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Abstract: The aim of this study was to evaluate the spatial distribution of the paper 

and fines across seven landfill sites (LFS) and assess the relationship between waste 

physicochemical properties and biogas production. Physicochemical analysis of the 

waste samples demonstrated that there were no clear trends in the spatial distribution 

of total solids (TS), moisture content (MC) and waste organic strength (VS) across 

all LFS. There was however noticeable difference between samples from the same 

landfill site. The effect of landfill age on waste physicochemical properties showed 

no clear relationship, thus, providing evidence that waste remains dormant and non-

degraded for long periods of time. Landfill age was however directly correlated with 
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the biochemical methane potential (BMP) of waste; with the highest BMP obtained 

from the most recent LFS. BMP was also correlated with depth as the average 

methane production decreased linearly with increasing depth. There was also a high 

degree of correlation between the Enzymatic Hydrolysis Test (EHT) and BMP test 

results, which motivates its potential use as an alternative to the BMP test method. 

Further to this, there were also positive correlations between MC and VS, VS and 

biogas volume and biogas volume and CH4 content. Outcomes of this work can be 

used to inform waste degradation and methane enhancement strategies for improving 

recovery of methane from landfills. 

 

Keywords: Waste composition; Waste physicochemistry; Biochemical methane 

potential; Waste-biogas relationships; Enzymatic hydrolysis test. 
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1. Introduction 

MSW in landfills is composed of a number of different organic and inorganic 

materials, such as food, paper, wood, plastics, glass, metal and inert materials 

(Machado et al., 2009). The composition of this waste within any landfill site is 

highly variable, and is affected by a number of factors, including: location, climate, 

landfill age and local policy drivers.  

Bacterial decomposition of the waste accounts for the majority of the landfill gas 

produced which principally consists of methane and carbon dioxide ranging between 

50 – 55% and 40 – 45%, respectively (Johari et al., 2012; Donovan et al., 2011).  

The process makes use of a complex, interactive network of aerobic and anaerobic 

microorganisms to degrade organic material (food, garden waste, wood, paper) 

(Godley et al., 2004). A number of chemical reactions can also account for landfill 

gas production on account of the combination of waste materials during disposal 

(Bogner and Spokas, 1993). The quantity of landfill gas along with its methane 

content is influenced by several factors, which include among others the types and 

age of the waste buried in the landfill, the quantity and types of organic compounds 

in the waste, and the moisture content and temperature of the waste (Emkes et al., 

2015). Methane is highly combustible, and as a result can be exploited as a source of 

renewable energy (Rada et al., 2015). In the UK, the utilisation of landfill gas for 

energy has been particularly successful (Brown and Maunder, 1994; Emkes et al., 

2015). The UK however have adopted a number of waste management policies 

aimed at reducing the amount of waste, in particular biodegradable waste, sent to 

landfill sites (Laner et al., 2012). The EU Landfill Directive 99/31/EC (1999) further 

transformed trends in MSW disposal by creating ambitious targets to shift waste 
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away from landfill sites. This was coupled with requirements for landfill sites to 

install best-practise methane recovery technologies (Defra, 2006). Other policy 

drivers in the UK that incentivise waste diversion from landfill include: the 

introduction of landfill tax (1996), the Landfill Allowance Trading Schemes (LATS) 

(2005/06) (Defra, 2006), the EU Waste Framework Directive 2008/98/EC (European 

Commission, 2008) and the Renewable Energy Directive 2009/28/EC (European 

Commission, 2009). UK waste policy drivers have certainly led to a significant 

change in the composition of waste currently in UK landfill sites, and consequently 

on gas production. The effect on the future landfill gas generation is still to be fully 

elucidated.  

A number of aerobic and anaerobic methods are currently available to assess the 

biodegradability of waste thus providing insight into the potential biogas production. 

Aerobic tests such as DR4 and ASTM, are typically more rapid than anaerobic tests 

but do not fully measure biodegradability (Wagland et al., 2008). On the contrary, 

anaerobic tests (i.e. GB21, GS90 and BM100) provide a more complete assessment 

of waste biodegradability but the tests take substantially longer (> 30 days) and 

therefore are not suitable for routine monitoring application (Wagland et al., 2009; 

Shanmugam and Horan, 2008). Therefore, the development of a rapid, low cost test 

method, which can accurately assess the biodegradability of waste, will be valuable 

for monitoring and predictive application.  

Previously an enzymatic hydrolysis tests (EHT) method was developed by Wagland 

et al. (2007, 2008), which followed work by Godley et al (2004) on enzymatic 

hydrolysis of cellulosic material and Rodriguez et al (2001) on the enzymatic 

availability of cellulose in organic waste. Studies published to date on using the EHT 
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indicate a good correlation between EHT results and the standardised BM 100 test 

results (Wagland et al., 2008 and 2011).  

The aim of this study was to determine the current state of waste at UK landfill sites, 

i.e. compositional and physicochemical properties, and its relationship with landfill 

gas production. The specific objectives were to (1) evaluate the spatial distribution of 

unspent carbon at seven landfill sites, (2) determine the physicochemical properties 

of waste distributed between different landfill sites and a range of depths, (3) 

understand the relationship between organic waste distribution, waste composition 

and waste physicochemistry, and its effect on landfill gas production and methane 

yield and (4) evaluate the use of enzymatic hydrolysis as a feasible, cost-effective 

and rapid test method to determine potential biogas production. 

 

2. Materials and Methods 

2.1 Waste origin 

95 municipal solid waste (MSW) samples were obtained from 7 UK landfill sites 

(LFS) during drilling activities between October 2013 and June 2014. The sites are 

referred to as LFS 1-7. Two separate tests sites were evaluated at LFS 4, which are 

referred to as LFS 4.1 and LFS 4.2, respectively. Background information on the 

LFS is provided in Table 1. Approximately 5 kg of waste was sampled at each depth. 

The waste samples were then collected within a maximum of 2 weeks after drilling 

and stored at 4 ºC until analysis. 
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2.2 Waste samples preparation and characterisation 

Waste was screened and separated by hand into plastics, paper and fines as defined 

by Quaghebeur et al. (2013) (degraded garden and food materials), textiles, glass and 

metal. Waste composition was reported as a percentage contribution of total weight. 

Dry matter (DM) or Total solids (TS) and Volatile Solids (VS) of the paper and fines 

were determined in triplicate following the procedure BS EN 12879:2000 (Wagland 

2008). This was done to calculate the amount of moisture and VS present in the 

waste samples. It should be noted though that the VS determination should not be 

taken as a direct correlation with the organic part of the waste as the loss of volatile 

organic substances (i.e. plastics) can occur and therefore giving high VS results 

(Section 5 of the BS EN 12879:2000 standards).  The waste samples were dried at 

105 °C for 24 h for the DM determination and at 505 °C for 4 h for the VS 

determination.  The paper and fines samples were shredded to particle size of 8 mm 

as recommended by Wagland (2008). pH and soluble Chemical Oxygen Demand 

(sCOD) of the separated paper and fines were determined according to the Standard 

Analytical Methods published by the American Public Health Association (APHA, 

1995). sCOD was conducted in duplicate due to reliability of test kits while all other 

tests were conducted in triplicate. 

 

2.3 Biochemical methane potential  

The BMP test were carried out as described in Garcia et al. (2016). Briefly each 

BMP test was conducted by mixing 20 g loss on ignition (LOI) equivalent of the 

paper and fines with 40 g LOI equivalent of digested primary sludge in a 1 L bottle. 

Sludge was obtained from the Cotton Valley wastewater treatment plant in Milton 
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Keynes, UK and was used to introduce the active microbial community. The bottles 

were filled with distilled water up to 500 ml, leaving a headspace of 500 ml, and 

flushed with nitrogen gas to set anaerobic conditions. Bottles were thereafter sealed, 

and incubated at 38°C in a water bath. The volume of biogas was measured 

volumetrically daily until no more biogas was produced. The concentration of 

methane in the biogas was determined once a week using either gas chromatography 

or a gas analyser (Servomex 1440 GA), depending on the availability of the 

measuring device. Further to this, sludge alone and sludge + cellulose (both in the 

absence of waste) were used as control BMP tests as recommended in the WRAP 

guidelines (Walker et al., 2010). Cellulose was used at a concentration of 10 g kg
-1

. 

The amount of biogas produced was calculated considering the area of the columns 

(specific to this study) and the environmental conditions of the laboratory, according 

to Equation 1 (Walker et al., 2010): 

 

𝑉𝑠𝑡𝑝 =
𝑇𝑠𝑡𝑝 .  𝐴

𝑇𝑎𝑡𝑚 . 𝑃𝑠𝑡𝑝
 .  [(𝑃𝑎𝑡𝑚− 𝑃𝐻20 − 𝑝 . 𝑔 . (𝐻 − ℎ)). ℎ] 

[Equation 1] 

 

where, Vstp = volume of biogas (in standard conditions), Tstp = standard temperature, 

Tatm = ambient temperature, Pstp = standard pressure, Patm = ambient pressure, PH2O = 

pressure of the water, ρ = density, g = gravity, H = distance from the bottom to the 

top of the column, h = void distance in the column. 

 

The biogas production of the inoculum was subtracted when calculating the amount 

of the biogas produced by the waste samples. The volume of biogas produced is 
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presented as L biogas per Kg total wet waste. Methane production is presented in ml 

CH4/g VS waste. 

 

2.4 Enzymatic Hydrolysis tests 

Enzymatic Hydrolysis tests (EHT) were carried out as previously described by 

Wagland et al., (2008). Briefly, an equivalent waste sample of 3 g of LOI was placed 

in 250 ml glass bottles. 150 ml of 0.1M pH 5 buffer solution was then added to each 

bottle. Approximately 20 ml of sample was removed and filtered using 0.45 μm 

filters to remove the solids present in the liquid. The filtrate was then analysed for 

soluble chemical oxygen demand (sCOD). The value obtained was recorded as Phase 

1 oxygen demand. Then the sample mixture of the bottles was autoclaved at 121 ºC 

for 15 minutes to remove any biological activity and thus to ensure that sCOD 

release after enzyme addition was due to enzyme hydrolysis. Again, 20 ml of sample 

was removed and filtered for sCOD analysis. The value obtained is the Phase 2 

oxygen demand. Finally, between 10 – 20 ml of prepared enzyme solution (800 

U/mg cellulose:200 U/mg hemicellulose) was added to the sample mixture as 

described in Table 2. These concentrations were used at they showed optimal results 

during preliminary tests (data not shown). All the bottles were placed in an orbital 

shaker and incubated at 50 ºC. 20 ml of sample were removed and filtered after 20 

hours of incubation for the Phase 3 sCOD analysis. EHT results were obtained by 

calculating the change in COD between phases 2 and 3 according to Equation 2.  

 

sCOD (g / gVS) = 
𝑠𝐶𝑂𝐷 (mg / L)

𝑉𝑆 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (g / l) * 1000
 

Equation 2 
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Results from EHT are expressed in g sCOD / g VS and converted to L per gram 

sample for comparison with results from BMP tests. EHT was conducted in duplicate 

on 3 representative MSW samples from LFS 1 (core 1- 4 m, 6 m, 10 m), 3 from LFS 

2 (core 2-10 m, 20 m, 30 m) 4 from LFS 3 (core 1 and core 5- 10 m, 20 m) and 3 

from LFS 4.1 (3 m, 9 m 15 m). Samples were chosen to give a representative sample 

of each landfill site at different depths while maintaining the core. 

 

2.5 Statistical analysis 

Statistical analysis was carried out using SPSS version 22. One-way analysis of 

variance (ANOVA) tests were conducted to determine differences in waste 

composition and physicochemical properties between independent variables; landfill 

sites and depth. Depth was categorised into 3 groups: 0-9 m, 10-19 m, and 20+ m. 

Two-way analysis of variance tests was also evaluated for the independent variables. 

It was determined that there was no significant interaction effect for any of the 

independent variable. All tests satisfied assumptions of normality (Kolmogorov-

Smirnov test) and homogeneity of variance (Levene’s test). Significance level was 

set at 0.05. The relationships between waste depth, TS, VS, sCOD, organic 

composition, biogas volume and methane content were assessed using a Draftsman’s 

plot of the Primer statistical package version 6. 
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3. Results and Discussion 

3.1. Waste composition 

The spatial distribution of the paper and fines across the seven landfill sites is shown 

in Figure 1. A statistical difference was observed in the distribution of paper and 

fines across the seven landfill sites [F(7,83) = 8.486, p < 0.01]. This was expected as 

the sites differed in their age, waste types, capacity and region. There was also a 

statistical difference in the amount of fine material distributed between waste layers 

(0-9 m, 10-19 m and 20+ m) [F (2,88) = 5.111, p < 0.01]. This finding is in 

agreement with previous studies on the characterisation of excavated waste samples 

who found the composition of organic fine materials to increase with depth (Mor et 

al, 2006; Qaughebeur et al (2013); Garcia et al., 2016).  

Overall, results showed that there is a large amount of unspent organic material 

(between 20 and 90 %) distributed variably in the surface waste layers (above 20 m) 

throughout all the test sites (Figure 2). Moreover, higher proportions were observed 

below 20 m (Figure 1). This is likely on account of waste in lower layers being 

entombed and therefore unable to undergo waste stabilisation, as suggested by 

Reinhart et al (2002). The variability in its distribution also implies that there are no 

site-specific physical, chemical or biological factors which influence its degradation, 

particularly at surface depths. 

 

3.2 Physicochemical properties of waste  

A summary of the physicochemical properties (TS, VS, sCOD, pH and MC) of the 

paper and fines from all LFS samples according to depth is presented in Table 3. 

Total solids (TS) [F(2,88) = 0.235, p = 0.791] and VS [F(2.88) = 2.429, p = 0.094] 
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showed no statistical difference between the waste layers across all landfill sites. 

This indicated that overall, there were no defined trends in the spatial distribution of 

paper and fines across all landfill sites tested. Mor et al (2006) suggests that leachate 

accumulates at the bottom of the waste cell, causing the waste near the bottom to 

become saturated. In situ landfill waste data attained in this study does not 

correspond. There was however a statistical difference in TS [F(7.83) = 3.814, p < 

0.01) between landfill sites, which is understandable due to variations in climate, 

landfill geomorphology and waste composition between the landfill sites.  There was 

also a significant difference in VS [F(7.83) = 3.948, p < 0.01] between landfills, 

which is likely due to variations in landfill age (Table 1; Figure 2).  

Further to this, there was no particular trend observed between paper and fines, TS, 

VS and landfill age, which suggested that the age of landfill did not directly 

influence the organic strength of the waste (Figure 2).  One possible hypothesis for 

this is presented by Reinhart et al (2002), who propose that conventional sanitary 

landfills are designed and engineered to prevent moisture from entering the waste 

mass and in doing so, prevents waste from degrading for long periods of time. This 

study provides empirical field evidence of genuine landfill waste samples analysis 

that current landfill practises allow waste to remain dormant for long periods of time, 

and therefore, regardless of landfill age, contains a high content of paper and fines 

with high organic strength (Table 3; Figure 2). 

The average pH across all landfill sites was between 7 and 8 (data not shown), 

indicating that sites were either in, or in a transition towards a methanogenic state 

(Adhikari et al., 2014; Lee et al., 2010). The strong influence of pH on the anaerobic 

waste degradation process is demonstrated by Staley et al (2011). The authors 
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suggest pH is a primary driver facilitating microbial activity during different stages 

of anaerobic waste degradation. In this study the results showed no observable trend 

between pH and landfill depth thus suggesting that the different stages of waste 

degradation (acidogenesis, acetogenisis and methanogenesis) were not defined by 

landfill depth (a variation of which is the relative age of waste within a landfill). This 

therefore suggests that waste degradation processes occur in micro-niches across 

different depths within the waste cell, as described by Staley et al (2011). 

 

3.3 Biochemical methane potential test (BMP) 

BMP tests were conducted on each paper and fines samples to determine the 

maximum amount of biogas and methane content which could be attained per mass 

of waste under optimal conditions (Figures 3 and 4). There was a significant 

difference in the average amount of biogas produced from the paper and fines across 

the seven tested landfill sites, (Figure 3; F(7,83) = 6.095, p < 0.01). Waste from LFS 

5 and 7 produced approximately 4 and 2 times higher amounts of biogas than the 

other sites, respectively. The same trend occurred in methane yield as LFS 5 and 7 

produced significantly higher amounts of CH4 per gram VS MSW (Figure 4). These 

two landfill sites are the youngest LFS, being 8 and 7 years old respectively. The 

relationship between landfill age and biochemical methane yield is shown in Figure 

5. These results are supported by Bogner and Spokas (1993), who proposed that 

landfill age is a primary factor influencing landfill methane balance; along with 

engineering and management practises and water balance.  Full-scale in situ evidence 

confirming this relationship is rare (Bogner and Spokas, 1993). 
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Results also demonstrated a statistical difference in the BMP of the paper and fines 

according to landfill depth [F(2,88) = 5.213, p < 0.01]. The average methane 

production decreased linearly with increasing depth being 86, 35 and 25 ml g
-1

 VS
-1

, 

for depths of 0-9 m, 10-19 m and 20+ m, respectively (Figure 6). Little work has 

been done to spatially map methane potential of waste within landfill sites. 

Understanding how waste with high methane potential is spatially distributed can be 

used to inform strategies for improving recovery of methane from landfills. Based on 

these observations, it is likely that methane enhancement strategies that focus on the 

surface layers of younger landfills would yield more significant results.  

 

3.4. Relationships between waste physicochemical properties and biogas 

production 

The relationship between the spatial distribution of the paper /fines fraction and the 

physicochemistry and biogas/Biochemical methane production is shown in Figure 6.  

There was a positive relationship between MC and VS, i.e. volatile solids content 

was higher in wetter waste. It was also expected that there would be a relationship 

between VS and sCOD, as a positive correlation was suggested by Contreras et al 

(2002). Results from our study did not support this finding. MC percentage was 

negatively correlated to TS % which was expected. There was also a weak negative 

correlation between the  paper and fines percentage and biogas production. Results 

also indicated a positive relationship between MC and CH4 production, VS and 

biogas volume, and biogas volume and CH4 content.  

The relationship between biogas production and CH4 content indicated that sites 

which typically produce high levels of biogas also produce high amounts of CH4. As 
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a result, the amount of biogas produced by a landfill site could also be indicative of 

the total potential amount of methane, and thus potential energy production.  

CH4 levels did not show any other trend with organic content or sCOD but did show 

a weak positive relationship with VS, similar to that of biogas volume. The fact that 

the waste organic composition did not correlate with biogas production suggests that 

the quantity (composition) of organic material cannot be used as an indication of 

potential biogas production. The organic strength however, as represented by the VS 

content, provides a better indication of biogas potential. Shanmugam and Horan 

(2008) confirmed the importance of VS in biogas production. Since VS and sCOD 

are both measures of organic strength, the lacking correlation between waste sCOD 

and biogas production further supports the relationship between VS and biogas 

production.  

 

3.5. EHT-BMP correlation 

EHT were conducted on each waste sample in duplicate across the 7 landfill sites.  

Comparison of the average EHT and BMP results across the 7 landfill sites indicated 

a strong correlation between the two tests (Figure 7). This finding supports current 

indications that EHT can be successfully used as a more rapid alternative test to 

determine biogas production when compared to BMP tests (Wagland et al., 2008, 

2009; Garcia et al., 2016). While the well-established BMP tests are considered 

robust and accurate, they often require a relatively long time for completion which 

limits their practicality and applicability for waste managers (Wagland et al., 2008). 

EHT test method maintains result accuracy while reducing the time required for 

results. The use of EHT for biogas potential is still in its infancy; however there is a 
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growing amount of evidence which suggests that it can be successfully used for 

biogas prediction (Wagland et al., 2007, 2008, 2009, 2011; Godley et al., 2004). A 

limitation of the EHT method compared to BMP tests is that BMP tests provide data 

on biogas volume and methane concentration, while EHT does not. However, the 

EHT as mentioned earlier offers an alternative and rapid method to assess the 

biodegradability of waste with enough accuracy which positions the method as a 

good alternative to the widely used EU standardised BM100. 

 

4. Conclusions 

Overall, this study provided valuable insights into the status quo of waste in landfill 

sites. We determined that even with current waste diversion policy drivers, there is 

still a large supply of unspent carbon distributed unequally throughout the landfill 

sites, which could be converted to biogas via bacterial stimulation for example 

through leachate recirculation (Woldeyohansa et al., 2014; Sanphotia et al., 2006; 

Chana et al., 2002; Reinhart et al., 2002 Frank et al., 2016). However it has been 

proved more problematic in practise (Reinhart et al., 2002) . There was also a direct 

correlation between landfill age and paper and fines BMP, as well as paper and fines 

BMP and landfill depth.  

The BMP test method used to determine biogas production, while being repeatable 

and effective, was extremely time and labour intensive. It is therefore impractical for 

frequent use by landfill operators to attain insightful information about the biogas 

potential of their waste. Evaluation of the EHT test method, in support of previous 

studies, determined that there was a high degree of correlation between EHT and 

BMP test results, which motivates its potential use as an alternative to the BMP test 
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method. To date there is little work that has previously been done to describe the 

relationship between waste characteristics and biogas production in such detail. Such 

research provides the fundamental basis needed to address and reform waste 

management practises aimed at deriving value from landfill waste, particularly with 

regards to waste degradation, and landfill gas production. It also provides valuable 

information on the limiting chemical and biological mechanisms of biogas 

production, and thus potential insights to the future of methane recovery from landfill 

sites. 
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Figure 1: Spatial distribution of the paper and fines from seven UK landfill sites 
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Figure 2:  Percentage range distribution of paper + fines (A), %TS (B) and %VS (C) 

according to landfill age 
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Figure 3: Average biogas production from BMP tests across seven UK landfill sites 

(including standard deviation) 

 

 

Figure 4: Average methane production from BMP tests across the seven landfill sites 

(including standard deviation) 

 

 

Figure 5: Methane yield according to landfill age 
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1 
Figure 6: Draftsman’s plot presenting the relationships between waste depth (m), VS (%), TS (%), paper and fines (P+F) composition (%), sCOD (mg 2 

L
-1

), biogas production (L kg
-1

 waste) and CH4 production (ml g
-1

 VS
-1
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 4 

 5 

Figure 7: Correlation between the BMP and EHT values across the seven landfill sites. 6 
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Table 1: Background information on the tested landfill sites 1-7 8 

Landfill site 
Age of landfill site (as of 

2015) (years) 

Status of landfill (as of 

2015) 
Capacity of site (Mt) Tonnage received per year (kt year

-1
) 

LFS 1 35 Closed 5.8 200-300 

LFS 2 23 Open 6.6 300 

LFS 3 22 Open 4.2 200-250 

LFS 4 19 Closed 5.0 200-250 

LFS 5 8 Open 0.9 100 

LFS 6 35 Open 1.4 50 

LFS 7 7 Closed 1.1 100-150 

 9 

Table 2: Characteristics of the enzymatic mixtures used during the EHT test 10 

Enzymatic  

mixture 

Enzyme  

supplier 
Weight per sample (mg) Concentration (U/mg) 

Units 

(U/mg solid) 

Cellulase Sinobios 2.67 300 800 

Hemicellulase Sigma 133 1.5 200 

 11 

  12 
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Table 3: Physicochemical characteristics of the waste materials collected across the 7 LFS at the different depths 13 

Site 
TS (%) VS (%) sCOD (mg.L-1) pH Moisture content (%) 

0-9m 10-19m 20+ m 0-9m 10-19m 20+ m 0-9m 10-19m 20+ m 0-9m 10-19m 20+ m 0-9m 10-19m 20+ m 

LFS 1 64 ± 10 55 ± 0 - 32 ± 17 14 ± 0 - 294 ± 154 792 ± 0 - 7.6 ± 0 8.3 ± 0 - 37 46 - 

LFS 2 - 64 ± 12 56 ± 6 - 30 ± 11 32 ± 13 - 706 ± 0 688 ± 186 - 7.6 ± 1 8.3 ± 1 - 30 40 

LFS 3 - 64 ± 10 68 ± 7 - 31 ± 14 24 ± 18 - 526 ± 113 226 ± 645 - 7.6 ± 0 7.8 ± 0 - 35 32 

LFS 4.1 66 ± 11 65 ± 7 65 ± 0 18 ± 16 30 ± 17 12 ± 0 640 ± 983 689 ± 426 652 ± 42 7.1 ± 1 7.6 ± 2 5.7 ± 0 37 39 37 

LFS 4.2 - 65 ± 3 60 ± 7 - 33 ± 16 29 ± 1 - 545 ± 394 543 ± 211 - 7.8 ± 0 7.3 ± 0 - 36 42 

LFS 5 60 ± 6 56 ± 8 - 41 ± 9 42 ± 0 - 1290 ± 1328 647 ± 321 - 7.0 ± 0 7.3 ± 0 - 37 35 - 

LFS 6 66 ± 11 65 ± 9 - 33 ± 13 33 ± 11 - 961 ± 638 642 ± 105 - 7.3 ± 1 8.0 ± 1 - 33 34 - 

LFS 7 76 ± 5 73 ± 1 - 25 ± 10 24 ± 6 - 1126 ± 1227 219 ± 65 - 7.6 ± 1 7.8 ± 0 - 26 26 - 

 14 

TS, VS, sCOD, pH and MC results are the average of all samples attained ± standard deviation (SD). Each sample was tested in triplicate except for 15 

sCOD which was tested in duplicate. sCOD standard deviation is high due to waste heterogeneity across depths. 16 
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