organic content or water content from the 

soil after the respective time durations of porcine bone burial, two soil samples 

were removed from directly below the bone after excavation, and analysed in 

triplicate in order to compare to the control soil sample results.  These results 

were then collated to provide an average, which are detailed in the following 

sections with the associated standard deviations.  Only in cases where disparities 

are identified will the individual samples be considered separately.  All graphs are 

plotted on the same axis of 100% in order to provide a comparison across the data 

sets. 

5.1.1.2 Colour analysis of the control soil samples 

The colour analysis of the soils was conducted to see whether this variable had any 

impact of any staining of the bones that may appear later, and also as it is known to 

be an indicator of the soil content. 
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As described in section 4.3.4, four readings from an average of ten measurements 

were recorded from duplicate samples.  The summary data can be seen in Table 

5-1, with the complete data in Table A-1 in the appendix. 

 

Table 5-1:  Colour analysis of control soil samples 

 Mean average  Standard deviation 

Soil sample L* a* b*  L* a* b* 

Clay 1 average 41.65 3.57 5.89  1.07 0.42 0.89 

Clay 2 average 42.81 3.12 5.06  1.60 0.53 0.97 

Average clay 42.23 3.34 5.47  1.40 0.51 0.97 

Compost 1average 34.54 1.37 1.33  0.40 0.89 0.59 

Compost 2average 35.36 1.43 1.24  0.73 0.43 0.51 

Average compost 34.95 1.40 1.29  0.70 0.65 0.52 

Lime 1 average 94.54 0.44 3.40  0.68 0.06 0.33 

Lime 2 average 94.04 0.49 3.63  0.82 0.06 0.23 

Average lime 94.29 0.47 3.52  0.75 0.06 0.29 

Sand 1 average 62.52 4.59 19.60  0.39 0.06 0.09 

Sand 2 average 62.59 4.70 19.69  0.98 0.29 0.56 

Average sand 62.56 4.65 19.65  0.69 0.20 0.37 

 

The colours of the soils vary from the lightest shown as lime with an average L* 

reading of 94.29 (where white is 100, and black is zero as described in 4.1.11.1), 

followed by sand at an average of 62.56, then clay at 42.23 and the darkest is 

compost with an average of 34.95.  This would suggest that compost is the most 

likely of the mediums to stain the bone due to the intense colour, and therefore a 

larger colour difference between the bone surface and cortex would be expected.  

The darkness of the colour also indicates a high content of organic material and 

humic substances which also affect the bone surface, together with good drainage 

of the soil matrix.  The grey colour of the clay indicates the presence of iron in the 

form of ferrous oxides, whereas the red and yellow present in the sand samples 

show the presence of iron in the form of ferric oxide.  
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5.1.2 Clay burials  

For each individual excavation, photographs were taken and observations were 

recorded regarding the appearance of the burial medium and any odours that were 

present.  The photographs taken are collated in Figure 5-2, and recorded 

observations for the clay burials are detailed in Table 5-2 , before a discussion in 

terms of the results of the soil analysis conducted.  For each different burial 

medium and duration, samples were conducted in duplicate – the results 

collaborated, therefore the results are presented once for each instance. 
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a)                                                       b)                                                     c)                                                     d)  

                              

Figure 5-2:  Photographs depicting the clay burials from different burial durations: a) prior to burial, b) surface prior to 
excavation, c) uncovered bone, d) underneath the bone after removal
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Evidence of moisture within the burial was evident due to the collection of 

condensation on the lid from 1.5, 3 and 6 month burials.  Upon removal of the bone 

from the 1.5 month burial, significant pooling of liquid was found accumulated 

beneath the bone, and submerging the underside.  The 3 month burial also had a 

pooling of liquid but not to the same extent, yet after this it was not evident in the 

longer duration burials, however the clay was still visibly wet. 

 

Table 5-2:  Observations from clay burials 

Burial 
duration 

Moisture Mould Soft tissue Odour Other 

1.5 months Condensation  

Excessive 
pooling of liquid 
under the bone 

White 
mould on 
the top of 
the clay 

Wet white fatty 
tissue – beginning 
of adipocere 
formation 

Strong odour 
upon removal 
of lid 

Black 
inclusions 

3 months Condensation  

Pooling of liquid 
under the bone 

White 
mould on 
top of the 
clay 

White adipocere 
around bone 

Strong odour 
upon removal 
of the lid 

Black 
inclusions  

 

6 months Condensation 

No liquid pool 
under the bone 

White and 
green mould 
on top and 
throughout 

White adipocere 
around and under 
the bone 

Soft tissue no 
longer attached 

Odour only 
when the bone 
uncovered 

Black 
inclusions  

12 months No liquid pool 
under the bone 

Clay very wet 

White and 
grey mould 
on top and 
throughout 

No soft tissue 
remaining 

White adipocere 
underneath the 
bone, and dried 
on the ends 

Odour only 
when the bone 
uncovered 

Black 
inclusions 
around 
the bone 

18 months No liquid pool 
under the bone 

Clay damp 

White 
mould on 
top and 
beneath the 
bone 

No soft tissue 
remaining 

 

No odour Brown / 
orange 
substance 
around 
bone 

 

The covering of white mould, as identified through observation, over the surface of 

the burial also mirrors the same information from the observations of moisture, 

with an abundance of mould from 1.5 months to 6 months and then a decrease 

with the 12 month and 18 month burials. 
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The first sign of white adipocere formation (previously discussed in section 2.4.1) 

was found to be present in the 1.5 month burial and persisted throughout all the 

burials, gradually increasing in the amount and becoming waxier. 

A strong odour was present immediately upon lid removal for both the 1.5 and 3 

month burials.  This suggests that proteolysis has broken down proteins, and the 

deamination of amino acids which leads to release of gases such as ammonia and 

nitrogen.  As the odour was strong, it was possible that ammonium ions released 

into the clay have been converted to ammonia due to the alkaline environment.  

The odour associated with the 6 month and 12 month burials is only present when 

the bone is uncovered, and absent by the 18 month burial.  This suggests that the 

majority of the proteolysis and deamination occurs within the first 6 months of 

decomposition in a clay burial environment, and therefore the production of 

ammonia decreases, and therefore no foul odour. 

Black inclusions were present in the clay burial from the first burial at 1.5 months, 

and throughout the entire duration to1 8 months.  This indicates the production of 

ferrous sulphide due to the presence of iron in the clay and the process of bacterial 

decomposition of amino acids. 

Another observation made was the presence of a wet brown / orange substance 

around the bone.  This could be brown adipocere forming from brown fat deposits 

from the bone (Forbes et al., 2005).  

The soil analysis from the samples taken beneath the bone, calculated the changes 

observed in the pH, water content and organic content are depicted in Figure 5-3 

where the results are plotted against duration of burial, started with the results 

from the control samples prior to burial. 
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Figure 5-3:  Changes in the composition of clay from control sample to 18 

month burial, where water content is on the primary left axis, and 

organic content and pH are displayed on the secondary right axis 

An initial increase in water content of 9.21% can be identified from pre-burial to 

1.5 month burial which is likely to be the release of fluid due to the beginning of 

the decomposition process.  A larger variance in the water content was observed 

between the individual samples than the initial control sample, showing the 

infiltration of water through the clay has not occurred in a uniform manner, and 

the burial medium is no longer a homogenous soil matrix.  The decline in water 

content between 1.5 months and 3 months can be explained by the filtration of 

water down through the clay after the initial ‘pooling’ due to the excess of 

decomposition fluid, as discussed previously.  The water content then appears to 

gradually increase and then decrease before 18 months due to the progression of 

decomposition and the drying out of the biological material.  The changes in the 

level of water content mirrors the level of pH for the first 3 months – as the water 

content goes up, the pH goes down; thus showing the water level having a 

neutralising effect on the pH. 

The changes in both the organic content in the clay and the pH appear to be very 

similar, with a slight decrease in both during the initial stages of burial.  The 

absence of an increase in organic content suggests the biological by-product of the 
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decomposition is not infiltrating the clay, but rather pooling underneath the bone, 

or filtering down through the pores in the medium, without being absorbed into 

the matrix. 

The increase in acidity is most likely attributed to the release of acidic 

decomposition fluids such as lactic acid, butyric acid and acetic acid which are 

formed by the decomposition of sugars due to an anaerobic environment.  

5.1.3 Compost burials 

The observations recorded from the changes seen in the compost burials are 

shown in photographs in Figure 5-4 and are detailed in Table 5-3, with the soil 

analysis results presented after. 

Condensation was present on the lid of the burials from 1.5 months through till 12 

months, with no pooling of liquid at any stage, although the compost appeared to 

be moister at 18 months than any time. 

Mould was present on top of the burial surface from 1.5 months to 12 months, and 

absent on the 18 month burial, suggesting a reduction in the environment 

moisture as shown by the lack of condensation. 

Soft tissue was still present after 1.5 months and the formation of dry adipocere 

was present at this stage and gradually progressed through to 18 months.  From 6 

months onwards, the bone left an imprint of adipocere in the compost. 

No strong odours were present from any of the burials, even when the bone was 

uncovered.  The lack of ammonia and gases suggest a retarded process of 

proteolysis where a slower decomposition of proteins and amino acids has 

occurred. 

The formation of white adipocere from 1.5 months confirms the presence of water 

in the environment was high enough for this to develop, although due to dry and 

waxy nature it was not in excess. 

Other observations noted including the ‘feel’ of the bone – which appeared 

noticeably lighter by 12 months and lighter and drier by 18 months. 
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a)                                                   b)                                                  c)                                                 d                          

 

Figure 5-4:  Photographs depicting the compost burials from different burial durations: a) prior to burial, b) surface prior 
to excavation, c) uncovered bone, d) underneath the bone after removal. 
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Table 5-3:  Observations from compost burials 

Burial 
duration 

Moisture Mould Soft tissue Odour Other 

1.5 months Condensation 

No liquid 

White mould 
in soil and on 

bone ends 

Still present on 
bone ends 

Dry adipocere 

No odour  

3 months Condensation 

No liquid 

White mould 
on top 

Dry adipocere No odour  

6 months Condensation 

No liquid 

White mould 
on top 

Dry adipocere No odour  

12 months Condensation 

No liquid 

White and 
brown mould 

Dry adipocere No odour Bone feels 
light 

18 months No liquid 

Compost moist 

No mould Dry adipocere No odour Bone feels 
light and dry 

 

The measured organic content fluctuated between 0 months and 6 months of 

burial, in the same manner as the pH – as the organic content rose, so did the pH, 

both in a mirror image of the water content.  This suggests the decomposition 

products being released into the compost are not acidic or liquid, and the 

ammonium ions produced from the breakdown of proteins are remaining in the 

soil, rather than being converted to ammonia; this would also explain the lack of 

odour. 
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Figure 5-5:  Changes in the composition of compost from pre-burial to 18 

months, where water content and organic content are on the primary left 

axis, and pH is on the secondary right axis 

From 6 months, the water content increases steadily to 18 months, as the pH level 

begins to become more acidic, suggesting the release of acidic fluids into the 

compost from proteolysis and the deamination of amino acids. 

5.1.4 Lime burials 

The lime burials showed an absence of evidence of moisture and mould as 

depicted in Figure 5-6 and Table 5-4.  No liquid was present underneath the bone 

or in the environment and no condensation was evident on the lid of the burial 

container.  The absence of mould supports the notion of no excess moisture in the 

environment. 

Soft tissues were still present around the bone, but in a desiccated form, where the 

lime had caused a ‘cast’ to be formed, protecting the soft tissue which was still 

present at the 18 month stage.   
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a)                                             b)                                          c)                                           d) 

                              

Figure 5-6:  Photographs depicting the lime burials from different burial durations: a) prior to burial, b) surface prior to 

excavation, c) uncovered bone, d) underneath the bone after remova

 

1.5 months 

 

 

3 months 

 

 

6 months 

 

 

12 months 

 

 

18 months 



Chapter 5:  RESULTS 

119 

There was an absence of strong odour throughout all the burials, suggesting the 

lack of nitrogen or ammonia release due to the breakdown of proteins, confirming 

the lack of decomposition of soft tissue.  Slight odour was present in the 12 month 

and 18 month burials along with a slight orange/yellow discolouration of the lime 

above and below the bone, suggesting proteolysis was beginning to occur in the 

soft tissues with the release of fluid into the lime. 

Table 5-4:  Observations from lime burials 

Burial 
duration 

Moisture Mould Soft tissue Odour Other 

1.5 months No liquid No 
mould 

Soft tissue 
present but 
desiccated 

Blood tissue 
under tissue 

Faint odour Cast formed around the 
bone 

3 months No liquid No 
mould 

Soft tissue 
desiccated 

No odour Cast formed around the 
bone 

6 months No liquid No 
mould 

Soft tissue 
desiccated 

No odour Cast formed around the 
bone 

12 months No liquid No 
mould 

Soft tissue 
desiccated 

Slight odour Cast formed around the 
bone 

Slight orange 
discolouration in lime 
above bone 

18 months No liquid No 
mould 

Soft tissue 
desiccated 

Slight odour Cast formed around the 
bone 

Slight yellow 
discolouration in lime 
above bone 

 

The results of the soil analysis of the lime samples shown in Figure 5-7, showed an 

increase in water content of almost 10% from pre-burial to 1.5 months, which 

mirrored the organic content and the pH of the lime. 

The 3 month burial showed the pH at its most acidic level of 12.68, despite a 

reduction in the water content, suggesting the addition of acids into the lime. 
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Figure 5-7:  Changes in the composition of lime from pre-burial to 18 months, where 

water content and organic content are on the primary left axis, and pH is on the 

secondary right axis. 

The organic content reached a high of 5% at the 6 month interval.  This increase 

also coincided with the water content and the pH in the lime samples at this stage 

and therefore suggests this raise is due to the release of decomposition products 

into the environment.  

The correlation between water content and organic content continues until the 18 

month burial where the organic content raises again, showing the further 

breakdown of tissue as confirmed by the presence of orange discolouration in the 

lime beneath the bone. 

5.1.5 Sand burials 

The photographs taken from the sand burials are displayed in Figure 5-8  with the 

observational data detailed in Table 5-5. 

The moisture in the sand burial environment was shown to be low in observations 

due to the lack of condensation and mould over the top.  An area of dark soil 

indicating wet sand directly over the bone was evident in all burials from 1.5 

months to 18 months. 
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a)                                                b)                                                 c)                                                 d) 

                

Figure 5-8:  Photographs depicting the sand burials from different burial durations: a) prior to burial, b) surface prior to excavation, 

c) uncovered bone, d) underneath the bone after removal
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During excavation of the bones, wet sand was noted around the bone from 1.5 

months to 6 months, after which the sand was noticeably drier but still moist at 12 

months and 18 months. 

 

Table 5-5:  Observations from sand burials 

Burial 
duration 

Moisture Mould Soft tissue Odour Other 

1.5 
months 

Moisture strip present 
in sand above bone 

Sand very wet around 
bone 

No mould Dry white 
adipocere 

Wet brown 
substance 

Strong odour 
when bone 
uncovered 

 

3 months Sand wet around bone No mould Dry white 
adipocere 

Wet brown 
substance 

Strong odour 
when lid 
removed 

 

6 months Moisture on bone 

Sand wet 

No mould Dry white 
adipocere 

Wet brown 
substance 

Strong odour 
when lid 
removed 

 

12 months Condensation 

Moist sand 

No mould Dry white 
adipocere 

Wet brown 
substance 

Strong odour 
when lid 
removed 

 

18 months Wet patch over the 
bone 

Moist sand 

No mould Dry white 
adipocere 

Wet brown 
substance 

Strong odour 
when lid 
removed 

Dry 
bone 

 

Dry white adipocere was evident from the 1.5 month burial, and throughout all the 

others until 18 months.  This confirms the fact that enough moisture was present 

within the environment for adipocere to form.  A brown wet substance was also 

present, most likely to be liquefied soft tissue.  

A strong odour was present throughout all the sand burials, yet at 1.5 months the 

odour was only present after the bone was uncovered; with the other burials, the 

odour was present as soon as the lid was taken off.  The strong odour is due to the 
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process of proteolysis and the breakdown of the proteins, and the deamination of 

the amino acids which produces the gas ammonia, among other gases.  Due to 

alkaline nature of the burial environment, the ammonium ions are likely to have 

been converted to ammonia, resulting in a strong odour.  This presence of the 

odour confirms the other observations of an accelerated decomposition process.  

Another observation noted, was the dryness of the bone from the 18 month burial. 

The results from the soil analysis tests show the water content was highest after 3 

months of burial, increasing from 0.2% to 14.03%, which is a mirror image of the 

pH – showing the water may be  neutralising the environment.  Although, the 

increase in organic content at this point, also suggests the release of decomposition 

products into the sand, therefore acidic decomposition fluid such as lactic acid may 

also be contributing to the lower pH. 

 

 

Figure 5-9:  Changes in the composition of sand from pre-burial to 18 months, where 

water content and organic content are on the primary left axis, and pH is on the 

secondary right axis 

 

The 6 month burial shows a reversal in the trends of pH and water content from 

the previous sample, with the pH rising above its original value suggesting the 

presence of ammonium ions in the sand from the breakdown of proteins. 
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5.1.6 Soil analysis comparisons across environments 

In order to put the individual soil analysis results from the four different burial 

environments into context, it is necessary to compare the data directly to ascertain 

the differences. 

Observations from the burials show the differences between the presence of 

moisture as shown in Figure 5-10. 

 

 

Figure 5-10:  Comparison of water content across the different environments 

Clay and compost burials both showed excess moisture present due to 

condensation and production of mould, but was absent in the lime and sand 

burials. 

Peaks in the water content of the burial mediums occurred earlier for clay and lime 

suggesting initial release of decomposition fluids occurred during the first 1.5 

months of burial, whereas the highest content of water in sand occurred at 3 

months, and 18 months for compost. 

 

0

10

20

30

40

50

60

70

80

0 3 6 9 12 15 18

W
at

e
r 

co
n

te
n

t 
in

 p
e

rc
e

n
ta

ge
 

Duration of burial in months 

Clay Compost Lime Sand



Chapter 5:  RESULTS 

125 

The differences in the organic content across the different burial environments are 

shown in Figure 5-11, providing the variance in samples with error bars on the 

figures. 

 

 

Figure 5-11:  Comparison of organic content across the different 

environments, due to the high content in compost, a secondary axis on 

the left has been used in order to allow comparisons of trends 

 

The first soil sample to show an increase in organic content is compost at 1.5 

months, followed by sand at 3 months, and lime and clay at 6 months.  The organic 

content in clay and compost show a similar trend of then stabilising, yet both the 

lime and sand show a drop before both rising again from 12 months to 18 months. 

Differences were observed in the pH changes within the burial mediums across the 

18 month duration, and are detailed in Figure 5-12. 
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Figure 5-12:  Comparison of pH across different environments 

Compost was the only burial medium to become more alkaline within the first 1.5 

months of burial, and also showed the largest change from 6.25 at pre-burial to 

8.21.  Sand showed an initial decrease until 3 months before a steady increase until 

18 months.  Despite the initial differences in pH for clay and compost, from 6 

months to 18 months they showed similar trends.  The pH of the lime burial 

remains the most constant throughout the 18 month period, with the biggest 

difference occurring within the first 3 months.   

5.2 Colour Analysis of Bone 

The colourimetric analysis of the bones was conducted as detailed in section 4.3.4, 

and the results of the porcine analysis is presented in this section.  First, the results 

from the control bones are detailed, in order to provide a reference for buried 

samples.  Followed by the data analysis from the clay, compost, lime and sand 

burials, prior to a comparison across the sample set. 
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stage to record the appearance of the bones, in addition to colour data measured 

with a colourimeter. 

The photographs are presented in Figure 5-13, and show the surface of the control 

bones, after sectioning prior to removal of the surface, and the control after surface 

removal had been conducted.  The control bones were assessed at the same 

intervals as the buried bones, at 0 months (within 3-5 days of the kill date), 1.5 

months, 3 months, 6 months, 12 months and 18 months. 

The 0 month control samples show a smooth, creamy colour bone surface, which 

bled when the soft tissue was removed with a scalpel.  After surface removal, the 

bones appeared slightly darker, and evidence of the blood staining was still 

present. 

The photographs from the 1.5 month control bones showed a cream bone but with 

evidence of blood staining on the surface.  After removal of soft tissue, there was 

still a slight bleed from the disruption of the blood vessels, but to a lesser extent 

than those from 0 months.  Surface removal revealed a colour and texture very 

similar to 0 month controls. 

At 3 months the surface of the bone has visibly changed colour, with a patchy 

green tinge, no blood was evident after sectioning, and the surface removal 

provided a cream colour. 
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Figure 5-13: Photographs depicting the colour change of control 

unburied porcine bone over controlled durations. 

 

This change continued as the durations were increased, resulting in a mottled 

colouration of the bone surface, which upon removal, revealed a creamy bone 

surface. 
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In order to analyse the overall colour difference between the pre-burial, post-

burial and surface removal of the bone, calculations from the colourimetry data 

were performed as discussed in 4.1.11.1, and the results are shown in Figure 5-14.  

Although the bones were not buried in a soil matrix, the duration has still been 

referred to as burial duration for clarity. 

 

 

Figure 5-14:  Overall colour difference of the control bones at the 

different stages 

The biggest colour difference between the post-burial surface of the bone and the 

colour after surface removal is shown at 1.5 months, after which this difference 

decreases, and the difference from the colour of the pre-burial surface to post-

burial surface increases.  Although this analysis provides information as to the 

colour change of the bone, it does not explain how the colour change occurs. 

By analysing the individual components from the colourimetry measurements, it is 

possible to numerically see how the colour of the bone surface changes over the 

three different axes of lightness, hue and chroma, over the 18 month period. 

The data in Figure 5-15 shows how the L*a*b* colour values of the bone surface 

change over the duration of 18 months, from the post-burial surface and after the 

surface has been removed. 
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L* is the axis that co-ordinates with the lightness of a colour from white (100) to 

black (0) – it can be seen that from 0 months it darkens to 1.5 months - this reflects 

the information from the photographs, where the bone surface changes from 

cream to pink due to the blood vessels within from 0 to 1.5 months.  The figure 

then shows a steep increase in lightness at 3 months followed by a gradual 

increase through to 18 months.  This contradicts the images from the photographs 

which appear to be getting darker, but this can be explained by the other two axis. 

 

 

 

Figure 5-15:  Colour data analysis of individual axis – L*, a*, and b* with a 

comparison between the colour of the bone before and after surface 

removal 

50

60

70

80

90

100

C
o

lo
u

r 
co

-o
rd

in
at

e
 o

f 
L*

 

Colour of bone Colour of bone after surface removal

-2

0

2

4

6

8

10

C
o

lo
u

r 
co

-o
rd

in
at

e
 o

f 
a*

 

5

10

15

20

25

30

0 3 6 9 12 15 18

C
o

lo
u

r 
co

-o
rd

in
at

e
 o

f 
b

*
 

Duration in months 



Chapter 5:  RESULTS 

131 

The L* values after surface removal can be seen to remain stable around 90 for the 

first 3 months, before gradually becoming darker until 12 months as the 

decomposition progresses, before another increase in lightness at 18 months back 

to 85.  This shows how the greatest change is occurring on the bone surface, with 

less diagenetic changes occurring underneath. 

 

a* is the axis between red (+127) and green (-128) which can be seen to increase 

between 0 to 1.5 months on the surface of the bone, moving further towards a red 

colour -  confirming the presence of the blood seen in the photographs; before a 

subsequent steady decrease until 18 months, towards green.  This can also be seen 

in the photographs, and can be explained by the decomposition of the proteins and 

cells within the bone.  After surface removal, the a* values can be seen to decrease 

in redness from 0 months, to 1.5 months when evidence of blood can still be seen, 

to 3 months where the value of -0.365 shows the surface is more green than red 

and even further to -0.427 at 6 months as the decomposition progresses.  This 

migration towards green can be explained by the breakdown in the haemoglobin 

from the blood present within the bone.  The values at 12 months and 18 months 

show a slight increase back to the red side of the scale.  Once again this shows 

more diagenetic changes occurring on the surface and not throughout the whole 

bone. 

The last values to be discussed – b*, is the axis between yellow (+127) and blue (-

128).  On the bone surface this value remains stable from 0 months to 1.5 months, 

before increasing towards yellow at 3 months, in line with increase in lightness, 

before dropping again at 6 months and remaining relatively stable until 18 months.  

This again is confirmed by the photographs, where you see the original cream 

colour of the bone becoming yellower.  After surface removal, the b* values mirror 

those of the a* axis, with a slight decrease in yellow from 0 to 1.5 months, before a 

steady increase in yellow to 6 months, before levelling out towards 18 months.  

This steady increase in yellow could be due to the decomposition of fat tissue. 
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Comparison of the individual colour scales of lightness, colour and hue are detailed 

in Figure 5-15 showing the differences between the bone colour before and after 

surface removal.  This clearly illustrates the biggest colour difference between the 

surface of the bone, and below the surface occurs within the first 6 months.  By 12 

months, the colour of the surface and below can be seen to equilibrate on all three 

axis.  

 

It was also noted during the processing of the bones, that a distinct difference in 

colour was observed from the bone marrow.  In order to allow a comparison of the 

difference Figure 5-16 shows the appearance of bone marrow from 0 month 

control bone. 

 

Figure 5-16:  Bone marrow from 0 month control porcine bone 

The photograph displays the bright red haematopoietic form of fresh bone 

marrow.  Observations on the changes that occur in the different burial 

environments can be seen in the following sections.  

 

5.2.2 Clay burial bones 

The photographs in Figure 5-17 illustrate the colour change of the bone from pre-

burial, to post-excavation to post-surface removal.  Patchy staining of the bone can 

be seen in the post-excavation photographs, as a result of contact with the clay.  

Most of the staining is removed with the surface removal, but is not as 

homogenous in colour as the control bones.  Other observations include changes to 

the texture of the bone, the surface became much rougher after burial. 
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Figure 5-17:  Photographs depicting the colour change of porcine bone 

from the clay environment over a period of 18 months 

 

After colourimetry was conducted, the overall colour differences between the 

stages were calculated as a single number and are presented in Figure 5-18.  The 

largest difference in colour can be seen from the pre-burial surface to the removal 

of surface after excavation.  The difference in the surface colour from pre-burial to 

post-burial increases at a uniform rate.  The changes in the colour from post-burial 

to surface removal remain relatively constant throughout the 18 month period. 
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Figure 5-18:  Overall colour differences of the bones buried in clay, over 

the 18 month period. 

By looking at the axes individually, a more detailed description about the direction 

of the colour changes in the bone can be ascertained.  By utilising the three axes for 

analysis, instead of a single number for the overall colour change, three co-

ordinates are given, and therefore looked at independently but collated together in 

Figure 5-23 to allow comparison across the axes at the given burial durations.  The 

values shown are the averages of the duplicate samples that were tested, with 

error bars to show the variance of the samples. 

The value at 0 months for the post-burial bone surface colour is an average of all 

10 bone samples prior to burial in order to provide a baseline from which the 

colour begins from.  No data is provided for bone colour after surface removal at 0 

months, as no surface was removed prior to burial, apart from the control bones. 

The co-ordinate of L* can be seen to increase in parallel for both the post-burial 

bone surface colour and the bone colour after surface removal until 6 months of 

burial.  This shows that the clay is lightening not only the bone surface, but also 

infiltrating the surface to the cortex of the bone.  The colour of both the bone 

surface and the cortex then darkens slightly prior to a plateau.  For the duration of 

0-18 months, the surface is always darker than the underlying bone. 
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Figure 5-19:  Colour data analysis of individual axes – L*, a*, and b* from 

clay burials, with a comparison between the colour of the bone before 

and after surface removal 

 

The a* axis shows an initial increase in red in the surface colour of the bone until 

1.5 months, where it then decreases again before levelling out with a slight incline 

towards 18 months.  The colour of the bone after surface removal appears to 

mirror this trend, decreasing as the post-burial surface increases in red. 
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The third axis, b*, shows parallel similarities in the colour trend – with both 

increasing towards yellow until 3 months, before a gradual decrease until 12 

months and a slight incline again towards 18 months.  The longer the duration of 

burial, the more similar in colour, in terms of the b* axis, the outside surface and 

the cortex of the bone become. 

5.2.2.1 Clay bone marrow colouration 

As shown in Figure 5-16, bone marrow shortly after death is bright red due to the 

content of haematopoietic tissue.  The images in Figure 5-20 show the changes that 

occur to bone marrow within porcine bones when buried in clay for 3-18 months.   

 

Figure 5-20:  Bone marrow from bones buried in clay; showing left to 

right – 3 months, 6 months, 12 months, 18 months 

The bone marrow contained within the bone after burial for 3 months in clay, 

shows a loss of haematopoietic tissue, which has been replaced with adipose 

tissue, with a pink and cream colouration.  From 6 months to 18 months burial, the 

bone marrow continues to darken, with the cream turning grey and resulting in a 

grey bone marrow with pink areas along the edges next to the bone. 

5.2.3 Compost burial bones 

The photographs in Figure 5-21 display the visual differences in the bone from the 

compost burials, from pre-burial to surface removal across the 18 month duration.  

The photographs show the mottled colour and texture of the bone, which is still 

evident after surface removal, which increases with the duration of burial.  Areas 
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where soft tissue was still present are still pale in colour, where the bone surface 

was not in contact with the compost 

 

Figure 5-21: Photographs depicting the colour change of porcine bone 

from the compost environment over a period of 18 months 

From the colourimetry data, the overall colour differences were calculated and the 

results are shown in Figure 5-22.  The results show the largest difference in colour 

was present at 1.5 months between the surface of the bone after burial, and after 

surface removal; this was also accompanied by the largest difference in results, 

showing how the staining from the compost was mottled and therefore did not 

result in a uniform colour across the bone surface.  This difference between post 
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burial and surface removal decreased throughout the duration from pre-burial to 

18 months, showing how the colour was infiltrating down through the cortex as 

shown in the photographs.  

 

Figure 5-22:  Overall colour differences of the bones buried in compost, 

over the 18 month period. 

The difference shown between the pre-burial colour and after surface removal 

remained relatively constant throughout, suggesting the staining is due to the 

contact with the compost rather than internal processes of decomposition. 

Overall colour differences from the surface of the bone from pre-burial to post-

burial remained similar from 1.5 months to 6 months before a decline and then  

increased to its highest point at 18 months. 

In order to get a more detailed picture of the direction in which the colour was 

changing, the three individual axes of the colour space were investigated and 

results of the colour values, as opposed to colour change are displayed in Figure 

5-23.  By comparing the post-burial surface colour and the bone colour after 

surface removal at the same, is possible to see how the burial type and duration 

affects the surface and any infiltration through the bone  

The L* axis is detailed first, showing the post-burial bone surface becoming darker 

within the first 1.5 months where initial staining from the compost is taking place.  
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The level of staining then decreases at 3 months showing the bone becoming 

lighter again, and remaining relatively constant until 18 months, confirming 

observations from the photographs.  The results from the surface removal are 

distinctly different, showing an almost mirror image of the post-burial surface 

becoming darker from 1.5 months with a dramatic darkening at 3 months, 

resulting in a cross-over of the data between 6 and 12 months, before another rise 

at the 18 month stage. 

 

 

 

Figure 5-23:  Colour data analysis of individual axis – L*, a*, and b* from 

compost burials, with a comparison between the colour of the bone 

before and after surface removal 
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The a* axis show the bone surface becoming more red from pre-burial to 1.5 

months, before a decrease at 3 months moving towards to green, and a gradual 

decrease until 18 months.  This pattern is matched by the data after surface 

removal. 

The final axis of b* shows a steep increase in the yellowness of the bone from pre-

burial to 3 months, before a gradual decrease to 12 months and a slight increase to 

18 months.  This pattern is also matched by the colour after surface removal but to 

a much less extent. 

5.2.3.1 Compost bone marrow colouration 

The photographs displayed in Figure 5-24 show the changes in bone marrow after 

3 to 18 months burial in compost.   

 

Figure 5-24:  Bone marrow from bones buried in compost; showing left to right – 3 

months, 6 months, 12 months, 18 months 

 

After 3 months, the bone marrow had turned cream and orange, showing the loss 

of haematopoietic tissue.  The bone marrow from the 6 month burials showed 

further degradation of the cells with brown colouration appearing with the orange 

and cream,  before the grey colouration at 12 months.  After 18 months burial, the 

bone marrow had turned dark orange in colour with dark brown and black areas. 
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5.2.4 Lime burial bones 

The photographs showing the visual changes in the bone from the lime burials are 

depicted in Figure 5-25. The photographs showing the post-burial image of the 

bone at 1.5 months show the presence of not only soft tissue, but also wet blood 

that dispersed when the soft tissue was disturbed during cleaning of the bone.  

After surface removal of the bone, this blood can still be seen on the bone, where 

blood vessels have been broken.   

 

Figure 5-25:  Photographs depicting the colour change of porcine bone 

from the lime environment over a period of 18 months 
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The preservation of the soft tissue continued throughout the burials and was still 

present, albeit dried, at the 18 month burial.  The photographs depict how the 

colour change at post-excavation appeared to be mainly due to the soft tissue 

decomposition.  The surface removal photographs show a gradual increase in the 

darkening and colouration of the bone through the 18 months. 

The total colour change between the different time points were investigated, to 

establish when the biggest colour change occurred, the results are shown in Figure 

5-26.   

The biggest total colour difference can be seen at 1.5 months between the colour of 

the post-burial surface and colour after the surface removal.  This value then 

decreases dramatically at 3 months, followed by small fluctuations until 18 

months.  This confirms the information presented in the photographs. 

 

Figure 5-26:  Overall colour differences of the bones buried in lime, over 

the 18 month period. 

The difference in pre to post-burial surface colour is biggest at the 1.5 month 

burials, primarily due to the presence of soft tissue and blood.  This value then 

decreases at 3 months before another increase up until 18 months where it is the 

largest difference between the analyses at that point. 
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Total colour difference between the pre-burial surface colour and the surface 

removal is also largest at 1.5 months, with a decrease at months and another 

increase at the 18 month burials. 

The individual axes of the colour analysis were also investigated to provide a more 

comprehensive understanding of the manner of the colour change across the 

burials, as shown in Figure 5-27. 

 

 

 

Figure 5-27:  Colour data analysis of individual axis – L*, a*, and b* from 

lime burials, with a comparison between the colour of the bone before 

and after surface removal 
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On the L* axis, the largest difference in colour change of the post-burial bone 

surface colour was between pre-burial and 1.5 months where the bone became 

darker.  The 3 month burial showed an increase in lightness, which increased until 

18 months with a slight fluctuation at 3 months.  The colour after surface removal 

showed an initial darkening between 1.5 and 3 months before a steady increase 

parallel to the post-burial surface colour. 

The a* axis displayed a variable colour change in the post-burial surface colour, 

varying from an increase in red from pre-burial to 1.5 months, as seen by the 

presence of blood, to a decrease at 3 months moving towards green, another 

increase at 6 months, before running parallel to the surface removal colour from 

12 to 18 months.  The surface removal colour showed an exponential decrease 

from red towards green from 1.5 months through to 18 months, due to 

haemoglobin decomposition. 

Analysis of the b* axis showed an initial decrease in yellow from pre-burial to 1.5 

months, before doubling in value towards yellow until 6 months, before a slight 

decrease and final rise at 18 months.  The colour after surface removal remained 

consistent in comparison, with the only difference in units observed at 18 months 

with an increase towards yellow, which could be attributed to the decomposition 

of the adipose tissue. 

 

5.2.4.1 Lime bone marrow colouration 

The visual changes in the colour of the bone marrow from the lime burials can be 

seen in Figure 5-28.  Traces of haematopoietic tissue can still be seen at 3 months – 

although degraded as shown by the brown and purple colouration rather than red. 
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Figure 5-28:  Bone marrow from bones buried in lime; showing left to 

right – 3 months, 6 months, 12 months, 18 months 

The marrow at the 6 month burial, appeared to contain pink, purple, cream and 

yellow areas, which change to orange, grey and purple at 12 months, and just  

orange and at 18 months.   

 

5.2.5 Sand burial bones 

The photographs from the observed visual changes in the bones from the sand 

burials are displayed in Figure 5-29. 

The photographs show how a dark uniform staining of the bones occurred during 

the burial, from 1.5 months through to 18 months.  The surface of the bone 

appeared porous, and very dry with a rough texture. 

Once the surface had been removed, a paler area was uncovered, although staining 

is still evident in places, especially from the 18 month burial.  The texture of the 

bone appeared smoother to that of the post-burial surface. 
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Figure 5-29:  Photographs depicting the colour change of porcine bone 

from the sand environment over a period of 18 months 

 

The results from the total colour difference analysis are displayed in Figure 5-30, 

and show the biggest difference can be seen between the post-burial surface and 

once the surface had been removed.  This difference is largest at 1.5 months, and 

can be seen to steadily decrease across the whole duration until 18 months.  This 

shows how the colour staining is gradually infiltrating the cortex of the bone 

through the surface. 
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The difference in colour between the pre-burial surface and post-burial surface 

remains relatively constant for the first 6 months, with decreased difference 

showing at 12 and 18 months. 

 

Figure 5-30:  Overall colour differences of the bones buried in sand, over 

the 18 month period 

 

The biggest difference between the colour of the pre-burial surface of the bone, 

and after surface removal is seen at 1.5 months, decreasing at 3 months and then 

fluctuating until 18 months. 

The individual axes were then assessed to identify the direction in which the 

colour change was occurring.  Figure 5-31 displays the colours recorded on the L*, 

a* and b* axes. 

The L* axis shows an initial darkening of the bone colour from 0-1.5 months, 

where it remains around the same until an increase in lightness around 12 months 

and a slight decrease at 18 months.  The lightness of the bone after the surface 

removal, showed a similar pattern but with a larger initial decrease seen from 1.5 

months to 3 months.  The difference in the pattern between the post-burial surface 

and after removal, suggests more changes are occurring internally than on the 

surface. 
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Values from the analysis of the a* axis can be seen to make a big increase towards 

red from 0 to 1.5 months for the post burial bone surface colour.  This could 

indicate a rapid period of decomposition from the presence of bacteria, causing the 

colour to become greener.  The pattern of colour fluctuations on this axis, are 

mirrored by those of the colour of bone after surface removal. 

 

 

 

Figure 5-31:  Colour data analysis of individual axis – L*, a*, and b* from 

sand burials, with a comparison between the colour of the bone before 

and after surface removal 
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Analysis of the b* axis showed resemblance not only between the post-burial 

surface and surface removed colour, but also to the a* axis.  The increase in yellow 

at 1.5 months could indicate the presence of yellow decomposition fluid on the 

outside of the bone, which is not present within the bone, whereas the increase in 

both measurements at 18 months could indicate the decomposition of adipose 

tissue from inside of the bone. 

 

5.2.5.1 Sand bone marrow colouration 

The photographs of the colour changes in bone marrow from sand burials are 

shown in Figure 5-32. 

 

Figure 5-32:  Bone marrow from bones buried in sand; showing left to 

right – 3 months, 6 months, 12 months, 18 months 

 

The bone marrow from 3 months of burial shows a dark red and purple 

colouration, suggesting the presence of degraded haematopoietic tissue.  After 6 

months the red colouration has gone and is replaced with purple and brown.  The 

12 month burial shows the bone marrow to be of a purple, pink and cream colour, 

before a purple, pink, brown and pink colouration at 18 months. 
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5.2.6 Colour analysis comparisons across environments 

The results from the colour analysis were then collated in order to compare how 

the different burial environments affect the colour change in the bones, and how 

this relates to an unburied control.  Total colour difference between pre-burial and 

post-burial colour was looked at first, with the results shown in Figure 5-33.  For 

purposes of clarity of the figure, the standard deviation error bars have been 

omitted, but can be found on previous figures in this chapter. 

All four burial environments and the control bone showed different trends in the 

amount of total colour difference that occurred during the 18 month period, 

although some similarities can be observed. 

 

 

Figure 5-33:  Total colour difference: pre to post burial surface colour 

 

The compost, lime and sand burials show their highest colour difference between 

pre-burial and post-burial colour at 1.5 months, suggesting an aggressive attack on 

the bone surface from the environment.  The differences observed in colour of the 

bones at this interval can be seen in Figure 5-34. 
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Figure 5-34:  Comparison of the colour of bone sections after 1.5 months 

of burial from the control and experimental burials 

 

In contrast to the compost, lime and sand bones, the colour difference shown at 1.5 

months for the control bones, and those from the clay environment show a much 

smaller difference, which increases with time over the 18 month duration, 

suggesting a much slower diagenetic rate of the bone surface.  From 3 months, the 

colour difference from the bones in compost and sand behave similarly, with a 

stabilising of colour for 3 months prior to a reduction in colour change for the next 

6 months.  An increase is evident from both environments from 12 – 18 months 

but with a much bigger difference seen in the compost environment.  The colour 

difference evident on the bone surface from the lime environment is almost 

opposite to that shown in the control sample within the first 6 months, with the 

biggest difference occurring at 1.5 months, with a significant drop at 3 months 

followed by a steady increase in difference to 18 months, running parallel to the 

control bone. 

The colour difference between the surface of the post-burial bones and once 

removal had occurred was also compared to understand whether colour 

penetration was occurring from the burial environments.  The results are shown in 

Figure 5-35. 
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Figure 5-35:  Total colour difference: post burial to surface removal 

 

The biggest total colour difference between the post-burial surface and post-

removal, was seen after 1.5 months in all environments apart from the bones from 

the clay environment.  This colour difference then followed a trend with a large 

decrease to 3 months and then a steady decline for the control bones, and bones 

from the compost, lime and sand environments.  The clay data displays a different 

trend, with the colour difference remaining relatively stable with an increase from 

6 months, opposite from the other environments.  This analysis suggests that 

either contaminants from the clay environment take longer to penetrate the 

surface of the bone, or different intrinsic processes are occurring within the bone 

due to the clay in order for a smaller colour difference showing above and below 

the bone surface. 

Another way to look at the data is to examine how the difference in colour between 

the pre-burial surface and post-removal, is affected by different environments, as 

shown in Figure 5-36.  In this incidence, similarities in value and trend are shown 

between the control bones and those from the compost environment.  The sand 

and lime burials also show distinct similarities with an initial decline from a high 

value between 1.5 months and 3 months before a gradual increase until 18 
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months.  Once again, the bones from the clay environment show a different trend 

to all the other environments, with an initial decrease between 1.5 months and 3 

months before a steady increase where the largest colour difference is seen at 18 

months. 

 

 

Figure 5-36:  Total colour difference: pre-burial to surface removal 

 

 

These differences confirm that the diagenetic processes occurring within the bone 

are influenced by the burial environment, and results in colour changes that are 

not only different to each other, but also to those of the control bone.  The 

individual analysis of the axes - L*, a* and b* were also compared across the 

different burial environments and to the control bones, as shown in Figure 5-37.
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Figure 5-37:  Individual axes coordinates of L*, a* and b* for a) Post-burial colour and b) Post-surface removal colour
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The post burial colour data on the L* axis shows the control bone is the lightest of 

all the samples, and shows increase in lightness from all the way from 1.5 to 18 

months with the biggest change occurring between 1.5 and 3 months.  The clay and 

compost show a very similar trend – with intense lightening between 1.5 and 3 

months then slightly darker between 6 and 12 months before the compost bones 

displaying a lighter colour at 18 months. The sand samples show the darkest 

colour at 3 to 6 months prior to becoming lighter at 12 months, and darker by 18 

months.  Lime shows initial lightening like control, clay and compost, darkening 

slightly at 6 months before a gradual lightening 6-18 months. 

On the a* axis, the control sample shows a continual drop in red towards the green 

end of the spectrum from 1.5 months through to 18 months.  This can be explained 

by the increase in bacteria causing the breakdown of the haemoglobin present 

within the bone, causing the production of hydrogen sulphide.  Once again, this 

trend in the control bones is different to all the buried samples.  The clay samples 

show the least variable of the samples, with only slight fluctuations, whereas sand 

shows the most variation with a steep decrease from 1.5 months to 3 months, a 

further decrease to 12 months before an increase to 18 months to almost the same 

redness at 1.5 months.  The compost, lime and sand show similar trends within the 

first 12 months, with a reduction in the red colour, starting with a larger change 

initially. 

Results from the analysis of the b* axis, showed the control bone having the most 

dramatic change between 1.5 and 3 months, moving further towards the yellow 

end of the spectrum, this value then dropped again and remained relatively 

constant until 18 months.  The clay and compost showed the most similarities to 

the control samples, but with a less intense change at 3 months, followed by a 

reduction to 12 months and both displayed an increase in yellow up to 18 months.  

This increase in yellow could be explained by the presence of yellow 

decomposition fluid, released as decomposition progresses.  The lime samples can 

be seen to be less yellow than all the other samples at 1.5 months, with an increase 

at 6 months – later than the control, compost and clay, followed by a decrease at 12 



Chapter 5:  RESULTS 

156 

months and another increase in yellow at 18 months.  The sand samples are the 

only bones that displayed a reduction in yellow at 3 months, and after a further 

decrease at 12 months, the degree of yellow then increased higher than all the 

other samples at 18 months. 

The results from the post-surface removal colour show some similarities, but also 

big differences in the colour direction on the axes.  The control sample on the L* 

axis shows a steady decrease in lightness from 1.5 months through to 12 months 

with a slight increase up to 18 months.   The clay samples show the least variance, 

with a slight increase up to 6 months, where it then remains constant throughout.  

The lime and sand samples show similarities with an initial darkening from 1.5 to 

3 months and then a steady lightening until 12 months, where sand then begins to 

darken again.  The compost samples showed the largest variance with only a slight 

change between 1.5 months and 3 months, but then a dramatic darkening at 6 

months, and an increase to 18 months, where the results is in the middle of all 

samples. 

The analysis of the a* axis showed the control sample reducing in red onto the 

green half of the scale at 3 months, where it remained apart from a slight increase 

to red at 12 months.  The sand and compost showed the most similarities running 

parallel in trend throughout, both moving towards green at 3 months and then 

fluctuating until 18 months.  Clay showed the least variance, remaining just on the 

red side of the scale for the duration.   The lime samples were the only samples 

which showed a continual smooth decrease in redness from 1.5 months to 18 

months. 

The control sample on the b* axis showed a slow increase in yellow prior to 6 

months before slowly decreasing slightly to 18 months.  The lime samples showed 

the least variance, with the biggest change 12 to 18 months.  The sand samples 

were most similar to the control samples in the first 6 months, but followed with a 

fluctuation resulting in an increase at 18 months.  Compost and clay both displayed 

an increase between 1.5 months and 3 months, reaching the peak of yellow earlier 

than the other samples. 
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5.2.6.1 Changes observed in bone marrow 

The colour changes observed in the bone marrow, varied between the different 

environments.  The fresh bone marrow displayed the bright red colour of 

haematopoietic tissue, which changed within the first 1.5 months in all burials but 

to different extents.  The sand showed the least evidence of decomposition, with a 

dark red composition showing presence of haematopoietic tissue, but darkened 

from the autolysis of the tissue, due to the shrinking and darkening of the nuclei 

cells (Tattoli et al., 2014). 

The bone marrow in the clay and lime burials displayed pink and cream 

colouration, suggesting the overriding presence of adipose tissue rather than 

haematopoietic tissue.  The decomposition process of the bone marrow appears to 

then change to purple, grey, orange, brown and black, although some stages appear 

to be absent in certain conditions. 

Bones from the compost environment appear to have the biggest change with 

evidence of black tissue suggesting putrefaction has occurred and also the drying 

out of tissue which is reportedly the last stage in decomposition.  The lime bones 

then appear to be the most advanced decomposition with orange bone marrow, 

followed by clay at grey, with the least changes seen in the sand bone marrow with 

a colour of brown. 

A lack of forensic research published on the detailed colour changes in bone 

marrow, results in the lack of comparison, however research into the different 

packaging of meat products provides a colour scale of bone marrow in a low 

oxygen environment.  Grobbel et al. (2006) reported seven different stages of bone 

marrow colouration as depicted in Figure 5-38.  
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Figure 5-38:  Colour changes in bone marrow as described by Grobbel et 

al., 2006 on the left; Visual observations from the decomposition of 

porcine bones from this research, on the right 

No orange or brown stages were mentioned in the research by Grobbel et al., 

however, the research was conducted over a period of only four days and the 

conditions were different, therefore decomposition of the soft tissues would not 

have occurred to the same extent.  Based on these results, more support can be 

given to the earlier observations from the bone marrow colouration, in relation to 

the process of decomposition. 
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5.3 Composition Analysis 

The investigation into the composition of the bones was conducted using FTIR-

ATR as discussed in 4.1.11.2, to estimate the diagenetic changes that have occurred 

within the bone, in relation to the different environments.  The results are 

displayed together in order to allow direct comparison across the different 

environments, and to the results on the unburied control samples.  The complete 

data sets are presented in Appendix A, with standard deviations from the mean.  

The results displayed in Figure 5-39 show the average of the sample results.  

The diagenetic changes of the bones were investigated by assessing the 

crystallinity of the mineral, (splitting factor) the collagen content 

(Amide/Phosphate) and the carbonate content (Carbonate/Phosphate), as 

discussed in Chapter 4.  Researchers have commonly used these parameters to 

assess diagenesis in archaeological bones (Weiner and Bar-Yosef, 1990; Price et al., 

1992; Sosa et al., 2013) including Stiner et al (1995) who observed no difference in 

splitting factor and carbonate content between burned and unburned 

archaeological bones.  Since this time, others have simulated artificial diagenesis 

by heating bones in order to develop an understanding of the changes that occur.  

As a general rule, it has been found that the splitting factor increases with 

diagenesis, and the collagen content and carbonate content both decrease 

(Fredericks et al., 2012; Hollund et al., 2013). 

The splitting factor is a quantitative measurement of the crystalline structure of 

the mineral (hydroxyapatite) in bone, as determined by the ratio of the phosphate 

absorption bands.  Researchers have estimated that the splitting factor of modern 

bone samples range between 2.5-2.9 (Stiner et al., 1995; Hollund et al., 2013).  

Hydroxyapatite has a poorly crystalline structure due to small crystal size and 

irregularities in the lattice such as ion substitutions, but becomes more crystalline 

as a result of diagenesis.  For this reason, it was expected that the splitting factor 

would increase in all samples over the duration of 18 months. 
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The results from the control bones show a steady increase in splitting factor from 

fresh bone to 3 months, before a plateauing around 3 months to 18 months.   

 

 

 

Figure 5-39:  Splitting factor, amide/phosphate, and 
carbonate/phosphate of control and experimental porcine bones 
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The buried bones all showed variances in the degree of change of the splitting 

factor, but all showed an initial increase in the first 1.5 months.  The bones from 

the sand environment showed the biggest difference from the control bones, with a 

decrease in splitting factor back to that of a fresh bone, at 6 months.  The bones 

from the clay environment showed the largest increase in splitting factor, 

supposedly showing a higher degree of diagenesis, contradicting the findings of 

Weiner and Bar-Yosef (1990) who found that despite no direct correlation was 

found between bone preservation and sediment type, bones that had contact with 

clay deposits were better preserved.  However, Price et al (1992) detailed how the 

presence of water in an environment encourages the action of microorganisms in 

destruction of apatite mineral, therefore as the clay environment had the highest 

water content, the change in crystallinity may be due to water presence rather the 

clay itself.  Bones from the lime environment showed the highest degree of 

preservation with the lowest splitting factor, even lower than that of the control 

bones. 

The Amide / Phosphate ratio can be used as an indication of collagen in a bone 

sample, as when the collagen denatures, the Amide I band will also decrease.  Not 

much information has been cited in the literature, in terms of expected values, but 

Hollund et al (2013) reports bones one year after death should be between 0.2 and 

0.8 and decrease with a larger post-mortem interval.  This decrease in content can 

be seen in the control bones across the 18 month duration.  The biggest deviation 

from this trend can be seen in the bones from the lime environment, which showed 

an increase throughout the burials.  The bones from the sand environment showed 

the most variation, with a large increase at 6 months followed by a decrease at 12 

months and another increase at 18 months.  The bones from the compost and clay 

environment also showed an increase from 6 to 18 months, suggesting phosphate 

from the environments is infiltrating the bone matrix as reported by Álvarez-Lloret 

et al. (2006) who noted how environmental contamination can cause differences in 

bone metabolism, resulting in higher concentrations of carbonate and acid 

phosphatase and changes in crystallinity. 
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The Carbonate / Phosphate ratio can be used to assess the degree of diagenesis, by 

estimating the content of carbonate in a bone, which is predicted to decrease with 

ongoing diagenesis, with a value of 0.36 in modern bones (Hollund et al., 2013).  

The control bones show a slight increase in the C/P ratio, with the largest increase 

occurring at the 3 month stage.  Similar to the Am/P ratio, the bones from the lime 

environment show a steady increase across the 18 month burial duration.  This 

result indicates that ion substitution from the environment is occurring within the 

bone matrix.  The bones buried in sand, once again showed the biggest variance in 

change, resulting in an increase between 12 and 18 months.  The bones from the 

clay and compost environment showed similarities in the patterns of change, and 

showed a decrease between 12 and 18 months. 

No published research has been found on the short term diagenesis in bone from 

different environments, so comparison of findings is difficult due to the huge 

difference in burial duration to that of archaeological studies.  Many researchers 

comment that mineral recrystallisation does not occur until complete removal of 

the organic content has occurred (Sillen et al., 1989; Price et al., 1992; Fredericks 

et al., 2012) which suggests that any changes in bone composition in this research 

may be due to ion substitution in the mineral lattice from deposition contaminants 

from the environmental conditions rather than the bone remodelling.  Price et al., 

(1992) stated that the duration and environment conditions of burial are 

important factors in diagenetic modification of bone, and Hedges et al., (1995) 

suggested that the processes which results in bone modification (porosity change, 

protein content and crystallinity) all work on different timescales to one another 

after finding no correlation between these parameters and environmental factors 

from three different archaeological sites. 

5.4 DNA analysis 

The DNA analysis of the porcine bones, were conducted as described in section 4.3, 

with the amplification of different DNA amplicon lengths.  The lengths of the 

amplicons were designed to imitate the DNA lengths used for different techniques 

used within forensic science laboratories. 
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During the demineralisation of the bones, and during the extraction process, any 

colour changes observed were recorded.  This information and the results from the 

DNA analysis are indicated in this section. 

All samples were treated in the same way in order to provide a comparison of the 

success or failures in amplification.  Each sample was extracted and amplified in 

triplicate. 

5.4.1 Control bones 

The results from the control bones DNA analysis and discolouration during the 

overall process are displayed in Table 5-6. 

Table 5-6:  DNA results from control porcine bones 

Duration Discolouration 
of EDTA 

Discolouration 

during extraction 

DNA amplicon length 

~100bp ~300bp ~500bp 

0 weeks None None X X X X X X X X X 

0 weeks None None X X X X X X X X X 

1.5 months None None X X X X X X X X X 

1.5 months None None X X X X X X X X X 

3 months None None X X X X X X X X X 

3 months None None X X X X X X X X X 

6 months None None X X X X X X X X X 

6 months None None X X X X X X X X X 

12 months None None X X X X X X X X X 

12 months None None X X X X X X X X X 

18 months None None X X X X X X X X X 

18 months None None X X X X X X X X X 

As shown, there was no discolouration of the EDTA during the demineralisation or 

of the extraction liquids during the process.  All of the samples, in triplicate showed 

successful amplification of all 100, 300 and 500 base pair amplicons, from fresh 

bone all the way through to 18 months.  This concludes that although some 

degradation of the biomolecules may have occurred, the processes used were still 

adequate for amplification of the DNA over a period of 18 months. 
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5.4.2 Clay burial bones 

The DNA results and observations from the clay burials are shown in Table 5-7, 

and show how the clay burial affects the bones in comparison to the control bones. 

Table 5-7:  DNA results from clay burial porcine bones 

Duration 
Discolouration 

of EDTA 

Discolouration 

during extraction 

DNA amplicon length 

~100bp ~300bp ~500bp 

1.5 months None Yellow X X X X X X X X X 

1.5 months None Yellow X X X X X X X X X 

3 months None Yellow X X X X X X X X X 

3 months None Yellow X X X X X X X X X 

6 months None Orange X X X X X X X X X 

6 months None Orange X X X X X X X X X 

12 months None Orange          

12 months None Orange          

18 months None Orange          

18 months None Orange          

 

There was no colour change in the EDTA during demineralisation, despite the 

colour staining on the surface of the bones.  However, colour change of the 

extraction liquids did occur.  At 1.5 months and 3 months, the colour had changed 

from clear to yellow, which progressed to orange from 6 months to 18 months.  

The reason for this change could be attributed to contamination within the 

membranes of the DNA that is released during lysis of the cells. 

It is also noted that no amplification was successful after 6 months of burial.  As no 

gradual degradation of DNA is noted, with a drop-off in the ability to amplify the 

larger amplicons opposed to the smaller fragments, it is possible that PCR 

inhibitors are present.  The gradual darkening of the colour change during lysis 

suggests that a higher degree of humic acid from soil contamination was leaching 

into the bone matrix, and therefore affecting the ability of the extraction 

components.   
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5.4.3 Compost burial bones 

Observations of colour change and the results from the DNA analysis of the 

compost porcine bones are displayed in Table 5-8. 

Table 5-8:  DNA results of compost burial porcine bones 

Duration 
Discolouration 

of EDTA 

Discolouration 

during extraction 

DNA amplicon length 

~100bp ~300bp ~500bp 

1.5 months None Orange X X X X X X X X X 

1.5 months None Orange X X X X X X X X X 

3 months None Yellow X X X X X X X X X 

3 months None Yellow X X X X X X X X X 

6 months None Yellow X X X X X X X X X 

6 months None Yellow X X X X X X X X X 

12 months None Orange          

12 months None Orange          

18 months None Orange          

18 months None Orange          

 

The lack of discolouration of the EDTA was the same as that found from the control 

and bones from the clay environment.  However a lager colour difference during 

extraction was observed with an orange discolouration at 1.5 months, yellow for 

3and 6 month burials, and returning to orange for the 12 and 18 months burials. 

The lack of amplification of DNA products after 6 months matches that seen in the 

clay burials, once again suggesting the infiltration of humic acid from the compost 

acting as PCR inhibitors and obstructing the amplification of the DNA. 
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5.4.4 Lime burial bones 

The results from the DNA analysis and colour changes observed during that 

process are presented in Table 5-9. 

Table 5-9:  DNA results from lime burial porcine bones 

Duration 
Discolouration 

of EDTA 

Discolouration 

during extraction 

DNA amplicon length 

~100bp ~300bp ~500bp 

1.5 months None Orange X X X X X X X X X 

1.5 months None Orange X X X X X X X X X 

3 months Slight Orange X X X X X X X X X 

3 months Slight Orange X X X X X X X X X 

6 months Yellow Brown X X X X X X X X X 

6 months Yellow Brown X X X X X X X X X 

12 months Yellow Brown X X X X X X    

12 months Yellow Brown X X X X X X    

18 months Yellow Brown X X X X X X    

18 months Yellow Brown X X X X X X    

 

Unlike the control, clay and compost burials, discolouration of EDTA occurred 

whilst demineralising the bones from the lime environment.  No discolouration 

was present whilst processing the 1.5 month burials, but from 3 months onwards, 

the colour change steadily increased until 18 months.  This would suggest that 

elements from the lime burial are infiltrating the bone into the mineral matrix, 

which are being released as the mineral aspect of the bone is broken down. 

Discolouration of the samples was also observed during extraction, from orange at 

1.5 months progressing to brown at the 6 month and 18 month burials.  This 

shows the contamination from the lime burials was more advanced in these 

samples than the aforementioned samples. 

The DNA results show how from the 12 month burials, it was not possible to 

amplify any 500 base pairs amplicons, but both 300 and 100 base pairs were still 

successful.  This suggests that breakdown of the DNA has occurred. 
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5.4.5 Sand burial bones 

Observations of colour change during the demineralisation process and the DNA 

analysis are displayed in Table 5-10. 

Table 5-10:  DNA results from sand burial porcine bones 

Duration 
Discolouration 

of EDTA 

Discolouration 

during extraction 

DNA amplicon length 

~100bp ~300bp ~500bp 

1.5 months None Yellow X X X X X X X X X 

1.5 months None Yellow X X X X X X X X X 

3 months None Yellow X X X X X X    

3 months None Yellow X X X X X X    

6 months None Orange X X X X X X    

6 months None Orange X X X X X X    

12 months None Orange X X X X X X    

12 months None Orange X X X X X X    

18 months None Orange X X X X X X    

18 months None Orange X X X X X X    

 

No discolouration of the EDTA was seen during the demineralisation of the bone, 

suggesting the staining of the exterior of the bone was not attached to the mineral 

of the bone.  Yellow discolouration during extraction showed immediately from the 

1.5 month burials with a darkening to orange from 6 months onwards, showing 

contamination from the burial environment throughout all the samples. 

The DNA analysis showed amplification of the 500 base pair amplicon was only 

achieved from the 1.5 month burial, after which only the 100 and 300 base pair 

amplicons were amplified.  This could be due to the presence of PCR inhibitors in 

the sample affecting the amplification, however as the smaller DNA fragments are 

still amplified, it is more likely due to the degradation of the DNA. 
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5.5 Human analogue burial summary 

A general summary of the results from the human analogue results can be 

tabulated to show the effect of the burial environment on the different aspects 

investigated as shown in Table 5-11. 

Table 5-11:  Ranking order of human analogue bones according to environment 

Ranking Order Soft tissue preservation Bone preservation DNA preservation 

Best 

 

 

Worst 

Lime Lime Lime 

Clay Sand 

Compost and Clay 

Compost 

Compost and Clay 

Sand Sand 

 

The next section displays the results from the analysis of the human archaeological 

remains. 
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Part B:  HUMAN ARCHAEOLOGICAL RESULTS 

This part presents the results from analysis of the human archaeological samples 

from the Fin Cop site in Derbyshire and Eriswell cemetery in Suffolk.  As detailed in 

Chapter 4, analysis was conducted in order to produce detailed information in 

regards to colour, composition and biomolecules of the skeletons, to allow both 

intra- and inter-site comparisons to be made.  

The analysis of the human bones derived from archaeological contexts comprised 

of collating information on the burial environment and comparing this to data 

obtained from the DNA, colour, and composition analysis.  This information 

provided the ability to identify diagenetic patterns in accordance to the burial 

environments, and to ascertain how different burial environments affect different 

skeletal elements.  The analysis allowed both an inter-site comparison (Fin Cop to 

Eriswell), as well as an intra-site analysis, due to geological complexity of the 

Eriswell cemetery site. 

 

5.6 Fin Cop 

Ten samples from six skeletons (as described in section 4.3.1.1) were assessed for 

colour, composition and DNA content.  The results are presented separately from 

Eriswell initially, with a comparison between findings at the end of the chapter. 

5.6.1 Colour Analysis 

The colour analysis was performed on the bones prior to and after surface removal 

in order to assess whether changes in colour, or depth of colour is relevant to the 

burial environment and other factors tested such as collagen and carbonate 

content, splitting factor and DNA content.  A full table of colour data can be found 

in Appendix B, with summary data presented in Figure 5-40 along with the colour 

difference value between the surface colour and cortex colour of the bones. 
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Figure 5-40:  Combined data from the colourimetry data from the Fin Cop 

femurs and metatarsals, showing the individual L*a*b* values 

Overall the femurs were lighter than the corresponding metatarsals, with the 

exception of Skeleton 3; which displayed the largest colour difference between the 

surface colour and the exposed cortex colour.  All elements were lighter when the 

bone surface was removed, apart from the femur from skeleton 5 which became 

slightly darker, and also the only element to move higher on the red scale on the a* 

axis.  This difference can be explained by the infiltration of soil into the cavity of 

the femur as shown in Figure 5-41. 

 

Figure 5-41:  Infiltration of soil into the cavity of the femur from Fin Cop 

skeleton 5 
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The b* axis (yellow/blue) showed the highest similarity between the two elements 

from the same skeletons.  The femur from skeleton 7 was the only element that 

showed an increase further towards yellow, but the amount is negligible. 

The overall colour difference calculations showed there was no pattern showing 

one element with a higher colour difference than the other, although more 

variance was observed with the femur samples. 

No remarkable difference between the different colour axis on the different 

elements can be identified.  The highest variation was observed on the L* axis, 

which increased in lightness for both the femurs and the metatarsals once the 

surface was removed.  Both the a* and b* decreased in value after surface removal, 

becoming less red and yellow, respectively. 

5.6.2 Composition Analysis 

The bones from the Fin Cop skeletons were analysed using FTIR-ATR as discussed 

in section 4.1.11.2 to estimate the degree of diagenetic change that had occurred.  

Full results are detailed in Appendix B, with summary data and analysis provided 

in Figure 5-42.  During analysis of the results it was noted that unidentified peaks 

were present in some of the samples, therefore XRF was used in order to identify 

the origin of the peaks, full results are detailed in Appendix B and summary 

information is provided after the FTIR-ATR results. 

5.6.2.1 ATR-FTIR results 

Of the six skeletons that were analysed from the Fin Cop site, only four had both 

the femur and metatarsal available for analysis, of which, preferential preservation 

was not observed in one element over the other.  The metatarsals from skeleton 1 

and 8 both showed better preservation than the femurs, in terms of splitting factor, 

collagen content and carbonate content; whereas skeleton 2 and 3 both showed 

better preservation in the femurs than metatarsals, in all three of the results. 
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Figure 5-42:  FTIR-ATR results of Fin Cop Skeletons showing Splitting 

Factor (secondary right axis), Collagen content (primary left axis) and 

Carbonate content (primary left axis) 

 

The splitting factor of the samples ranged from 3.15 to 4.17, which matches with 

those previously reported for archaeological human remains (Weiner and Bar-

Yosef, 1990; Sosa et al., 2013).  The lowest splitting factor was observed from the 

metatarsal from skeleton 1, and the highest from the femur of skeleton 8. 

The highest collagen and carbonate content was seen in the femur from skeleton 2, 

and the lowest in the femur from skeleton 8, supporting the notion of bad 

preservation shown by the high splitting factor results. 

During analysis extra peaks were observed in the spectra, as indicated in Figure 

5-43 showing absorbance on the y-axis and wavenumber on the x-axis.  Due to the 

location of the peaks between 460-470nm, and the close proximity to the 

phosphate peaks used to calculate the splitting factor of the bones, the samples 

displaying the highest peaks were investigated using XRF in order to ascertain the 

contamination present. 
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Figure 5-43:  ATR-FTIR spectra of Fin Cop skeleton 6 femur sample, 

showing additional peaks indicated with a box 

5.6.2.2 XRF results 

XRF was utilised in order to identify the origin of unknown peaks appearing in 

some of the FTIR spectra.  The tests were run in triplicate, with the full data sets 

displayed in appendix B.  The summary data in the form of sample averages of 

identified elements are presented in Table 5-12. 

Table 5-12:  XRF results showing the averages of three readings from Fin 

Cop bone samples, expressed as area in counts per second 

Element 
Skeleton 6 

Femur 
Skeleton 7 

Femur 
Skeleton 8 

Femur 
Skeleton 8 
Metatarsal 

Silicon 1030.67 734.99 375.08 514.70 

Phosphorus 4142.83 5740.46 6263.64 5851.30 

Calcium 63001.31 75379.30 79679.59 77880.58 

Titanium 442.76 132.27 21.33 161.16 

Iron 10240.70 2196.39 594.21 3233.27 

Manganese 542.48 298.05 238.93 306.82 

Copper 553.30 293.75 601.79 573.95 

Zinc 937.86 297.82 749.50 717.39 

Strontium 477.39 450.10 562.63 503.41 

Zirconium 244.68 117.42 91.35 82.48 

Chromium 119.87 129.87 158.16 129.57 

Nickel 862.51 959.46 1392.93 1291.14 

Potassium 1200.34 820.22 640.68 806.53 
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The data shows the top three elements identified in all the bone samples were 

calcium, iron and potassium – all of which are known to be present in soil samples. 

By observing the FTIR-ATR spectra, the sample displaying the biggest anomaly 

from the expected peaks, was the femur sample from skeleton 6.  The XRF results 

show the amount of calcium and potassium are similar between all samples, but 

the iron is much higher in the skeleton 6 femur sample, with a peak area of 

10240.70 cps, therefore this element could be the cause of the unexpected peaks in 

the FTIR-ATR spectra. 

There is also a significant difference between the levels of iron between the femur 

and the metatarsal from skeleton 8, despite being from the same grave.  Figure 

5-44 shows the difference observed in the XRF spectrum.  The metatarsal 

spectrum shown in red shows a much larger peak area of iron. 

 

Figure 5-44:  Comparison of XRF spectrum of the femur sample shown in 

red, and the metatarsal sample shown in blue, from skeleton 8 

The relationship between the iron content in the bone samples as identified by the 

XRF analysis, and the height of the peak between 460-470nm from the FT-IR ATR 

analysis was then investigated, and the results are shown in Figure 5-45.   



Chapter 5:  RESULTS 

175 

 

Figure 5-45:  The relationship between the height of the unidentified 

peak in FT-IR ATR spectra (460-470nm) and peak area of iron in Fin Cop 

samples 

A clear correlation can be seen between the two sets of data, demonstrating the 

unknown peaks in the FTIR-ATR spectra are at least partly caused by the 

concentration of iron in the sample.  Due to the red colouration often seen with 

iron deposits in soil, this information was related back to the colour data, which 

showed the femur from skeleton 6 had the highest red value for the bone surface 

colour, in comparison to the other bone samples tested with XRF. 

5.6.3 DNA analysis of Fin Cop skeletons 

The data produced from the genetic analyser were analysed following guidelines 

set out by SWGDAM 2010, and those presented by John Butler (2005) as detailed 

in section 4.3.10. 

To interpret the data, the individual electropherograms were first analysed for the 

identification of true peaks, with the elimination of artefacts.  Allelic pairings were 

estimated from PHR calculations as discussed in section 4.1.10.  As also discussed 

in the mentioned section, PHR calculations can be unreliable in cases of severely 

degraded DNA, so after the initial assessment of present alleles in individual 

samples, allele exclusion was conducted to remove any potential contamination 

from the analysis. 
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5.6.3.1 Fin Cop Skeleton 1 

Analysis of the electropherograms of Fin Cop skeleton 1 showed no amplified 

alleles in the samples that had undergone demineralisation prior to extraction, the 

amplified alleles in the other femur and metatarsal samples are displayed in Table 

5-13. 

Table 5-13: Fin Cop skeleton 1 DNA results 

Femur  Metatarsal 

Marker Allele RFU PHR  Marker Allele RFU PHR 

Amelogenin Y  43 
 

 Amelogenin X 21 85.71 

D19S433 13 19 
79.17 

 Amelogenin Y 18  

D19S433 14 24  D1S1656 16.3 62  

D2S1338 17 27 
 

 D10S1248 13 36  

D22S1045 15 19 
90.48 

 TH01 6 30 
34.09 

D22S1045 16 21  TH01 8 88 

D16S539 10 49 
87.76 

 vWA 14 39 
89.74 

D16S539 13 43  vWA 17 35 

D18S51 16 38 
92.11 

 vWA 18 65  

D18S51 18 35  D21S11 31 37  

TH01 6 54 
96.43 

     

TH01 7 56      

vWA 18 30 
63.83 

     

vWA 19 47      

D8S1179 11 52 
 

     

FGA 13 35 
97.14 

     

FGA 23 34      

 

The femur 1 showed a partial profile with a maximum of two peaks at each loci, 

therefore there is no evidence to suggest there is more than one contributor to the 

profile.  All peaks observed were below 60 RFU, reducing the possibility that the 

DNA is modern contaminant. 

Although the Y allele in the amelogenin marker is off ladder, it appears to be a true 

allele with N-4 stutter, and it exhibits good morphology, suggesting that this could 

just be due to a shift in the ladder during analysis. There is no evidence of a peak 

for the X allele, which must be due to allelic drop-out. 

The calculation of PHR on the observed allele pairs all resulted in values over 60%, 

suggesting that they are heterozygous peaks. 
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Both the markers of D2S1338 and D8S1179 show a single peak which could either 

mean this allele is homozygous, (although the heterozygosity of these markers for 

European population are reported at 88% and 80%, respectively) (Welch et al., 

2012); or there has been allelic drop-out, of which the probability is calculated at 

95-99% and 70-80%, respectively (Tvedebrink et al., 2009). 

Analysis of the metatarsal showed ten amplified alleles, across six loci.  Alleles on 

the amelogenin marker show 2 peaks off-ladder, yet the morphology suggests 

there are in fact true alleles in the form of X and Y, and PHR calculations suggest 

they are paired. 

The markers D1S1656, D10S1248 and D21S11 show only single peaks – the 

probability of these markers being heterozygous is 90%, 76% and 85% 

respectively, therefore it may be due to allele drop-out.  By using the RFU of the 

allele at D21S11, the probability of allele drop-out of a sister allele is 80-90%. 

The TH01 marker displays two peaks but calculation of their PHR is only 34.09% 

which suggests that either the peaks are not paired and they are from 2 separate 

individuals, or preferential amplification has happened during PCR. 

The three alleles at vWA show that there is either more than 1 contributor to this 

DNA profile, or it could be due to a tri-allelic pattern where an extra chromosome 

fragment in the sample has led to the amplification of extra PCR products.  A tri-

allelic pattern at vWA of alleles 14, 17 and 18 has previously been observed 

(Butler, 2006) but no guidance is provided as to how similar the peak heights 

should be.  Another possibility is that there is a second contributor, although this 

seems unlikely due to no other contamination present in the profile – unless the 

peaks at TH01 are also not from the same individual.  If in fact the three peaks at 

vWA are due to more than one contributor to the profile, there are 12 possible 

genotypes if using an un-restricted approach of considering all possibilities of 

genotype due to the data being close to the limit of detection, and therefore 

stochastic effects and allelic drop-out are a possibility. 

Based on the PHR and the peak heights of the alleles, the highest probability for 

allele pairings is a heterozygous 14 and 17, and a homozygous 18, 18.  This is 
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possible as the peak height of 18 is double that of the smaller alleles of 14 and 17. 

Another possibility is that allele 18 is heterozygote and a sister allele has dropped 

out – the probability of this is 50-60%. 

5.6.3.2 Fin Cop Skeleton 3 

The analysis of the electropherograms from skeleton 3, showed allelic peaks on 

both femur samples, and the metatarsal sample which had not undergone initial 

demineralisation – no alleles were seen from the demineralised metatarsal.  

Compiled results can be seen in Table 5-14. 

Table 5-14: Fin Cop skeleton 3 DNA results 

Demineralised Femur  Non-demineralised Femur  Non-demineralised metatarsal 

Marker Allele RFU PHR  Marker Allele RFU PHR  Marker Allele RFU PHR 

D19S433 15 26   AMEL Y 13   D16S539 8 31  

D2S1338 20 24   THO1 9.3 49   D18S51 16 34 
65.38 

D18S51 15 46   D8S1179 14 24   D18S51 17 52 

D1S1656 16 43 
60.47 

 FGA 20 19 
100 

 vWA 10 56  

D1S1656 18 26  FGA 23 19  vWA 15 38  

D10S1248 13 26       
 

 vWA 16 60  

THO1 9.3 55       vWA 17 81  

D8S1179 14 28        vWA 18 38  

FGA 20 24 
92.31 

      vWA 19 31  

FGA 23 26       vWA 22 39  

 

The electropherograms of the demineralised femur sample showed 10 alleles on 8 

different loci, whilst the non-demineralised sample displayed 4 alleles on 3 

different loci.  

Both the femur samples analysed provide partial profiles and neither of them 

displayed more than two alleles at each loci.  This along with relatively low RFU 

values of the peaks there is no reason to suspect more than one contributor to the 

samples. All alleles present in the non-demineralised femur sample match with 

alleles displayed on the same loci on the demineralised sample, suggesting it came 

from the same donor. 

Electropherograms from the metatarsal samples from skeleton 3 show no allelic 

peaks present in the demineralised DNA sample, in comparison to the non-

demineralised sample which shows peaks on 10 peaks on 3 loci. 
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The partial profile shows two alleles 16,17 at D18S51, and have a PHR of 65% so it 

is likely these peaks at sister alleles.  Seven alleles at vWA shows contamination 

but only at one loci, which suggests it may be due to analysis error, rather than 

contamination of multiple contributors at only one loci. 

As mentioned earlier, tri-allelic patterns have been reported at the vWA marker 

before, but the only combination which could work here is 15,16,17 but the peak 

heights do not coincide with either type 1 or 2. Although some peaks are in the 

correct positions for stutter, the percentages are too high in order to be so.  By 

using peak heights, one allele pairing could be 3 heterozygous pairs: 10,16 

(93.34%), 15,18 (100%) 19,22 (79.49%) and one homozygous 17,17; however, 

with the possibility of stacking, and no known profiles to compare to, it is not 

possible to determine how many individuals might be represented.  

5.6.3.3 Fin Cop Skeleton 5 

Analysis of the elements of skeleton 5, shown in Table 5-15, displayed a maximum 

of 2 peaks per loci, with peak heights between 25-59 RFU, therefore displaying no 

evidence of contamination from modern DNA.  

Table 5-15: Fin Cop skeleton 5 DNA results 

Femur 5  Demineralised Metatarsal 5  Metatarsal 5 

Marker Allele RFU PHR  Marker Allele RFU PHR  Marker Allele RFU 

D3S1358 15 29 
86.21 

 vWA 11 36 
83.72 

 D16S539 10 59 

D3S1358 16 25  vWA 18 43     

D19S433 13 36           

D16S539 12 95           

TH01 6 59 
54.24 

         

TH01 9.3 32          

 

The demineralised femur sample displayed no alleles, with six alleles on four loci 

on the sister sample.  PHR calculations suggests the alleles on D3S1358 are true 

heterozygous peaks at 86.21%, yet the two alleles at TH01 only have a PHR of 

54.24% - due to the lack of any other alleles, this could be due to preferential 

amplification rather than DNA from two origins. 

The demineralised metatarsal displayed two alleles on the vWA marker with a PHR 

of 83.72%, with the non-demineralised counterpart only displaying one allele at 
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D16S539.  Due to the low allele count and lack of corresponding peaks, it is not 

possible to conclude these profiles originate from the same individual, but there is 

no evidence to suggest any contamination. 

5.6.3.4 Fin Cop Skeleton 6 

Electropherograms from the analysis of skeleton 6, show allelic peaks on both 

femur samples tested, both demineralised and non-demineralised, as seen in Table 

5-16.  No metatarsal samples were available for analysis. 

Table 5-16: Fin Cop skeleton 6 DNA results 

Demineralised Femur 6  Femur 6 

Marker Allele RFU PHR  Marker Allele RFU PHR 

 D3S1358 15 66 
21.57 
  

  AMEL  X 35   

 D3S1358 16 306   D16S539 10 81 
62.31 

  D19S433 12 63     D16S539 11 130 

 D16S539 10 152    D18S51 13 105 
48.57 

  D16S539 11 55 
80.00 

  D18S51 16 51 

 D16S539 13 44   TH01 9 177 
39.55 

  D18S51 13 79 51.90   TH01 9.3 70 

 D18S51 15 180 43.89   vWA 15 51 
74.51 

  D18S51 16 41 22.78   vWA 17 38 

 TH01 8 58 63.79   FGA 21 46   

 TH01 9 144 77.42 
 

     

 TH01 9.3 186      

 TH01 10.3 37        

 vWA 15 34 77.27 
 

     

 vWA 16 44      

 vWA 17 117 72.65 
 

     

 vWA 18 85      

 D21S11 30 30 
68.18 

 

     

 D21S11 31 44      

 

Analysis of the peak heights from the electropherograms of the Skeleton 6 femurs, 

suggests contamination is possible within both samples, yet only the 

demineralised sample shows multiple peaks within alleles. Allelic pairing using 

PHR calculations is possible for some peaks in the demineralised sample, but 

severe peak imbalance is still present especially at the D3S1358 loci, which only 

displays 2 peaks. Peak imbalance is also seen at D18S51 and TH01 on the non-

demineralised femur sample. 
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If the peak imbalance is in fact due to DNA from different donors, rather than 

preferential amplification, it is possible there are 2 contributors on each sample. 

5.6.3.5 Fin Cop Skeleton 7 

Analysis of the two femur samples from Skeleton 7 showed a much stronger DNA 

presence on the non-demineralised sample, displaying 13 peaks in 10 loci as 

opposed to two peaks on the demineralised sample, as seen in Table 5-17. 

Table 5-17: Fin Cop skeleton 7 DNA results 

Demineralised femur    Femur 

Marker Allele RFU  Marker  Allele RFU PHR 

AMEL Y 28  AMEL  Y 12  

 D12S391 21.3 32   D19S433  15 32  

     D2S1338  20 30  

     D16S539  8 40 
95.00 

     D16S539  11 38 

     D18S51  13 52  

     D1S1656  12 40  

     TH01  7 68 
85.29 

     TH01  8 58 

     vWA  21 32  

     D12S391  17 152  

     FGA  21 87  

 

No multiple peaks were present in any of the loci, and all peaks were relatively low 

in height, with PHR calculations confirming heterozygous peaks on all paired 

alleles. 

Apart from the Amelogenin loci that displays an ‘X’ drop-out, the only peak present 

in the demineralised sample was allele 21.3 on the D12S391 loci, which when 

compared to allele 17 in the other extract, showed discrepancy due to peak height.  

At a height of 152RFU, it would be expected to be a homozygous peak therefore 

21.3 must originate from another individual. 

This may be due to preferential amplification therefore it is not possible to state 

contamination has occurred. 
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5.6.3.6 Fin Cop Skeleton 8 

Of the four samples analysed from Skeleton 8, DNA was identified in all apart from 

the demineralised metatarsal sample as shown in Table 5-18, the three remaining 

samples showed corresponding peaks on eight loci.  

Table 5-18: Fin Cop skeleton 8 DNA results 

Demineralised Femur  Femur  Metatarsal 

Marker Allele RFU PHR  Marker Allele RFU PHR  Marker Allele RFU PHR 

D3S1358 17 16 
69.57 

 AMEL X 1213 
65.64 

 AMEL X 16  

D3S1358 18 23  AMEL Y 1848  D19S433 15 29  

D16S539 9 93 
87.74 

 D3S1358 8  76 
90.48 

 D2S1338 23 38  

D16S539 10 106  D3S1358 9 84  D22S1045 11 46 
76.09 

D18S51 12 48 
75.00 

 D3S1358 18  1117   D22S1045 16 35 

D18S51 16 36  D19S433 13 162 
55.56 

 D16S539 10 27  

D18S51 17 73   D19S433 15 90  D18S51 15 83  

TH01 9 40 
52.63 

 D2S1338 22 24   D10S1248 13 56  

TH01 9.3 76  D22S1045 13 26   D21S11 31 70  

vWA 16 33 
94.29 

 D16S539 10 1595 
93.10 

 FGA 18 38 
77.55 

vWA 18 35  D16S539 12 1485  FGA 19.2 49 

     D18S51 12 402 
81.59 

     

     D18S51 16 328      

     D10S1248 13 79       

     D2S441 14 30       

     TH01 7 64 
52.03 

     

     TH01 8 123      

     TH01 9 2147 
84.86 

     

     TH01 9.3 1822      

     vWA 17 809 
82.32 

     

     vWA 18 666      

     D21S11 28 115       

     D12S391 18 34 
44.16 

     

     D12S391 20 77      

     D8S1179 10 3259 
26.42 

     

     D8S1179 17 861      

     FGA 19.2 50 
80.65 

     

     FGA 21  62      

     FGA 24 550 
62.18 

     

     FGA 26 342      

Contamination was found to be present on the non-demineralised femur sample, 

due to multiple peaks on three loci – D3S1358, TH01 and FGA.  PHR calculations 

showed imbalance in peak height of possible sister alleles on both the 

demineralised femur and the non-demineralised sample, some of which could be 
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due to preferential amplification; however with some peak heights exceeding 

1000/2000/3000 RFU, contamination from modern DNA is most likely. 

Three peaks were identified on D18S51 of the demineralised femur sample, yet 

peak heights show this can be explained by a tri-allelic pattern, as previously 

reported (Tvedebrink et al., 2012). 

5.6.3.7 Fin Cop DNA result interpretation 

For the purpose of comparison, all alleles that were identified as possible modern 

DNA contamination, and all alleles matching reference profiles were removed from 

the analysis and the remaining alleles are displayed in Table 5-19.  Potentially, 

some ancient DNA alleles may also have been removed, but this approach allows 

confidence in the recording of genetic material without contamination.  By 

removing the alleles suspected to be from an external source, comparisons can be 

made from the remaining genetic information across the elements from each 

skeleton and related back to the archaeological information. 

The results from skeleton 1 show no alleles were amplified in either of the 

demineralised samples, but share the Y allele at the amelogenin marker, and allele 

6 at TH01.  The anthropological data about the Fin Cop collection indicate the sex 

estimation of skeleton 1 to be probable female, yet the genetic information shows a 

Y chromosome and therefore the sample belonged to a male.  Discrepancies can be 

seen at vWA with the femur showing 18,19; whereas the metatarsal sample shows 

14,17.  These differences indicate that either the femur and metatarsal originate 

from a different source, or some of the alleles present are a source of external DNA 

but without any indications of contamination it is not possible to say which is true. 

Skeleton 3 shows similarities between the demineralised and non-demineralised 

femur samples with allele 9.3 at TH01, and alleles 20,23 at FGA; although there is a 

discrepancy that can be seen at loci D18S51 with allele 15 on the femur, and alleles 

16,17 from the metatarsal sample.  The anthropological data once again estimates 

the sex of the skeleton to be female, yet the presence of a Y chromosome shows the 

DNA belongs to a male. 
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Table 5-19: Fin Cop DNA results from skeletal elements, after evidence of modern DNA contamination has been excluded. 
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DF1                 0 0 

2 1 
F1 Y   6  14 16,18 19 17   13,23 15    10 8 

DM1                 0 0 

M1 X,Y   6    14,17  16.3       6 4 

DF3    9.3 14    20 18  20,23     6 5 

4 0 
F3 Y   9.3 14       20,23     5 4 

DM3                 0 0 

M3   8    16          2 2 

DF5                 0 0 

0 0 
F5   12 6,9.3             3 2 

DM5        11         1 1 

M5                 0 0 

DF6   11,13 9,9.3  12 13,16 15,17         9 5 
7 0 

F6 X  11 9,9.3   13,16 15,17         8 5 

DF7 Y               21.3 2 2 
1 0 

F7 X,Y  8,11    13 21 20 12  21     9 7 

DF8  17,18 9 9,9.3   12,16 16         8 5 

5 4 
F8  8,9 12 9,9.3 10,17  12,16 17 22  28 19.2,26 13   18,20 17 11 

DM8                 0 0 

M8 X  10         18,19.2     4 3 

Key: D = Demineralised, F = Femur, M = Metatarsal
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Analysis of the two femur samples from skeleton 6, showed no discrepancies and 

shared 8 of the same alleles: 10,11 at D16S539; 9,9.3 at TH01; 13,16 at D18S51 and 

15,17 at vWA, showing no evidence of contamination, just confirmation of alleles 

present.  Anthropological data states skeleton 6 was commingled with skeleton 7 

and 8, yet as the age of the skeleton was 40 weeks pre-natal, it is unlikely that the 

femur from skeleton 6 could be mis-identified with the others. 

Matches between the samples from skeleton 8 can be seen at allele 10 at D16S539, 

15 at D19S433,19.2 at FGA, and 13 at D10S1248.  But discrepancies can be seen at 

D3S1358, TH01, between the demineralised and non-demineralised sample 

showing that external DNA is present in either or both of the samples.  

Discrepancies can also be seen at D18S51, FGA and D22S1045; concluding that 

these samples contain DNA that has originated from different sources. 

By comparing the genetic information back to the original archaeological records, 

the discrepancies between alleles on skeleton 8 can be explained by the 

commingled nature of the burial.  It is reported that skeleton 6, 7 and 8 were all 

commingled and heavily fragmented (Waddington et al., 2011), so it is possible 

that the skeletal elements have not been assigned to the correct skeleton. 

Analysis of skeleton 5 showed no matches and no discrepancies between the 

results, and the only matching allele from skeleton 7 is the Y allele at the 

amelogenin marker. 

Sex determination 

Osteological reports on the skeletons from Fin Cop, suggest that skeleton 1 and 3 

are ‘probable female’, based on the mandible and pelvis for skeleton 1, and 

fragmented pelvis and skull for skeleton 3.  However, the Y allele was found on 

both the metatarsal and femur from both skeletons, suggesting the remains are in 

fact both male. 

The sex of skeleton 5 was deemed ‘indeterminate’ due to lack of elements, and no 

amelogenin alleles were amplified on either of the elements, so there is no DNA 

evidence to assist with this categorisation. 
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Due to the young age of skeleton 6, no sex estimation could be made by the 

osteologist, however the DNA results returned one report of an X allele.  Due to the 

low height of 35RFU, it is possible that allelic drop-out of the Y allele has occurred. 

Skeleton 7 is also reported as indeterminate in the osteological report due to the 

young age, but the DNA analysis suggests the skeleton is male, with the presence of 

a Y allele in both the femur samples (demineralised and non-demineralised). 

The DNA results for skeleton 8 display a very low peak of 16 RFU for the X allele on 

the metatarsal suggesting female, but nothing on the femur.  Due to the height, it is 

possible that allelic drop-out has caused the Y allele absence.  Osteological reports 

suggest the sex of the skeleton to be ‘more likely male’ but many indicators are 

indeterminate. 

 

5.7 Eriswell  

Due to the large number of skeletons excavated from the Eriswell site it was not 

possible to analyse them in entirety. As discussed in section 4.3, 60 skeletons were 

selected from across the three cemeteries, and 57 femurs, 47 metatarsals and 1 

sternum fragment were sampled.  These elements were all analysed to determine 

colour and composition.  For the DNA analysis, 36 skeletons were selected from 

cemetery ERL 104, and 64 elements were sampled. 

This section presents the results from the analysis of the Eriswell samples 

independently, and then a cross comparison with the Fin Cop results are presented 

in section 5.8. 

5.7.1 Colour Analysis 

The colour analysis for the Eriswell samples was conducted and analysed in the 

same way as that for the Fin Cop samples previously detailed.  However, due to the 

different cemeteries and burial environment encased within the Eriswell area, the 

results are presented firstly as a whole, then across the different cemeteries from 

which they were excavated from; and finally in terms of the burial environment 

description from archaeological reports. 
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The overall results from the Eriswell cemeteries are presented in Figure 5-46 and 

show the individual colour axes of all the elements, and the femurs and metatarsals 

separately.  The average colour of the bones prior to, and after surface removal, 

has been shown including the overall colour difference. 

 

 

Figure 5-46:  Overall colour analysis of averages from all tested skeletal 

elements from the Eriswell cemetery 

 

The L* axis shows all elements become lighter after surface removal, although the 

femurs were darker prior to surface removal and lighter after removal; showing 

the largest difference in lightness.  The a* axis shows all elements become less red 

after surface removal, with the biggest change seen in the femurs.  The b* axis 

shows the femur average decreasing in yellow, whereas the metatarsal average 

increases slightly.  Overall, the femurs show the largest colour change from after 

removal of the bone surface. 

The data was then analysed in accordance with the area of the cemetery from 

which they were excavated, and this information is shown in Figure 5-47. 
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Figure 5-47:  Colour analysis of overall averages from metatarsals and 

femurs, from ERL 046, 104, and 114 cemeteries 

 

The L* axis shows the darkest bones, both before and after surface removal, to be 

those from ERL 046, followed by ERL 104 and lastly ERL 114 being the lightest 

bones, and also showing the smallest overall colour change.  The a* and b* both 

show decreasing values in a uniform manner, showing all the bones becoming less 

red and less yellow after surface removal. 

In order to assess whether these differences are the same in both femurs and 

metatarsals, the data in Figure 5-48 is separated into cemeteries, and also into 

elements: femurs and metatarsals. 

The L*axis shows the metatarsals from ERL 046 have a lighter colour, both prior to 

and after surface removal.  The femurs from ERL 104 are also darker initially, but 

after surface removal, a much lighter bone colour than the metatarsals is observed.  

The femurs from ERL 114 are different from the other cemeteries in the respect 

that they are lighter than the metatarsals from the same cemetery, both before and 

after surface removal. 
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Figure 5-48: Colour analysis of femora and metatarsals from the 

cemeteries ERL 046, 104 and 114 

 

The femurs from ERL 104 have the highest red value (a* axis), yet after surface 

removal, it shows the lowest value.  All the other elements also reduce in redness 

after surface removal. 

The b* axis value reduces in all the element averages, showing similar values for all 

the metatarsals.  The femurs from ERL 104 show the highest value of yellow, with 

the femurs from ERL 114 only slightly below.  Femurs from the ERL 046 cemetery 

show the lowest value both before and after surface removal. 

Overall the largest colour difference between the elements and the cemeteries can 

be seen in the data from the femurs from the ERL 104 cemetery, however the 

metatarsals from the same cemetery show the least colour difference between all 

the elements. 

In order to assess whether the localised burial environment or the location of the 

cemetery within the Eriswell site had a larger effect on the differences observed in 

bone colour, the results were then analysed according to the burial environment as 

described by the excavating archaeologists.  The overall results are presented in 

Figure 5-49, with more detailed analysis of the elements is shown in Figure 5-50. 
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Figure 5-49: Colour analysis of overall averages from the sand and chalk, 

chalk, and sand burial environments from Eriswell cemeteries. 

 

The sand and chalk environment show very similar results to those elements 

buried in a chalk environment.  Differences can be seen in the sand environment, 

however these results are provided from only two elements from one skeleton. 

All elements become lighter, less red and less yellow after surface removal.  The 

largest colour difference can be seen in the bones from the chalk environment, but 

all values are very similar.  By breaking the data down into individual elements, 

more information can be ascertained from the results. 
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Figure 5-50:  Individual elements from environments 

 

Analysis of the L* axis shows all metatarsals across the different environments are 

lighter than the femurs prior to surface removal, but darker than the femurs after 

surface removal.  The lightness of the sand and chalk femurs and chalk femurs are 

very similar to each other, whereas the sand femur is darker. 

The a* axis shows the metatarsal from the sand environment is the only element 

across the environments that becomes redder after surface removal. 

Values from analysis of the b* axis, show the femurs and metatarsals from the 

different environments behaving differently – all the metatarsals become more 

yellow after surface removal, whereas all the femurs become less yellow. 

The biggest overall colour difference can be seen in the femora – chalk shows the 

largest difference, followed by sand and then sand and chalk.  The order is 

different with the metatarsals, showing the largest difference occurring with the 

sand and chalk metatarsals, followed by the chalk, and lastly those from the sand 

environment. 
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5.7.2 Composition Analysis 

The composition analysis on the Eriswell skeletons was conducted in order to 

assess the diagenetic changes that occurred in the bone.  The complete results 

tables are presented in Appendix B. 

The sample set showed a range of splitting factors from 2.88-4.63 showing varying 

degrees of preservation across the whole site.  The femurs showed the largest 

range: 2.88-4.63, and the metatarsals a slightly smaller range 2.99-4.36. 

By organising the results into associated cemeteries, the results can be observed in 

accordance to their location within the entire area.  Figure 5-51 shows the average 

and range of splitting factor from the bones from each cemetery, in comparison to 

each other.  The metatarsals in each cemetery showed a higher average splitting 

than the associated femurs from the same burials, suggesting a higher preservation 

rate in the femurs.  ERL 114 showed the highest splitting factor of both the femurs 

and metatarsals, followed by ERL 104, and ERL 046 displaying the best overall 

preservation with the lowest average splitting factor of both the metatarsals and 

the femurs. 

 

 

Figure 5-51:  Range of splitting factors from femurs and metatarsals 

across cemeteries at Eriswell 
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The ratio of Carbonate/Phosphate is an indication of the level of carbonate 

preservation in the bone, which ranged from 0.11-0.72 across the Eriswell 

cemeteries.  Overall the femurs showed a lower rate of preservation with a range 

of 0.11-0.43, whereas the metatarsals were slightly higher with a range of 0.12-

0.72.  When the results were analysed within the individual cemeteries, different 

trends could be seen - the femurs from both ERL 046 and ERL 114 showed a higher 

average of preservation than the metatarsals.  ERL 104 showed the highest 

carbonate content in metatarsals than the other sites, and was also higher than 

that of the associated femurs. 

 

Figure 5-52:  Carbonate and collagen content estimates from calculated 

ratios of femurs and metatarsals across cemeteries at Eriswell 

 

The collagen content in the bones was indicated by the ratio of the Amide I band 

and phosphate, and showed an overall range of 0.03 – 0.35.  The femurs and 

metatarsals showed similar ranges of 0.03-0.35, and 0.05-0.34, respectively.  When 

analysed within individual cemetery areas, all areas showed the average femur 

content to be higher than that of the metatarsals from the same burials.  ERL 046 

showed the highest collagen content, followed by ERL 104 and the lowest 

preservation state was seen from the ERL 114 cemetery.  This data is supported by 

the splitting factor reported earlier. 
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The elements from ERL 104 showed the highest variance in carbonate and collagen 

content, showing a variation in the preservation level in the elements. 

The data was also analysed in relation to the burial environment stipulated by the 

archaeological excavation report.  The splitting factor results from this analysis are 

shown in Figure 5-53.  There appears to be no obvious difference to those results 

shown from the cemetery assessment, with the metatarsals again slightly higher.  

Due to the lack of skeletons from the sand environment, results are based on two 

elements from one skeleton; therefore this may not be a true representation of 

bone material preservation from a sand environment. 

 

Figure 5-53:  Range of splitting factors from femurs and metatarsals 

across the different burial environments at Eriswell 

The estimated carbonate and collagen content from the bones was also analysed in 

relation to the individual burial environments at Eriswell and the results are 

shown in Figure 5-54. 

The elements with the largest carbonate content were calculated to be metatarsals 

from the chalk environment, however when relating to the high splitting factor, it 

would appear the high carbonate content may be due to ion exchange from the 

environment rather than preservation of the carbonate intrinsic to the bone; the 

femurs from the chalk environment also showed the highest content of carbonate 

from all the environments. 
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The bones from the sand and chalk environment again showed the femurs to have 

a higher content in comparison to the metatarsals, which supports the information 

provided by the splitting factor; this is also shown in the results from the collagen 

content estimation. 

 

Figure 5-54:  Carbonate and collagen content estimates from calculated 

ratios of femurs and metatarsals across the different burial 

environments at Eriswell 

Results from the collagen content estimation, show the average of all the femurs is 

higher than that displayed by corresponding metatarsals, however the range of 

content in both elements is high.  The femurs from the chalk environment show the 

lowest content from all the burial environments, which contradicts the splitting 

factor results which showed this group of data to have the lowest splitting factor 

and therefore the best preservation. 

The femur from the sand environment displayed the highest collagen content, with 

the metatarsal at the same level as the chalk metatarsal – it must be noted that this 

result is based on only one skeleton. 

The same extra peaks noted in some of the Fin Cop samples also appeared in a 

minority of the Eriswell bone samples (see Figure 5-55) and therefore six samples 

were selected for XRF analysis to determine what the identity of the contamination 

present. 
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Figure 5-55:  ATR-FTIR spectra of Eriswell skeleton 4226 metatarsal 

sample, showing additional peaks indicated with a box 

 

5.7.2.1 XRF results 

Using the same analysis parameters as Fin Cop, the results from the analysis of six 

samples from three Eriswell skeletons are shown in Table 5-20. 

 

Table 5-20:  XRF results showing the averages of three readings from 

Eriswell bone samples, expressed as area in counts per second 

Element 
Skeleton 0570 Skeleton 0809 Skeleton 4226 

Femur Metatarsal Femur Metatarsal Femur Metatarsal 

Silicon 396.30 1131.83 369.56 1119.81 377.30 707.40 

Phosphorus 6528.86 4179.55 6455.74 3920.88 6538.01 5001.29 

Calcium 78369.95 63596.15 76884.02 64404.74 78012.26 71253.62 

Titanium 18.79 438.50 17.36 183.78 15.15 95.00 

Iron 189.28 4730.79 321.30 6019.79 291.33 2236.67 

Manganese 210.02 872.87 298.85 612.65 396.72 704.83 

Copper 291.95 574.64 379.18 638.60 355.49 335.83 

Zinc 284.34 707.50 345.08 694.17 470.50 546.51 

Strontium 234.26 350.47 231.82 323.67 420.22 415.79 

Zirconium 24.79 1152.46 46.82 747.65 60.96 94.34 

Chromium 112.58 142.91 139.50 174.92 123.57 118.63 

Nickel 1004.19 1011.81 1117.38 1057.61 1072.66 879.62 

Potassium 612.44 945.59 602.37 952.78 605.78 730.44 
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The results are similar to those obtained from the Fin Cop samples, with the 

content of iron varying between the samples.  Interestingly a pattern can be seen in 

iron content between the femurs and metatarsals from the same skeletons, with a 

significantly larger level in metatarsals than femurs.  Figure 5-56 shows the XRF 

spectrum comparison of the femur and metatarsal from skeleton 4226. 

 

Figure 5-56:  Comparison of XRF spectrum of the femur sample shown in 

red, and the metatarsal sample shown in blue, from skeleton 4226. 

 

The spectrum clearly shows the iron peak from the metatarsal sample (shown in 

blue) larger than that from the femur sample. 

When relating back to the colour data, both metatarsals from skeletons 0809 and 

4226 show a slight increase in red from the femurs, but not significantly, and the 

femur from skeleton 0570 displays more red than the metatarsal. 
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5.7.3 DNA analysis 

This section reports the results from the DNA analysis of the skeletal elements 

from the Eriswell cemeteries.  The results from each individual skeleton are 

presented initially, with collation of data at the end of the section. 

5.7.3.1 Skeleton 0067 

Multiple peaks were observed at D16S539, TH01 and vWA on the femur sample, 

and vWA on the metatarsal sample from Skeleton 0067, showing contamination of 

the elements from an external DNA source, results can be seen in Table 5-21. 

Table 5-21:  Skeleton 0067 DNA results 

Femur  Metatarsal 

Marker  Allele  RFU PHR  Marker Allele  RFU PHR 

D3S1358 15 39 
88.64 

 

  D19S433 14 35   

D3S1358 17 44   D10S1248 9 36 
59.02 

D19S433 13 38     D10S1248 13 61 

D2S1338 19 34     TH01 8 38   

D16S539 10 42 82.35   vWA 14,14  106   

D16S539 11 51 73.68   vWA 17 45 
91.11 

D16S539 13 57 89.47   vWA 20 41 

D18S51 16 64 
55.17 

 

  D21S11 30 43   

D18S51 17 116      

D1S1656 16 36        

TH01 6 64 
91.43 

 

     

TH01 7 70      

TH01 9.3 43 
72.09 

 

     

TH01 13.3 31      

vWA 13 57 
84.21 

 

     

vWA 15 48      

vWA 17 137 
81.55 

 

     

vWA 18 168      

The heights of the multiple peaks on the femur show a distinction between a major 

and minor contributor at TH01 and vWA, but not at D16S539 which displays three 

peaks of equal height.  The metatarsal displays no alleles on this marker, therefore 

is it not possible to exclude or confirm the potential endogenous alleles. 

The heights of the three allelic peaks on the vWA marker on the metatarsal of 

Skeleton 0067, suggest a heterozygous of 17,20 with an PHR of 91.11%, and a 
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homozygous 14,14 as with a height of 106 RFU it is over double the height of the 

heterozygous peaks, and the chances of a sister peak drop-out is only 10-20%.  The 

presence of different alleles on the vWA marker on both the femur and metatarsal 

suggests as many as four contributors present. 

5.7.3.2 Skeleton 0235 

DNA data obtained from the femur and metatarsal of Skeleton 0235, showed 

partial profiles from both elements but with a larger quantity from the femur, as 

seen in Table 5-22. 

Table 5-22: Skeleton 0235 DNA analysis 

Femur  Metatarsal 

Marker Allele RFU PHR  Marker Allele RFU PHR 

AMEL X 106   D10S1248 13 52  

D3S1358 12 36   D2S441 10 59 
96.72 

D3S1358 15 256 
64.06 

 D2S441 14 61 

D3S1358 16 164  vWA 18 91  

D3S1358 17 88       

D19S433 15 35       

D2S1338 19 32       

D16S539 10 77       

D18S51 15 103       

D18S51 17 58 
75.32 

     

D18S51 18 77      

D1S1656 16 99       

D2S441 14 36       

TH01 7 684 
77.63 

     

TH01 8 531      

TH01 9.3 133       

vWA 13 59 
78.67 

     

vWA 16 75      

vWA 17 183 
30.91 

     

vWA 18 592      

D21S11 24 80 
91.95 

     

D21S11 29 87      

D21S11 30 361       

D12S391 17 56 
57.14 

     

D12S391 21 98      

FGA 22.2 85       
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The partial DNA profile from the femur sample of Skeleton 0235 shows more than 

two alleles at five different loci, suggesting more than one contributor to the 

genetic information – and this is confirmed by the extensive difference in peak 

heights at these loci, showing a major contaminant. 

By calculating PHR for the peaks, heterozygous peaks can be identified, however, 

peak imbalance can be seen at D3S1358, vWA and D12S391, but without evidence 

of further contamination, this imbalance could be explained by preferential 

amplification.  The profile from the metatarsal shares alleles with both the minor 

and the major contributor from the femur sample, suggesting it is possible the DNA 

has originated from the same source, however without more alleles it is not 

possible to give a conclusive result. 

 

5.7.3.3 Skeleton 0326 

Analysis from the femur of Skeleton 0326 showed strong contamination from a 

single source with high RFU, with an underlying minor profile. In contrast, analysis 

of the DNA data from the metatarsal showed only six alleles, all below 70 RFU, as 

seen in Table 5-23. 

Analysis of the femur data showed no more than four peaks at each loci after 

stutter peaks, and noise had been eliminated so therefore it is unlikely that there 

are more than two contributors to the DNA results.  The major component of the 

data is very high in RFU with the highest homozygous peak at 3486 RFU, therefore 

any peaks lower down would have be washed out due to preferential amplification, 

overlapping peaks and stutter. 

When all the data from the femur and the metatarsal is compared, similarities can 

be seen between the metatarsal and the minor component of the DNA mixture 

from the femur, as can be seen in  

Although there is not enough data to make a confirmed match, potentially the 

minor profile on the femur and the DNA present in the metatarsal is in fact 

endogenous DNA. 
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Table 5-23: Skeleton 0326 DNA results 
Femur  Metatarsal 

Marker Allele RFU PHR  Marker Allele RFU PHR 

 AMEL X 327 
97.90 

 D16S539 13 65  

 AMEL Y 334  D18S51 17 41  

 D3S1358 15 76 
58.91 

 D10S1248 15 57  

 D3S1358 16 129  D8S1179 6 44 
81.82 

 D3S1358 17 603 
96.48 

 D8S1179 13 36 

 D3S1358 18 625  FGA 24 41  

 D19S433 13 739 
59.27 

     

 D19S433 14 438      

 D2S1338 16 177 
83.05 

     

 D2S1338 18 147      

 D2S1338 19 49       

D22S1045 11 400 
52.00 

     

D22S1045 15 208      

D22S1045 16 66       

 D16S539 9 2600       

 D16S539 13 223       

 D18S51 12 1332 
76.50 

     

 D18S51 14 1019      

 D18S51 15 362 
42.82 

     

 D18S51 17 155      

 D1S1656 12 57 
91.94 

     

 D1S1656 15 62      

 D1S1656 16 533 
87.24 

     

 D1S1656 17 465      

D10S1248 13 134 
68.66 

     

D10S1248 15 92      

D10S1248 14 310 
76.13 

     

D10S1248 17 236      

 D2S441 10 82       

 D2S441 11 224       

 D2S441 14 155 69.20      

 TH01 4 30 
75.00 

     

 TH01 6 40      

 TH01 8 2506       

 vWA 18 250       

 vWA 16 1119 
90.53 

     

 vWA 19 1013      

 D21S11 29 933 
75.56 

     

 D21S11 30 705      

 D12S391 21 216       

 D12S391 18 643 
61.28 

     

 D12S391 22 394      

 D8S1179 10 843 
69.61 

      

 D8S1179 12 1211      

 D8S1179 11 202 
77.72 

     

 D8S1179 13 157      

 FGA 23 3486       
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5.7.3.4 Skeleton 0425 

Analysis of the femur from Skeleton 0425 showed evidence of contamination on 

the markers: vWA, D21S11 and FGA, whereas the metatarsal data shows no 

evidence of contamination, as only two peaks are present, both with heights below 

50 RFU.  Results displayed in Table 5-24. 

Table 5-24: Skeleton 0425 DNA results 

Femur  Metatarsal 

Marker Allele RFU PHR  Marker Allele RFU 

 AMEL X 178   D3S1358 16 44 

 D3S1358 14 76 
 

 vWA 18 42 

 D2S1338 19 39      

 D16S539 11 109 
69.72 

    

 D16S539 13 76     

 D18S51 14 275 
20.00 

    

 D18S51 15 55     

 D1S1656 16 41      

 D10S1248 13 38 
81.58 

    

 D10S1248 15 31     

 TH01 7 252      

 TH01 8 66      

 vWA 16 62 
74.19 

    

 vWA 18 46     

 vWA 19 36 
80.00 

    

 vWA 22 45     

 D21S11 28 53 
89.83 

    

 D21S11 31 59     

 D21S11 36 37      

 D12S391 17 90 
61.64 

    

 D12S391 21 146     

 D8S1179 13 356      

 FGA 17 82      

 FGA 21 90      

 FGA 23.2 81      

 FGA 24 96      

 FGA 46.2 83      

 

Multiple peaks on vWA and D21S11 can be categorised into two profiles, by using 

PHR, although due to similar peak heights there is not a strong ‘major’ profile.  Due 

to the similar heights of five peaks at the FGA marker, (all within a range of 15 
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RFU) it is not possible to distinguish individual profiles due to the many 

possibilities of allelic pairing. 

The markers D18S51, and TH01 show two peaks at each loci, but display severe 

peak imbalance of 20% and 26.19% respectively.  It is possible that the smaller 

allele at D18S51 is a large stutter peak at +4 bp, however the probability of a 

heterozygous allele at this loci is 88%.  Similarly the probability of heterozygous 

alleles at TH01 is 79%, therefore with the absence of more peaks, this peak 

imbalance may be due to preferential amplification as the probability of sister 

allele drop-out is less than 1%. 

As shown in Table 5-24 (with the exception of FGA) the potential profiles are 

detailed, showing a minimum number of contributors of two to the femur and no 

evidence of contamination from the metatarsal.  

Due to the lack of information from the metatarsal, it is not possible to comment on 

the inclusion or exclusion of the DNA originating from the same individual. 

 

5.7.3.5 Skeleton 0426 

Analysis of the elements from Skeleton 0426 resulted in no peaks from the femur, 

but the generated a full profile from the metatarsal, with two peaks at each of the 

markers as seen in Table 5-25.  The lack of multiple peaks at the markers suggests 

that no contamination is present, however peak imbalance is evident at three loci – 

D3S1358 (44.99%), TH01 (44.09%) and D2S11 (23.22%), although this could be 

due to preferential amplification during the PCR. 

Despite the heights of the peaks having a relatively high RFU at majority of the 

markers, the Amelogenin marker shows significantly lower peaks, suggesting 

amplification had not been as successful at this loci. 
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Table 5-25: Skeleton 0426 DNA results 

Metatarsal 

Marker  Allele  Height PHR 

 AMEL  X 53 
90.57 

 AMEL  Y 48 

 D3S1358 14 184 
44.99 

 D3S1358 17 409 

 D19S433 11 433 
64.90 

 D19S433 12 281 

 D2S1338 17 150 
88.67 

 D2S1338 20 133 

 D22S1045 11 186 
82.80 

 D22S1045 15 154 

 D16S539 11 523 
94.75 

 D16S539 13 552 

 D18S51 12 651 
82.64 

 D18S51 13 538 

 D1S1656 15 359 
60.44 

 D1S1656 16.3 594 

 D10S1248 13 236 
89.73 

 D10S1248 16 263 

 D2S441 11 235 
96.71 

 D2S441 14 243 

 TH01 6 499 
44.09 

 TH01 9.3 220 

 vWA 17 641 
78.55 

 vWA 19 816 

 D21S11 29 435 
23.22 

 D21S11 32.2 101 

 D12S391 19 201 
92.20 

 D12S391 20 218 

 D8S1179 13 133 
94.33 

 D8S1179 14 141 

 FGA 20 245 
85.96 

 FGA 24 285 

 

5.7.3.6 Skeleton 0477 

No allelic peaks were present from the femur of Skeleton 0477, in comparison with 

15 of the 16 loci present in the metatarsal sample, as displayed in Table 5-26.   
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Table 5-26: Skeleton 0477 DNA results 

Metatarsal 

Marker Allele Height PHR 

 D3S1358 15 65  

 D19S433 13 56 
73.21 

 D19S433 15 41 

 D2S1338 19 30  

 D22S1045 11 213 
33.33 

 D22S1045 16 71 

 D16S539 13 32  

 D18S51 15 186 
87.63 

 D18S51 17 163 

 D1S1656 16 141  

 D10S1248 13 95 
33.22 

 D10S1248 15 286 

 D2S441 10 75 
89.29 

 D2S441 14 84 

 TH01 7 77 
43.75 

 TH01 8 176 

 vWA 18 316  

 D21S11 30 342  

 D12S391 17 117 
66.67 

 D12S391 21 78 

 D8S1179 11 41 
70.69 

 D8S1179 13 58 

 FGA 24 284  

 

No more than two peaks were present at each loci, yet unusually for expected 

degraded DNA samples, the bigger DNA fragments amplified more efficiently than 

the smaller ones – Amelogenin is the only marker displaying no peaks yet the 

region is less than 150 bp.  PHR calculations indicated peak height imbalance at 

D22S1045, D10S1248 and TH01. 

Upon comparison to the reference samples, it was found that all present alleles 

matched with the researcher, and therefore confirmed as exogenous 

contamination from modern DNA.  The peak imbalance of the three loci, were 

actually sister alleles, and therefore due to preferential amplification.  The allelic 

drop-out could also be observed at six different loci, where only one peak was 

present.– this information would be taken into account for future analysis.  
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5.7.3.7 Skeleton 0570 

Both samples from skeleton 0570 confirmed evidence of DNA, with 11 loci on the 

femur sample displaying peaks and 16 loci on the metatarsal sample as seen in 

Table 5-27. 

Table 5-27: Skeleton 0570 DNA results 

Femur  Metatarsal 

Marker Allele Height PHR  Marker Allele Height PHR 

AMEL X 26   AMEL X 163 
 

D3S1358 17 49 
83.67 

 D3S1358 17 328 
92.39 

D3S1358 18 41  D3S1358 18 355 

D19S433 14 43 
95.35 

 D19S433 14 348 
87.64 

D19S433 15 41  D19S433 15 305 

D16S539 10 178 
74.16 

 D2S1338 20 57 
68.42 

D16S539 13 132  D2S1338 23 39 

D18S51 16 155 
83.87 

 D22S1045 11 60 
85.00 

D18S51 17 130  D22S1045 17 51 

D1S1656 13 55   D16S539 10 535 
78.69 

TH01 6 155 
76.13 

 D16S539 13 421 

TH01 9.3 118  D18S51 16 248 
60.05 

vWA 14 133 
100.00 

 D18S51 17 413 

vWA 18 133  D1S1656 13 128 
55.41 

D21S11 30 58   D1S1656 17.3 231 

D8S1179 9 35   D10S1248 15 225 
 

FGA 21 61 
96.83 

 D2S441 11 188 
27.13 

FGA 22 63  D2S441 14 51 

     TH01 6 1548 
60.59 

     TH01 9.3 938 

     vWA 14 754 
98.41 

     vWA 18 742 

     D21S11 30 441 
 

     D12S391 18 76 
46.05 

     D12S391 22 35 

     D8S1179 9 237 
59.92 

     D8S1179 10 142 

     FGA 21 215 
96.85 

     FGA 22 222 

 

No multiple peaks were seen within any of the loci, showing no evidence of DNA 

from more than one individual being present in the samples. 
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PHR calculations on the allelic peaks from the femur confirmed true sister peaks, 

whilst peak imbalance was seen at D1S1656 (55.41%), D2S441 (27.13%), 

D12S391 (46.05%) and D8S1179 (59.92%) from the metatarsal. 

5.7.3.8 Skeleton 0612 

The results from the DNA analysis of the femur and the metatarsal are displayed in 

Table 5-28. 

Table 5-28: Skeleton 0612 DNA results 

Femur  Metatarsal 

Marker Allele Height PHR  Marker Allele Height PHR 

AMEL X 56   AMEL X 48 
 

D19S433 13 49   D3S1358 14 59 
 

D18S51 17 45   D19S433 13 51 
 

TH01 7 30   D22S1045 11 99 
 

vWA 15 33 
96.97 

 D16S539 12 31 
 

vWA 18 32  D18S51 15 133 
33.83 

FGA 21 30 
65.22 

 D18S51 16 45 

FGA 22 46  D1S1656 16 65 
 

     D10S1248 13 58 
 

     TH01 7 111 
83.78 

     TH01 9.3 93 

     vWA 15 83 
61.48 

     vWA 18 135 

     D21S11 28 50 
 

     D12S391 17 174 
 

     D12S391 18.3 52 
92.31 

     D12S391 21 48 

     D8S1179 11 89 
78.76 

     D8S1179 13 113 

     FGA 21 37 
 

 

Eight peaks were determined from the Skeleton 0612 femur at six different loci 

including amelogenin.  Sister peaks were observed at vWA and FGA, both of which 

met the criteria using PHR at 96.97% and 65.22% respectively.  Single peaks were 

seen at D19S433, D18S51 and TH01, of which the calculated probability of allelic 

drop-out was 90-95%, ~80%, and 99% respectively. 
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Analysis of the metatarsal resulted in more DNA present than the femur, with 20 

peaks across 14 loci.  Sister alleles can be identified by PHR at TH01, vWA, 

D12S391 and D8S1179; however multiple loci were displayed at D12S391 

suggesting contamination from an external source, and severe peak imbalance at 

D18S51 also supports this occurrence.  

Similarities can be seen between the DNA from the femur and the minor profile 

from the metatarsal, where four alleles match at D19S433, TH01, vWA and FGA.  

They are no conflicting alleles in the profile, supporting the possibility that the 

profiles obtained from the femur and metatarsal (minor) result from intrinsic DNA.  

5.7.3.9 Skeleton 0692 

Analysis of the metatarsal and femur from skeleton 0692 displayed evidence of the 

potential of two profiles on each element, as displayed in Table 5-29.   

Table 5-29: Skeleton 0692 DNA results 

Femur  Metatarsal 

Marker Allele Height PHR  Marker Allele Height PHR 

 AMEL X 83 
19.28 

  D3S1358 14 92  

 AMEL Y 16   D19S433 15.2 41  

D3S1358 15 24 
95.83 

  D16S539 11 129  

D3S1358 16 23   D18S51 15 94  

D19S433 15.2 18  
  D18S51 16 31 

93.94 
 D16S539 11 84 

84 
  D18S51 18 33 

 D16S539 13 100   D1S1656 12 42  

 TH01 7 62  
  TH01 6 188 

82.98 
 TH01 8 35 

71.43 
  TH01 9 156 

 TH01 9 25   vWA 17 488  

 vWA 17 96 
40.63 

  D21S11 29 23 
88.46 

 vWA 18 39   D21S11 30 26 

 D21S11 29 17 
50 

  D12S391 20 33 
93.94 

 D21S11 30 34   D12S391 22 31 

 FGA 18 35 
94.29 

  D8S1179 15 38  

 FGA 21 33      

 

Only two incidences of multiple peaks at loci were reported, TH01 on the femur 

and D18S51 on the metatarsal, however severe peak imbalance was seen at 

multiple loci. 
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Similarities can be seen between the two minor profiles: allele 15.2 at D19S433, 

alleles 29,30 at D21S11, and with no conflicting alleles present, it is possible that 

the profiles originate from the same source, and may be intrinsic DNA. 

None of the genotypes match that of the researcher or any reference profiles, 

therefore the major profile contamination present must have occurred prior to 

submission. 

5.7.3.10 Skeleton 0717 

DNA quantity from the elements of skeleton 0717 was extremely low, with the 

highest peak height resulting in the X allele at the Amelogenin marker on the femur 

at 43 RFU , and no detectable DNA from the metatarsal as seen in Table 5-30. 

Table 5-30: Skeleton 0717 DNA results 

Femur 

Marker Allele Height (RFU) 

AMEL X 43 

D3S1358 17 21 

D2S1338 19 24 

D16S539 10 30 

TH01 7 42 

FGA 21 34 

 

Only single peaks were observed above the noise threshold on the femur sample, 

so no PHR calculations were necessary to establish pairings.  All peaks identified 

were below 50 RFU which is the standard detection limit used in the majority of 

forensic laboratories. 

5.7.3.11 Skeleton 0759 

Analysis of the femur and metatarsal from skeleton 0759 showed low quantity 

DNA in both elements – eight peaks over five loci on the femur, and three peaks at 

the vWA marker on the metatarsal, as result of a tri-allelic pattern.   

Majority of the peaks identified, as shown in Table 5-31, were below 50 RFU so it is 

possible that more peaks are present but are disguised by the background noise.  
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Table 5-31: Skeleton 0759 DNA results 

Femur  Metatarsal 

Marker Allele Height PHR  Marker Allele Height 

D19S433 13 38 
 

 vWA 15 36 

D18S51 15 41 
97.56 

 vWA 16 39 

D18S51 17 40  vWA 17 42 

TH01 7 43 
81.13 

    

TH01 9.3 53     

vWA 16 32 
87.50 

    

vWA 18 28     

FGA 19 59 
 

    

 

The only marker to display alleles on both elements is vWA – and conflicting 

results are reported.  This can be explained, by either the skeletal elements 

originating from different individuals, which is unlikely due to the reported single 

burial environment; or due most likely due to contamination of one or both of the 

elements by an external DNA source. 

5.7.3.12 Skeleton 0791 

No detectable DNA was found from the femur sample of skeleton 0791, and only 

eight alleles were found present over six loci from the metatarsal analysis, as 

shown in Table 5-32. 

Table 5-32: Skeleton 0791 DNA results 

Metatarsal 

Marker Allele Height PHR 

D3S1358 15 42 
 

D18S51 14 53 
 

D1S1656 12 33 
 

D10S1248 13 46 
69.57 

D10S1248 17 32 

TH01 8 52 
63.46 

TH01 9.3 33 

vWA 15 78 
 

 

Two heterozygous allelic pairs were calculated on D10S1248 and TH01, with the 

rest of the loci displaying a single peak or no peaks.   
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Based on the peak height of allele 15 at the vWA marker in relation to the other 

peaks present, and with a probability of allele drop-out of 30-40% it appears likely 

that this is a homozygous allele.  The remaining loci displaying single peaks have a 

minimum of 70% probability of drop-out, due to the low RFU. 

The absence of any data from the femur results in no ability to comment further on 

the origin of the DNA, but there is no evidence of contamination. 

5.7.3.13 Skeleton 0799 

Analysis of the elements from skeleton 0799 showed the presence of DNA on both 

the femur and metatarsal, results of which are shown in Table 5-33.  Interpretation 

of the data concludes six peaks over five loci for the femur, and four peaks over 

three loci for the metatarsal sample.  

Table 5-33: Skeleton 0799 DNA results 

Femur  Metatarsal 

Marker Allele Height PHR  Marker Allele Height PHR 

AMEL X 25 
 

 D18S51 14 46  

D16S539 10 72 
 

 vWA 18 49 
93.88 

D2S441 14 96 
 

 vWA 19 46 

D8S1179 11 78 
 

 D12S391 21 65  

FGA 21 30 
71.43 

     

FGA 24 42      

 

FGA displayed two alleles, providing a PHR of 71.43% on the femur, and the 

metatarsal – two alleles at vWA had a PHR of 93.88% confirming both sets of sister 

peaks as heterozygous.  Low RFU of the single peak heights detected, suggest it is 

likely that allele drop-out has occurred at the remaining loci.   

Due to the presence and location of electrical spikes on the electropherogram of 

the femur sample, it is not possible to comment on the presence or absence of the Y 

allele at the amelogenin marker.   

Upon comparison of the data between the elements, no corresponding alleles are 

shown due to different loci being populated with data, therefore no comment can 

be made on the origin of the samples, however no evidence contamination was 

detected. 
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5.7.3.14 Skeleton 0808 

The electropherogram of the femur sample from skeleton 0808 displayed high 

levels of noise from the instrument and electrical spikes, which may have resulted 

in the masking of peaks, however two alleles were detected at two different loci, as 

shown in Table 5-34. 

In contrast, analysis of the metatarsal resulted in the identification of 22 alleles at 

14 loci.  Three alleles were detected at the D3S1358 marker, resulting from either 

more than one DNA contributor to the sample, or the presence of a tri-allelic 

pattern.  Although this pattern has been previously reported at this locus, the peak 

heights do not correlate with type 1 or type 2, and the peak imbalance noted at 

other loci on the electropherogram, suggests the possibility that the detection of 

three alleles may be due to contamination.  Working on this assumption, the 

potential genotypes of the DNA sample based on peak heights and PHR 

calculations is illustrated in Table 5-34. 

Table 5-34: Skeleton 0808 DNA results 

Femur  Metatarsal 

Marker Allele Height  Marker Allele Height 
 vWA 18 74  AMEL X 186 
 

D21S11 38.2 68  D3S1358 15 43 
 

    D3S1358 17 84 
67.86 

    D3S1358 18 57 

    D19S433 13 28 
 

    D22S1045 16 36 
 

    D16S539 11 146 
93.15 

    D16S539 12 136 

    D18S51 13 128 29.69 

    D18S51 16 38 
 

    D1S1656 11 75 
 

    D2S441 14 33 
 

    TH01 6 234 
68.80 

    TH01 9 161 

    vWA 16 87 
 

    D21S11 30.3 32 
 

    D12S391 19 80 
63.75 

    D12S391 20 51 

    D8S1179 10 134 
49.26 

    D8S1179 12 272 

    FGA 20 68 
57.14 

    FGA 22 119 
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Despite the possibility of the tri-allelic pattern explanation, and the lack of any 

conflicting alleles from the analysis of the femur and metatarsal, due to the 

complication of the three alleles at D3S1358, and the peak imbalance throughout 

the electropherogram it is not possible to conclusively state the number of 

contributors within this sample, or whether this DNA is in fact intrinsic DNA. 

5.7.3.15 Skeleton 0809 

Data analysis of skeleton 0809 resulted in the identification of four alleles at three 

markers on the femur and five alleles at four loci on the metatarsal as shown in 

Table 5-35.  

Table 5-35: Skeleton 0809 DNA results 

Femur  Metatarsal 

Marker Allele Height PHR   Marker Allele Height PHR 

 TH01 8 51 
 

  D16S539 11 50  

 D8S1179 17 51 
 

  D18S51 15 52  

 FGA 31 35 
94.29 

  TH01 7 89  

 FGA 31.2 33   vWA 15 129 
65.12 

      vWA 16 84 

 

Heterozygous peaks are confirmed by PHR at both loci displaying two alleles.  

Calculations of allele drop-out show high probability of occurrence where single 

alleles are present.   

No conflicting or duplicating alleles were identified at the represented loci, and 

with a maximum of two alleles at each loci and low RFU of the peaks, there is no 

evidence of contamination from an external source. 

5.7.3.16 Skeleton 0991 

An abundance of DNA was discovered in the samples from skeleton 0991, with the 

femur displaying alleles at 13/16 of the markers tested, and the metatarsal 

analysis producing a full profile as seen in Table 5-36. 
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Table 5-36: Skeleton 0991 DNA results 

Femur  Metatarsal 

Marker  Allele  Height PHR   Marker  Allele  Height PHR 

 AMEL  X 453 
 

  AMEL  X 1130   

 D3S1358 15 98 
96.94 

  D3S1358 15 1066 
88.18 

 D3S1358 18 95   D3S1358 18 940 

 D3S1358 16 52 
48.08 

  D19S433 14 776 
76.55 

 D3S1358 17 25   D19S433 15 594 

 D19S433 14 153 
53.15 

  D2S1338 20 466   

 D19S433 15 76   D22S1045 15 253 
86.17 

 D19S433 13 48     D22S1045 16 218 

 D2S1338 20 32     D16S539 12 1636 
90.71 

 D16S539 10 69 
57.97 

  D16S539 13 1484 

 D16S539 11 40   D18S51 12 1172 
83.12 

 D16S539 12 279 
80.65 

  D18S51 17 1410 

 D16S539 13 225   D1S1656 14 544 
87.60 

 D18S51 12 309 
37.22 

  D1S1656 15 621 

 D18S51 17 115   D10S1248 13 461 
75.49 

 D18S51 14 75 
64.10 

  D10S1248 16 348 

 D18S51 15 117   D2S441 13 177 
85.51 

 D1S1656 14 88 
76.52 

  D2S441 14 207 

 D1S1656 15 115   TH01 8 2288 
97.15 

 D10S1248 13 48 
64.58 

  TH01 9.3 2355 

 D10S1248 16 31   vWA 16 1841 
98.19 

 D10S1248 14 50 
68.00 

  vWA 17 1875 

 D10S1248 15 34   D21S11 29 746 
78.53 

 TH01 8 570 
78.07 

  D21S11 31 950 

 TH01 9.3 445   D12S391 17 460 
43.48 

 vWA 12 54 
36.24 

  D12S391 24 200 

 vWA 18 149   D8S1179 12 1762 
51.87 

 vWA 16 602 
57.81 

  D8S1179 14 914 

 vWA 17 348   FGA 20 1903 
80.40 

 D21S11 29 51 
25.76 

  FGA 25 1530 

 D21S11 31 198      

 D21S11 33.2 32 
100.00 

     

 D21S11 36 32      

 D8S1179 12 240 
97.96 

     

 D8S1179 14 245      

 FGA 20 284 
76.34 

     

 FGA 25 372      

 FGA 21 141 
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Evidence of contamination within the femur sample was evident with eight loci 

displaying multiple alleles.  The RFU of the peaks of the major component in the 

femur, and the peaks in the metatarsal sample strongly suggest that the DNA 

present is not intrinsic to the skeleton, but more likely to be contamination from a 

modern source.  This modern profile does not match the reference samples held of 

the researcher, or any personnel with access to the laboratory where analysis was 

conducted, and therefore must belong to an archaeologist / anthropologist or 

another unknown individual who handled the bones prior to submission to the 

researcher. 

Given the strength of the data and no evidence of more than one profile in the 

metatarsal sample, inferences could be made to confirm the allocation of allele 

pairings within the femur sample.  By utilising the comparison of the modern 

profile, it is possible to confirm that the alleles described in the minor component 

of the femur sample, do not belong to the same contaminant, and with the low RFU 

and characteristic evidence of degradation of larger alleles, it is possible this 

profile belongs to skeleton 0991. 

 

Skeleton 0994Table 5-37 shows the results of the DNA analysis of skeleton 0994, 

where allelic peaks were identified on both the femur and metatarsal samples. 

Electropherograms from skeleton 0994, showed the metatarsal exhibiting seven 

alleles over five alleles, with PHR calculations identifying the pairs at D10S1248 

and vWA as sister alleles. 

Interpretation of the results from analysis of the femur proved much more 

complicated with evidence of contamination in the form of multiple peaks at nine 

loci.  The peaks were assigned to minor or major contributors using peak heights 

and PHR calculations.  Peak imbalance is evident and so is allele drop-out which 

further complicates the interpretation.  
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Table 5-37: Skeleton 0994 DNA results 

Femur   Metatarsal 

Marker  Allele  Height PHR 
 

  Marker Allele Height PHR 

 AMEL  X 240 
90.42 

 

  D18S51 15 35  

 AMEL  Y 217 
 

  D1S1656 16 38   

 D3S1358 15 226 
51.77 

 

  D10S1248 13 63 
82.54 

 D3S1358 18 117    D10S1248 15 52 

 D3S1358 16 77 
87.01 

 

  TH01 7 31   

 D3S1358 17 67    vWA 17 56 
69.14 

 D19S433 13 89 95.70 (13,14)    vWA 18 81 

 D19S433 14 93 86.02 (14,16.2)       

 D19S433 16.2 80 89.89 (13,16.2)       

 D2S1338 19 60 
85.00 

 

     

 D2S1338 23 51 
 

     

 D22S1045 11 62 
79.49 

 

     

 D22S1045 16 78 
 

     

 D16S539 10 183 
55.74 

      

 D16S539 13 102       

 D16S539 12 644        

 D18S51 13 412 
71.84 

      

 D18S51 14 296 
 

     

 D18S51 15 149 
63.76 

 

     

 D18S51 17 95 
 

     

 D1S1656 13 71 
91.03 

 

     

 D1S1656 16 78 
 

     

 D10S1248 13 262 42.75(13,14)       

 D10S1248 14 112 15.65(13,15)       

 D10S1248 15 41 36.61(14,15)       

 D2S441 10 55 
33.95 

 

     

 D2S441 14 162 
 

     

 TH01 7 124 
99.19 

 

     

 TH01 8 123 
 

     

 TH01 9 326 
63.80 

 

     

 TH01 9.3 511 
 

     

 vWA 14 42   
 

     

 vWA 17 267   
 

     

 vWA 18 993   
 

     

 D21S11 28 46   
 

     

 D21S11 29 146 
83.91 

 

     

 D21S11 30 174 
 

     

 D12S391 17 46 
100.00 

 

     

 D12S391 21 46 
 

     

 D8S1179 11 720 
19.17 

 

     

 D8S1179 13 138 
 

     

 FGA 21 295 
90.49 

      

 FGA 25 326       

 FGA 22 233 
59.66 

      

 FGA 24 139       
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When these profiles were compared to reference samples, similarities were 

discovered with the profile of the researcher, providing evidence that peak 

imbalance and allele drop-out had occurred.  The contamination from the 

researcher displayed as a minor contributor in the most case, and therefore it is 

unlikely the remaining DNA present is intrinsic to the bone due to the levels of 

concentration.  The major component did not match any reference samples 

therefore must belong to an unknown individual (male) who had contact with the 

bones prior to DNA analysis. 

 

5.7.3.17 Skeleton 4040 

Analysis of the femur showed no evidence of contamination as no multiple peaks 

were found, and majority of peaks were of low height; however allele 29 at D21S11 

displayed a relatively high RFU in relation to the rest of the electropherogram, as 

evident in Table 5-38, but this could be explained as a homozygous peak. 

Interpretation of the metatarsal data showed no evidence of contamination due to 

multiple peaks, nonetheless with some peak heights in excess of 1000 RFU – this is 

way above the expected level for ancient DNA, and therefore may have been 

compromised by modern DNA; which does not match the reference samples on 

file. 

All allele pairings were confirmed with high PHR values and no evidence of allele 

drop-out – as expected with peaks of this height. 
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Table 5-38: Skeleton 4040 DNA results 

Femur  Metatarsal 

Marker  Allele Height PHR  Marker Allele Height PHR 

 D19S433 9 35     AMEL X 653 
  D18S51 17 35     D3S1358 16 141 

91.56 
 TH01 7 33 

82.50 
  D3S1358 18 154 

 TH01 8 40   D19S433 14 315 
91.84 

 D21S11 29 94     D19S433 16 343 

 D8S1179 10 43     D22S1045 16 34 65.38 
      D22S1045 17 52 

       D16S539 11 512 
72.07 

      D16S539 12 369 
      D18S51 12 738 

70.33 
      D18S51 14 519 
      D1S1656 15.3 121 

       D10S1248 14 444 
       D2S441 11 47 
       TH01 7 994 

93.51 
      TH01 8 1063 
      vWA 17 617 

91.41 
      vWA 18 564 
      D21S11 29 311 

       D12S391 20 42 
       D8S1179 10 703 

84.92 
      D8S1179 13 597 
      FGA 24 626 

94.57 
      FGA 25 592 

 

By comparing the major profile from the metatarsal to the profile obtained from 

the femur, it is possible that the alleles at TH01, D21S11 and D8S1179 have also 

originated from an external source, however, only allele 29 on D21S11 showed 

comparatively high peak height. 

 

5.7.3.18 Skeleton 4046 

Analysis of the electropherograms from skeleton 4046 identified alleles on both 

the femur and the metatarsal samples, as seen in Table 5-39. 
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Table 5-39: Skeleton 4046 DNA results 

Femur  Metatarsal 

Marker  Allele  Height  Marker  Allele  Height PHR 

 D2S1338 23 48   D3S1358 15 49 
90.74 

 vWA 18 71   D3S1358 16 54 

 D12S391 21 75   D19S433 13 93 
67.74 

 FGA 22 57   D19S433 15 63 
     D2S1338 23 32  
     D22S1045 15 31 

93.94 
     D22S1045 16 33 
     D18S51 15 216  
     D1S1656 16 132  
     D10S1248 13 162  
     TH01 7 135 

98.52 
     TH01 8 133 
     vWA 15 48 

26.23 
     vWA 18 183 
     D21S11 30 151 

91.39 
     D21S11 31 138 
     D12S391 17 56 

67.86 
     D12S391 21 38 
     FGA 24 41   

 

At first glance there was no evidence of more than one DNA contributor to the 

elements from skeleton 4046, however when comparing the results to reference 

samples it became apparent that contamination from modern DNA from the 

researcher may have occurred. 

The four alleles from the femur sample could all be assigned to a reference sample, 

and only two alleles from the metatarsal profile could be positively eliminated 

from the contamination – allele 15 at D22S1045, and allele 15 at vWA.  The two 

alleles at D22S1045 displayed a very high PHR of 93.94, and low RFU so it is 

possible that alleles do not belong to the researcher; PHR calculations on the 

alleles 15 at vWA, showed the allele not assigned to the researcher was unlikely to 

be heterozygous with allele 18 and had very low RFU so it is unlikely to be 

contamination. 
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5.7.3.19 Skeleton 4067 

Analysis of the femur and metatarsal from skeleton 4067 identified a high number 

of alleles as seen in Table 5-40.  Although the RFU values on the metatarsal are 

high at some of the loci, there are no more than two peaks at each, therefore no 

evidence of more than one contributor. 

Table 5-40: Skeleton 4067 DNA analysis 

Femur  Metatarsal 

Marker Allele Height RFU   Marker  Allele  Height RFU 

 AMEL X 378 
78.57 

  AMEL  X 59 
79.73 

 AMEL Y 297   AMEL  Y 74 

 D3S1358 15 211 
89.57 

  D3S1358 16 168 
89.84 

 D3S1358 17 189   D3S1358 17 187 

 D3S1358 16 107    D19S433 14 82 
50.00 

 D19S433 13 119 91.54 (13&14)   D19S433 15 41 

 D19S433 14 130 89.04 (14&15)   D16S539 12 603  

 D19S433 15 146 81.51 (13&15)   D18S51 13 539  

 D2S1338 17 76 
71.05 

  D1S1656 16.3 42  

 D2S1338 23 54   D10S1248 14 82 
82.00 

 D2S1338 18 38 
90.48 

  D10S1248 17 100 

 D2S1338 19 42   vWA 17 273 
59.71 

 D16S539 10 355 
71.14 

  vWA 18 163 

 D16S539 13 499   D21S11 30 226  

 D16S539 12 1053    D12S391 17 66 
75.76 

 D18S51 13 497 
 

  D12S391 21 50 

 D18S51 15 231 
54.11 

  D8S1179 12 140 
94.29 

 D18S51 17 125   D8S1179 13 132 

 D1S1656 10 82 
 

  FGA 21 232 
82.86 

 D1S1656 16 120 
75.47 

  FGA 24 280 

 D1S1656 16.3 159      

 D10S1248 13 241 
94.19 

     

 D10S1248 15 227      

 D10S1248 17 41 
 

     

D2S441 10 94 
76.42 

     

D2S441 14 123      

TH01 7 348 
79.02 

     

 TH01 8 275      

 TH01 9.3 1307 
 

     

 vWA 17 570 
77.55 

     

 vWA 18 735      

 D21S11 30 467 23.13      

 D21S11 31 108 
 

     

 D12S391 17 408       

 D12S391 21 169 
40.83 

     

 D12S391 23 63      

D8S1179 11 435 
84.63 

     

D8S1179 12 514      

D8S1179 13 794       

FGA 21 578 
89.89 

     

FGA 24 643      



Chapter 5:  RESULTS 

221 

However multiple alleles are present at nine loci on the femur, showing at least 

two contributors to the DNA profile.  PHR calculations were performed to identify 

heterozygous peaks to assist with the allocation of alleles to genotypes.  However, 

some the peak height of the alleles varies greatly from 38RFU at the smallest, to 

1307 at the highest.  This shows it is likely that preferential amplification has 

occurred, rendering the PHR calculations as a means of identifying sister peaks, 

inaccurate.  Instead, the profile was compared to reference samples, in order to 

eliminate the contamination. 

5.7.3.20 Skeleton 4095 

Analysis of the femur from skeleton 4095 resulted in the presentation of only three 

alleles at three different loci, as shown in Table 5-41.  The lack of allele presence or 

multiple alleles, and low RFU of the peaks suggest no evidence of contamination. 

Table 5-41: Skeleton 4095 DNA results 

Femur 

Marker  Allele  Height 

 TH01 9.3 80 

 vWA 18 44 

 D21S11 30 35 

5.7.3.21 Skeleton 4098 

Electropherograms from the femur of skeleton 4098 showed 11 alleles distributed 

across eight loci, as shown in Table 5-42, there was no metatarsal to available to 

analyse. 

Table 5-42: Skeleton 4098 DNA results 

Femur 

Marker  Allele  Height  PHR 

 D3S1358 15 52 80.77 (15,16) 

 D3S1358 16 42 78.57 (16,17) 

 D3S1358 17 33 63.46(15,17) 

 D16S539 12 70 
82.35 

 D16S539 13 85 

 D18S51 13.2 36   

 D1S1656 11 72   

 D10S1248 13 30   

 vWA 18 81   

 D21S11 31 34   

 FGA 23 31   
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Three alleles were located at the D3S1358 marker, but peak heights and previous 

reported occurrence of this pattern suggest this may be a tri-allelic pattern rather 

than more than one contributor.  There is no other evidence in the data to suggest 

contamination has occurred. 

The only other pair of alleles is reported at D16S539 where PHR confirm the 

probability of sister alleles.   

 

5.7.3.22 Skeleton 4099 

Results from the analysis of the femur and metatarsal samples from skeleton 4099, 

show very low and degraded quantities of DNA - as reported in Table 5-43. 

Table 5-43: Skeleton 4099 DNA results 

Femur  Metatarsal 

Marker  Allele  Height 
 

 Marker  Allele  Height  

 D10S1248 13 58    D3S1358 14 33 
56.90 

 vWA 18 59    D3S1358 16 58 

 D21S11 31 41    D8S1179 13 44   

 D8S1179 11 34    FGA 24 55   

 

After comparison with reference samples, all but one of the alleles present – allele 

14 at D3S1358, can be attributed to the researcher’s reference sample.  

 

5.7.3.23 Skeleton 4191 

Six alleles were identified from the analysis from the femur of skeleton 4191, as 

seen in Table 5-44. 

Table 5-44:  Skeleton 4191 DNA analysis 

Femur 

Marker Allele Height PHR 

 D16S539 12 35 
71.43 

 D16S539 13 49 

 TH01 7 78 
42.31 

 TH01 8 33 

 vWA 18 79 
  FGA 24 37 
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Five of the observed alleles are shared with the researcher, and although further 

peaks can be seen at low RFUs, due to the noise level it is not possible to accurately 

assign them as true alleles. 

5.7.3.24 Skeleton 4222 

Due to the unavailability of the metatarsal of skeleton 4222, a section of sternum 

was used for DNA analysis, in addition to the femur.  Results from the analysis are 

shown in Table 5-45. 

Table 5-45:  Skeleton 4222 DNA analysis 

Femur  Sternum 

Marker  Allele  Height PHR  Marker  Allele  Height PHR 

 D22S1045 16 36     D3S1358 14 50 
80.00 

 TH01 7 63 
65.08 

  D3S1358 16 40 

 TH01 9 41   D19S433 14 33 
62.26 

 D21S11 30 47     D19S433 17.2 53 
      D16S539 11 91 

63.74 
      D16S539 12 58 
      D18S51 14 169  
      TH01 6 111 

83.78 
      TH01 8 93 
      vWA 17 150 

81.97 
      vWA 18 183 
      D21S11 29 38 

84.21 
      D21S11 30.2 32 

 

Both elements displayed genetic information, however conflicting alleles were 

presented at both TH01 and D21S11, suggesting that either the two elements 

originate from two different individuals or contamination from an external source 

has occurred.  Knowledge of the extensive handling of this skeleton prior to 

submission to the researcher increase the possibility for contamination.  The RFU 

of the allelic peaks from both elements are low and show characteristic 

degradation, although PHR results are all within the limit. 
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5.7.3.25 Skeleton 4226 

Analysis of the femur from skeleton 4226 displayed the possibility of 

contamination due to three allelic peaks at the TH01 marker, as can be seen in 

Table 5-46.  

Table 5-46: Skeleton 4226 DNA analysis 

Femur  Metatarsal 

Marker Allele Height PHR  Marker Allele Height PHR 

 Amelogenin X 20 
57.14 

  Amelogenin X 16 
80.00 

 Amelogenin Y 35   Amelogenin Y 20 

 D3S1358 15 25 
40.98 

  D19S433 14 62  

 D3S1358 16 61   D16S539 6 43  

 D19S433 15 52 
 

  D18S51 16 56  

 D16S539 14 215 
 

  TH01 6 47  

 TH01 6 56 71.43 (6,8)   vWA 11 60 
70.00 

 TH01 7 78 71.79(6,7)   vWA 18 42 

 TH01 8 40 51.28 (7,8)   D12S391 18 33  

 vWA 18 119 
 

  D8S1179 15 31  

 D8S1179 13 39 
 

     

 

Similarities can be seen between the metatarsal and the femur, at Amelogenin, 

TH01, and vWA.  Alleles at Amelogenin and D3S1358 show low PHR values, 

suggesting the peaks are not heterozygous, or have been subject to preferential 

amplification. 

5.7.3.26 Skeleton 4288 

Six alleles were detected from the analysis of the femur from skeleton 4288, as 

seen in Table 5-47. 

Table 5-47: Skeleton 4288 DNA analysis 

Femur 

Marker  Allele  Height PHR 

AMEL X 28   

 D3S1358 16 34   

 D16S539 8.3 31 
81.56 

 D16S539 10 38 

 TH01 7 50   

 vWA 18,18 100   
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The two alleles at D16S539 show a PHR of 81.58% suggesting they true sister 

alleles, whilst the height of allele 18 at vWA, in comparison to the other peaks, 

suggests a homozygous peak.  A low RFU was observed on all loci present, and no 

evidence of contamination. 

No allelic peaks were observed from the metatarsal sample, therefore no 

comparisons between the elements is possible. 

5.7.3.27 Skeleton 4291 

Only the femur from skeleton 4291 was available for DNA testing, but no allelic 

peaks were found. 

5.7.3.28 Skeleton 4295 

Data interpretation of the electropherogram of the femur from skeleton 4295 

displayed evidence of contamination with multiple peaks evident at both the 

D3S1358 and the D16S539 markers, as illustrated in Table 5-48. 

Table 5-48: Skeleton 4295 DNA results 

Femur 

Marker  Allele  Height  PHR 

 AMEL  X 65 
81.54 

 AMEL  Y 53 

 D3S1358 14 50  

 D3S1358 16 26 
92.31 

 D3S1358 18 24 

 D16S539 10 34 
57.63 

 D16S539 11 59 

 D16S539 13 152  

 D18S51 14 69 
56.56 

 D18S51 17 122 

 TH01 8 92 
92.00 

 TH01 9.3 100 

 vWA 15 49 
25.00 

 vWA 18 196 

 D8S1179 10 98 
38.78 

 D8S1179 14 38 

 FGA 21 72 
93.06 

 FGA 23 67 
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Further interpretation of the data showed peak imbalance and comparatively high 

RFUs on some alleles, affecting the PHR value between allelic pairing.  As evidence 

of contamination is present, the results were compared to the researchers profile, 

however they were not a match, therefore external contamination occurred prior 

to analysis. 

5.7.3.29 Skeleton 4340 

Data interpretation, shown in Table 5-49, from the analysis of skeleton 4340 

shows the observed alleles from the femur and metatarsal. 

Table 5-49: Skeleton 4340 DNA results 

Femur  Metatarsal 

Marker Allele Height PHR  Marker Allele Height PHR 

 AMEL X 39 
 

  D19S433 13 89 
40.45 

 D19S433 10 21 
70.00 

  D19S433 15 36 

 D19S433 13 30   D16S539 13 104  

 D22S1045 11 55  
  D10S1248 15 98  

 D16S539 10 47  
  TH01 8 43  

 D18S51 15 50 
56.18 

  vWA 18 61  

 D18S51 17 89   D21S11 30 59 
90.77 

 D1S1656 16 54  
  D21S11 31 65 

 D10S1248 13 36 
65.45 

     

 D10S1248 15 55      

 TH01 6 27 
96.43 

     

 TH01 7 28      

 TH01 8 88 
40.91 

     

 TH01 10 36      

 vWA 18 87  
     

 D12S391 17 40  
     

 FGA 21 47 
76.60 

     

 FGA 24 36      

 

Comparison with the researcher’s profile, showed some similarities to alleles on 

both elements, therefore it appears contamination has occurred.  Smaller peaks 

can also be seen, but as they do not meet the requirements of ‘true alleles’ they 

cannot be assigned. 
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5.7.3.30 Skeleton 4411 

Analysis of the femur from skeleton 4411 displayed only four alleles at three loci., 

as shown in Table 5-50.  Due to the metatarsal being absence, no comparisons to 

other elements can be made.  

Table 5-50: Skeleton 4411 DNA analysis 

Femur 

Marker Allele Height PHR 

 TH01 8 31 
  vWA 18 51 

70.59 
 vWA 19 36 

 D8S1179 11 38 
 

 

5.7.3.31 Skeleton 4462 

Data interpretation of the DNA results from skeleton 4462 displayed DNA on both 

the femur and metatarsal, as shown in Table 5-51. 

Table 5-51:  Skeleton 4462 DNA analysis 

Femur  Metatarsal 

Marker  Allele  Height PHR   Marker  Allele  Height PHR 

AMEL X 27 
74.07 

  D16S539 13 26  

AMEL Y 20   D18S51 15 94  

 D3S1358 15 55 
49.09 

  D1S1656 16 47  

 D3S1358 16 27   D10S1248 15 61  

 D22S1045 11 44  
  TH01 7 57  

 D16S539 13 61  
  vWA 16.1 30 

81.08 
 D18S51 16 59  

  vWA 18 37 

 D1S1656 17.3 41  
  FGA 24 46  

 D10S1248 15 44  
     

 D2S441 14 58  
     

 TH01 7 54 
62.96 

     

 TH01 8 34      

 vWA 18 126  
     

 D12S391 21 48  
     

 D8S1179 13 42  
     

 

Peak imbalance was observed at the two peaks at D3S1358 with a PHR calculation 

below the threshold, but the other paired alleles at amelogenin and TH01 were 
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confirmed.  The heights of the remaining single alleles at the other loci showed 

high probability of allele drop-out due to the low range of RFU from the peaks. 

The only discrepancy between the two elements is observed at the vWA allele, 

with the femur exhibiting a homozygous allele 18, and the metatarsal with a 

heterozygous 16.1,18. 

When compared with the reference sample from the researcher, it was observed 

that many of the alleles correspond. 

5.7.3.32 Skeleton 4473 

Only the femur was available for analysis from skeleton 4473, which resulted in 

the identification of six alleles across five loci, as displayed in Table 5-52.   

Table 5-52: Skeleton 4473 DNA results 

Femur 

Marker  Allele  Height PHR 

 D16S539 10 45   

 D18S51 17 31   

 TH01 6 30 
76.92 

 TH01 8 39 

 D12S391 17 39   

 D8S1179 13 78   

 

The TH01 marker was the only loci which displayed more than one peak – PHR 

calculations gave a result of 76.92% that there are true heterozygous alleles.  Due 

to the low quantity of peak heights, the probability of allele drop-out is high. 

 

5.7.3.33 Skeleton 4503 

Analysis of the femur and metatarsal from skeleton 4503 showed they both 

displayed alleles, as can be seen in Table 5-53. 
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Table 5-53:  Skeleton 4503 DNA analysis 

Femur  Metatarsal 

 Marker  Allele  Height  Marker  Allele  Height PHR 

 AMEL  X 71   D3S1358 15 27 
57.45 

 D16S539 4 30   D3S1358 16 47 

 D10S1248 13 53   D19S433 13 101 
41.58 

 TH01 7 64   D19S433 15 42 

 D21S11 30 49   D2S1338 19 35  
 D12S391 21 33   D22S1045 11 69 

92.75 
 D8S1179 9 62   D22S1045 16 64 

     D16S539 10 193 
42.49 

     D16S539 13 82 

     D18S51 15 58 
81.03 

     D18S51 17 47 

     D1S1656 16 104  
     D10S1248 13 60 

73.17 
     D10S1248 15 82 

     TH01 7 71 
74.65 

     TH01 8 53 

     vWA 16 52 
32.10 

     vWA 18 162 

     D21S11 30 48 
42.11 

     D21S11 31 114 

     D12S391 17 40 
53.33 

     D12S391 21 75 

     FGA 21 44 
68.18 

     FGA 24 30 

 

The femur sample displays only seven alleles of a low RFU value, and display 

characteristic degradation patterns. 

The data from the metatarsal shows a maximum of two alleles at each loci, 

however with severe peak imbalance, it is possible that more than one individual 

has contributed to the DNA profile. 

5.7.3.34 Skeleton 4561 

The electropherograms from the femur and metatarsal analysis displayed 

numerous alleles of very high RFU, as shown in Table 5-54, strongly suggesting the 

presence of modern DNA. 
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Table 5-54: Skeleton 4561 DNA results 

Femur  Metatarsal 

Marker Allele Height PHR   Marker Allele Height PHR 

 AMEL X 310  
  AMEL Y 35  

 D3S1358 15 103 
29.77 

 
 D3S1358 15 59  

 D3S1358 16 346   D3S1358 16 150 
78.67 

 D19S433 13 214 
82.71 

  D3S1358 17 118 

 D19S433 15 177   D19S433 13 65  

 D2S1338 19 165 
84.85 

  D16S539 11 70  

 D2S1338 23 140   D18S51 12 87 
67.97 

 D22S1045 11 167 
28.14 

 
 D18S51 20 128 

 D22S1045 16 47   D18S51 17 44  

 D16S539 10 402 
57.71 

  D1S1656 16 56  

 D16S539 13 232   vWA 17 130  

 D18S51 15 288 
45.93 

  D21S11 28 65 
68.42 

 D18S51 17 627   D21S11 30 95 

 D1S1656 16 425  
  D12S391 19 58  

 D10S1248 13 618 
26.54 

 
 FGA 22 297 

28.96 
 D10S1248 15 164 

 
 FGA 24 86 

 D2S441 10 322 
80.30 

     

 D2S441 14 401      

 TH01 7 236 
84.89 

     

 TH01 8 278      

 vWA 18 731  
     

 D21S11 30 721 
27.88 

     

 D21S11 31 201      

 D12S391 17 177 
90.31 

     

 D12S391 21 196      

 D8S1179 11 238 
59.66 

     

 D8S1179 13 142 
     

 FGA 21 460 
83.04 

     

 FGA 24 382      

 

Although no multiple peaks were found within the femur data, severe peak 

imbalance suggests that more than one contributor may be present.  The data was 

compared with reference samples, and despite the peak imbalance in the femur 

sample suggesting more than one contributor – all the alleles compiled together 

provide a complete profile of the researcher.   
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Analysis of the metatarsal showed the presence of three alleles at D3S1358 and 

D18S51, confirming the presence of more than one contributor.  Comparisons with 

the profiles found on the metatarsal display some alleles that do not match any of 

the reference profiles. 

5.7.3.35 Eriswell DNA result interpretation 

Due to the nature of the skeletal collection being analysed, the possibility of 

contamination from modern DNA was always high.  After individual analysis of 

each element, the results were compared to the profile of the researcher, and other 

reference samples from individuals that had had contact with the bones.  It was not 

possible to profile every individual, due to the time lapse between excavation and 

analysis. 

In order to eliminate any DNA from the analysis that does not belong to the 

skeleton, it was necessary to not only exclude any alleles associated with the 

researcher, but also any alleles that displayed characteristics of DNA originating 

from modern DNA, such as high RFU.  Although this method is likely to also remove 

intrinsic DNA information due to the commonality of the researcher’s profile, it is 

the only way to provide confidence in the results that are remaining. 

The results from this elimination process are presented in Table 5-55, alongside 

the reported number of alleles and loci identified, with the number of matching 

alleles between the elements of the same skeleton.  No discrepancies were found 

within elements from the same skeleton, which would otherwise suggest different 

origins. 

The strongest connections found between elements were from skeletons 0570 and 

4067 which both displayed 9 matching alleles between the femurs and metatarsals 

and no discrepancies at any of the loci, providing strong evidence that both 

elements are representative of intrinsic DNA. 
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Table 5-55: Eriswell DNA results from skeletal elements, after evidence of modern DNA contamination has been excluded. 
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0067F  17  9.3,13.3   16 13,15         6 4 
0 0 

0067M              9   1 1 

0235F  12,17  9.3   18 13,16   24,29 22.2     9 6 
0 0 

0235M                 0 0 

0326F    4,6      12,15   15    5 3 
0 0 

0326M     6            1 1 

0425F X 14 11    14 19,22   36      7 6 
0 0 

0425M                 0 0 

0426F                   
0 0 

0426M X,Y 14,17 11 6,9.3 14 11,12 12,13 17,19 17,20 15,16.3 29,32.2 20 15 16 11 19,20 26 16 

0477F                 0 0 
0 0 

0477M                 0 0 

0570F X 17,18   9 14 16 14  13  22     9 8 
9 0 

0570M X 17,18   9,10 14 16 14 20 13,17.3  22 17  11 18,22 16 12 
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0692F X  11 9  15.2  17   29 18       
5 0 

0692M  14 11 6,9 15 15.2 16,18 17  12 29     20,22 14 10 

0717F X 17               2 2 
0 

0 

0 0717M                   

0759F    9.3    16    19     3 3 
1 0 
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0791F                 0 0 
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0791M    9.3   14 15  12    17   5 5 

0799F X              14  2 2 
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0808F           38.2      1 1 
0 0 

0808M X  11,12 6,9 10,12  13,16 16  11 30.3 20,22    19,20 16 10 

0809F     17       31,31.2     2 2 
0 0 

0809M   11 7    15,16         4 3 

0991F X 18 11    14 12   33.2,36   14   8 7 
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4046F            22     1 1 0 0 

4046M        15     15,16    3 2   

4067F X,Y 17 12 9.3   13 17,18 17,18 10,16.3 30   17   14 10 
9 0 

4067M X,Y 17 12    13 17,18  16.3 30   14,17   11 8 

4095F    9.3             1 1 - - 

4098F  17 12    13.2   11  23     5 5 - - 

4099F                 0 0 
0 0 

4099M  14               1 1 

4191F   12              1 1 - - 

4222F    9             1 1 
0 0 

4222S  14 11,12 6  14,17.2 14 17   29,30.2      10 7 

4226F X,Y  14 6             4 3 
3 0 

4226M X,Y  6 6 15 14 16 11        18 9 8 

4288F X  8.3              2 2 
0 0 

4288M                 0 0 

4291                 0 0 0 0 

4295F X,Y 14,18 11 9.3 10,14  14 15    23     11 8 0 0 

4340F      10,13           2 1 
0 0 

4340M                 0 0 

4411F        19         1 1 - - 
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4462F X,Y      16   17.3       4 3 
0 0 

4462M        16.1         1 1 

4473F    6             1 1 - - 

4503F X  4  9            3 3 
0 0 

4503M        16         1 1 

4561F                 0 0 
0 0 

4561M Y 17 11    12,20 17   28 22    19 9 8 
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By comparing the DNA evidence to the original osteological reports and 

archaeological records from Eriswell cemetery, more information can be provided 

on the burial context.  Allelic similarities were observed between the femurs of 

skeleton 0067 - a female aged to be approximately 20-23 years, and skeleton 0235 

– a middle-aged male.  Similarities were found at three different loci, showing the 

possibility of a familial relationship.  No conflicting alleles were present, but with 

the absence of DNA on the metatarsals, these similarities cannot be confirmed. 

Skeletons 0425 was aged between 11-13 years, in osteological reports, and was 

buried in a double grave with skeleton 0426 – estimated as a 15 year old at the 

time of burial.  DNA profiles were only possible on one element per skeleton, so 

confirmation of alleles is not possible.  Similarities were seen on three alleles, 

suggesting a possible familial relationship.  Amplification of the amelogenin 

suggested skeleton 0425 was female, and skeleton 0426 was male.  Similarities can 

also be seen with skeleton 0692, estimated as a wealthy middle-aged female. 

Skeleton 4067, reported as a middle-aged male in osteological reports, also 

showed similarities with this group, especially with skeleton 0426. 

DNA analysis of skeletons 4226 and 4295 confirmed the estimation of sex as male 

as reported in the osteology report. 

The skeleton 4222, buried with a horse and a sword, showed similarities to several 

of the skeletons, but the partial profiles did not allow any positive associations to 

be made. 

5.8 Comparison of Fin Cop and Eriswell Results 

This section presents a summary of the data already discussed from Fin Cop and 

Eriswell in order to provide a comparison between the different burial 

environments.  The results from the colour, composition and DNA analysis are 

compared in relation to the skeletal element and burial environment from which 

the human remains were excavated. 
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5.8.1 Colour comparison 

The colour data from the limestone burial environment at Fin Cop and from the 

different environments are Eriswell is presented as average values in Figure 5-57.  

The results are reported on individual axes to allow the direction of colour 

difference to be identified.   

 

Figure 5-57:  Colour data of surface and colour of femurs and metatarsals 

from the limestone environment at Fin Cop and the sand, sand and chalk, 

and chalk environments at Eriswell  

The femur from the sand environment showed the darkest surface colour, but the 

colour did not penetrate deeply, leaving the cortex colour similar to the other 

environments.  Both the surface and cortex of the metatarsal from the sand 

environment were darker than the other metatarsals.  The metatarsal from sand 

was the only element to increase on the a axis after surface removal, therefore 

increasing in the colour red. 

Limestone was the only environment from which the metatarsal cortex was lighter 

than that on the femurs, and the limestone metatarsal was the only element to 

decrease on the b axis after surface removal, showing the cortex to be more yellow 

than the surface.  All the lightness measurements from the femora and metatarsals, 

both surface and cortex were highest from the limestone samples than any other 

environment. 
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5.8.2 Composition comparison 

The composition data, as calculated by ATR-FTIR, of the skeletal elements from 

Eriswell and Fin Cop analysis are displayed in Figure 5-58, in order to allow 

comparisons from the different burial environments to be visualised. 

 

Figure 5-58:  Comparison of average carbonate content, collagen content, 

and splitting factor (secondary right axis) of metatarsals and femurs 

from chalk, sand and chalk and sand burial environments from Eriswell 

and limestone from Fin Cop 

Overall the metatarsals displayed worse collagen preservation than the femurs, 

with the sand, and sand and chalk environments showing the worst preservation 

for the metatarsals, and chalk and sand and chalk being the worst for the femur 

samples. 

The limestone femur average shows the highest splitting factor in relation to all the 

skeletal elements from all four different burial environments, whereas the 

limestone metatarsal has the second lowest splitting factor of all the metatarsals, 

the lowest being metatarsals from the chalk environment.  The limestone 

environment is the only environment that shows the metatarsals with a lower 

average spitting factor than the femurs. 
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The highest carbonate content can be seen in the chalk environment for both the 

femurs and the metatarsals, and also shows the biggest difference between this 

parameter and the collagen content.  As both calculations include the peak height 

of the phosphate peak, the results are generally similar, as shown by results from 

the other environments.  These high results, especially in the metatarsal samples, 

may be due to the uptake of carbonate from the burial environment.  Given the 

similar composition of the limestone burial medium, it is surprising the same 

cannot be seen in these burials. 

The least differences observed between skeletal elements from the same 

environments can be seen in the limestone samples, of which the results seem to 

display a similar diagenetic state.  The biggest differences can be observed 

between the elements from the sand burials – however, the sample size of tested 

elements is much lower than the other environments. 

XRF analysis was also conducted on the bone samples in an attempt to identify the 

unknown peaks that were present in some of the spectra during ATR-FTIR 

analysis.  A comparison of the estimated iron content from a small sample set of 

bone samples from Fin Cop and Eriswell can be seen in Figure 5-59. 

The highest iron content can clearly be seen in skeleton 6 from Fin Cop, more than 

double than the other elements from Fin Cop and also higher than any of the 

Eriswell elements.  The samples from Fin Cop show a varying amount of iron 

present, between the femurs and the metatarsal, whereas the analysis of the 

Eriswell samples show a significant difference between the femurs and the 

metatarsals. 
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Figure 5-59:  XRF results of iron quantitation in bone samples from Fin 

Cop and Eriswell burials 

The quantity of iron can be seen to be much higher in the metatarsals, than the 

associated femurs from the same skeletons. 

 

5.8.3 DNA comparison 

In order to allow a crude comparison of the amount of DNA contained within the 

archaeological samples, the average of the peak heights from samples containing 

DNA, from both collections, were compared to the average peak heights from the 

serial dilutions of control DNA analysed as part of the optimisation process 

outlined in section 4.2.4.  The Fin Cop samples displayed a higher concentration of 

DNA than the elements from the Eriswell skeletons, although both at very low 

concentrations as shown in Figure 5-60. 
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Figure 5-60:  Comparison of average peak heights from serial dilutions of 

control DNA, and the average peak heights from samples containing DNA 

from Eriswell and Fin Cop analysis. 

As all samples were prepared and analysed in the same way, this suggests that the 

quantity of DNA preservation of the Fin Cop samples in relation to the Eriswell 

samples was much better, despite the vast difference of centuries in age of the 

samples. 

By looking at the two burial grounds together, more information can be obtained 

about the difference of the quality of DNA preservation.  Figure 5-61 shows the 

overall percentage of the allele amplification at the different loci from both the 

Eriswell and Fin Cop skeletal samples. 

The Fin Cop samples show better amplification than Eriswell in the smaller 

amplicon loci of amelogenin, TH01 and D16S539; FGA at mid-range, and the larger 

amplicons of D21S1338 and D22S1045.  However, less loci were amplified from 

the Fin Cop collection, than the Eriswell collection which showed amplification was 

possible at all loci.  A ‘ski slope’ pattern characteristic to degraded or inhibited 

DNA (McCord, 2011) is observed from both the burial grounds, but with decreased 

amplification at certain loci.  This observation, along with the absence of some loci 

in the Fin Cop samples, shows evidence of inhibition displaying at certain loci.  As 

this has not occurred purely at the large base pairs amplicons, it suggests sequence 

Eriswell 
Fin Cop 

0

500

1000

1500

2000

2500

3000

0.001ng/µl 0.01ng/µl 0.1ng/µl 0.5ng/µl

H
e

ig
h

t 
o

f 
am

p
lif

ie
d

 a
lle

lic
 p

e
ak

s 
(R

FU
) 

Concentrations of serial dilutions of control DNA  



Chapter 5:  RESULTS 

242 

specific inhibition is occurring rather than just DNA degradation leading to strand 

breakage. 

 

Figure 5-61:  Percentage of Fin Cop and Eriswell samples displaying 

alleles at the 16 loci, in relation to the base pair size of the amplicons 

 

Figure 5-62:  Percentage of elements from Fin Cop and Eriswell 

displaying alleles at the 16 loci 
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Figure 5-62 shows the loci amplification in more detail, with the percentage of 

metatarsals and femurs (separated by burial ground) shown rather than just an 

overall average shown in the last figure. 

The loci Amelogenin and D16S539 are the only two that show better amplification 

in both the femurs and metatarsals from the Fin Cop samples than the Eriswell 

bones, although the Fin Cop femurs show strong amplification in comparison to the 

metatarsals and the Eriswell samples. 

In contrast, the Eriswell metatarsals were the only elements where amplification 

was successful at all loci, showing much better DNA preservation than that of the 

Eriswell femurs.   

In terms of the differences observed between the skeletal elements, D1S1656 is the 

only locus that shows better amplification in metatarsals than the femurs, from 

both the Fin Cop and Eriswell sites. 

By looking at the results in terms of burial environments rather than site, 

additional information can be gained in regards to DNA preservation, but more 

importantly, DNA inhibition. 

Figure 5-63 shows the percentage of both femurs and metatarsals that displayed 

alleles at the 16 loci, in relation to the reported burial environment.  Due to the 

differences in sample sizes these have been reported on the figure in order to be 

able to put the results of the sand burials into context. 

As the previous three figures have displayed, a decline in the successful 

amplification of alleles diminishes as the length of the target amplicon increases, 

indicative of DNA degradation.  However, this figure also portrays that the inability 

of amplification is likely due to inhibition in some places, rather than just DNA 

degradation.  In some instances, this inhibition appears to be related to the burial 

environment and skeletal element. 

The metatarsals from the limestone environment (Fin Cop) show a larger degree of 

inhibition occurring than in the femurs from the same environment; with no 

amplification of alleles at some of the smaller loci of D8S1179 and D3S1358, but 
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amplifying successfully at D1S1656.  However, the lack of any DNA at any loci past 

this suggest DNA degradation is more advanced in the metatarsals than the femurs 

that showed successful amplification with the larger amplicons. 

 

Figure 5-63:  Percentage of samples displaying allelic amplification in 

relation to burial environments from both the Fin Cop and Eriswell site 

 

The metatarsals from the chalk environment (Eriswell) were the only sub-section 

of samples to display successful amplification at all of the 16 loci.  The femur 

samples from the same environment produced results at 15 of the loci, failing only 

at D12S391. 

0

10

20

30

40

50

60

70

80

90

100

A
m

el
o

ge
n

in

TH
0

1

D
1

6
S5

3
9

D
8

S1
1

7
9

D
3

S1
3

5
8

vW
A

D
1

8
S5

1

FG
A

D
1

9
S4

3
3

D
2

1
S1

1

D
1

S1
6

5
6

D
2

S1
3

3
8

D
1

2
S3

9
1

D
1

0
S1

2
4

8

D
2

2
S1

0
4

5

D
2

S4
4

1

65-140bp 100-300bp 160-295bp 270-375bp

P
e

rc
e

n
ta

ge
 o

f 
e

le
m

e
n

ts
 t

e
st

e
d

 d
is

p
la

yi
n

g 
am

p
lif

ie
d

 a
lle

le
s 

 

Limestone Femurs n=6 Limestone Metatarsals n=4

Chalk Femur n=25 Chalk Metatarsal n=21

Sand & Chalk  Femur n=5 Sand & Chalk Metatarsal n=3

Sand Femur n=1 Sand Metatarsal n=1



Chapter 5:  RESULTS 

245 

The results of the elements from the sand burials showed inhibition in both the 

femur and metatarsal, with no allelic amplification possible at the five smallest loci 

(except amelogenin in the femur) yet possible with larger amplicons.  However 

these results are purely based on elements from one skeleton. 

The possible inhibition seen at loci D19S433 and D2S1338 only show successful 

amplification from samples from the limestone (Fin Cop) and the chalk (Eriswell) 

environments, suggesting more inhibitions present in burial environments 

containing sand.  The largest two loci also only display results from the limestone 

and chalk environments, however this could be due to DNA degradation rather 

than inhibition – in either case it would appear that the limestone and especially 

the chalk environments best promote the survivability and successful 

amplification of ancient human DNA. 

5.9 Chapter summary 

This chapter has presented the results from the human analogue experimental 

burials and the ancient human archaeological remains.  The results of this chapter 

are discussed in the next chapter, with comparisons of both data sets. 
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 DISCUSSION Chapter 6:

Chapter 5 presented the results from both the experimental porcine burials and 

the archaeological human remains, with comparisons made between the data sets. 

This chapter presents a critical discussion of the data obtained throughout the 

research, with collation of all the results presented in the previous section.  The 

intention is to identify associations observed between bone preservation and soil 

conditions observed in the porcine burials, to correlate with findings from the 

human archaeological remains. 

6.1 Decomposition of human analogue burials 

In order to assess whether decomposition rates were affected by different 

attributes within a burial environment, observations in relation to soil properties 

and behaviours were made and related to the analytic data. 

In terms of observations, a strong odour was noted immediately with the clay 

burials, which was correlated with the decomposition of the soft tissue and 

associated fluid pooling beneath the bone.  The odour reduced at 6 months when 

there was no pooling or soft tissue remaining, and dissipated completely by 18 

months.  As expected within a wet and poorly drained environment (Schotsmans 

et al., 2011), adipocere formation was observed from 1.5 months and persisted for 

12 months. 

The level of odour from the sand burials mimicked that of the clay burials, yet it 

persisted for the entire 18 month duration.  Unlike the clay burials, there was no 

pooling of liquid, due to the draining nature of the sand, however the sand was 

visibly wet.  These observations of odour and sand wetness has also been reported 

by Janaway et al (2009) when studying decomposition using pig carcases in a 

sandy desert in Peru.  The persistence of the odour has also been reported when 

conducting controlled laboratory experiments, of burying pig carcases in sandy 

soil (Stokes et al., 2009).  No soft tissue was present at any of the excavations, but 

dry adipocere and a wet brown substance were present throughout – showing the 

decomposition of the soft tissues has been the most aggressive out of all the 
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burials.  The production of adipocere formation has previously been reported in 

sandy burial conditions, despite the non-ideal environment of well-draining soil 

(Schotsmans et al., 2011). 

In contrast, the lime burials displayed the best soft tissue preservation, albeit in 

the form of desiccated tissue, being evident throughout the 18 month burials.  The 

lime environment provided the perfect conditions for tissue desiccation with a dry 

and porous environment wicking moisture away from the bone.  The desiccation of 

the tissue also minimised the odour released, with only a slight odour present at 

the 12 and 18 month burials, in addition to a discolouration in the lime above the 

bone suggesting some decomposition fluid present also. 

No odour was evident with any of the compost burials, no pooling of fluids 

occurred, and tissue was only evident at 1.5 months, after which only dry 

adipocere was evident.  Forbes et al (2005) reports an optimal pH level for 

adipocere formation is 5-9, and a highly acidic environment is not favourable for 

adipocere formation.  For this reason, adipocere was not expected in the compost 

environment, however, within the first 1.5 months of burial, pH levels in the 

compost changed from acidic to neutral, and therefore became an acceptable level 

for adipocere formation. 

Based on these observations, the decomposition rate of the soft tissue was quickest 

with the bones buried in the sand environment, followed by the compost and clay 

burials, with the best soft tissue preservation seen in the lime burials. 

6.2 Effects of burial environments 

By conducting soil analysis, similarities were observed between certain aspects of 

the decomposition process from the compost and clay environments, despite the 

differences in soil properties.  In terms of burial medium composition, the biggest 

difference separating compost and clay from sand and lime was the water content 

of the burial medium, and the presence of mould and condensation within the 

burial, therefore the effect of water was investigated. 
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Within the clay environment, the soil particles served as a ‘holding’ platform for 

the decomposition products released and prevented drainage therefore partly 

submerging the bone in a mix of water and decomposition fluids. 

The compost burials displayed a gradual increase in the water content of the 

compost, with no pooling of liquid, and the bone felt dry.  It would appear that the 

compost wicked the moisture and liquid away from the bone, behaving like a 

sponge. 

Despite a lack of water in the lime environment, the moisture from the bone 

enabled the production of a covering or cast to be produced around the bone and 

the soft tissue, limiting the release of any decomposition fluids into the 

surrounding medium, and appeared to slow the decomposition process. 

The presence of water in a burial environment remains a point of dispute as to 

whether it is a help or a hindrance in the preservation of skeletal remains and 

associated soft tissue (Turner-Walker, 2007).  Standing water can often be seen to 

act like a buffer by resisting change in temperature and stabilising any changes in 

pH, whereas running water many result in the movement of water through the 

bone matrix leading to subsequent ion loss leading to breakdown of the matrix, but 

also providing a means of transport for soil contaminants into the bone (Hedges 

and Millard, 1995; Carver, 2000).  In this case, it would appear that the standing 

water (or decomposition products from the bone) actually provides a hindrance to 

preservation, due to its ability of transporting soil contaminants such as humic 

acids into the bone which act as PCR inhibitors and therefore prevent the 

subsequent amplification of the DNA products held within. 

By monitoring the pH levels of the burials, it was possible to record the changes 

which occurred at different times during the burials.  Prior to the burial of the 

porcine bones, the pH levels in the compost, sand, clay, and lime were 6.25, 8.48, 

9.63 and 13.07 respectively.  The changes in the pH varied between the different 

burial environments, narrowing the range of difference between them, by 

converging at equilibrium.  Compost as the most acidic environment was the only 

burial medium seen to become more alkaline due to the increased ammonia levels 
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as a result of the decomposition process.  This increase in pH in an acidic 

environment has previously been reported by Stokes et al (2009).  The remaining 

environments all became more acidic although with varying changes and 

fluctuations.  This change is different to previous studies reported, which found 

during early and intermediate periods of decomposition, the pH of the soil 

increased initially, with a decrease in the later stages (Stokes et al., 2009; 

Schotsmans et al., 2014).  However these studies used pig carcases as opposed to 

individual bones with minimal soft tissue.  Therefore these differences in pH 

change can be explained by the putrefaction and release of abdominal fluids and 

decomposition of other soft tissues not present in this study. 

The pH range seen in the sand, clay and compost environments are all within the 

range of pH4-10 reported to be acceptable for activity by soil bacteria (Schotsmans 

et al., 2012).  Research by Fernández-Calviño et al. (2011) demonstrated small 

changes in pH can be tolerated by the native soil bacteria, acclimatising to the 

different levels readily; therefore the changes seen in the burials would not have 

affected the activity of the microbial bacteria.  The lime environment showed the 

smallest change in pH, only fluctuating between pH 12-13, remaining outside of the 

optimal range for soil bacteria.  This small increase of pH during decomposition in 

an alkaline environment has also been reported by Schotsmans et al (2014). 

The organic content within the compost and clay environment was another 

assessed parameter which showed similar patterns of fluctuation throughout the 

18 month duration.  Fluctuating patterns were expected due to the periodical 

release of fluids at different stages of decomposition; however more activity can be 

seen from the lime and the sand burials.   Within the sand burials, a large increase 

is seen at 3 months, which coincides with the rise in water content, and a drop in 

pH – confirming the initial release of acidic decomposition products.  The lime 

burials showed similar trends to that of sand but it occurs three months later at the 

6 months point – a rise in water content, organic content and this time an increase 

in pH, once again shows the release of decomposition products into the lime.  This 

delay suggests a relatively retarded decomposition process is occurring within the 

lime environment, compared to that seen in the sand burials, as previously 
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reported by Schotsmans et al. (2012) who compared the decomposition rate of 

pigs concluding that the limed pigs were better preserved that the unlimed pigs.  

Schotsmans et al (2012), whilst researching the changes in pH of hydrated and 

quicklime pits, reported that the pH values of control pits which contained no pigs 

both increased in alkalinity, therefore the rise seen in this research may not be due 

to the decomposition process, however with the water and organic levels also 

changing, it seems to be the case. 

In terms of pH the compost and clay samples show the opposite effects within the 

first 1.5 months with an increase in pH in the compost, and a decrease in the clay 

environment – possibly due to the higher percentage of soil bacteria and microbes 

present in the compost.  From this 1.5 month point they follow very similar 

fluctuating trends that ultimately decrease by 18 months. 

6.3 Colourimetry of porcine bones from experimental burials 

These findings of decomposition rates can also be confirmed by the other analysis 

conducted upon the bones, as well as analysis the burial environments.  The 

observation of the bone submersion within the clay environment, providing 

passage of contaminants into the bone is reflected in the colourimetry data.  The 

colour of the surface of the bone progressively shows an increase in the colour 

change from that of pre-burial, and so does the colour of the cortex of bone, 

showing penetration of contamination of the bone is occurring, and is becoming 

progressively worse over the 18 month period.   

The trend seen from the compost burials differs from that of clay burials, with a 

distinct trend of decreasing colour difference between the post-burial surface and 

the cortex colour, their colour becoming more similar over time.  Although this 

suggests that the colour is penetrating the surface, the colour difference between 

pre-burial and surface removal does not dramatically change throughout the 18 

months.  However, by examining the individual colour axes, it is possible to 

identify it is the lightness of the bone which is changing dramatically, especially at 

6 months, where the bone cortex is darker than the surface, showing extreme 

infiltration of contaminants, possibly humic acid from the compost into the bone 
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cortex.  Previous research has indicated the change in bone to a darker colour 

when in an acidic environment, can also be due to exchange of metal ions such as 

iron and manganese from the environment (Turner-Walker, 2007). 

The lime burials show the highest colour differences in all categories tested at the 

1.5 month stage, with a large difference seen between the post-burial surface and 

the cortex colour, after which a more constant cortex colour on all 3 axes can be 

seen.  Within the first 6 months, fluctuations can be seen on the a* axis, 

(red/green) which were also recorded as observations during excavation with the 

presence of blood and soft tissue still surrounding the bone.  The colour change on 

the b*(yellow/blue) axis, or lack thereof, due to the big difference of a higher and 

fluctuating yellow value on the surface compared to consistent lower value on the 

cortex.  The highest value of yellow on the surface of the lime bones, also coincides 

with the rise in water content, organic content and pH, providing another indicator 

of decomposition processes.   

The sand bones showed the biggest colour differences between surface and cortex 

occurring within the first 1.5 months coinciding with the changes observed in the 

soil of water, organic content and pH, after which the cortex and surface displayed 

similar colouration, suggesting slight staining on the bone exterior, but no signs of 

infiltration into the cortex occurring. 

The colour of the bone marrow also provides another perspective on the rate of 

decomposition.  As with the bone colour, the bone marrow also changed the least 

within the sand burials with the presence of haematopoietic tissue still present at a 

later stage, and a slower colour progression than others – showing a slower 

decomposition rate.  The bones from the compost burials showed the fastest 

decomposition of bone marrow, being the only samples to show black 

discolouration by the 18 month period.  The lime and compost showed similarities 

in the orange colouration, whereas clay and sand showed similarities in the grey 

colouration of the marrow.  

The control bone showed the largest colour difference between the bone surface 

colour at 0 months to that at the 18 month period – without any burial this change 
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is purely to do with intrinsic factors occurring due to the diagenesis of the bone 

and the air.  By investigating the individual axes, the change could be calculated by 

direction – after variable colour change on all three axes in the first three months, 

the lightness showed a steady increase, the degree of red steadily decreased, and 

the yellowness of the surface plateaued.  The initial changes showed the bone 

becoming darker, redder and more yellow, presumably caused by the breakdown 

of proteins and fats with the bone matrix.  

Compost showed the next highest difference with a huge increase in the last period 

of 12- 18 months, with increases in lightness, redness and yellowness occurring on 

the surface.  Clay was the next largest with the biggest change between 3-6 

months.  Lime burials showed the largest increase in colour difference between 1.5 

months and 3 months of burial, followed by a gradual increase.  Sand mirrored that 

of compost without the increase at the end of the burials – resulting in the smallest 

overall colour difference of the surface. 

Despite the largest colour difference of the surface, the control bones showed the 

least difference between the bone surface and the underlying cortex, showing 

uniformity in the colouration without the soil contaminants.  Within the first 3 

months, the control bones along with those from the sand, lime, and compost 

burials showed the largest colour difference between surface and cortex, 

suggesting staining was purely on the surface and infiltration had not occurred 

within this period.  This difference was due to changes in all three of the colour 

axes, but to varying degrees for each burial type.  Sand burials were the only bones 

not to increase in lightness, and the only bones to decrease in yellowness of the 

surface colour within this period.  The control, sand and lime burial samples all 

showed small decreases of colour difference after the initial change, showing 

gradual decreases in lightness suggesting infiltration of contaminants was 

occurring at a gradual pace.  The control, lime and sand showed a slight increase 

between 12 and 18 months suggesting the attack on the surface of the bone had 

stopped moving through the cortex, or the bone surface was at this stage, more 

vulnerable to a different type of attack.  Bones from the clay environment showed a 

completely different trend from the other environments, with the rate of colour 
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change remaining relatively constant throughout the duration of burial.  This 

resulted in the largest colour difference between the surface and cortex by the 18 

month point, suggesting slower but more persistent penetration of contaminants 

from the clay into the bone. 

Observations of the total colour difference between the bone surface prior to 

burial and after surface removal show how the compost and control bones had 

similarities during the 18 month period, suggesting the surface colour change of 

the compost burials was in fact only surface deep and infiltration has occurred no 

more than seen in the control bones.  The clay bones showed the largest colour 

difference suggesting the highest diagenetic change or infiltration of 

contamination.  The bones from the sand and lime environment also showed 

similarities in trend and values, showing the largest change within the first 3 

months – most likely due to the retarded decomposition process seen through data 

collection from other variables. 

6.4 Bone diagenesis of human analogue burials 

The results from ATR-FTIR analysis provided more information of the 

preservation of the bones.  The first 1.5 months showed a step increase in splitting 

factor for all samples, as expected due to intrinsic alterations of the structure 

associated with decay.  After this initial increase the control samples showed a 

plateau, with the same observed in the carbonate content and collagen content.  

Due to the lack of a burial environment, these changes in composition and 

structure must be due to intrinsic factors or exposure to air prompting the 

diagenesis.  Samples from all the experimental burials showed differences to those 

recorded from the control bones, showing changes to the normal bone taphonomic 

metabolism.  The data shows the lime bones remain the best preserved after the 18 

month burial period, with a splitting factor remaining below that of the control 

bone from 1.5 months onwards.  However, these results were not indicative of the 

amount of DNA present as no 500 base pair amplicons were able to be amplified 

after 6 months of burial – the same point from which an increase in water content, 
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organic content and pH were observed in the environment, and an increase in 

yellow colouration on the surface on the bone. 

The composition results showed that overall the compost and clay samples 

showed the worst bone preservation with high splitting factors, and low carbonate 

and collagen content.  As the clay and compost both showed high water content, 

these diagenetic changes of the bone could be due to the presence of water, 

dissolving the apatites in the bone and changing the structure. 

Although not widely reported, it is a common thought between archaeologists and 

researchers that clay has preserving qualities (Gabbott, 1998; O’Connor et al., 

2011), however, in this case it would appear the water content had a dramatically 

deleterious effect on the bone preservation.  This has been previously reported 

after analysis of skeletal material from waterlogged clay burials (Rahtz and Hurst, 

1976) and assessment of weathering rates in defleshed bones in a high clay 

environment (Janjua and Rogers, 2008). 

The sand burials also showed high splitting factors, but in a more variable manner 

with a decrease after 1.5 months.  At 6 months the splitting factor was lower than 

that of the control and the lime, after which no 500 base pair amplicons were 

amplifiable.  The standard deviation between samples at this point was 0.04 so the 

results do not appear to as a consequence of inter-sample variability.  Rather this 

highlights the fact that other processes were occurring within the bone due to 

interactions with the environment which affected the mineral matrix of the bone.  

The good preservation of the bones noted in the sand burials, in contrast with the 

observations of archaeologists in the case of Sutton Hoo (Carver, 2000) and from 

the ancient human archaeological remains from this research, could be due to the 

lack of water movement that would occur in an open space.  By containing the 

burial in a plastic box and not providing a simulated rainfall, there is no water 

movement through the particles of the sand which would occur naturally.  This 

eliminates both the effect of the water percolation on the bone and surrounding 

environment, and also the chemical “refreshment” that rainfall would provide by 

the changes in pH, and movement of decomposition fluid. 
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For comparative analysis, other sites containing burials in sand were examined, 

and while Sutton Hoo offers the most striking perspective on the effect of sand on 

the degradation of human remains, other patterns of preservation are evident 

elsewhere. Recent excavations at St Patrick's Chapel, Whitesands, Dyfed, have 

revealed well preserved coffined skeletal remains lying within dune sand deposits 

(Murphy et al., 2015).  These inhumations, some centuries later than the Sutton 

Hoo burials, are strikingly well preserved by comparison. Similarly, Bronze Age 

cist burials recovered from the dune system of Low Hauxley, Tyne and Wear, while 

not so strikingly well preserved as the burials at Whitesands, are robust in 

comparison with the far later Sutton Hoo (Waddington, 2014). 

These processes occurring in the experimental samples at 6 months in the sand 

samples can also be seen in the other FTIR data in the ratios of Amide/Phosphate 

and Carbonate/Phosphate, with sharp inclines in both, and again variable trends 

very different to those from the control bones, and bones from other 

environments. 

The bones from the lime burials also displayed increases in Amide/Phosphate and 

Carbonate/Phosphate, but with steady increases over the 18 month period, despite 

the continually low splitting factors.  This provides more support to the notion that 

these changes in carbonate, phosphate and crystallinity must be due to the uptake 

of environmental contaminants altering the bone metabolism, as previously 

reported by Álvarez-Lloret et al (2006) whilst analysing bones from contaminated 

soil.  This shows that other factors are occurring due to the properties of the sand, 

which due to its aggressive nature in the degradation of DNA at 3 months and 

onwards, penetration from the environment is occurring, allowing ions to infiltrate 

the bone matrix. 

The results of the control bone showed that the highest degree and fastest rate of 

diagenesis, as observed via the splitting factor, occurred within the first three 

months.  However the splitting factor then decreased again between 3 and 12 

months before an increase at 18 months, suggesting other processes occurring 

within the bone, confirmed by the rise in Carbonate/Phosphate, suggesting 
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splitting factor cannot be used independently as an assessment of early-stage 

diagenesis. 

Considerations of rates of chemical change have been discussed above and indicate 

how results from the porcine burials show how the passage of time affects bone 

diagenesis.  The rate and extent of the bone diagenesis was dependent on the 

burial environment in which the bone resided.  In terms of colour changes, and 

structural changes, the majority of this appears to occur within the first 6 months, 

before a plateauing of changes, of either increasing or decreasing values.  

Schotsmans et al (2014) also reported preservation differences in bone buried in 

different environments to be highest during the first 6 months. 

6.5 Bone diagenesis of human remains 

In regards to the human archaeological results, due to the vast difference in 

duration of burials, in excess of thousands of years, a much higher state of 

diagenesis in the Fin Cop samples than the Eriswell samples might be expected, 

however this was not observed in all cases.  The ATR-FTIR results showed varying 

degrees of diagenesis - with some results showing better preservation in terms of 

higher Carbonate/Phosphate and Amide/Phosphate levels in metatarsals 

compared to those from different burial conditions from Eriswell.  A greater 

quantity of DNA preservation, measured by height in RFU, was observed in the Fin 

Cop samples when compared to the Eriswell samples.  However, amplification was 

not possible at all loci from the Fin Cop samples, in contrast to the Eriswell 

samples which showed allelic amplification was possible at all loci.  The Fin Cop 

analysis also showed a higher percentage of samples exhibiting alleles at the 

amelogenin marker.  As the smallest amplicon in the multiplex analysis, it was 

expected the amelogenin marker would have amplified in all cases where DNA was 

amplifiable.  This suggests a higher level of inhibition at this locus in the Eriswell 

bones than those from the Fin Cop site. 

Analysis of the human archaeological samples highlighted the differences observed 

in results from the different skeletal elements.  The extent of preservation as 

observed from the ATR-FTIR results, showed that overall the metatarsals were 
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found to have worse preservation with lower collagen and carbonate levels 

estimated from Amide/Phosphate and Carbonate/Phosphate ratios, and a higher 

splitting factor than the femurs.  This coincides with research previously reported 

by Janjua and Rogers (2008) who found femora were more resilient than 

metatarsals, when assessing weathering modifications such as cracking, colour 

change, soft tissue presence and odour.  Metatarsals from Eriswell showed the 

highest rate of contamination from Iron– most likely to do with the differences in 

cancellous bone structure and size, showing vulnerability to penetration from 

contamination; despite this, the same samples were the only elements that showed 

amplification on all loci tested.   

6.6 DNA survival in human remains 

This vulnerability due to element structure is also observed when comparing the 

environment in which the skeletons were buried, to the DNA results.  The 

metatarsals from the limestone environment (Fin Cop) showed a much higher level 

of inhibition that the femurs from the same skeletons buried in the same 

environment, but also a higher level of DNA degradation with no amplification in 

the larger amplicons.  However, the same pattern of inhibition and degradation 

was not observed in the chalk environment at Eriswell, where the metatarsals 

display amplification on all alleles, but the same was not achieved from the femurs.  

The highest level of inhibition was seen in the femur and metatarsal from the sand 

burial, with the inability of amplification noted at the five smallest loci. 

This observation brings into question the proposed relationship between the 

survival of DNA and that of the mineral and organic components of the bone.  Due 

to the uptake of carbonate, phosphate, calcium and other contaminants derived 

from the environment and groundwater, it is difficult to state a simple relationship 

between the DNA survival in the bone compared to the native mineral and organic 

components of the bone.  In past research Fredericks (2012) reported it was 

possible to use splitting factor as an indicator of preservation and DNA survival, 

but that this was dependent on the preservation of collagen, which in turn was 

related to the presence of bone mineral.  However, Fredericks’ research 
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investigated controlled thermal diagenesis using bovine bone and not human 

archaeological bone which had been exposed to many other diagenetic factors.  

Stiner et al (1995) did use archaeological bone, primarily from goats, and found no 

significant differences between burnt and non-burnt bones when investigating the 

carbonate content and splitting factor which all fell within the range of 3-4. 

Research by Trueman (2008) used archaeological human bone and determined 

that the change in crystallinity and trace element uptake from the environment 

was correlated, and controlled by the decomposition of the organic phase up until 

the point of exposure of the crystal structure due to collagen degradation.  From 

this point, Trueman stated that chemical alteration is then “site-specific” in terms 

of environments, and will only provide a broad indication of collagen survival and 

is not an appropriate tool for assessment of diagenetic alteration.  The results from 

this research, supports Trueman’s statement as the control porcine bones showed 

a systematic diagenetic process, whereas the bones from the experimental burials 

did not.  

6.7 Relationship between archaeological conditions and DNA 

survival 

Although difficulties are associated with the determination of the nature of the 

structural changes due to different environments, a relationship between burial 

conditions and the survival of DNA can be seen within the experimental porcine 

burials, and also the human archaeological remains.  Degradation of DNA could be 

seen with the lime and sand analogue burials, however due to the sudden drop out 

of all amplifiable DNA from the clay and compost samples from 12 months, and the 

notable colour change indicating ion exchange, this is more likely to be due to 

inhibition.  PCR inhibitors are present in substances in the soil, as discussed in 

section 4.1.8 which can prevent the amplification of the target DNA (Anðelinoviæ 

et al., 2005).  Inhibitors such as humic acid can reduce the apparent DNA 

concentration in a sample by binding to the structures.  This inhibition process is 

thought to be specific to certain DNA sequences, but is also concentration 

dependent and may be responsible for overwhelming all sizes of base pair 
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amplicons (McCord et al., 2011).  Inhibition of DNA amplification can also be seen 

in the archaeological human remains, with some larger amplicons being 

preferentially amplified over the smaller ones, providing further evidence to 

support the concept of this effect being sequence specific.  Further investigation 

also discovered the loci D3S1358 and D8S1179 which displayed inhibition on the 

Fin Cop metatarsals, were the only loci to contain the same sequence.  The 

inhibition was less pronounced in the elements from the chalk and the limestone 

environments, and most apparent in the sand bones, and generally the metatarsals 

were affected worse than the femurs. 

Another source of PCR inhibition is collagen which binds to the Taq polymerase in 

the PCR mastermix.  The ATR-FTIR results show bones such as those from the lime 

environment with a higher collagen content than the clay and compost bones 

which were not affected, therefore this does not appear to be a simple relationship 

with collagen. 

The sand environment appeared to be the most aggressive in terms of DNA 

degradation with the inability to amplify 500 base pair amplicons after 1.5 months.  

Lime appeared to have a preserving effect on the soft tissue yet the inability to 

amplify 500 base pair amplicons occurred after 6 months.  Although this may also 

be due to PCR inhibition as calcium is present in high quantities in lime and acts as 

a PCR inhibitor by binding to the Taq polymerase in the mastermix (McCord et al., 

2011).  The darkening colour change seen in the lysis during extraction (section 

5.4), may be due to the removal of inhibitors such as calcium from the sample, until 

the point of saturation at which PCR inhibition occurred.  A similar correlation 

between the colour of a DNA extract and inhibition has been reported by Eilert and 

Foran (2009), who proposed the colour was due to the presence of iron and humic 

substances. 

The human archaeological bones from the sand environment showed the worst 

preservation of DNA, both in the number of loci amplified and the estimated 

quantity of DNA measured in RFU of the peak heights as discussed in section 

4.3.10, but also the highest level of inhibition.  The presence of limestone at Fin 
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Cop or chalk at Eriswell, appeared to increase the survivability of the DNA, and 

also showed less effect from inhibitors. 

By looking at the individual variables, it was possible to identify those which may 

be responsible for the changes seen in composition, colour and biomolecules in 

relation to their environmental conditions.  The clay and compost bones all 

showed drop out of amplifiable alleles after 6 months of burials.  Both clay and 

compost soils contained the highest organic and water content of all the burials, 

and also showed the biggest difference between the pre-burial surface colour and 

the bone colour after surface removal, when compared with sand and lime.  These 

variables suggest it is the organic content of the burial medium providing the 

bacteria that promoted the bone degradation, with the water acting as a passage 

into the bone which is confirmed by the difference seen in the cortex colour of the 

bone. 

The lime samples showed the best preservation in relation to amplifiable DNA and 

showed a darker colour of lysis during extraction.  This dark lysis may indicate a 

more complete inhibitor removal therefore leaving less inhibitors in the bone to 

obstruct amplification.  The lime environment had the highest pH level, which is 

reported to be outside of the optimal pH range for soil bacteria, potentially limiting 

the development and efficiency of bacterial attack.  Lime bones showed the slowest 

degradation of bone matrix reported by the lowest splitting factor from all the 

environments, however an uptake of carbonate from the environment was evident. 

The sand samples showed a dropout of DNA after 1.5 months, at the same time the 

biggest colour difference for pre-burial to surface removal and post-burial to 

surface removal started at this point and continued for the whole duration.  A 

steady increase in colouration of yellow on the b* axis, suggests the infiltration of 

iron (Viscarra Rossel et al., 2009) or fluvic acid into the bone.  Dramatic 

fluctuations were also seen in the FTIR results – suggesting the presence of iron or 

other contaminants from the environment affecting the results (Cheshire et al., 

2000). 
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6.8 Relationship between archaeological environment and bone 

diagenesis 

Despite the similarities in burial composition between the limestone burials from 

Fin Cop (Iron Age) and the chalk burials from Eriswell (Anglo-Saxon) the results 

from the analysis showed big differences.  The bones from the limestone 

environment showed the highest average splitting factor from all four 

environments, and also the lightest surface colour and the lightest cortex colour – 

showing that the limestone had a bleaching effect on the bones.  This effect has 

been reported previously in alkaline soils and is thought to be due to the presence 

of metal ions bound on the surface as insoluble carbohydrates (Turner-Walker, 

2007).  In contrast, the bones from the chalk environment displayed the lowest 

average splitting factor, but did have the largest range observed from the sample 

set.  They were second lightest in surface and cortex colour (like the limestone) but 

also exhibited the smallest colour difference.  The bones showed the highest 

Carbonate/Phosphate content – presumably due to environment contamination 

due to the uptake of carbonate as seen in the porcine burials in lime.  Despite the 

differences reported above, when analysing the DNA results in relation to 

individual burial environments from across both sites, those remains from the 

chalk and the limestone burial environments showed the best DNA preservation 

and amplification. 

The bones derived from sandy burials at Eriswell, showed the largest colour 

difference, but the lowest difference on the L* axis – showing the colour change 

from the a* and b* axis – possible infiltration of iron and fulvic acids, confirmed by 

the lowest recorded DNA content, and the evidence of inhibition. 

Interestingly, the results of the bones from the ‘sand and chalk’ environment sat 

within those from both the sand environment and the chalk environment, in terms 

of Amide/Phosphate results.  The bones showed the highest difference in lightness 

between the surface and the cortex – possibly due to a combined geological effect; 

the aggressive nature of the sand destroying the integrity of the bone surface and 

the chalk subsequently bleaching the cortical bone.  Analysis also showed these 
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bones contained the second highest Carbonate/Phosphate content after the chalk 

environment, and the highest allele number amplified from the bones. 

Lambert (1990) showed by removing 1-3mm of bone surface, contaminants such 

as iron, and manganese were removed, however the XRF results illustrated earlier 

that contamination can persist after surface removal.  This research has shown 

that contamination of cortical bone and bone marrow results from the infiltration 

of inhibitors and bacteria via soil water, and the degree of infiltration is dependent 

on environment.  In some instances this infiltration will be both total, throughout 

the whole sample and indelibly grossly affect any attempt to derive a DNA sample.   

6.9 Importance of method optimisation 

The method optimisation chapter has shown the importance of choosing the 

correct demineralisation technique based on the preservation state of the bone – 

complete demineralisation of the bone was found not to be appropriate for the 

ancient bones, however it was essential for the less degraded porcine bones, in 

order to remove inhibiting collagen and mineral.  While the majority of 

archaeological bones are expected to fit the first description, some may be more 

like the porcine bones in integrity. 

The colour of lysis chemicals showed the extraction of environmental 

contamination from the bones, as seen in the lime bones – show the importance of 

using a extraction kit which is designed to wash these contaminants away, in order 

to limit the issue of PCR inhibition in downstream analysis. 

6.10 Summary 

This research has shown that it is possible to analyse ancient human remains in 

the same manner in which degraded forensic samples are already analysed.  

Inhibition has been observed at certain loci, across the board, suggesting not all the 

loci used for forensic analysis is applicable for ancient work.  However, as the 

inhibition appears to be sequence dependent in certain instances, as it is not 

purely the larger amplicons which are affected. 



Chapter 6:  DISCUSSION 

264 

This research has highlighted the difficulties associated with using analytical 

techniques to predict the survival of DNA, but has also highlighted the necessity of 

using a combination of analyses to confirm results obtained.  The use of XRF to 

identify the extra peaks seen in the ATR-FTIR spectra, showed how iron 

contamination can affect the splitting factor result and other composition 

information.  Using ATR-FTIR in relation to the burial environment information 

showed the contamination of carbonate into metatarsals in chalk environments 

giving an incorrect preservation value. 

Colour analysis was not found to be as accurate a predictor of preservation state in 

buried bones as it has proved to be in the past with burnt bones (as discussed in 

4.1.11.1), and did not provide an accurate indication of collagen preservation 

(Shipman et al., 1984; Walker et al., 2008) but can be used as an indicator of the 

penetration of contamination of humic bones into the cortex, and therefore the 

possible inhibition of humic acid. 

Comparison of the analytical results with the osteological reports of the human 

remains appeared to be effective in broad prediction of diagenesis and DNA 

content.  Although classification of bone preservation by observations of surface 

integrity (as discussed in section 2.3.1) can be subject to objectivity, the bones with 

the lowest osteological preservation scores provided analytical results of good 

preservation state and DNA content, demonstrating the importance of using 

traditional methods alongside modern analytical techniques to obtain optimum 

results. 
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 CONCLUSION Chapter 7:

The purpose of this research was to analyse the degradation of nucleic DNA, and 

bone diagenesis in relation to different burial environments in order to improve 

the understanding of taphonomic processes.  The objectives of the research prior 

to the commencement of the study have all been fulfilled and will be summarised 

in this chapter. 

At the beginning of the research it was hoped that the DNA results from the 

archaeological human remains would provide an insight into the burial practises at 

the individual cemeteries.  This was achieved but in a limiting manner in such 

some suggested familial relationships could be discounted, and others were shown 

to be a possibility.  The use of sex identification at Fin Cop also assisted in changing 

the opinion of the manner of events that led to the burial of the individuals. 

Investigation of the controlled porcine burials using different burial mediums, 

allowed the ability to monitor individual aspects of decomposition and bone 

diagenesis.  Analysis of the results showed distinct differences in the process of 

decomposition due to the different soil properties in the environments used, and 

also different behaviours in terms of bone diagenesis.  The results from the porcine 

burials allowed comparisons with the ancient human archaeological samples, in 

order to identify the common variables in relation to the burial environments. 

The human analogue burials showed that the sand burials provided the most 

aggressive environment for the decomposition of the soft tissue, even without the 

movement of water which would be commonplace in a sand environment due to 

the draining properties of that medium.  The water content, in addition to the 

microbial activity from the high organic content in the clay and compost 

environments, appeared to have an effect on burials which presented the next 

quickest decomposition of soft tissues.  The lime burials promoted the best 

preservation of soft tissues, with the lowest water and organic content in the burial 

medium. 
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During this research, the importance of differentiating between the terms 

preservation state and decomposition rate became apparent.  Although the sand 

burials showed the fastest decomposition rate of soft tissues, the rate of diagenesis 

of the bone did not coincide.  Further analysis indicated the clay and compost 

samples displayed the same level of bone preservation state with high splitting 

factors and low results for carbonate and collagen preservation, despite the slower 

decomposition of the associated soft tissue. 

By studying the effects of different burial environments, it was possible to identify 

the similarities and contrasting behaviours occurring within.  The production of 

adipocere was observed in both clay and compost burials, despite the dissimilar 

properties of the environments; whereas variable bone preservation was observed 

in sand environments.  These observations confirm the notion that decomposition 

and diagenesis cannot simply be related to one parameter, but rather it is the 

combination and interaction between multiple factors which affect the physical, 

chemical and biological decomposition of archaeological remains. 

Analysis of bone composition of the human analogue samples in the lime 

environment showed how the environmental contaminants can cause alteration to 

the bone structure, thus affecting an accurate calculation of collagen and 

carbonate, and in addition affect the assessment of bone crystallinity from the 

splitting factor.  The continued increase in Amide/Phosphate and 

Carbonate/Phosphate readings, were opposite to those expected with increasing 

burial duration, and did not correlate with the calculated splitting factors.  This 

problem using composition information from ATR-FTIR analysis to identify 

preservation level was also identified in the unburied control bones which showed 

fluctuations in the splitting factors between 3 and 12 months, resulting in the 

conclusion that these estimations of bone structure and composition cannot be 

used solely as an indicator of preservation in archaeological bones, and the effect 

of the burial environment must be taken into account in order to fully understand 

the results. 
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By analysing both the metatarsals and femurs from the same skeletons of the 

human archaeological remains, it was possible to make assessments of the bone 

and DNA preservation in relation to one another.  Overall, the research collated 

across all environments showed the metatarsals had the worst bone preservation 

with higher splitting factors, lower estimated collagen and carbonate contents, and 

higher levels of environmental contamination.  When looking at each environment 

independently, the metatarsals from the limestone environment showed a higher 

level of inhibition due to infiltration of environmental contaminants and higher 

level of DNA degradation.  However the observed differences in levels of 

degradation and inhibition between the skeletal elements was dependent on the 

environment, as DNA amplification was more successful in the metatarsals than 

the femurs from the chalk environment and the sand environment.  This result can 

assist in the sampling strategies of archaeological remains for DNA analysis and 

also suggests a triage system for archaeologists for further analysis based upon the 

burial environment. 

The analysis of both experimental porcine burials and ancient human 

archaeological samples allow correlations to be drawn in regards to the 

environments.  The worst preservation of DNA was observed in the sand 

environments with both the porcine burials and the human burials, despite the 

differences in water movement.  This shows that even without the degradation 

from water percolation, the sand provides an aggressive environment for the 

destruction of bone and DNA.  The use of colourimetry and XRF in the research was 

able to identify the higher colouration of yellow in the bones from both the human 

and porcine bone samples from sand environments, was likely due to the 

infiltration of fulvic acid and iron from the environment, which in the porcine 

bones was linked to the lack of amplification of DNA.  The porcine burials showed 

that the best preservation of DNA was from bones buried in the lime environment 

– results which are mirrored in the human remains from the chalk and limestone 

environments. 

This research highlights the importance of assessing environmental conditions 

prior to sample choice for expensive and time-consuming DNA analysis.  The 
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observation of contamination shown from the XRF and FTIR and colourimetry data 

show the importance of using additional analytical techniques to study the bone in 

order to identify inhibition which may produce incorrect preservation calculations, 

leading to decisive moves regarding to DNA extraction methods and analysis.  

Using a variety of techniques such as these to assess the bone, allows a basic form 

of predictive modelling prior to commencement of DNA analysis by identifying 

possible issues, or areas of concern from known inhibitive or diagenetic 

environments or observations.  To allow full comprehension of the diagenetic 

factors which may have affected archaeological bones in order to analyse 

appropriately, it is vital that accurate and detailed notes and samples are recorded 

and taken from burial grounds at the time of archaeological excavation.  It is also 

imperative appropriate PPE and handling is adhered to if DNA analysis is 

potentially to be performed at any time in the future.   

The process of optimising methodologies during this research shows the 

significance of choosing the appropriate protocols for the analysis of 

archaeological bone.  Methods of cleaning, surface removal, and sample 

preparation can all be detrimental to bones, and it is important to ascertain the 

most appropriate method for each individual sample.   

The overall aims of this research to investigate diagenesis and nucleic DNA 

degradation has been achieved, and the null hypotheses of no differences in 

decomposition, bone diagenesis and DNA degradation between samples from 

different burial environments can be rejected.  In terms of the alternative 

hypotheses stated, it is not primarily the pH of the burial environment that has an 

effect on the state of DNA preservation, but other variables such as organic content 

providing microbial decomposition and the water content providing a passage into 

the bone which affect degradation.  As predicted, the lime environment provided 

the best environment for preservation of DNA (although also caused inhibition of 

DNA during amplification), and the sand environment the most destructive.  As 

previously reported, there was a difference observed between the quantity of DNA 

retained by the femurs in comparison to metatarsals, however the reason for the 
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differences were more complicated than first thought due to the different ways in 

which the elements interact with the burial environments. 

This research showed that the burial environment had a more significant effect on 

soft tissue decomposition, bone diagenesis and DNA degradation than the passage 

of time for which the remains were buried.  This statement can be seen to be true 

in the results from both the human analogue, and the human archaeological 

samples which were separated by several thousand years. 

Although similarities can be seen between the state of bone diagenesis and DNA 

degradation, it is not possible to quantify the relationship due to many other 

variables which are at play within each burial environment.  The results of this 

research show that in order to provide a comprehensive assessment of the 

preservation state of the bone it is necessary to use a multi-disciplinary approach 

of both traditional osteological observations, and modern analytical techniques in 

order to evaluate the bone in relation to its burial environment. 

The time and cost implications of the management of a DNA-led identification 

strategy are huge, and it is hoped that one of the products of this study is an 

improved understanding of the complex interaction between this relationship, and 

therefore, the more efficient any subsequent DNA profiling may be.  This will assist 

not only forensic science practitioners and investigators, but also archaeologists 

and historians who are looking for answers.  By having a better understanding of 

the whole process, the information recorded by the excavation team, 

archaeologists, geologists and anthropologists, will also benefit the DNA analysts 

and assist in the decision making process of sampling, and protocol selection. 

7.1 Limitations of the research 

Although every attempt was made to make the investigations comparable in the 

experimental burials, with porcine bones being collected from the same butcher, 

with similar age at deaths, and post-mortem intervals, some differences observed 

in the bone structure may be due to individual differences.  Different bones were 

used for each experiment, in order to eliminate addition variables such as lack of 
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bone integrity which would have occurred by excavating and sampling the bone at 

each time interval. 

Individual porcine bones were used as the primary investigation was concentrated 

on the bone diagenesis, however the decomposition of a whole carcass will alter 

the burial environment in a manner which was not observed in this study. 

The methodology for the experimental burials allowed for the control of 

environmental factors such as movement of water, and the ability to measure any 

pH changes without loss of material.  However, these burials may not be 

comparable to natural environments where natural rainfall would have changed 

the conditions, and provided different variables. 

The sample size of the human archaeological remains available and archaeological 

reports of the burials provided some limitations to the research.  Due to the lack of 

geological samples taken and in-depth records it was only possible to relate the 

results to the broad geological assessments provided within the original 

archaeological reports.  The natural context of the burial grounds, meant it was not 

possible to use balanced sample sets of skeletal remains for comparison; this was 

especially a problem with the lack of burials from the sand environment. 

7.2 Future work 

In reference to the taphonomic side of this research, future work in this area would 

benefit from the use of whole carcasses in different environments, in an outside 

facility where an in-vivo assessment of decomposition and diagenesis might be 

conducted with the monitoring of environmental variables.  Furthermore, by 

testing the burial environment for contaminants with XRF, colourimetry and soil 

analysis prior to burial, would enable an opportunity to develop predictions for the 

most optimal protocols and methodologies for subsequent analysis of the 

archaeological remains upon excavation. 

In order to further improve the success of DNA amplification from archaeological 

bone, further research into the inhibition effects of environmental contaminants 

would be advantageous.  The identification of DNA sequences most likely to be 
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inhibited due to environmental contaminates such as fulvic and humic acid, would 

enable a multiplex primer set to be developed to assist in the successful 

amplification of archaeological samples.   

In addition, by utilising a technique such as X-ray diffraction (XRD), differentiation 

between hydroxyapatite in the bone and mineral contaminants could be achieved, 

therefore providing a more accurate assessment of bone diagenesis, than found 

during this research.  If correlations between the crystallinity results and DNA 

amplification were established, this technique could be used for cost-effective and 

rapid identification of the probability of successful amplification of forensic and 

archaeological remains. 
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APPENDICES 

Appendix A : Human Analogue Data 

Table A-1:  Colour analysis of control soil samples 

  Aggregate average    Aggregate average 

 Readings L* a* b*   Readings L* a* b* 

C
la

y
 1

 

1-10 40.63 2.94 4.55  

C
la

y
 2

 

1-10 43.56 2.53 4.16 

11-20 40.82 3.71 6.21  11-20 44.26 3.41 5.49 

21-30 42.50 3.82 6.42  21-30 42.83 3.70 6.22 

31-40 42.64 3.79 6.36  31-40 40.57 2.82 4.35 

Mean 41.65 3.57 5.89  Mean: 42.81 3.12 5.06 

St. Dev: 1.07 0.42 0.89  St. Dev: 1.60 0.53 0.97 

C
o

m
p

o
st

 1
 

1-10 35.06 1.51 1.43  

C
o

m
p

o
st

 2
 

1-10 35.62 1.46 1.38 

11-20 34.09 1.98 1.77  11-20 36.22 0.87 0.49 

21-30 34.46 0.08 0.47  21-30 34.52 1.91 1.64 

31-40 34.55 1.92 1.66  31-40 35.09 1.49 1.46 

Mean: 34.54 1.37 1.33  Mean: 35.36 1.43 1.24 

St. Dev: 0.40 0.89 0.59  St. Dev: 0.73 0.43 0.51 

L
im

e 
1

 

1-10 93.57 0.51 3.74  

L
im

e 
2

 

1-10 93.14 0.55 3.89 

11-20 94.58 0.46 3.51  11-20 93.57 0.51 3.74 

21-30 94.88 0.42 3.38  21-30 94.58 0.46 3.51 

31-40 95.11 0.38 2.96  31-40 94.88 0.42 3.38 

Mean: 94.54 0.44 3.40  Mean: 94.04 0.49 3.63 

St. Dev: 0.68 0.06 0.33  St. Dev: 0.82 0.06 0.23 

Sa
n

d
 1

 

1-10 62.84 4.65 19.73  

Sa
n

d
 2

 

1-10 61.42 4.99 20.34 

11-20 62.78 4.61 19.54  11-20 62.28 4.83 19.89 

21-30 62.47 4.60 19.56  21-30 62.90 4.67 19.48 

31-40 61.98 4.50 19.58  31-40 63.75 4.31 19.04 

Mean: 62.52 4.59 19.60  Mean: 62.59 4.70 19.69 

St. Dev: 0.39 0.06 0.09  St Dev: 0.98 0.29 0.56 
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Table A-2:  Data from soil analysis of clay control soils and experimental soils. All mass measurements are presented in grams. 
Sample information Wet weight Dry weight Water content Ash weight Organic content pH 

Type Duration Sample. Pot Soil Pot & soil Pot & Soil Soil solids Pore water % Pot & soil Ash mass Organic matter %  

Clay 0 months a 8.00 5.00 13.00 11.77 3.83 1.23 24.60 11.68 3.68 0.15 3.92 9.63 

Clay 0 months b 8.31 5.00 13.31 12.05 3.81 1.26 25.20 11.97 3.66 0.15 3.94 9.62 

Clay 1.5 months a (1) 8.26 3.00 11.26 10.30 2.04 0.96 32.00 10.23 1.97 0.07 3.43 8.32 

Clay 1.5 months a (2) 8.32 3.00 11.32 10.23 1.91 1.09 36.33 10.18 1.86 0.05 2.62 8.42 

Clay 1.5 months a (3) 8.46 3.00 11.46 10.40 1.94 1.06 35.33 10.34 1.88 0.06 3.09 8.37 

Clay 1.5 months b (1) 7.99 3.00 10.99 9.86 1.87 1.13 37.67 9.80 1.81 0.06 3.21 8.43 

Clay 1.5 months b (2) 8.34 3.00 11.34 10.46 2.12 0.88 29.33 10.38 2.04 0.08 3.77 8.32 

Clay 1.5 months b (3) 8.29 3.00 11.29 10.27 1.98 1.02 34.00 10.22 1.93 0.05 2.53 8.47 

Clay 3 months a (1) 8.49 5.00 13.49 11.95 3.46 1.54 30.80 11.85 3.36 0.10 2.89 8.46 

Clay 3 months a (2) 8.32 3.00 11.32 10.43 2.11 0.89 29.67 10.37 2.05 0.06 2.84 8.53 

Clay 3 months a (3) 8.49 3.00 11.49 10.64 2.15 0.85 28.33 10.58 2.09 0.06 2.79 8.58 

Clay 3 months b (1) 8.52 3.00 11.52 10.46 1.94 1.06 35.33 10.41 1.89 0.05 2.58 8.44 

Clay 3 months b (2) 8.01 3.00 11.01 10.16 2.15 0.85 28.33 10.11 2.10 0.05 2.33 8.26 

Clay 3 months b (3) 8.32 3.00 11.32 10.49 2.17 0.83 27.67 10.43 2.11 0.06 2.76 8.29 

Clay 6 months a (1) 8.23 5.00 13.23 11.35 3.12 1.88 37.60 11.13 2.90 0.22 7.05 7.43 

Clay 6 months a (2) 7.96 3.00 10.96 9.82 1.86 1.14 38.00 9.77 1.81 0.05 2.69 7.75 

Clay 6 months a (3) 8.06 3.00 11.06 10.15 2.09 0.91 30.33 10.08 2.02 0.07 3.35 7.77 

Clay 6 months b (1) 8.36 3.00 11.36 10.23 1.87 1.13 37.67 10.18 1.82 0.05 2.67 8.53 

Clay 6 months b (2) 8.30 3.00 11.30 10.38 2.08 0.92 30.67 10.32 2.02 0.06 2.88 8.30 

Clay 6 months b (3) 8.01 3.00 11.01 10.10 2.09 0.91 30.33 10.04 2.03 0.06 2.87 8.29 

Clay 12 months a (1) 8.22 3.00 11.22 10.13 1.91 1.09 36.33 10.06 1.84 0.07 3.66 8.44 

Clay 12 months a (2) 8.18 3.00 11.18 10.03 1.85 1.15 38.33 9.96 1.78 0.07 3.78 8.42 

Clay 12 months a (3) 8.32 3.00 11.32 10.30 1.98 1.02 34.00 10.22 1.90 0.08 4.04 8.39 

Clay 12 months b (1) 8.17 3.00 11.17 10.18 2.01 0.99 33.00 10.12 1.95 0.06 2.99 8.60 

Clay 12 months b (2) 8.34 3.00 11.34 10.33 1.99 1.01 33.67 10.27 1.93 0.06 3.02 8.88 

Clay 12 months b (3) 8.35 3.00 11.35 10.31 1.96 1.04 34.67 10.23 1.88 0.08 4.08 8.51 

Clay 18 months a (1) 8.05 5.00 13.05 11.49 3.44 1.56 31.20 11.47 3.42 0.02 0.58 7.12 

Clay 18 months a (2) 8.46 3.00 11.46 10.55 2.09 0.91 30.33 10.51 2.05 0.04 1.91 7.02 

Clay 18 months a (3) 8.32 3.00 11.32 10.48 2.16 0.84 28.00 10.42 2.10 0.06 2.78 7.08 

Clay 18 months b (1) 8.30 5.00 13.30 11.69 3.39 1.61 32.20 11.60 3.30 0.09 2.65 7.33 

Clay 18 months b (2) 8.33 3.00 11.33 10.49 2.16 0.84 28.00 10.44 2.11 0.05 2.31 7.17 

Clay 18 months b (3) 8.54 3.00 11.54 10.73 2.19 0.81 27.00 10.68 2.14 0.05 2.28 7.13 
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Table A-3:  Data from soil analysis of compost control soils and experimental soils. All mass measurements are presented in grams. 
Sample information Wet weight Dry weight Water content Ash weight Organic content pH 

Type Duration Sample. Pot Soil Pot & soil Pot & Soil Soil solids Pore water % Pot & soil Ash mass Organic matter %  

Compost 0 months a 8.22 2.00 10.23 8.93 0.73 1.30 65.00 8.27 0.05 0.68 93.15 6.27 

Compost 0 months b 8.22 2.00 10.21 8.90 0.71 1.31 65.50 8.26 0.04 0.67 94.37 6.22 

Compost 1.5 months a (1) 8.18 1.00 9.18 8.54 0.36 0.64 64.00 8.18 0.00 0.36 100.00 8.01 

Compost 1.5 months a (2) 8.01 1.00 11.01 8.46 0.45 0.55 55.00 8.03 0.02 0.43 95.56 8.09 

Compost 1.5 months a (3) 8.24 1.00 11.24 8.56 0.32 0.68 68.00 8.25 0.01 0.31 96.88 8.13 

Compost 1.5 months b (1) 8.05 1.00 11.05 8.42 0.37 0.63 63.00 8.06 0.01 0.36 97.30 8.56 

Compost 1.5 months b (2) 8.48 1.00 11.48 8.80 0.32 0.68 68.00 8.49 0.01 0.31 96.88 8.67 

Compost 1.5 months b (3) 7.83 1.00 10.83 8.16 0.33 0.67 67.00 7.84 0.01 0.32 96.97 8.63 

Compost 3 months a (1) 8.34 1.00 9.34 8.72 0.38 0.62 62.00 8.35 0.01 0.37 97.37 8.00 

Compost 3 months a (2) 7.86 1.00 8.86 8.23 0.37 0.63 63.00 7.91 0.05 0.32 86.49 8.05 

Compost 3 months a (3) 8.20 1.00 9.20 8.67 0.47 0.53 53.00 8.26 0.06 0.41 87.23 8.10 

Compost 3 months b (1) 8.50 1.00 9.50 8.90 0.40 0.60 60.00 8.53 0.03 0.37 92.50 7.66 

Compost 3 months b (2) 8.48 1.00 9.48 8.81 0.33 0.67 67.00 8.49 0.01 0.32 96.97 7.72 

Compost 3 months b (3) 7.83 1.00 8.83 8.20 0.37 0.63 63.00 7.85 0.02 0.35 94.59 7.74 

Compost 6 months a (1) 8.35 1.00 9.35 8.69 0.34 0.66 66.00 8.35 0.00 0.34 100.00 7.64 

Compost 6 months a (2) 8.46 1.00 9.46 8.89 0.43 0.57 57.00 8.47 0.01 0.42 97.67 7.89 

Compost 6 months a (3) 8.23 1.00 9.23 8.67 0.44 0.56 56.00 8.23 0.00 0.44 100.00 7.72 

Compost 6 months b (1) 8.01 1.00 9.01 8.43 0.42 0.58 58.00 8.02 0.01 0.41 97.62 8.20 

Compost 6 months b (2) 8.24 1.00 9.24 8.56 0.32 0.68 68.00 8.26 0.02 0.30 93.75 7.73 

Compost 6 months b (3) 7.99 1.00 8.99 8.35 0.36 0.64 64.00 8.00 0.01 0.35 97.22 7.70 

Compost 12 months a (1) 7.92 1.00 8.92 8.29 0.37 0.63 63.00 7.92 0.00 0.37 100.00 8.33 

Compost 12 months a (2) 8.39 1.00 9.39 8.72 0.33 0.67 67.00 8.41 0.02 0.31 93.94 8.32 

Compost 12 months a (3) 8.22 1.00 9.22 8.55 0.33 0.67 67.00 8.30 0.08 0.25 75.76 8.32 

Compost 12 months b (1) 8.46 1.00 9.46 8.78 0.32 0.68 68.00 8.46 0.00 0.32 100.00 8.70 

Compost 12 months b (2) 8.33 1.00 9.33 8.63 0.30 0.70 70.00 8.33 0.00 0.30 100.00 8.68 

Compost 12 months b (3) 8.40 1.00 9.40 8.73 0.33 0.67 67.00 8.40 0.00 0.33 100.00 8.64 

Compost 18 months a (1) 7.92 1.00 8.92 8.17 0.25 0.75 75.00 7.93 0.01 0.24 96.00 7.41 

Compost 18 months a (2) 8.22 1.00 9.22 8.56 0.34 0.66 66.00 8.24 0.02 0.32 94.12 7.35 

Compost 18 months a (3) 8.28 1.00 9.28 8.54 0.26 0.74 74.00 8.30 0.02 0.24 92.31 7.30 

Compost 18 months b (1) 8.58 1.00 9.58 8.82 0.24 0.76 76.00 8.58 0.00 0.24 100.00 7.29 

Compost 18 months b (2) 8.38 1.00 9.38 8.64 0.26 0.74 74.00 8.40 0.02 0.24 92.31 7.52 

Compost 18 months b (3) 8.40 1.00 9.40 8.63 0.23 0.77 77.00 8.43 0.03 0.20 86.96 7.49 
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Table A-4:  Data from soil analysis of lime control soils and experimental soils. All mass measurements are presented in grams 
Sample information Wet weight Dry weight Water content Ash weight Organic content pH 

Type Duration Sample. Pot Soil Pot & soil Pot & Soil Soil solids Pore water % Pot & soil Ash mass Organic matter %  

Lime 0 months a 8.15 2.00 10.15 10.15 2.00 0.00 0.00 9.99 1.84 0.16 8.00 13.05 

Lime 0 months b 8.34 2.00 10.34 10.34 2.00 0.00 0.00 10.14 1.80 0.20 10.00 8.52 

Lime 1.5 months a (1) 8.43 1.00 9.43 9.34 0.91 0.09 9.00 9.30 0.87 0.04 4.40 12.67 

Lime 1.5 months a (2) 8.40 1.00 9.40 9.34 0.94 0.06 6.00 9.28 0.88 0.06 6.38 12.63 

Lime 1.5 months a (3) 8.34 0.50 8.84 8.79 0.45 0.05 10.00 8.79 0.45 0.00 0.00 12.77 

Lime 1.5 months b (1) 8.50 1.00 9.50 9.29 0.79 0.21 21.00 9.29 0.79 0.00 0.00 12.73 

Lime 1.5 months b (2) 7.79 0.50 8.29 8.26 0.47 0.03 6.00 8.26 0.47 0.00 0.00 12.89 

Lime 1.5 months b (3) 8.39 1.00 9.39 9.32 0.93 0.07 7.00 9.27 0.88 0.05 5.38 12.94 

Lime 3 months a (1) 8.16 1.00 9.16 9.08 0.92 0.08 8.00 9.08 0.92 0.00 0.00 12.70 

Lime 3 months a (2) 8.15 0.50 8.65 8.62 0.47 0.03 6.00 8.60 0.45 0.02 4.26 12.68 

Lime 3 months a (3) 8.19 0.50 8.69 8.67 0.48 0.02 4.00 8.65 0.46 0.02 4.17 12.64 

Lime 3 months b (1) 7.98 1.00 8.98 8.86 0.88 0.12 12.00 8.84 0.86 0.02 2.27 12.71 

Lime 3 months b (2) 8.15 0.50 8.66 8.65 0.50 0.00 0.00 8.63 0.48 0.02 4.00 12.69 

Lime 3 months b (3) 8.23 0.50 8.73 8.61 0.38 0.12 24.00 8.59 0.36 0.02 5.26 12.65 

Lime 6 months a (1) 8.07 1.00 9.07 8.75 0.68 0.32 32.00 8.75 0.68 0.00 0.00 12.77 

Lime 6 months a (2) 7.89 0.50 8.39 8.36 0.47 0.03 6.00 8.33 0.44 0.03 6.38 12.94 

Lime 6 months a (3) 8.24 0.50 8.74 8.70 0.46 0.04 8.00 8.68 0.44 0.02 4.35 12.99 

Lime 6 months b (1) 8.44 1.00 9.44 9.29 0.85 0.15 15.00 9.29 0.85 0.00 0.00 12.71 

Lime 6 months b (2) 8.03 0.50 8.53 8.50 0.47 0.03 6.00 8.46 0.43 0.04 8.51 13.00 

Lime 6 months b (3) 7.83 0.50 8.33 8.29 0.46 0.04 8.00 8.24 0.41 0.05 10.87 12.93 

Lime 12 months a (1) 8.19 1.00 9.19 9.10 0.91 0.09 9.00 9.09 0.90 0.01 1.10 12.71 

Lime 12 months a (2) 8.39 1.00 9.39 9.28 0.89 0.11 11.00 9.28 0.89 0.00 0.00 12.73 

Lime 12 months a (3) 8.16 1.00 9.16 9.05 0.89 0.11 11.00 9.05 0.89 0.00 0.00 12.74 

Lime 12 months b (1) 8.55 1.00 9.55 9.47 0.92 0.08 8.00 9.47 0.92 0.00 0.00 12.75 

Lime 12 months b (2) 8.44 1.00 9.46 9.37 0.93 0.07 7.00 9.37 0.93 0.00 0.00 12.61 

Lime 12 months b (3) 8.01 1.00 9.01 8.94 0.93 0.07 7.00 8.94 0.93 0.00 0.00 12.77 

Lime 18 months a (1) 7.99 1.00 8.99 8.98 0.99 0.01 1.00 8.95 0.96 0.03 3.03 12.69 

Lime 18 months a (2) 8.15 1.00 9.15 9.13 0.98 0.02 2.00 9.07 0.92 0.06 6.12 12.73 

Lime 18 months a (3) 8.02 1.00 9.02 8.99 0.97 0.03 3.00 8.95 0.93 0.04 4.12 12.76 

Lime 18 months b (1) 8.21 1.00 9.21 9.18 0.97 0.03 3.00 9.17 0.96 0.01 1.03 12.76 

Lime 18 months b (2) 8.24 1.00 9.24 9.21 0.97 0.03 3.00 9.19 0.95 0.02 2.06 12.68 

Lime 18 months b (3) 8.39 1.00 9.39 9.37 0.98 0.02 2.00 9.34 0.95 0.03 3.06 12.76 
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Table A-5:  Data from soil analysis of sand control soils and experimental soils. All mass measurements are presented in grams 
Sample information Wet weight Dry weight Water content Ash weight Organic content pH 

Type Duration Sample. Pot Soil Pot & soil Pot & Soil Soil solids Pore water % Pot & soil Ash mass Organic matter %  

Sand 0 months a 8.41 5.00 13.40 13.39 4.98 0.01 0.20 13.36 4.95 0.03 0.60 8.52 

Sand 0 months b 8.24 5.00 13.24 13.23 4.99 0.01 0.20 13.20 4.96 0.03 0.60 8.43 

Sand 1.5 months a (1) 8.06 4.00 12.06 11.90 3.84 0.16 4.00 11.82 3.76 0.08 2.08 8.10 

Sand 1.5 months a (2) 8.16 2.00 10.16 10.12 1.96 0.04 2.00 10.12 1.96 0.00 0.00 8.27 

Sand 1.5 months a (3) 8.03 2.00 10.03 9.98 1.95 0.05 2.50 9.98 1.95 0.00 0.00 8.25 

Sand 1.5 months b (1) 7.81 4.00 11.81 11.67 3.86 0.14 3.50 11.63 3.82 0.04 1.04 8.14 

Sand 1.5 months b (2) 7.89 1.00 8.89 8.86 0.97 0.03 3.00 8.85 0.96 0.01 1.03 8.29 

Sand 1.5 months b (3) 8.22 1.00 9.22 9.17 0.95 0.05 5.00 9.17 0.95 0.00 0.00 8.26 

Sand 3 months a (1) 8.36 4.00 12.36 11.65 3.29 0.71 17.75 11.46 3.10 0.19 5.78 7.59 

Sand 3 months a (2) 8.31 2.00 10.31 9.96 1.65 0.35 17.50 9.92 1.61 0.04 2.42 7.57 

Sand 3 months a (3) 7.94 2.00 9.94 9.69 1.75 0.25 12.50 9.66 1.72 0.03 1.71 7.55 

Sand 3 months b (1) 8.26 4.00 12.24 11.87 3.61 0.39 9.75 11.71 3.45 0.16 4.43 7.61 

Sand 3 months b (2) 8.43 2.00 10.43 10.14 1.71 0.29 14.50 10.09 1.66 0.05 2.92 7.47 

Sand 3 months b (3) 7.94 2.00 9.94 9.66 1.72 0.28 14.00 9.59 1.65 0.07 4.07 7.43 

Sand 6 months a (1) 7.81 4.00 11.81 11.57 3.76 0.24 6.00 11.56 3.75 0.01 0.27 8.70 

Sand 6 months a (2) 8.21 2.00 10.21 10.13 1.92 0.08 4.00 10.12 1.91 0.01 0.52 8.41 

Sand 6 months a (3) 8.39 2.00 10.39 10.30 1.91 0.09 4.50 10.30 1.91 0.00 0.00 8.50 

Sand 6 months b (1) 8.47 4.00 12.47 12.11 3.64 0.36 9.00 12.07 3.60 0.04 1.10 8.42 

Sand 6 months b (2) 8.00 2.00 10.00 9.91 1.91 0.09 4.50 9.89 1.89 0.02 1.05 7.90 

Sand 6 months b (3) 8.27 2.00 10.27 10.18 1.91 0.09 4.50 10.18 1.91 0.00 0.00 7.98 

Sand 12 months a (1) 8.27 3.00 11.27 11.13 2.86 0.14 4.67 11.09 2.82 0.04 1.40 8.79 

Sand 12 months a (2) 7.95 3.00 10.95 10.82 2.87 0.13 4.33 10.80 2.85 0.02 0.70 8.78 

Sand 12 months a (3) 8.02 3.00 11.02 10.87 2.85 0.15 5.00 10.85 2.83 0.02 0.70 8.76 

Sand 12 months b (1) 7.88 3.00 10.88 10.73 2.85 0.15 5.00 10.70 2.82 0.03 1.05 8.77 

Sand 12 months b (2) 8.40 3.00 11.40 11.25 2.85 0.15 5.00 11.22 2.82 0.03 1.05 8.76 

Sand 12 months b (3) 7.79 3.00 10.79 10.57 2.78 0.22 7.33 10.55 2.76 0.02 0.72 8.76 

Sand 18 months a (1) 8.20 2.00 10.20 10.14 1.94 0.06 3.00 10.09 1.89 0.05 2.58 8.80 

Sand 18 months a (2) 8.23 2.00 10.23 10.13 1.90 0.10 5.00 10.03 1.80 0.10 5.26 8.76 

Sand 18 months a (3) 8.27 2.00 10.27 10.23 1.96 0.04 2.00 10.19 1.92 0.04 2.04 8.72 

Sand 18 months b (1) 7.88 2.00 9.88 9.84 1.96 0.04 2.00 9.75 1.87 0.09 4.59 8.57 

Sand 18 months b (2) 7.95 2.00 9.95 9.93 1.98 0.02 1.00 9.90 1.95 0.03 1.52 8.57 

Sand 18 months b (3) 8.15 2.00 10.15 10.12 1.97 0.03 1.50 10.08 1.93 0.04 2.03 8.54 
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Table A-6: 1.5 month clay burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 
P

re
-b

u
ri

al
 (

a)
 1-10 55.16 3.74 15.15 

P
re

-b
u

ri
al

 (
b

) 

1-10 61.11 0.87 11.05 

11-20 60.42 1.88 13.77 11-20 56.34 1.10 12.51 

21-30 54.99 4.83 14.89 21-30 63.72 0.14 10.79 

Mean 56.86 3.48 14.60 Mean: 60.39 0.70 11.45 

St. Dev: 3.09 1.49 0.73 St. Dev: 3.74 0.50 0.93 

P
o

st
-b

u
ri

al
 (

a)
 1-10 59.70 4.66 13.99 

P
o

st
-b

u
ri

al
(b

) 

1-10 68.63 2.91 19.26 

11-20 61.16 4.67 12.78 11-20 68.31 1.54 19.06 

21-30 60.46 4.65 13.83 21-30 61.54 3.02 16.29 

Mean: 60.44 4.66 13.53 Mean: 66.16 2.49 18.20 

St. Dev: 0.73 0.01 0.66 St. Dev: 4.00 0.82 1.66 

C
o

rt
ex

 (
a)

  

1-10 75.00 0.69 10.07 

C
o

rt
ex

 (
b

) 

1-10 50.94 4.03 13.52 

11-20 77.51 0.36 9.27 11-20 86.79 2.48 11.94 

21-30 72.88 1.01 8.11 21-30 100.75 2.01 15.41 

Mean: 75.13 0.69 9.15 Mean: 79.49 2.84 13.62 

St. Dev: 2.32 0.33 0.99 St. Dev: 25.69 1.06 1.74 

 

Table A-7: 3 month clay burial bone colour analysis 

  Aggregate average 

 

 Aggregate average 

  

Readings L* a* b* 

  

Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 60.62 4.48 12.14 

P
re

-b
u

ri
al

 (
b

) 

1-10 73.27 -0.01 11.87 

11-20 63.34 2.56 13.48 11-20 74.64 3.09 17.78 

21-30 61.38 1.24 12.92 21-30 72.24 3.15 14.9 

Mean 61.78 2.76 12.85 Mean: 73.38 2.08 14.85 

St. Dev: 1.40 1.63 0.67 St. Dev: 1.20 1.81 2.96 

P
o

st
-b

u
ri

al
 (

a)
 1-10 63.7 5.06 23.57 

P
o

st
-b

u
ri

al
 (

b
) 1-10 75.53 0.06 11.95 

11-20 65.74 5.24 26.02 11-20 74.36 3.72 17.24 

21-30 74.00 2.08 12.53 21-30 76.1 1.71 13.92 

Mean: 67.81 4.13 20.71 Mean: 75.33 1.83 14.37 

St. Dev: 5.45 1.77 7.19 St. Dev: 0.89 1.83 2.67 

C
o

rt
ex

 (
a)

 

1-10 82.67 2.39 15.04 

C
o

rt
ex

 (
b

) 

1-10 84.52 2.05 11.5 

11-20 82.78 1.71 17.29 11-20 88.02 0.83 12.37 

21-30 80.37 2.24 17.69 21-30 86.47 1.68 12.25 

Mean: 81.94 2.11 16.67 Mean: 86.34 1.52 12.04 

St. Dev: 1.36 0.36 1.43 St. Dev: 1.75 0.63 0.47 
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Table A-8:  6 months clay burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 
P

re
-b

u
ri

al
 (

a)
 1-10 59.09 -0.34 12.80 

P
re

-b
u

ri
al

 (
b

) 1-10 66.87 2.35 12.29 

11-20 61.88 -0.50 15.35 11-20 67.37 3.88 13.68 

21-30 60.16 -0.35 12.82 21-30 69.80 3.81 14.20 

Mean 60.38 -0.40 13.66 Mean: 68.01 3.35 13.39 

St. Dev: 1.41 0.09 1.47 St. Dev: 1.57 0.86 0.99 

P
o

st
-b

u
ri

al
 (

a)
 1-10 84.78 0.82 10.13 

P
o

st
-b

u
ri

al
 (

b
) 1-10 64.45 4.21 17.48 

11-20 78.57 3.46 17.42 11-20 69.26 4.39 18.96 

21-30 80.65 2.33 13.61 21-30 63.91 3.31 14.72 

Mean: 81.33 2.20 13.72 Mean: 65.87 3.97 17.05 

St. Dev: 3.16 1.32 3.65 St. Dev: 2.95 0.58 2.15 

C
o

rt
ex

 (
a)

 

1-10 87.44 -0.01 11.44 
C

o
rt

ex
 (

b
) 

1-10 83.03 1.83 13.77 

11-20 87.95 1.07 13.90 11-20 85.44 1.68 16.45 

21-30 89.52 0.60 11.03 21-30 84.41 1.90 16.69 

Mean: 88.30 0.55 12.12 Mean: 84.29 1.80 15.64 

St. Dev: 1.08 0.54 1.55 St. Dev: 1.21 0.11 1.62 

 

Table A-9: 12 months clay burial bone colour analysis 

  Aggregate average 

 

 Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 56.05 4.98 11.76 

P
re

-b
u

ri
al

 (
b

) 

1-10 76.19 0.29 13.02 

11-20 60.21 7.80 14.49 11-20 67.98 1.46 12.99 

21-30 29.71 1.89 4.45 21-30 72.77 0.67 13.92 

Mean 48.66 4.89 10.23 Mean: 72.31 0.81 13.31 

St. Dev: 16.54 2.96 5.19 St. Dev: 4.12 0.60 0.53 

P
o

st
-b

u
ri

al
 (

a)
 1-10 67.55 3.11 13.62 

P
o

st
-b

u
ri

al
 (

b
) 1-10 67.35 2.77 12.87 

11-20 69.16 3.18 13.71 11-20 67.38 2.76 12.87 

21-30 68.59 2.40 9.18 21-30 67.38 2.76 12.87 

Mean: 68.43 2.90 12.17 Mean: 67.37 2.76 12.87 

St. Dev: 0.82 0.43 2.59 St. Dev: 0.02 0.01 0.00 

C
o

rt
ex

 (
a)

 

1-10 80.51 1.52 12.10 

C
o

rt
ex

 (
b

) 

1-10 90.03 -0.24 8.40 

11-20 84.08 1.27 13.35 11-20 82.89 1.67 12.74 

21-30 81.60 1.68 11.79 21-30 87.89 -0.24 9.81 

Mean: 82.06 1.49 12.41 Mean: 86.94 0.40 10.32 

St. Dev: 1.83 0.21 0.83 St. Dev: 3.66 1.10 2.21 
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Table A-10: 18 months clay burial bone colour analysis 

  Aggregate average   Aggregate average 
 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 56.78 1.35 12.33 

P
re

-b
u

ri
al

 (
b

) 1-10 58.26 0.63 11.67 

11-20 49.66 1.36 11.88 11-20 54.40 1.38 9.78 

21-30 46.74 1.44 9.29 21-30 51.70 2.34 10.15 

Mean 51.06 1.38 11.17 Mean: 54.79 1.45 10.53 

St. Dev: 5.16 0.05 1.64 St. Dev: 3.30 0.86 1.00 

P
o

st
-b

u
ri

al
 (

a)
 1-10 68.87 3.11 14.77 

P
o

st
-b

u
ri

al
 (

b
) 1-10 67.50 4.07 16.16 

11-20 68.14 3.14 14.69 11-20 67.92 3.97 16.25 

21-30 68.45 3.02 14.24 21-30 67.74 3.96 16.17 

Mean: 68.49 3.09 14.57 Mean: 67.72 4.00 16.19 

St. Dev: 0.37 0.06 0.29 St. Dev: 0.21 0.06 0.05 

C
o

rt
ex

 (
a)

 

1-10 84.93 0.77 14.84 
C

o
rt

ex
 (

b
) 

1-10 81.85 2.69 15.49 

11-20 84.30 -0.83 14.49 11-20 82.37 1.63 16.24 

21-30 87.08 -0.21 13.96 21-30 81.46 2.71 15.27 

Mean: 85.44 -0.09 14.43 Mean: 81.89 2.34 15.67 

St. Dev: 1.46 0.81 0.44 St. Dev: 0.46 0.62 0.51 

 

Table A-11: 1.5 months compost burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 62.11 4.32 16.56 

P
re

-b
u

ri
al

 (
b

) 1-10 69.97 2.82 13.78 

11-20 59.70 3.77 13.95 11-20 70.64 5.60 17.03 

21-30 64.02 3.83 17.99 21-30 67.00 5.02 14.78 

Mean 61.94 3.97 16.17 Mean: 69.20 4.48 15.20 

St. Dev: 2.16 0.30 2.05 St. Dev: 1.94 1.47 1.66 

P
o

st
-b

u
ri

al
 (

a)
 1-10 44.58 6.06 12.19 

P
o

st
-b

u
ri

al
 (

b
) 1-10 53.05 9.05 19.56 

11-20 48.94 6.18 14.30 11-20 51.82 10.26 22.90 

21-30 49.46 5.44 9.40 21-30 54.20 10.17 22.82 

Mean: 47.66 5.89 11.96 Mean: 53.02 9.83 21.76 

St. Dev: 2.68 0.40 2.46 St. Dev: 1.19 0.67 1.91 

C
o

rt
ex

 (
a)

 

1-10 71.09 1.25 9.48 

C
o

rt
ex

 (
b

) 

1-10 114.42 1.74 15.00 

11-20 57.12 2.12 9.39 11-20 111.51 1.89 12.26 

21-30 61.95 4.70 16.04 21-30 107.86 3.13 14.33 

Mean: 63.39 2.69 11.64 Mean: 111.26 2.25 13.86 

St. Dev: 7.09 1.79 3.81 St. Dev: 3.29 0.76 1.43 
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Table A-12: 3 months compost burial bone colour analysis 

  Aggregate average 

 

 Aggregate average 
  Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 57.86 0.99 10.21 

P
re

-b
u

ri
al

 (
b

) 1-10 64.30 10.10 16.80 

11-20 58.34 0.68 9.47 11-20 50.30 8.30 11.22 

21-30 60.24 0.29 7.71 21-30 65.80 11.49 18.12 

Mean 58.81 0.65 9.13 Mean: 60.13 9.96 15.38 

St. Dev: 1.26 0.35 1.28 St. Dev: 8.55 1.60 3.66 

P
o

st
-b

u
ri

al
 (

a)
 1-10 72.03 3.61 20.80 

P
o

st
-b

u
ri

al
 (

b
) 1-10 64.35 6.00 21.30 

11-20 73.10 3.52 20.37 11-20 60.97 4.64 19.07 

21-30 73.95 4.13 26.60 21-30 56.53 4.83 19.01 

Mean: 73.03 3.75 22.59 Mean: 60.62 5.16 19.79 

St. Dev: 0.96 0.33 3.48 St. Dev: 3.92 0.74 1.31 

C
o

rt
ex

 (
a)

 

1-10 78.18 3.32 19.90 
C

o
rt

ex
 (

b
) 

1-10 88.95 0.22 12.73 

11-20 83.61 1.23 15.30 11-20 89.34 -0.08 11.88 

21-30 86.56 -0.09 12.11 21-30 88.39 0.55 13.18 

Mean: 82.78 1.49 15.77 Mean: 88.89 0.23 12.60 

St. Dev: 4.25 1.72 3.92 St. Dev: 0.48 0.32 0.66 

 

Table A-13: 6 months compost burial bone colour analysis  

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 61.74 2.09 14.56 

P
re

-b
u

ri
al

 (
b

) 1-10 45.51 4.51 8.79 

11-20 58.87 4.42 13.42 11-20 65.47 2.78 12.18 

21-30 56.25 2.58 14.12 21-30 62.52 5.77 15.07 

Mean 58.95 3.03 14.03 Mean: 57.83 4.35 12.01 

St. Dev: 2.75 1.23 0.57 St. Dev: 10.77 1.50 3.14 

P
o

st
-b

u
ri

al
 (

a)
 1-10 70.21 3.80 19.11 

P
o

st
-b

u
ri

al
 (

b
) 1-10 71.78 3.33 15.92 

11-20 69.30 3.84 17.13 11-20 62.11 5.03 17.87 

21-30 68.64 3.81 18.78 21-30 68.72 4.61 17.97 

Mean: 69.38 3.82 18.34 Mean: 67.54 4.32 17.25 

St. Dev: 0.79 0.02 1.06 St. Dev: 4.94 0.89 1.16 

C
o

rt
ex

 (
a)

 

1-10 83.69 0.34 11.99 

C
o

rt
ex

 (
b

) 

1-10 85.45 0.60 13.14 

11-20 84.66 0.73 11.94 11-20 80.32 2.31 17.14 

21-30 83.80 1.01 11.68 21-30 84.15 0.73 16.14 

Mean: 84.05 0.69 11.87 Mean: 83.31 1.21 15.47 

St. Dev: 0.53 0.34 0.17 St. Dev: 2.67 0.95 2.08 
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Table A-14: 12 months compost burial bone colour analysis  

  Aggregate average   Aggregate average 
 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 52.78 8.35 13.74 

P
re

-b
u

ri
al

 (
b

) 1-10 63.53 5.55 15.41 

11-20 56.34 11.29 16.64 11-20 62.22 6.54 16.20 

21-30 70.05 1.13 13.93 21-30 68.96 5.00 17.58 

Mean 59.72 6.92 14.77 Mean: 64.90 5.70 16.40 

St. Dev: 9.12 5.23 1.62 St. Dev: 3.57 0.78 1.10 

P
o

st
-b

u
ri

al
 (

a)
 1-10 61.23 2.38 11.96 

P
o

st
-b

u
ri

al
 (

b
) 1-10 61.41 2.63 12.75 

11-20 61.41 2.39 12.02 11-20 61.42 2.63 12.76 

21-30 61.59 2.38 12.12 21-30 66.31 3.09 14.84 

Mean: 61.41 2.38 12.03 Mean: 63.05 2.78 13.45 

St. Dev: 0.18 0.01 0.08 St. Dev: 2.83 0.27 1.20 

C
o

rt
ex

 (
a)

 

1-10 67.90 2.44 13.02 
C

o
rt

ex
 (

b
) 

1-10 76.42 1.39 11.00 

11-20 74.08 0.94 10.74 11-20 73.83 1.13 10.86 

21-30 77.41 0.96 10.67 21-30 78.99 1.13 11.82 

Mean: 73.13 1.45 11.48 Mean: 76.41 1.22 11.23 

St. Dev: 4.83 0.86 1.34 St. Dev: 2.58 0.15 0.52 

 

Table A-15: 18 months compost burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 51.76 3.83 12.54 

P
re

-b
u

ri
al

 (
b

) 1-10 55.90 1.19 9.66 

11-20 52.30 3.39 12.83 11-20 51.08 1.12 10.59 

21-30 53.03 3.74 12.74 21-30 49.33 1.38 10.97 

Mean 52.36 3.65 12.70 Mean: 52.10 1.23 10.41 

St. Dev: 0.64 0.23 0.15 St. Dev: 3.40 0.13 0.67 

P
o

st
-b

u
ri

al
 (

a)
 1-10 73.43 2.50 13.72 

P
o

st
-b

u
ri

al
 (

b
) 1-10 68.31 3.47 14.08 

11-20 69.79 2.19 14.46 11-20 68.57 2.70 12.17 

21-30 70.13 2.21 14.61 21-30 67.29 3.29 13.28 

Mean: 71.12 2.30 14.26 Mean: 68.06 3.15 13.18 

St. Dev: 2.01 0.17 0.48 St. Dev: 0.68 0.40 0.96 

C
o

rt
ex

 (
a)

 

1-10 80.01 2.08 12.73 

C
o

rt
ex

 (
b

) 

1-10 76.97 2.02 12.54 

11-20 78.65 2.37 13.56 11-20 74.54 2.66 13.38 

21-30 79.33 1.59 12.48 21-30 75.94 2.50 12.44 

Mean: 79.33 2.01 12.92 Mean: 75.82 2.39 12.79 

St. Dev: 0.68 0.39 0.57 St. Dev: 1.22 0.33 0.52 
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Table A-16: 1.5 months lime burial bone colour analysis 

  Aggregate average   Aggregate average 
 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 66.07 1.98 12.21 

P
re

-b
u

ri
al

 (
b

) 1-10 71.78 0.88 14.82 

11-20 43.03 2.99 8.33 11-20 69.16 0.31 11.58 

21-30 54.77 4.15 11.65 21-30 71.24 -0.17 11.88 

Mean 54.62 3.04 10.73 Mean: 70.73 0.34 12.76 

St. Dev: 11.52 1.09 2.10 St. Dev: 1.38 0.53 1.79 

P
o

st
-b

u
ri

al
 (

a)
 1-10 40.67 6.31 8.31 

P
o

st
-b

u
ri

al
 (

b
) 1-10 49.67 11.38 12.71 

11-20 52.10 4.90 9.85 11-20 42.52 5.60 11.03 

21-30 46.54 4.58 7.11 21-30 50.94 4.03 13.52 

Mean: 46.44 5.26 8.42 Mean: 47.71 7.00 12.42 

St. Dev: 5.72 0.92 1.37 St. Dev: 4.54 3.87 1.27 

C
o

rt
ex

 (
a)

 

1-10 85.54 6.75 8.80 
C

o
rt

ex
 (

b
) 

1-10 82.30 1.75 11.97 

11-20 89.15 4.69 9.81 11-20 71.23 4.58 9.03 

21-30 80.52 7.86 10.91 21-30 74.22 6.00 11.20 

Mean: 85.07 6.43 9.84 Mean: 75.92 4.11 10.73 

St. Dev: 4.33 1.61 1.06 St. Dev: 5.73 2.16 1.52 

 

Table A-17: 3 months lime burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 69.14 4.57 17.32 

P
re

-b
u

ri
al

 (
b

) 1-10 65.30 4.87 14.86 

11-20 52.51 1.28 13.76 11-20 64.23 5.83 15.84 

21-30 68.96 0.91 14.72 21-30 64.04 5.23 15.61 

Mean 63.54 2.25 15.27 Mean: 64.52 5.31 15.44 

St. Dev: 9.55 2.01 1.84 St. Dev: 0.68 0.48 0.51 

P
o

st
-b

u
ri

al
 (

a)
 1-10 52.78 2.06 17.30 

P
o

st
-b

u
ri

al
 (

b
) 1-10 54.82 1.80 17.40 

11-20 57.25 3.76 19.70 11-20 53.12 1.92 15.52 

21-30 66.66 2.69 18.37 21-30 73.13 0.47 14.95 

Mean: 58.90 2.84 18.46 Mean: 60.36 1.40 15.96 

St. Dev: 7.09 0.86 1.20 St. Dev: 11.09 0.80 1.28 

C
o

rt
ex

 (
a)

 

1-10 65.35 4.20 11.27 

C
o

rt
ex

 (
b

) 

1-10 62.35 4.63 11.76 

11-20 67.37 2.09 11.64 11-20 59.17 5.37 10.33 

21-30 69.74 3.82 10.81 21-30 60.75 3.90 9.34 

Mean: 67.49 3.37 11.24 Mean: 60.76 4.63 10.48 

St. Dev: 2.20 1.12 0.42 St. Dev: 1.59 0.74 1.22 
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Table A-18: 6 months lime burial bone colour analysis 

  Aggregate average   Aggregate average 
 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 68.79 1.63 17.04 

P
re

-b
u

ri
al

 (
b

) 1-10 68.36 8.11 14.66 

11-20 32.32 5.91 13.76 11-20 61.97 4.76 13.83 

21-30 66.14 2.88 14.59 21-30 57.68 4.23 14.12 

Mean 55.75 3.47 15.13 Mean: 62.67 5.70 14.20 

St. Dev: 20.33 2.20 1.71 St. Dev: 5.37 2.10 0.42 

P
o

st
-b

u
ri

al
 (

a)
 1-10 59.19 3.67 15.12 

P
o

st
-b

u
ri

al
 (

b
) 1-10 54.67 5.74 23.05 

11-20 55.64 3.73 18.41 11-20 55.05 4.84 20.91 

21-30 57.40 2.49 15.36 21-30 52.26 5.58 21.80 

Mean: 57.41 3.30 16.30 Mean: 53.99 5.39 21.92 

St. Dev: 1.78 0.70 1.83 St. Dev: 1.51 0.48 1.08 

C
o

rt
ex

 (
a)

 

1-10 68.02 1.46 12.23 
C

o
rt

ex
 (

b
) 

1-10 60.56 4.15 11.60 

11-20 63.22 3.07 8.49 11-20 65.24 2.13 12.14 

21-30 55.85 3.02 8.70 21-30 71.95 0.90 11.87 

Mean: 62.36 2.52 9.81 Mean: 65.92 2.39 11.87 

St. Dev: 6.13 0.92 2.10 St. Dev: 5.73 1.64 0.27 

 

Table A-19: 12 months lime burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 62.78 5.25 13.63 

P
re

-b
u

ri
al

 (
b

) 1-10 70.87 0.66 11.86 

11-20 56.38 4.44 10.11 11-20 72.99 1.69 15.78 

21-30 62.38 4.27 12.51 21-30 69.31 0.62 12.10 

Mean 60.51 4.65 12.08 Mean: 71.06 0.99 13.25 

St. Dev: 3.59 0.52 1.80 St. Dev: 1.85 0.61 2.20 

P
o

st
-b

u
ri

al
 (

a)
 1-10 65.57 1.58 16.18 

P
o

st
-b

u
ri

al
 (

b
) 1-10 59.55 2.69 13.02 

11-20 69.77 1.06 13.08 11-20 57.88 2.78 12.34 

21-30 66.66 2.13 16.60 21-30 59.82 2.62 13.14 

Mean: 67.33 1.59 15.29 Mean: 59.08 2.70 12.83 

St. Dev: 2.18 0.54 1.92 St. Dev: 1.05 0.08 0.43 

C
o

rt
ex

 (
a)

 

1-10 71.64 2.05 10.66 

C
o

rt
ex

 (
b

) 

1-10 69.20 0.95 9.43 

11-20 70.28 2.09 9.69 11-20 68.61 1.78 13.29 

21-30 69.47 2.96 9.47 21-30 69.02 0.93 9.90 

Mean: 70.46 2.37 9.94 Mean: 68.94 1.22 10.87 

St. Dev: 1.10 0.51 0.63 St. Dev: 0.30 0.49 2.11 
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Table A-20: 18 months lime burial bone colour analysis 

  Aggregate average   Aggregate average 
 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 64.95 4.38 13.65 

P
re

-b
u

ri
al

 (
b

) 1-10 43.64 2.27 6.70 

11-20 59.96 6.67 10.42 11-20 58.60 1.64 14.25 

21-30 58.70 3.30 10.97 21-30 59.43 2.03 11.17 

Mean 61.20 4.78 11.68 Mean: 53.89 1.98 10.71 

St. Dev: 3.31 1.72 1.73 St. Dev: 8.89 0.32 3.80 

P
o

st
-b

u
ri

al
 (

a)
 1-10 58.35 3.72 16.26 

P
o

st
-b

u
ri

al
 (

b
) 1-10 68.43 1.78 18.88 

11-20 53.61 5.31 23.33 11-20 71.90 1.38 13.77 

21-30 62.62 2.80 18.70 21-30 70.60 1.63 14.58 

Mean: 58.19 3.94 19.43 Mean: 70.31 1.60 15.74 

St. Dev: 4.51 1.27 3.59 St. Dev: 1.75 0.20 2.75 

C
o

rt
ex

 (
a)

 

1-10 68.06 0.54 11.16 
C

o
rt

ex
 (

b
) 

1-10 69.18 2.83 11.64 

11-20 69.10 0.72 13.92 11-20 70.76 3.01 12.19 

21-30 65.58 3.26 11.13 21-30 71.56 3.34 12.49 

Mean: 67.58 1.51 12.07 Mean: 70.50 3.06 12.11 

St. Dev: 1.81 1.52 1.60 St. Dev: 1.21 0.26 0.43 

 

Table A-21: 1.5 months sand burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 66.70 3.70 14.19 

P
re

-b
u

ri
al

 (
b

) 1-10 53.72 1.38 8.36 

11-20 58.97 3.14 11.71 11-20 66.15 1.76 12.50 

21-30 65.05 2.96 14.11 21-30 71.10 0.68 13.28 

Mean 63.57 3.27 13.34 Mean: 63.66 1.27 11.38 

St. Dev: 4.07 0.39 1.41 St. Dev: 8.95 0.55 2.64 

P
o

st
-b

u
ri

al
 (

a)
 1-10 52.20 8.13 19.37 

P
o

st
-b

u
ri

al
 (

b
) 1-10 55.25 6.23 19.15 

11-20 50.18 7.16 22.37 11-20 51.22 7.60 19.99 

21-30 49.11 10.49 21.13 21-30 62.20 5.36 21.38 

Mean: 50.50 8.59 20.96 Mean: 56.22 6.40 20.17 

St. Dev: 1.57 1.71 1.51 St. Dev: 5.55 1.13 1.13 

C
o

rt
ex

 (
a)

 

1-10 88.91 8.08 9.47 

C
o

rt
ex

 (
b

) 

1-10 106.75 2.38 11.99 

11-20 107.51 2.63 12.57 11-20 104.15 2.95 9.88 

21-30 91.10 8.54 14.67 21-30 109.42 1.57 11.80 

Mean: 95.84 6.42 12.24 Mean: 106.77 2.30 11.22 

St. Dev: 10.17 3.29 2.62 St. Dev: 2.64 0.69 1.17 
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Table A-22: 3 months sand burial bone colour analysis 

  Aggregate average   Aggregate average 
 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 68.69 -1.48 18.46 

P
re

-b
u

ri
al

 (
b

) 1-10 64.85 0.52 13.06 

11-20 66.94 -1.82 15.73 11-20 68.35 0.68 10.86 

21-30 62.40 -1.67 12.28 21-30 60.97 0.64 9.58 

Mean 66.01 -1.66 15.49 Mean: 64.72 0.61 11.17 

St. Dev: 3.25 0.17 3.10 St. Dev: 3.69 0.08 1.76 

P
o

st
-b

u
ri

al
 (

a)
 1-10 51.25 3.91 16.28 

P
o

st
-b

u
ri

al
 (

b
) 1-10 52.77 4.27 15.82 

11-20 52.92 4.69 18.99 11-20 54.11 4.29 16.03 

21-30 51.82 4.27 16.99 21-30 53.39 4.86 17.28 

Mean: 52.00 4.29 17.42 Mean: 53.42 4.47 16.38 

St. Dev: 0.85 0.39 1.41 St. Dev: 0.67 0.34 0.79 

C
o

rt
ex

 (
a)

 

1-10 76.87 1.77 11.52 
C

o
rt

ex
 (

b
) 

1-10 73.66 1.68 14.02 

11-20 80.10 0.75 12.25 11-20 73.00 2.15 13.54 

21-30 73.65 2.16 13.94 21-30 77.37 1.98 13.06 

Mean: 76.87 1.56 12.57 Mean: 74.68 1.94 13.54 

St. Dev: 3.23 0.73 1.24 St. Dev: 2.36 0.24 0.48 

 

Table A-23: 6 months sand burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 65.19 -0.08 18.29 

P
re

-b
u

ri
al

 (
b

) 1-10 65.20 0.49 18.99 

11-20 62.70 2.18 17.69 11-20 60.73 3.80 16.12 

21-30 63.94 0.32 17.09 21-30 48.07 2.43 7.63 

Mean 63.94 0.81 17.69 Mean: 58.00 2.24 14.25 

St. Dev: 1.25 1.21 0.60 St. Dev: 8.89 1.66 5.91 

P
o

st
-b

u
ri

al
 (

a)
 1-10 55.81 4.70 18.70 

P
o

st
-b

u
ri

al
 (

b
) 1-10 51.07 4.02 17.51 

11-20 55.14 3.08 15.40 11-20 54.98 3.74 18.03 

21-30 54.73 4.78 19.10 21-30 50.21 3.71 16.60 

Mean: 55.23 4.19 17.73 Mean: 52.09 3.82 17.38 

St. Dev: 0.55 0.96 2.03 St. Dev: 2.54 0.17 0.72 

C
o

rt
ex

 (
a)

 

1-10 79.36 1.93 14.51 

C
o

rt
ex

 (
b

) 

1-10 73.36 3.18 14.14 

11-20 68.80 3.68 18.46 11-20 76.50 1.98 13.74 

21-30 71.73 3.97 21.88 21-30 72.95 3.20 14.12 

Mean: 73.30 3.19 18.28 Mean: 74.27 2.79 14.00 

St. Dev: 5.45 1.10 3.69 St. Dev: 1.94 0.70 0.23 
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Table A-24: 12 months sand burial bone colour analysis 

  Aggregate average   Aggregate average 
 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 65.25 -0.86 14.90 

P
re

-b
u

ri
al

 (
b

) 1-10 71.04 -0.89 8.09 

11-20 69.76 -0.89 16.32 11-20 71.47 -0.68 15.66 

21-30 64.40 -0.71 15.54 21-30 70.31 -0.96 8.48 

Mean 66.47 -0.82 15.59 Mean: 70.94 -0.84 10.74 

St. Dev: 2.88 0.10 0.71 St. Dev: 0.59 0.15 4.26 

P
o

st
-b

u
ri

al
 (

a)
 1-10 64.16 2.91 12.66 

P
o

st
-b

u
ri

al
 (

b
) 1-10 65.08 2.16 12.65 

11-20 63.69 2.95 12.60 11-20 65.68 2.09 12.96 

21-30 64.17 2.93 12.63 21-30 65.08 2.14 12.54 

Mean: 64.01 2.93 12.63 Mean: 65.28 2.13 12.72 

St. Dev: 0.27 0.02 0.03 St. Dev: 0.35 0.04 0.22 

C
o

rt
ex

 (
a)

 

1-10 76.95 1.86 11.07 
C

o
rt

ex
 (

b
) 

1-10 78.44 1.09 11.94 

11-20 78.64 1.32 10.22 11-20 77.63 1.27 11.95 

21-30 76.83 1.75 11.35 21-30 75.90 1.68 12.53 

Mean: 77.47 1.64 10.88 Mean: 77.32 1.35 12.14 

St. Dev: 1.01 0.29 0.59 St. Dev: 1.30 0.30 0.34 

 

Table A-25: 18 months sand burial bone colour analysis 

  Aggregate average   Aggregate average 

 Readings L* a* b*  Readings L* a* b* 

P
re

-b
u

ri
al

 (
a)

 1-10 54.26 0.15 13.02 

P
re

-b
u

ri
al

 (
b

) 1-10 61.46 6.29 16.84 

11-20 64.07 -1.01 13.20 11-20 42.74 6.29 13.33 

21-30 58.77 -0.81 14.60 21-30 55.32 4.97 13.00 

Mean 59.03 -0.56 13.61 Mean: 53.17 5.85 14.39 

St. Dev: 4.91 0.62 0.86 St. Dev: 9.54 0.76 2.13 

P
o

st
-b

u
ri

al
 (

a)
 1-10 61.55 5.05 21.51 

P
o

st
-b

u
ri

al
 (

b
) 1-10 37.10 7.93 18.87 

11-20 62.89 5.17 21.68 11-20 54.18 6.82 22.86 

21-30 62.31 5.66 21.79 21-30 62.69 6.41 25.49 

Mean: 62.25 5.29 21.66 Mean: 51.32 7.05 22.41 

St. Dev: 0.67 0.32 0.14 St. Dev: 13.03 0.79 3.33 

C
o

rt
ex

 (
a)

 

1-10 70.63 1.73 16.93 

C
o

rt
ex

 (
b

) 

1-10 72.02 3.65 18.05 

11-20 62.69 2.52 11.08 11-20 71.56 3.19 15.86 

21-30 69.44 2.68 16.54 21-30 71.70 2.61 14.68 

Mean: 67.59 2.31 14.85 Mean: 71.76 3.15 16.20 

St. Dev: 4.28 0.51 3.27 St. Dev: 0.24 0.52 1.71 
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Table A-26:  Overall colour difference between bone surface and cortex expressed as a single numerical value 
P

re
-b

u
ri

al
 t

o
 p

o
st

-b
u

ri
al

 

Duration Clay Compost Lime Sand 

 
Clay 1 Clay 2 Average S.D. Compost 1 Compost 2 Average S.D. Lime 1 Lime 2 Average S.D. Sand 1 Sand 2 Average S.D. 

1.5 3.92 9.06 6.49 3.63 15.01 18.26 16.64 2.30 8.79 23.96 16.38 10.73 16.04 12.60 14.32 2.43 

3 10.00 2.02 6.01 5.64 19.82 6.54 13.18 9.39 5.66 5.74 5.70 0.06 15.34 13.03 14.19 1.64 

6 21.12 4.29 12.70 11.90 11.31 11.03 13.18 0.20 2.04 11.62 5.70 6.77 9.35 6.88 14.19 1.75 

12 19.97 5.33 12.65 10.35 5.56 4.54 5.05 0.72 8.13 12.10 10.12 2.81 5.37 6.69 6.03 0.93 

18 14.35 17.84 16.09 2.47 16.31 18.87 17.59 1.81 8.36 17.18 12.77 6.24 10.46 8.32 9.39 1.51 

                 

P
o

st
-b

u
ri

al
 t

o
 s

u
rf

ac
e 

re
m

o
va

l 

 
Clay Compost Lime Sand 

 
Clay 1 Clay 2 Average S.D. Compost 1 Compost 2 Average S.D. Lime 1 Lime 2 Average S.D. Sand 1 Sand 2 Average S.D. 

1.5 15.84 14.10 14.97 1.23 16.05 59.26 37.66 30.55 38.68 28.40 33.54 7.26 46.23 51.50 48.86 3.73 

3 14.83 11.25 13.04 2.53 12.12 29.59 20.85 12.36 11.23 6.38 8.80 3.43 25.49 21.59 23.54 2.76 

6 7.34 18.60 12.97 7.96 16.33 16.17 16.25 0.11 8.20 15.88 12.04 5.43 18.11 22.46 20.28 3.08 

12 13.70 19.87 16.79 4.36 11.77 13.64 12.71 1.32 6.24 10.16 8.20 2.77 13.64 12.08 12.86 1.10 

18 14.28 17.25 15.76 2.10 7.81 8.33 8.07 0.37 12.18 3.92 11.94 5.84 9.15 21.72 13.99 8.88 

                 

P
re

-b
u

ri
al

 t
o

 s
u

rf
ac

e 
re

m
o

va
l 

 
Clay Compost Lime Sand 

 
Clay 1 Clay 2 Average S.D. Compost 1 Compost 2 Average S.D. Lime 1 Lime 2 Average S.D. Sand 1 Sand 2 Average S.D. 

1.5 19.27 19.34 19.31 0.05 4.92 42.14 23.53 26.32 30.65 6.73 18.69 16.91 32.44 43.13 37.78 7.56 

3 20.53 13.27 16.90 5.14 24.89 30.49 27.69 3.96 5.75 6.26 6.01 0.36 11.70 10.32 11.01 0.98 

6 27.98 16.51 22.25 8.12 25.30 25.90 25.60 0.42 8.54 5.19 6.87 2.37 9.67 16.28 12.98 4.67 

12 33.65 14.93 24.29 13.24 14.85 13.39 14.12 1.03 10.43 3.19 6.81 5.12 12.22 6.89 9.56 3.77 

18 27.60 34.56 31.08 4.92 23.86 27.02 25.44 2.23 7.18 16.70 11.94 6.74 9.11 18.87 13.99 6.90 
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Table A-27:  ATR-FTIR data for control porcine bones and experimental burial porcine bones 

Burial 
Type 

Duration 

Peak heights as designated wavenumber positions 

SF C/P Am/P 

Mean Average Standard deviation 

Peak A 
(600) 

Peak B 
(560) 

Peak C 
(586) 

Phosphate 
(1015) 

Carbonate 
(1410) 

Amide I 
(1642) 

SF C/P Am/P SF C/P Am/P 

Control 

0 0.07 0.12 0.07 0.15 0.05 0.04 2.91 0.32 0.28 2.89 0.31 0.28 0.03 0.01 0.00 

0 0.08 0.13 0.07 0.15 0.05 0.04 2.87 0.31 0.28       

1.5 0.09 0.15 0.08 0.19 0.06 0.05 2.98 0.31 0.27 2.96 0.31 0.27 0.02 0.00 0.01 

1.5 0.08 0.14 0.08 0.18 0.06 0.05 2.95 0.31 0.26       

3 0.07 0.12 0.06 0.14 0.05 0.04 3.07 0.35 0.26 3.03 0.35 0.27 0.05 0.00 0.00 

3 0.08 0.14 0.07 0.17 0.06 0.04 3.00 0.35 0.27       

6 0.09 0.15 0.08 0.17 0.06 0.04 3.03 0.33 0.26 3.02 0.33 0.26 0.01 0.00 0.00 

6 0.10 0.16 0.09 0.20 0.06 0.05 3.01 0.33 0.26       

12 0.09 0.15 0.08 0.19 0.06 0.05 2.98 0.34 0.27 3.00 0.34 0.26 0.03 0.00 0.01 

12 0.10 0.17 0.09 0.21 0.07 0.05 3.02 0.34 0.26       

18 0.09 0.14 0.08 0.17 0.06 0.05 3.01 0.35 0.27 3.02 0.34 0.26 0.00 0.01 0.01 

18 0.12 0.20 0.11 0.25 0.09 0.07 3.02 0.34 0.26             

Clay 

1.5 0.13 0.22 0.11 0.29 0.07 0.07 3.12 0.24 0.24 3.07 0.29 0.26 0.07 0.08 0.04 

1.5 0.06 0.11 0.06 0.13 0.05 0.04 3.02 0.35 0.29       

3 0.12 0.20 0.10 0.25 0.08 0.06 3.09 0.32 0.25 3.04 0.31 0.25 0.06 0.02 0.00 

3 0.12 0.19 0.10 0.25 0.07 0.06 3.00 0.29 0.25       

6 0.13 0.22 0.11 0.30 0.08 0.07 3.10 0.29 0.24 3.07 0.30 0.26 0.03 0.02 0.04 

6 0.17 0.28 0.15 0.38 0.12 0.11 3.05 0.31 0.29       

12 0.15 0.25 0.13 0.34 0.13 0.09 3.13 0.39 0.27 3.10 0.35 0.27 0.04 0.07 0.00 

12 0.14 0.24 0.13 0.33 0.10 0.09 3.07 0.30 0.27       

18 0.13 0.23 0.12 0.30 0.09 0.09 3.08 0.29 0.29 3.10 0.30 0.30 0.03 0.01 0.01 

18 0.13 0.22 0.11 0.30 0.09 0.09 3.12 0.31 0.30             
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Burial 
Type 

Duration 

Peak heights as designated wavenumber positions 

SF C/P Am/P 

Mean Average Standard deviation 

Peak A 
(600) 

Peak B 
(560) 

Peak C 
(586) 

Phosphate 
(1015) 

Carbonate 
(1410) 

Amide I 
(1642) 

SF C/P Am/P SF C/P Am/P 

Compost 

1.5 0.12 0.21 0.10 0.26 0.06 0.05 3.18 0.24 0.20 3.11 0.28 0.23 0.11 0.06 0.05 

1.5 0.08 0.14 0.08 0.18 0.06 0.05 3.03 0.32 0.27       

3 0.13 0.20 0.11 0.27 0.09 0.07 3.13 0.33 0.26 3.13 0.32 0.28 0.01 0.01 0.02 

3 0.16 0.26 0.14 0.37 0.12 0.11 3.12 0.32 0.29       

6 0.11 0.18 0.09 0.24 0.07 0.06 3.09 0.29 0.26 3.07 0.28 0.25 0.02 0.02 0.01 

6 0.11 0.19 0.10 0.24 0.06 0.06 3.06 0.26 0.25       

12 0.13 0.22 0.12 0.29 0.09 0.08 3.03 0.31 0.28 3.05 0.32 0.29 0.02 0.01 0.02 

12 0.14 0.24 0.12 0.34 0.11 0.10 3.06 0.32 0.31       

18 0.11 0.18 0.10 0.24 0.07 0.08 3.05 0.30 0.31 3.06 0.31 0.30 0.01 0.01 0.02 

18 0.14 0.24 0.12 0.33 0.10 0.09 3.07 0.32 0.29             

Lime 

1.5 0.07 0.12 0.06 0.15 0.05 0.04 3.00 0.32 0.27 2.98 0.35 0.29 0.03 0.04 0.04 

1.5 0.11 0.18 0.10 0.24 0.09 0.08 2.96 0.37 0.32       

3 0.08 0.13 0.07 0.16 0.05 0.05 3.00 0.33 0.28 3.00 0.35 0.30 0.00 0.03 0.02 

3 0.08 0.13 0.07 0.16 0.06 0.05 3.00 0.37 0.31       

6 0.07 0.11 0.06 0.15 0.06 0.06 2.89 0.42 0.40 2.94 0.36 0.33 0.08 0.08 0.10 

6 0.10 0.16 0.09 0.21 0.06 0.05 3.00 0.31 0.26       

12 0.13 0.20 0.11 0.28 0.10 0.09 2.95 0.37 0.34 2.97 0.38 0.32 0.04 0.01 0.02 

12 0.12 0.20 0.10 0.26 0.10 0.08 3.00 0.38 0.30       

18 0.10 0.17 0.09 0.22 0.09 0.08 2.95 0.39 0.36 2.97 0.37 0.33 0.04 0.03 0.04 

18 0.11 0.18 0.10 0.24 0.08 0.07 3.00 0.35 0.30             
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Burial 
Type 

Duration 

Peak heights as designated wavenumber positions 

SF C/P Am/P 

Mean Average Standard deviation 

Peak A 
(600) 

Peak B 
(560) 

Peak C 
(586) 

Phosphate 
(1015) 

Carbonate 
(1410) 

Amide I 
(1642) 

SF C/P Am/P SF C/P Am/P 

Sand 1.5 0.07 0.12 0.06 0.14 0.05 0.04 3.14 0.34 0.28 3.08 0.33 0.26 0.08 0.01 0.02 

1.5 0.08 0.13 0.07 0.16 0.05 0.04 3.03 0.32 0.25       

3 0.12 0.20 0.11 0.27 0.08 0.07 3.04 0.30 0.26 3.07 0.30 0.25 0.04 0.00 0.02 

3 0.12 0.20 0.10 0.26 0.08 0.06 3.10 0.31 0.24       

6 0.17 0.27 0.15 0.37 0.13 0.12 2.94 0.35 0.31 2.91 0.36 0.32 0.04 0.02 0.01 

6 0.12 0.19 0.11 0.26 0.10 0.08 2.89 0.38 0.32       

12 0.13 0.22 0.11 0.29 0.08 0.07 3.13 0.28 0.23 3.10 0.30 0.24 0.04 0.03 0.01 

12 0.14 0.24 0.13 0.32 0.10 0.08 3.07 0.32 0.25       

18 0.10 0.17 0.09 0.22 0.07 0.06 3.01 0.34 0.27 3.08 0.37 0.30 0.09 0.04 0.04 

18 0.20 0.34 0.17 0.41 0.16 0.13 3.14 0.40 0.33             
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Appendix B :  Human Archaeological Data 
Table B-1: Fin Cop skeletal colour data 

Sample name 
Measurement 

Surface colour Cortex colour 

Skeleton number Element L a b L a b 

Skeleton 1 Femur  Reading 1-10 75.37 5.86 22.04 82.59 4.33 18.21 

  Reading 11-20 78.07 5.77 25.11 84.57 3.49 17.92 

  Reading 21-30 73.11 9.06 31.60 84.61 3.65 18.44 

  Reading 31-40 72.09 8.90 30.61 84.49 3.36 17.52 

  Average 74.66 7.40 27.34 84.07 3.71 18.02 

  Standard deviation 2.65 1.83 4.54 0.98 0.43 0.40 

 Metatarsal Reading 1-10 66.27 8.83 26.02 81.83 3.94 17.94 

  Reading 11-20 72.13 7.49 28.72 76.94 4.67 19.20 

  Reading 21-30 62.14 8.06 26.94 76.97 4.63 19.13 

  Reading 31-40 69.56 8.05 27.77 79.88 4.57 19.37 

  Average 67.53 8.11 27.36 78.91 4.45 18.91 

  Standard deviation 4.32 0.55 1.15 2.39 0.34 0.65 

Skeleton 3 Femur  Reading 1-10 53.49 9.49 23.22 81.44 4.01 18.87 

  Reading 11-20 58.66 9.71 24.84 84.11 3.50 18.12 

  Reading 21-30 53.25 10.54 23.31 79.45 4.36 19.60 

  Reading 31-40 59.81 10.37 28.08 81.74 4.57 19.14 

  Average 56.30 10.03 24.86 81.69 4.11 18.93 

  Standard deviation 3.42 0.51 2.27 1.91 0.47 0.62 

 Metatarsal Reading 1-10 67.38 8.76 29.37 80.44 4.29 17.91 

  Reading 11-20 71.22 4.70 20.96 81.85 4.03 17.90 

  Reading 21-30 61.11 7.36 23.78 81.13 4.26 18.00 

  Reading 31-40 71.13 6.36 24.15 81.92 4.09 17.93 

  Average 67.71 6.80 24.57 81.34 4.17 17.94 

  Standard deviation 4.75 1.71 3.51 0.70 0.13 0.05 

Skeleton 5 Femur Reading 1-10 74.93 5.10 19.77 71.10 5.53 15.06 

  Reading 11-20 77.88 4.69 20.40 66.93 6.89 14.00 

  Reading 21-30 72.16 5.74 20.12 73.81 4.76 14.95 

  Reading 31-40 73.79 5.38 19.41 69.87 5.92 15.72 

  Average 74.69 5.23 19.93 70.43 5.78 14.93 

  Standard deviation 2.41 0.44 0.43 2.85 0.89 0.71 

 Metatarsal Reading 1-10 63.67 8.73 24.40 82.98 2.96 16.53 

  Reading 11-20 62.51 9.03 24.34 81.08 2.74 15.18 

  Reading 21-30 67.70 6.24 22.18 83.11 2.94 16.45 

  Reading 31-40 67.53 7.70 24.38 80.80 3.35 15.73 

  Average 65.35 7.93 23.83 81.99 3.00 15.97 

  Standard deviation 2.66 1.26 1.10 1.22 0.26 0.64 

Skeleton 6 Femur Reading 1-10 51.75 8.81 21.20 68.20 5.43 18.74 

  Reading 11-20 56.79 7.87 21.85 67.12 5.98 20.34 

  Reading 21-30 49.98 9.37 20.80 69.44 5.10 18.40 

  Reading 31-40 59.60 7.68 22.45 66.84 5.38 18.47 

  Average 54.53 8.43 21.58 67.90 5.47 18.99 

  Standard deviation 4.44 0.80 0.73 1.18 0.37 0.91 
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Sample name 
Measurement 

Surface colour Cortex colour 

Skeleton number Element L a b L a b 

Skeleton 7 Femur Reading 1-10 64.98 5.20 18.51 68.07 6.49 20.49 

  Reading 11-20 60.84 7.13 22.27 70.41 5.41 20.63 

  Reading 21-30 57.91 7.04 19.69 68.82 7.23 20.33 

  Reading 31-40 59.23 7.49 21.22 69.60 6.87 20.56 

  Average 60.74 6.72 20.42 69.23 6.50 20.50 

  Standard deviation 3.07 1.03 1.66 1.01 0.79 0.13 

Skeleton 8 Femur Reading 1-10 79.27 5.75 27.56 81.24 4.78 18.79 

  Reading 11-20 71.64 6.48 24.99 82.95 4.45 19.60 

  Reading 21-30 68.52 6.54 23.14 81.88 4.31 18.10 

  Reading 31-40 79.87 5.17 26.08 83.37 4.31 19.26 

  Average 74.83 5.99 25.44 82.36 4.46 18.94 

  Standard deviation 5.63 0.65 1.86 0.98 0.22 0.65 

 Metatarsal Reading 1-10 65.26 8.26 26.41 85.26 2.86 19.08 

  Reading 11-20 76.99 5.76 25.90 82.42 3.05 16.06 

  Reading 21-30 67.36 7.76 26.26 84.41 3.27 19.34 

  Reading 31-40 75.26 6.87 28.68 82.41 3.08 15.71 

  Average 71.22 7.16 26.81 83.63 3.07 17.55 

  Standard deviation 5.77 1.10 1.26 1.44 0.17 1.93 
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Table B-2:  ATR-FTIR data of Fin Cop skeletal elements 

Skeleton 
Identification 

number 

Skeletal 
element 

Peak heights at designated wavenumber positions 
Splitting 
Factor 

Carbonate/ 
Phosphate 

Amide / 
Phosphate Peak A 

(600) 
Peak B 
(560) 

Peak C 
(586) 

Phosphate 
(1015) 

Carbonate 
(1410) 

Amide I 
(1642) 

Skeleton 1 
Femur 1.44 0.85 0.69 1.82 0.37 0.17 3.32 0.20 0.09 

Metatarsal 1.21 0.68 0.60 1.69 0.42 0.29 3.15 0.25 0.17 

Skeleton 3 
Femur 1.15 0.66 0.51 1.43 0.54 0.49 3.57 0.38 0.34 

Metatarsal 1.35 0.73 0.54 1.71 0.38 0.34 3.84 0.22 0.20 

Skeleton 5 
Femur 1.32 0.74 0.60 1.64 0.51 0.43 3.45 0.31 0.26 

Metatarsal 1.25 0.66 0.53 1.78 0.41 0.30 3.59 0.23 0.17 

Skeleton 6 Femur 0.86 0.38 0.32 1.67 0.36 0.34 3.89 0.22 0.21 

Skeleton 7 Femur 0.98 0.43 0.36 1.72 0.35 0.30 3.90 0.20 0.17 

Skeleton 8 
Femur 1.42 0.79 0.53 1.87 0.37 0.21 4.17 0.20 0.11 

Metatarsal 1.17 0.61 0.48 1.75 0.42 0.31 3.70 0.24 0.18 
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Table B-3:  XRF data of selected Fin Cop skeletal elements 

Sample 
name 

Test 
number 

Element peak height in cps 

Si P Ca Ti Fe Mn Cu Zn Sr Zr Cr Ni K 

Femur 6 

1 1049.51 4210.83 65045.27 473.94 10645.91 579.11 597.23 987.16 447.53 185.47 128.16 943.10 1239.14 

2 1032.00 4011.09 61264.58 454.10 10488.69 577.44 580.50 942.76 434.05 277.49 147.74 876.43 1176.89 

3 1010.49 4206.57 62694.09 400.24 9587.50 470.90 482.16 883.65 550.58 271.08 83.72 768.01 1185.00 

Average 1030.67 4142.83 63001.31 442.76 10240.70 542.48 553.30 937.86 477.39 244.68 119.87 862.51 1200.34 

s.d. 19.55 114.11 1908.98 38.14 571.13 62.00 62.17 51.93 63.75 51.38 32.80 88.37 33.84 

Femur 7 

1 682.69 5823.67 75120.74 118.38 1920.25 293.69 297.28 284.74 411.87 98.59 138.39 961.95 763.16 

2 810.04 5678.94 75524.86 154.39 2764.24 326.56 295.41 308.82 467.86 169.77 147.38 941.28 885.71 

3 712.25 5718.75 75492.31 124.03 1904.69 273.91 288.55 299.91 470.59 83.90 103.85 975.15 811.79 

Average 734.99 5740.46 75379.30 132.27 2196.39 298.05 293.75 297.82 450.10 117.42 129.87 959.46 820.22 

s.d. 66.66 74.77 224.51 19.37 491.83 26.59 4.60 12.17 33.14 45.93 22.98 17.07 61.71 

Femur 8 

1 371.58 6273.58 80484.22 32.62 655.48 262.12 659.28 797.92 523.56 71.22 171.85 1451.13 651.87 

2 405.66 6595.96 82133.23 12.35 590.79 271.15 591.46 763.00 576.03 90.52 166.94 1452.68 665.14 

3 348.00 5921.39 76421.32 19.02 536.38 183.52 554.62 687.58 588.31 112.31 135.69 1274.98 605.05 

Average 375.08 6263.64 79679.59 21.33 594.21 238.93 601.79 749.50 562.63 91.35 158.16 1392.93 640.68 

s.d. 28.99 337.39 2939.74 10.33 59.62 48.20 53.08 56.39 34.39 20.56 19.61 102.15 31.57 

Metatarsal 8 

1 544.04 5761.19 76562.10 210.61 3634.13 299.37 531.87 683.94 498.41 92.58 110.22 1229.79 819.15 

2 474.75 5913.23 77731.03 81.36 2591.85 305.18 602.47 737.68 503.19 90.35 133.86 1327.08 764.27 

3 525.30 5879.49 79348.60 191.51 3473.82 315.92 587.50 730.54 508.62 64.51 144.62 1316.54 836.16 

Average 514.70 5851.30 77880.58 161.16 3233.27 306.82 573.95 717.39 503.41 82.48 129.57 1291.14 806.53 

s.d. 35.84 79.84 1399.26 69.77 561.24 8.39 37.20 29.19 5.11 15.60 17.59 53.38 37.57 
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Table B-4:  Colour data of Eriswell skeletal elements 

Sample name Surface colour Cortex colour 
Colour 
change Skeleton 

number 
Element L* a* b* L* a* b* 

0067 
Femur  57.83 6.49 12.22 73.61 5.05 17.01 16.55 

Metatarsal 59.60 7.61 16.98 70.35 7.62 23.03 12.33 

0145 
Femur  61.13 6.75 19.36 57.54 3.76 9.73 10.71 

Metatarsal 64.20 7.71 20.04 78.21 3.55 19.40 14.63 

0158 
Femur  57.22 8.39 19.35 69.69 5.07 14.32 13.85 

Metatarsal 64.38 7.48 20.22 81.19 1.95 15.78 18.25 

0201 
Femur  55.10 8.91 18.97 74.93 4.28 15.76 20.61 

Metatarsal 57.16 6.62 15.92 73.90 4.02 17.18 16.98 

0203 
Femur  52.63 9.12 19.48 72.37 5.57 16.70 20.24 

Metatarsal 58.24 8.13 16.91 71.48 6.62 23.01 14.65 

0235 
Femur  68.07 6.58 30.92 79.10 4.49 17.45 17.54 

Metatarsal 62.35 6.41 17.69 80.77 3.60 18.62 18.66 

0241 Femur  61.38 7.31 16.87 72.12 4.48 15.82 11.15 

0251 
Femur  53.37 5.82 11.05 66.83 2.46 8.82 14.04 

Metatarsal 62.16 4.33 15.68 72.38 2.59 14.30 10.45 

0255 
Femur  52.29 5.31 13.42 74.32 3.25 14.28 22.14 

Metatarsal 60.22 6.65 16.95 73.43 4.22 19.56 13.68 

0259 
Femur  53.78 6.06 15.40 68.89 3.39 11.86 15.74 

Metatarsal 61.46 4.47 15.51 72.32 3.89 16.34 10.90 

0309 
Femur  64.66 5.81 15.31 73.99 3.92 14.95 9.53 

Metatarsal 62.02 5.88 17.84 74.63 4.27 20.92 13.08 

0310 Femur  52.96 8.64 18.82 68.15 3.76 14.21 16.61 

0317 
Femur  62.29 5.51 12.86 65.47 3.10 8.97 5.57 

Metatarsal 56.78 7.80 16.64 60.15 4.05 13.94 5.71 

0318 
Femur  65.86 7.73 23.21 79.39 4.12 16.99 15.33 

Metatarsal 64.85 7.17 19.80 84.75 2.82 15.76 20.77 

0326 
Femur  58.46 9.29 21.26 73.36 4.34 17.67 16.10 

Metatarsal 58.48 7.82 16.86 67.89 8.70 23.69 11.65 

0343 
Femur  64.54 3.79 12.12 73.73 3.11 14.57 9.53 

Metatarsal 60.94 7.02 15.59 61.57 6.20 13.56 2.28 

0346 
Femur  52.04 2.75 6.30 63.74 3.77 11.51 12.84 

Metatarsal 62.23 7.78 19.12 69.13 6.14 21.46 7.47 

0363 
Femur  63.22 7.30 22.04 77.84 4.55 16.88 15.75 

Metatarsal 53.87 5.35 11.54 66.46 4.24 12.68 12.69 

0392 
Femur  69.97 9.43 26.50 79.48 5.02 16.54 14.45 

Metatarsal 66.52 8.65 21.63 83.35 3.89 18.64 17.74 

0395 
Femur  53.90 6.55 18.63 72.25 3.68 13.45 19.28 

Metatarsal 59.29 6.07 15.11 69.55 6.11 21.95 12.33 
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Sample name Surface colour Cortex colour 
Colour 
change Skeleton 

number 
Element L* a* b* L* a* b* 

0425 
Femur  61.22 8.09 22.14 74.72 3.79 15.40 15.68 

Metatarsal 56.78 6.67 13.71 54.75 7.12 19.76 6.40 

0426 
Femur  63.07 6.98 21.85 75.72 3.70 15.33 14.61 

Metatarsal 61.83 7.31 16.72 72.50 5.22 21.80 12.00 

0474 Femur  61.73 9.14 23.84 76.33 3.86 14.30 18.22 

0477 
Femur  64.93 8.29 22.67 77.26 4.39 16.22 14.45 

Metatarsal 63.81 5.58 14.54 72.80 4.80 21.33 11.29 

0554 Femur  61.81 7.45 21.91 68.73 4.08 12.50 12.15 

0570 
Femur  62.32 8.96 26.36 77.60 1.60 16.19 19.77 

Metatarsal 57.08 4.30 13.46 58.90 3.32 8.17 5.68 

0571 Metatarsal 58.48 6.04 14.55 75.28 6.42 22.93 18.77 

0580 
Femur  50.08 6.49 16.55 82.19 1.53 12.27 32.78 

Metatarsal 63.65 6.35 15.30 84.63 2.34 14.95 21.36 

0612 
Femur  65.96 11.60 29.57 77.83 4.51 18.50 17.71 

Metatarsal 63.26 6.96 16.23 62.10 6.21 14.99 1.86 

0692 
Femur  69.08 8.18 24.00 78.86 4.05 15.59 13.54 

Metatarsal 64.14 6.44 17.62 74.77 3.35 17.45 11.07 

0717 
Femur  68.90 8.52 21.14 77.15 4.49 16.20 10.43 

Metatarsal 68.34 5.89 16.39 73.18 3.80 18.38 5.63 

0759 
Femur  52.41 12.01 23.57 76.89 3.39 14.29 27.56 

Metatarsal 60.95 9.04 18.68 70.26 9.96 26.27 12.05 

0791 
Femur  59.47 6.67 19.95 83.77 1.44 10.82 26.48 

Metatarsal 65.96 6.14 19.08 83.16 3.83 18.77 17.36 

0799 
Femur  60.34 6.88 20.12 79.28 1.58 10.49 21.89 

Metatarsal 66.92 5.94 19.20 76.00 2.29 14.86 10.70 

0808 
Femur  61.84 8.72 23.42 80.35 2.50 13.31 21.99 

Metatarsal 66.42 7.45 21.50 75.22 6.30 23.03 9.00 

0809 
Femur  64.13 7.58 22.95 76.98 4.12 15.75 15.13 

Metatarsal 58.40 6.73 16.26 64.13 6.39 19.20 6.44 

0851 
Femur  66.67 5.94 19.90 75.85 3.71 14.80 10.74 

Metatarsal 60.05 5.00 14.67 60.05 4.69 12.08 2.61 

0888 Femur  62.57 7.44 19.30 77.42 3.29 15.37 15.91 

0907 Femur  72.49 7.60 24.92 82.31 3.80 15.75 13.95 

0991 
Femur  56.54 7.75 18.80 78.07 3.24 13.50 22.63 

Metatarsal 61.27 6.77 15.71 72.13 5.98 20.23 11.78 

0994 
Femur  60.92 8.68 19.36 80.80 2.07 13.80 21.68 

Metatarsal 55.34 7.29 15.14 66.35 4.56 16.07 11.38 

4040 
Femur  63.16 10.25 24.25 80.24 3.43 17.09 19.73 

Metatarsal 65.16 4.90 18.75 66.17 4.58 13.85 5.02 

4046 
Femur  61.62 9.16 22.58 84.20 3.36 14.91 24.54 

Metatarsal 66.21 9.31 22.18 82.81 4.02 18.61 17.79 
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Sample name Surface colour Cortex colour 
Colour 
change Skeleton 

number 
Element L* a* b* L* a* b* 

4067 
Femur  52.22 10.32 21.90 76.60 2.38 11.66 27.61 

Metatarsal 63.24 7.84 20.50 68.52 5.80 17.39 6.45 

4095 Femur  52.09 7.94 20.67 77.05 2.74 14.44 26.25 

4098 Femur  53.66 10.63 23.64 80.42 3.87 16.38 28.54 

4099 
Femur  61.68 8.37 21.83 82.99 1.96 12.55 24.11 

Metatarsal 68.50 8.31 20.90 77.22 6.08 22.62 9.16 

4191 
Femur  57.82 8.74 23.68 82.92 3.10 14.76 27.23 

Metatarsal 60.73 7.89 19.32 77.19 3.60 18.72 17.02 

4222 
Femur  54.81 9.04 25.41 79.84 1.61 17.22 20.46 

Sternum 50.95 10.95 26.69 63.45 7.02 23.40 23.96 

4226 
Femur  59.10 5.41 15.80 78.88 2.79 13.13 20.13 

Metatarsal 56.59 5.41 12.37 65.27 6.87 18.49 10.72 

4288 
Femur  52.96 7.50 17.35 73.23 4.23 13.06 20.98 

Metatarsal 59.65 5.47 13.85 63.50 5.18 15.98 4.41 

4291 Femur  55.14 9.97 20.79 82.70 2.66 13.40 29.45 

4295 Femur  53.25 10.19 20.41 78.30 5.30 17.57 25.68 

4340 
Femur  52.46 11.09 21.87 71.13 5.12 13.63 21.26 

Metatarsal 56.21 7.35 14.77 60.59 9.27 22.23 8.86 

4411 Femur  53.41 6.62 18.81 59.59 2.93 7.74 13.20 

4462 
Femur  56.24 9.61 19.13 74.22 5.44 14.16 19.11 

Metatarsal 60.80 6.61 16.24 65.92 6.91 19.43 6.03 

4473 Femur  59.99 7.39 19.32 71.46 5.43 15.36 12.29 

4503 
Femur  54.67 11.20 24.92 80.92 3.62 15.28 28.98 

Metatarsal 60.59 10.10 19.28 70.97 7.37 22.45 11.18 

4561 
Femur  57.35 11.59 25.44 81.72 3.13 14.48 28.04 

Metatarsal 60.12 9.05 18.59 69.24 5.31 21.76 10.35 
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Table B-5:  ATR-FTIR data from Eriswell skeletal elements 

Skeleton 
Identification 

number 

Skeletal 
element 

Peak heights at designated wavenumber positions 
Splitting 
Factor 

Carbonate/ 
Phosphate 

Amide / 
Phosphate 

Peak A 
(600) 

Peak B 
(560) 

Peak C 
(586) 

Phosphate 
(1015) 

Carbonate 
(1410) 

Amide I 
(1642) 

0067 
Femur 1.32 0.81 0.68 1.47 0.49 0.38 3.12 0.33 0.26 

Metatarsal 0.11 0.06 0.04 0.19 0.03 0.02 4.36 0.15 0.09 

0145 
Femur 1.45 0.89 0.70 1.78 0.53 0.33 3.35 0.30 0.19 

Metatarsal 0.07 0.04 0.03 0.10 0.03 0.02 3.79 0.25 0.18 

0158 
Femur 1.42 0.91 0.73 1.61 0.56 0.46 3.19 0.35 0.29 

Metatarsal 0.07 0.05 0.03 0.11 0.03 0.02 3.69 0.25 0.16 

0201 
Femur 1.43 0.86 0.72 1.55 0.56 0.44 3.18 0.36 0.28 

Metatarsal 0.06 0.04 0.02 0.13 0.02 0.01 4.48 0.12 0.08 

0203 
Femur 1.48 0.92 0.72 1.67 0.40 0.30 3.34 0.24 0.18 

Metatarsal 1.26 0.70 0.64 1.75 0.34 0.26 3.08 0.19 0.15 

0235 
Femur 1.54 0.93 0.70 1.82 0.36 0.10 3.53 0.20 0.05 

Metatarsal 1.53 0.94 0.74 1.81 0.44 0.13 3.32 0.24 0.07 
0241 Femur 1.39 0.85 0.69 1.60 0.55 0.44 3.23 0.34 0.27 

0251 
Femur 1.47 0.91 0.75 1.56 0.54 0.45 3.16 0.35 0.29 

Metatarsal 1.18 0.75 0.61 1.61 0.50 0.36 3.18 0.31 0.22 

0255 
Femur 1.45 0.89 0.70 1.70 0.40 0.35 3.36 0.23 0.21 

Metatarsal 1.41 0.91 0.75 1.61 0.49 0.36 3.08 0.30 0.22 

0259 
Femur 1.34 0.83 0.67 1.59 0.54 0.45 3.21 0.34 0.28 

Metatarsal 1.04 0.67 0.54 1.57 0.54 0.43 3.17 0.34 0.27 

0309 
Femur 1.48 0.93 0.75 1.71 0.48 0.35 3.21 0.28 0.20 

Metatarsal 0.06 0.03 0.03 0.08 0.03 0.02 3.68 0.31 0.20 
0310 Femur 1.39 0.87 0.72 1.63 0.51 0.37 3.16 0.31 0.23 

0317 
Femur 1.49 0.92 0.72 1.70 0.48 0.38 3.33 0.28 0.22 

Metatarsal 0.06 0.04 0.03 0.09 0.02 0.02 3.76 0.23 0.17 

0318 
Femur 0.26 0.15 0.12 0.30 0.06 0.02 3.46 0.21 0.05 

Metatarsal 1.39 0.85 0.66 1.79 0.43 0.11 3.40 0.24 0.06 

0326 
Femur 1.26 0.77 0.69 1.48 0.63 0.51 2.93 0.43 0.35 

Metatarsal 1.35 0.87 0.74 1.65 0.66 0.57 2.99 0.40 0.34 

0343 
Femur 1.47 0.93 0.76 1.75 0.48 0.32 3.16 0.28 0.18 

Metatarsal 1.31 0.81 0.63 1.68 0.55 0.37 3.37 0.33 0.22 
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Skeleton 
Identification 

number 

Skeletal 
element 

Peak heights at designated wavenumber positions 
Splitting 
Factor 

Carbonate/ 
Phosphate 

Amide / 
Phosphate 

Peak A 
(600) 

Peak B 
(560) 

Peak C 
(586) 

Phosphate 
(1015) 

Carbonate 
(1410) 

Amide I 
(1642) 

0346 
Femur 1.38 0.91 0.78 1.62 0.62 0.48 2.95 0.39 0.30 

Metatarsal 1.18 0.65 0.56 1.78 0.33 0.22 3.26 0.19 0.12 

0363 
Femur 1.39 0.90 0.80 1.66 0.60 0.47 2.88 0.36 0.29 

Metatarsal 1.27 0.74 0.52 1.79 0.28 0.12 3.85 0.16 0.07 

0392 
Femur 1.49 0.92 0.72 1.78 0.39 0.13 3.36 0.22 0.07 

Metatarsal 1.51 0.89 0.64 1.84 0.33 0.09 3.75 0.18 0.05 

0395 
Femur 1.43 0.92 0.76 1.57 0.50 0.40 3.08 0.32 0.25 

Metatarsal 0.06 0.04 0.03 0.10 0.02 0.01 3.92 0.23 0.14 

0425 
Femur 1.51 0.95 0.75 1.80 0.44 0.16 3.28 0.24 0.09 

Metatarsal 1.16 0.71 0.50 1.76 0.36 0.17 3.70 0.20 0.10 

0426 
Femur 1.51 0.92 0.73 1.81 0.41 0.12 3.32 0.22 0.07 

Metatarsal 1.17 0.70 0.50 1.75 0.36 0.17 3.70 0.21 0.09 
0474 Femur 1.40 0.82 0.53 1.85 0.20 0.06 4.19 0.11 0.03 
0554 Femur 1.37 0.82 0.57 1.84 0.27 0.10 3.84 0.15 0.05 
0570 Metatarsal 0.02 0.01 0.01 0.04 0.02 0.01 3.80 0.39 0.20 
0571 Metatarsal 0.10 0.06 0.04 0.17 0.02 0.02 4.32 0.14 0.11 

0580 
Femur 1.49 0.91 0.68 1.81 0.32 0.10 3.54 0.18 0.05 

Metatarsal 1.41 0.82 0.60 1.82 0.31 0.10 3.74 0.17 0.06 

0612 
Femur 1.37 0.91 0.77 1.60 0.61 0.47 2.96 0.38 0.29 

Metatarsal 0.04 0.02 0.02 0.06 0.04 0.01 3.50 0.72 0.10 

0692 
Femur 1.33 0.85 0.72 1.49 0.58 0.44 3.01 0.39 0.29 

Metatarsal 0.07 0.04 0.03 0.10 0.06 0.01 3.26 0.62 0.13 

0717 
Femur 1.47 0.88 0.68 1.77 0.40 0.12 3.44 0.23 0.07 

Metatarsal 0.11 0.06 0.05 0.17 0.08 0.02 3.72 0.49 0.09 

0759 
Femur 1.49 0.91 0.70 1.79 0.37 0.12 3.44 0.21 0.06 

Metatarsal 1.15 0.69 0.57 1.67 0.60 0.19 3.22 0.36 0.11 

0791 
Femur 1.47 0.87 0.66 1.77 0.39 0.10 3.57 0.22 0.06 

Metatarsal 1.14 0.66 0.48 1.72 0.45 0.17 3.76 0.26 0.10 

0799 
Femur 1.48 0.92 0.72 1.79 0.47 0.14 3.33 0.26 0.08 

Metatarsal 1.23 0.73 0.55 1.74 0.49 0.13 3.56 0.28 0.07 

0808 
Femur 1.58 0.94 0.65 1.98 0.30 0.14 3.91 0.15 0.07 

Metatarsal 1.17 0.70 0.55 1.67 0.39 0.20 3.43 0.23 0.12 
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Skeleton 

Identification 
number 

Skeletal 
element 

Peak heights at designated wavenumber positions 
Splitting 
Factor 

Carbonate/ 
Phosphate 

Amide / 
Phosphate 

Peak A 
(600) 

Peak B 
(560) 

Peak C 
(586) 

Phosphate 
(1015) 

Carbonate 
(1410) 

Amide I 
(1642) 

0809 
Femur 1.41 0.89 0.71 1.63 0.43 0.35 3.27 0.27 0.21 

Metatarsal 0.05 0.03 0.02 0.11 0.04 0.02 4.00 0.32 0.14 

0851 
Femur 1.51 0.95 0.76 1.73 0.53 0.39 3.23 0.30 0.23 

Metatarsal 1.08 0.65 0.50 1.59 0.56 0.32 3.46 0.35 0.20 
0888 Femur 1.34 0.84 0.68 1.50 0.59 0.47 3.21 0.39 0.31 
0907 Femur 1.34 0.83 0.65 1.75 0.42 0.14 3.33 0.24 0.08 

0991 
Femur 1.39 0.85 0.72 1.62 0.59 0.48 3.12 0.36 0.30 

Metatarsal 1.08 0.68 0.51 1.60 0.45 0.31 3.47 0.28 0.19 

0994 
Femur 1.38 0.86 0.74 1.57 0.57 0.44 3.04 0.36 0.28 

Metatarsal 0.05 0.05 0.03 0.15 0.03 0.02 3.06 0.18 0.10 

4040 
Femur 1.33 0.84 0.71 1.58 0.62 0.48 3.08 0.39 0.30 

Metatarsal 1.20 0.72 0.62 1.55 0.74 0.45 3.11 0.48 0.29 

4046 
Femur 1.46 0.90 0.64 1.82 0.28 0.10 3.69 0.16 0.06 

Metatarsal 1.31 0.78 0.53 1.80 0.31 0.13 3.96 0.17 0.07 

4067 
Femur 1.35 0.85 0.71 1.57 0.62 0.50 3.09 0.40 0.32 

Metatarsal 1.15 0.75 0.53 1.65 0.40 0.34 3.61 0.24 0.20 

4077 
Femur 1.45 0.89 0.71 1.79 0.46 0.15 3.29 0.26 0.08 

Metatarsal 0.08 0.05 0.04 0.10 0.06 0.01 3.66 0.58 0.14 
4095 Femur 1.44 0.91 0.70 1.78 0.45 0.17 3.34 0.25 0.10 
4098 Femur 1.54 0.99 0.77 1.79 0.46 0.15 3.30 0.26 0.08 

4099 
Femur 1.48 0.94 0.75 1.76 0.52 0.16 3.21 0.29 0.09 

Metatarsal 1.20 0.74 0.58 1.73 0.49 0.16 3.36 0.29 0.09 
4127 Metatarsal 1.23 0.75 0.49 1.78 0.28 0.13 4.05 0.16 0.07 
4191 Femur 1.36 0.80 0.52 1.83 0.21 0.08 4.15 0.11 0.04 

4222 
Femur 0.15 0.10 0.08 0.18 0.05 0.02 3.28 0.25 0.08 

Sternum 0.03 0.02 0.01 0.09 0.02 0.01 4.15 0.24 0.11 

4226 
Femur 1.37 0.91 0.76 1.53 0.63 0.51 3.00 0.41 0.33 

Metatarsal 0.04 0.02 0.02 0.07 0.03 0.01 3.67 0.38 0.14 

4288 
Femur 1.47 0.91 0.60 1.75 0.30 0.22 3.94 0.17 0.12 

Metatarsal 0.07 0.04 0.03 0.13 0.02 0.01 4.50 0.13 0.11 
4291 Femur 1.56 0.87 0.61 1.84 0.32 0.11 3.99 0.17 0.06 
4295 Femur 1.42 0.92 0.76 1.49 0.52 0.47 3.09 0.35 0.31 
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Skeleton 

Identification 
number 

Skeletal 
element 

Peak heights at designated wavenumber positions 
Splitting 
Factor 

Carbonate/ 
Phosphate 

Amide / 
Phosphate 

Peak A 
(600) 

Peak B 
(560) 

Peak C 
(586) 

Phosphate 
(1015) 

Carbonate 
(1410) 

Amide I 
(1642) 

4340 
Femur 1.43 0.91 0.73 1.73 0.54 0.42 3.21 0.31 0.24 

Metatarsal 0.10 0.06 0.04 0.15 0.02 0.02 4.13 0.15 0.13 
4411 Femur 1.45 0.91 0.70 1.69 0.45 0.35 3.40 0.27 0.21 

4462 
Femur 1.46 0.92 0.71 1.63 0.45 0.38 3.34 0.28 0.23 

Metatarsal 1.32 0.82 0.59 1.76 0.34 0.24 3.63 0.19 0.14 
4473 Femur 1.41 0.84 0.59 1.85 0.34 0.11 3.80 0.19 0.06 

4503 
Femur 1.45 0.80 0.49 1.88 0.20 0.06 4.63 0.11 0.03 

Metatarsal 1.26 0.73 0.48 1.82 0.25 0.12 4.16 0.14 0.06 

4561 
Femur 1.55 0.95 0.77 1.87 0.49 0.13 3.26 0.26 0.07 

Metatarsal 1.24 0.74 0.56 1.75 0.41 0.15 3.49 0.23 0.09 
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Table B-6:  XRF data from Eriswell skeletal elements 

Sample 
 name 

Test 
number 

Element peak height in cps 

Si P Ca Ti Fe Mn Cu Zn Sr Zr Cr Ni K 

0570 
Femur 

1 396.37 6533.63 78597.60 20.99 161.03 199.65 270.22 275.83 243.13 34.78 107.59 985.32 625.24 

2 420.32 6541.68 77929.19 20.78 267.45 246.56 372.52 339.97 246.05 29.20 130.67 1075.04 611.43 

3 372.22 6511.26 78583.05 14.61 139.37 183.85 233.12 237.24 213.58 10.39 99.48 952.20 600.65 

Average 396.30 6528.86 78369.95 18.79 189.28 210.02 291.95 284.34 234.26 24.79 112.58 1004.19 612.44 

s.d. 24.05 15.76 381.78 3.62 68.55 32.62 72.20 51.89 17.96 12.78 16.18 63.56 12.33 

0809 
Femur 

1 364.40 6350.33 76145.54 16.37 318.42 278.50 350.03 316.57 223.74 24.43 146.48 1099.54 589.00 

2 380.82 6341.30 75625.40 19.86 293.09 304.30 336.65 291.06 224.50 61.11 122.35 1050.09 602.59 

3 363.45 6675.59 78881.12 15.87 352.41 313.75 450.87 427.62 247.22 54.93 149.67 1202.51 615.51 

Average 369.56 6455.74 76884.02 17.36 321.30 298.85 379.18 345.08 231.82 46.82 139.50 1117.38 602.37 

s.d. 9.76 190.45 1748.98 2.17 29.77 18.25 62.44 72.61 13.34 19.63 14.93 77.76 13.26 

4226 
Femur 

1 385.49 6498.71 77240.91 12.87 195.56 226.50 284.99 257.49 396.32 46.24 112.28 1000.39 599.90 

2 380.27 6492.86 78349.58 13.03 347.56 442.97 399.44 604.48 449.67 75.77 134.64 1100.33 610.79 

3 366.14 6622.47 78446.28 19.57 330.87 520.69 382.05 549.53 414.67 60.88 123.80 1117.26 606.66 

Average 377.30 6538.01 78012.26 15.15 291.33 396.72 355.49 470.50 420.22 60.96 123.57 1072.66 605.78 

s.d. 10.01 73.20 669.75 3.82 83.36 152.45 61.68 186.50 27.10 14.77 11.18 63.16 5.50 

0570 
Metatarsal 

1 1163.25 4075.56 62386.35 327.55 5171.43 805.87 509.97 623.79 335.29 1367.88 90.16 952.53 952.93 

2 934.18 4124.31 63625.82 169.78 3780.65 930.61 650.27 836.55 382.18 1634.62 175.12 1071.47 858.35 

3 1298.06 4338.79 64776.28 818.17 5240.28 882.14 563.69 662.17 333.94 454.89 163.46 1011.42 1025.49 

Average 1131.83 4179.55 63596.15 438.50 4730.79 872.87 574.64 707.50 350.47 1152.46 142.91 1011.81 945.59 

s.d. 183.96 140.04 1195.24 338.13 823.56 62.89 70.79 113.40 27.47 618.67 46.06 59.47 83.81 

0809 
Metatarsal 

1 1185.18 3835.28 63350.48 173.19 6265.94 501.22 580.02 629.77 321.95 1365.95 150.07 944.98 936.63 

2 1092.37 4038.53 65013.69 199.31 5629.47 627.04 611.34 687.97 293.35 434.17 184.90 1063.15 951.29 

3 1081.87 3888.84 64850.04 178.85 6163.95 709.68 724.43 764.76 355.71 442.82 189.80 1164.71 970.42 

Average 1119.81 3920.88 64404.74 183.78 6019.79 612.65 638.60 694.17 323.67 747.65 174.92 1057.61 952.78 

s.d. 56.86 105.35 916.67 13.74 341.85 104.97 75.97 67.71 31.22 535.48 21.66 109.97 16.94 

4226 
Metatarsal 

1 960.05 4053.89 66724.11 153.59 3613.46 859.08 334.95 570.26 428.20 156.66 118.08 769.92 829.03 

2 365.35 6478.47 78339.71 3.29 320.12 424.07 320.72 518.97 416.61 38.29 124.25 1042.60 594.80 

3 796.79 4471.51 68697.04 128.12 2776.42 831.35 351.81 550.31 402.56 88.08 113.57 826.33 767.49 

Average 707.40 5001.29 71253.62 95.00 2236.67 704.83 335.83 546.51 415.79 94.34 118.63 879.62 730.44 

s.d. 307.26 1296.20 6215.51 80.44 1711.73 243.55 15.56 25.86 12.84 59.43 5.36 143.94 121.43 
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Figure B-1:  Fin Cop Skeleton 1 demineralised femur electropherogram 

 

 

Figure B-2: Fin Cop Skeleton 3 demineralised femur electropherogram 
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Figure B-3:  Fin Cop Skeleton 5 demineralised femur electropherogram 

 

 

Figure B-4:  Fin Cop Skeleton 6 demineralised femur electropherogram 
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Figure B-5:  Fin Cop Skeleton 7 demineralised femur electropherogram 

 

 

Figure B-6:  Fin Cop Skeleton 8 demineralised femur electropherogram 
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Figure B-7:  Fin Cop Skeleton 1 demineralised metatarsal electropherogram 

 

 

Figure B-8:  Fin Cop Skeleton 3 demineralised metatarsal electropherogram 
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Figure B-9:  Fin Cop Skeleton 5 demineralised metatarsal electropherogram 

 

 

Figure B-10:  Fin Cop Skeleton 8 demineralised metatarsal electropherogram 
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Figure B-11:  Fin Cop Skeleton 1 femur electropherogram 

 

 

Figure B-12:  Fin Cop Skeleton 3 femur electropherogram 
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Figure B-13:  Fin Cop Skeleton 5 femur electropherogram 

 

 

Figure B-14:  Fin Cop Skeleton 6 femur electropherogram 
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Figure B-15:  Fin Cop Skeleton 7 femur electropherogram 

 

 

Figure B-16:  Fin Cop Skeleton 8 femur electropherogram 
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Figure B-17:  Fin Cop Skeleton 1 metatarsal electropherogram 

 

 

Figure B-18:  Fin Cop Skeleton 3 metatarsal electropherogram 



APPENDICES 

337 

 

Figure B-19:  Fin Cop Skeleton 5 metatarsal electropherogram 

 

 

Figure B-20:  Fin Cop Skeleton 8 metatarsal electropherogram 
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Figure B-21:  Eriswell Skeleton 0067 femur electropherogram 

 

 

Figure B-22:  Eriswell Skeleton 0067 metatarsal electropherogram 
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Figure B-23:  Eriswell Skeleton 0235 femur electropherogram 

 

 

Figure B-24:  Eriswell Skeleton 0235 metatarsal electropherogram 
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Figure B-25:  Eriswell Skeleton 0326 femur electropherogram 

 

 

Figure B-26:  Eriswell Skeleton 0326 metatarsal electropherogram 
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Figure B-27:  Eriswell Skeleton 0425 femur electropherogram 

 

 

Figure B-28:  Eriswell Skeleton 0425 metatarsal electropherogram 
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Figure B-29:  Eriswell Skeleton 0426 femur electropherogram 

 

 

Figure B-30:  Eriswell Skeleton 0426 metatarsal electropherogram 
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Figure B-31:  Eriswell Skeleton 0477 femur electropherogram 

 

 

Figure B-32:  Eriswell Skeleton 0477 metatarsal electropherogram 
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Figure B-33:  Eriswell Skeleton 0570 femur electropherogram 

 

 

Figure B-34:  Eriswell Skeleton 0570 metatarsal electropherogram 
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Figure B-35:  Eriswell Skeleton 0612 femur electropherogram 

 

 

Figure B-36:  Eriswell Skeleton 0612 metatarsal electropherogram 
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Figure B-37:  Eriswell Skeleton 0692 femur electropherogram 

 

 

Figure B-38:  Eriswell Skeleton 0692 metatarsal electropherogram 



APPENDICES 

347 

 

Figure B-39:  Eriswell Skeleton 0717 femur electropherogram 

 

 

Figure B-40:  Eriswell Skeleton 0717 metatarsal electropherogram 
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Figure B-41:  Eriswell Skeleton 0759 femur electropherogram 

 

 

Figure B-42:  Eriswell Skeleton 0759 metatarsal electropherogram 



APPENDICES 

349 

 

Figure B-43:  Eriswell Skeleton 0791 femur electropherogram 

 

 

Figure B-44:  Eriswell Skeleton 0791 metatarsal electropherogram 
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Figure B-45:  Eriswell Skeleton 0799 femur electropherogram 

 

 

Figure B-46:  Eriswell Skeleton 0799 metatarsal electropherogram 
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Figure B-47:  Eriswell Skeleton 0808 femur electropherogram 

 

 

Figure B-48:  Eriswell Skeleton 0808 metatarsal electropherogram 
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Figure B-49:  Eriswell Skeleton 0809 femur electropherogram 

 

 

Figure B-50:  Eriswell Skeleton 0809 metatarsal electropherogram 



APPENDICES 

353 

 

Figure B-51:  Eriswell Skeleton 0991 femur electropherogram 

 

 

Figure B-52:   Eriswell Skeleton 0991 metatarsal electropherogram 
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Figure B-53:  Eriswell Skeleton 0994 femur electropherogram 

 

 

Figure B-54:  Eriswell Skeleton 0994 metatarsal electropherogram 
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Figure B-55:  Eriswell Skeleton 4040 femur electropherogram 

 

 

Figure B-56:  Eriswell Skeleton 4040 metatarsal electropherogram 
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Figure B-57:  Eriswell Skeleton 4046 femur electropherogram 

 

 

Figure B-58:  Eriswell Skeleton 4046 metatarsal electropherogram 



APPENDICES 

357 

 

Figure B-59:  Eriswell Skeleton 4067 femur electropherogram 

 

 

Figure B-60:  Eriswell Skeleton 4067 metatarsal electropherogram 
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Figure B-61:  Eriswell Skeleton 4095 femur electropherogram 

 

 

Figure B-62:  Eriswell Skeleton 4098 femur electropherogram 



APPENDICES 

359 

 

Figure B-63:  Eriswell Skeleton 4099 femur electropherogram 

 

 

Figure B-64:  Eriswell Skeleton 4099 metatarsal electropherogram 
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Figure B-65:  Eriswell Skeleton 4191 femur electropherogram 

 

 

Figure B-66:  Eriswell Skeleton 4222 femur electropherogram 
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Figure B-67:  Eriswell Skeleton 4222 sternum electropherogram 

 

 

Figure B-68:  Eriswell Skeleton 4226 femur electropherogram 
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Figure B-69:  Eriswell Skeleton 4226 metatarsal electropherogram 

 

 

Figure B-70:  Eriswell Skeleton 4288 femur electropherogram 
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Figure B-71:  Eriswell Skeleton 4288 metatarsal electropherogram 

 

 

Figure B-72:  Eriswell Skeleton 4291 femur electropherogram 
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Figure B-73:  Eriswell Skeleton 4295 femur electropherogram 

 

 

Figure B-74:  Eriswell Skeleton 4340 femur electropherogram 
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Figure B-75:  Eriswell Skeleton 4340 metatarsal electropherogram 

 

 

Figure B-76:  Eriswell Skeleton 4411 femur electropherogram 
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Figure B-77:  Eriswell Skeleton 4462 femur electropherogram 

 

 

Figure B-78:  Eriswell Skeleton 4462 metatarsal electropherogram 
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Figure B-79:  Eriswell Skeleton 4473 femur electropherogram 

 

 

Figure B-80:  Eriswell Skeleton 4503 femur electropherogram 



APPENDICES 

368 

 

Figure B-81:  Eriswell Skeleton 4503 metatarsal electropherogram 

 

 

Figure B-82:  Eriswell Skeleton 4561 femur electropherogram 
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Figure B-83:  Eriswell Skeleton 4561 metatarsal electropherogram 
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Appendix C :  Recording sheets 
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