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Abstract Several manufacturing operations continue to be
manual even in today’s highly automated industry because the
complexity of such operations makes them heavily reliant on
human skills, intellect and experience. This work aims to aid
the automation of one such operation, the wheel loading opera-
tion on the trim and final moving assembly line in automotive
production. It proposes a newmethod that uses multiple low-cost
depth imaging sensors, commonly used in gaming, to acquire
and digitise key shopfloor data associated with the operation,
such as motion characteristics of the vehicle body on the moving
conveyor line and the angular positions of alignment features of
the parts to be assembled, in order to inform an intelligent auto-
mation solution. Experiments are conducted to test the perfor-
mance of the proposed method across various assembly condi-
tions, and the results are validated against an industry standard
method using laser tracking. Some disadvantages of the method
are discussed, and suggestions for improvements are suggested.
The proposed method has the potential to be adopted to enable
the automation of awide range ofmoving assembly operations in
multiple sectors of the manufacturing industry.
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1 Introduction

The automotive industry has always been open to technolog-
ical transformations because of their need to adapt to a con-
tinuously changing marketplace and to stay competitive [1].
This industry is one of the early adopters of automation using
automated machines and robots for material handling, pro-
cessing, assembly and inspection operations and continues
to be highly automated [2]. However, there are a few opera-
tions in vehicle production that have not been automated yet
such as those in the trim and final assembly line where the
vehicle gets its seats, internal and external trims, and wheels.
This is because the installation of components on a constant
moving vehicle body is a complex task that is as yet best
performed by skilled human operators [3].

The focus of this work is to enable the automation of the
wheel loading operation in the trim and final assembly line.
Though this operation would seem straightforward for a hu-
man operator, it is one of the most complex manufacturing
assembly activities to automate because it requires accurate
tracking of the moving vehicle body that sways unpredictably
on the conveyor line and real-time recognition of alignment
features for successful assembly. In this operation, the human
operator grabs a wheel, uses his vision and cognition to track
the motion of the vehicle body on the conveyor line to antic-
ipate when and where to load, loads the wheel on the wheel
hub of the vehicle axle and fastens the bolts to secure thewheel
in a fixed time of about 10 s [4]. Chen et al. have indicated that
the wheel loading operation alone can cost automotive manu-
facturers up to US$1.5 million a year thereby justifying the
need to automate this operation [5]. The potential threat of
developing musculoskeletal disorders in operators, caused by
manoeuvring heavy wheels in uncomfortable body postures
during installation despite using weight compensation gan-
tries, further reinforce the need for automation [6].
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The main enabler for developing an automated solu-
tion for wheel loading is a cost-effective method to
accurately track in real-time the motion characteristics
of the moving vehicle body and simultaneously recog-
nise the misalignment between the to-be-loaded wheel
and the hub that receives the wheel. This data can be
used by an automation solution to gather intelligence
about the operation in real-time enabling it to success-
fully perform the wheel loading operation. This research
investigates the use of gaming interface technologies
such as depth imaging sensors (Microsoft Kinect™), as
potential replacement for human senses, to capture and
digitise the above data in real-time and make it avail-
able to an automation solution. An example of an auto-
mation solution could be the use of expert systems to
make human-like decisions during the operation to con-
trol an industrial robot arm that aligns and loads the
wheels on to the moving vehicle body.

In this work, the assembly line conditions are emu-
lated in a simplified manner in a laboratory setting in
which the Kinect sensors are used. The main intent
behind this work is to evaluate the feasibility of using
multiple Kinect sensors to obtain live shopfloor data
and validate their performance against an industry stan-
dard method in order to explore an alternative low-cost
method to the current commercial shopfloor data acqui-
sition methods. However, there is not enough evidence
in literature of the Kinect sensors being successfully
used in a factory environment primarily because the
sensors themselves are not certified for use in industry
settings and do not have the software interfaces yet to
communicate with industrial production systems. The
next step in this work is to extensively test the perfor-
mance of the proposed method using multiple Kinect
sensors in an actual wheel loading assembly line envi-
ronment over a long period in order to evaluate the
industrial applicability of this work.

2 Related work

In the past three decades, robotic automation has played
a significant role in the automotive industry in
manufacturing processes such as stamping, welding, ma-
terial handling and painting, but currently, there are no
commercial robotic assembly solutions on the trim and
final vehicle assembly line [7]. From this moving as-
sembly line, researchers have identified the wheel load-
ing operation as one of the early targets of automation.

The difficulty of using a rigidly programmed indus-
trial robot to load wheels in a dynamic environment has
been recognised in literature. Since most current indus-
trial robots have to be pre-programmed with very little

flexibility in their task execution, it is difficult for them
to cater to complex requirements, as in wheel loading
[5]. A few papers have reported attempts to automate
the wheel loading operation by proposing industrial
sensor-based methods to replace the human skills of
simultaneously tracking the moving vehicle body to an-
ticipate the precise loading moves and aligning the
wheel with the wheel hub for successful assembly.

Early works in automation of moving assemblies pro-
posed the use of conveyor motion tracking using data
from the motion encoders and synchronising it to the
assembly robot motion [4, 6]. In this method, conveyor
motion data along the direction of flow is obtained
without the use of any additional sensors. However, in
real production lines, the objects on the conveyor line
are subjected to random motion in up to 6° of freedom
(oscillations and rotations in all 3 axes), and therefore,
conveyor tracking is insufficient, and additional systems
that recognise and track the objects moving on the con-
veyor line are required [7].

Cho et al. have reported the use of a visual tracking
manipulator using a camera on the wheel gripper
mounted on an industrial robot that loads the wheel to
track the centre of the wheel hub on the moving vehicle
body [4]. The visual tracking method is divided into
macro tracking that monitors the velocity of the moving
vehicle body and micro tracking that monitors the fine
positional errors to assist in precision wheel loading.
However, there is no mention of a proposed alignment
correction method. Chen et al. have reported a method
of visual servoing to track the motion of the vehicle
body in 2 axes to determine the wheel loading instance
and position [5]. Force sensors that measure the loading
force along all 3 axes are used for precisely controlling
the final movement of the robot towards the wheel hub
to perform loading according to set values of compliant
contact forces between the robot tool and the wheel
hub. Misalignment between the wheel and the wheel
hub is also checked by the visual servoing system,
and transformation is applied to correct it. Shi has re-
ported a preliminary analysis of dynamic conveyor mo-
tion and presented the typical motion characteristics of
industrial conveyors such as speed, acceleration and
multi-axis deviations in motion [8]. Based on that study,
Shi and Menassa have proposed a method in which a
coarse vision camera tracks the general motion charac-
teristics of the moving vehicle body with lower accura-
cy and a fine vision camera to track the deviations in
vehicle body motion just before loading is performed
[9]. A vision camera placed at the end of the industrial
robot arm loading the wheel is used to locate the wheel
hub studs for alignment. Lange et al. have also pro-
posed a coarse and fine sensing system and a compliant
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force-torque sensor in the robot end effector to control
the loading step to compensate for final temporal or
spatial offsets [10]. Predictive modelling of robot mo-
tion trajectory control in addition to the computed tra-
jectories based on vision system inputs is used to en-
hance the loading precision. The camera on the robot
end effector identifies the positions of the wheel hub
studs with respect to the positions of the wheel bores
to determine misalignment. Schmitt and Cai [7] report
the use of monocular camera mounted on the assembly
robot end effector to track the moving object and esti-
mate its motion trajectory in order to guide the motion
of the assembly robot. In this work, only a single point
on the moving object is tracked and the trajectory is

estimated offline after all the measurement images are
obtained.

In all of the above reported research, industrial vision sys-
tems such as stereovision and monocular cameras are used for
object tracking and feature recognition. These systems require
computationally expensive real-time image processing and
pattern-matching algorithms. Also because of their use of col-
our values of pixels for isolating target objects from the back-
ground, ambient light plays an important part in image pro-
cessing accuracy, and therefore, an active computational inter-
vention is required to compensate for changes in lighting con-
ditions. Thirdly, vision systems can only effectively provide
object tracking along 2 axes, and additional force sensors are
required to provide the same along the third axis. The advent

Fig. 1 Car body on the conveyor
line with wheel hubs installed
[14]

Fig. 2 Wheel loading
workstation setup simulated in the
laboratory
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of consumer-grade depth imaging sensors has opened up a
new way to cost-effectively track objects and recognise fea-
tures in an industrial setting. Their combined output of colour
and depth values per pixel enables the capture of motion data
of moving objects along all 3 axes simultaneously.

In recent years, many researchers have studied the po-
tential and limitations of depth imaging sensors, but few
have considered using this technology in an industrial
manufacturing setting. Prabhu et al. have used depth im-
aging sensors such as the Kinect to track components of a
pen in real-time to digitise the assembly [11]. Such et al.
have used them to track the progress of a composite lay-
up process to provide look-ahead instructions for the op-
erator laying up the composite fibre material on a tool

[12]. Since depth data is provided by infrared (IR) and
not visible light (RGB) imaging, these reported methods
do not get influenced by changes in ambient light
conditions.

Prabhu et al. have previously proposed a depth sensor-
based method to determine the misalignment between the
wheel and the wheel hub mounted on a constantly moving
vehicle body and to compute the optimum alignment
manoeuver [13]. They investigated the use of a single depth
imaging sensor to recognise alignment features on both the
wheel and the wheel hub over a short stretch of 400 mm of a
2.5-m long typical wheel loading workstation. This paper re-
ports an extension of that work and investigates the use of
multiple depth imaging sensors to capture not only the mis-
alignment but also the motion tracking data along the entire
length of the workstation. The motion tracking data obtained
from the depth sensors is also compared to that obtained from
a highly accurate laser motion tracker. The main objective of
this comparison is to gauge the accuracy of the consumer-
grade depth imaging sensors and evaluate whether such sen-
sors can be used to enable the automation of the wheel loading
operation in the industry.

3 Method

In this paper, a novel method of obtaining live shopfloor data
using multiple low-cost depth imaging sensors is presented.
The operation targeted is that of wheel loading on the trim and
final assembly line of automotive production with the vision
to automate that operation in the future. One such automation

Fig. 3 Depth sensor positioning
for far and near motion sensing

Fig. 4 Alignment feature recognition of the stationary wheel
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solution is proposed by Prabhu et al. in which the authors have
demonstrated the possibility of using a depth imaging sensor
to capture live shopfloor data for dynamic alignment of com-
ponents to be assembled on a moving line [13]. This paper
reports an extension of that work.

3.1 Mimicking the wheel loading operation

In order to collect live data pertaining to a wheel loading
operation and given that it was not possible to do this in an
actual production line (Fig. 1) at this stage of research, the key

elements of the operation are mimicked in controlled labora-
tory conditions.

An important element of the operation is the moving con-
veyor line carrying the vehicle body with the wheel hubs
mounted on its front and back axles. In a future scenario where
wheel loading is automated, the wheel loading robot would
have to constantly track the moving wheel hub to knowwhen,
where and how to load the wheel. A method to automatically
recognise the wheel hub and track its motion along the work-
station is thus needed. Therefore, the motion of the wheel hub
on the conveyor line is reproduced in the laboratory bymount-
ing the wheel hub on to a robot arm and programming the

Fig. 5 The experiment setup for
optimising sensor positioning
parameters

Fig. 6 Wheel hub centre point
identification

Fig. 7 The moving wheel hub
tracked within the far and near
motion sensing zones
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robot arm to mimic typical conveyor line motion. The con-
veyor motion characteristics such as out-of-plane deviations
are programmed as sinusoidal oscillations in the following
five patterns:

1. Linear motion of the wheel hub along x-axis without any
deviations at a speed of around 67 mm/s as reported by
Shi as the average conveyor line speed [8].

2. Linear motion along x-axis at around 67 mm/s with stop-
start movements to mimic the vehicle body jerks on the
conveyor line.

3. Linear motion along x-axis at around 67 mm/s with sinu-
soidal motion deviations along the vertical y-axis to mim-
ic the bounce of the vehicle body on the conveyor line.

4. Linear motion along x-axis at around 67 mm/s with sinu-
soidal motion deviations along the perpendicular z-axis to
mimic the sway of the vehicle body on the conveyor line.

5. Linear motion along x-axis at around 67 mm/s with sinu-
soidal motion deviations along both y-axis and z-axis to
mimic the composite effect of both bounce and sway of
the vehicle body on the conveyor line.

According to the data received from a Tier 1 manufacturer,
a typical vehicle body in motion on a conveyor will deviate
from linear motion with out-of-plane oscillations having am-
plitude of ±10 mm and a frequency of 1 Hz [15].

The second important element of the operation is the radial
alignment between the wheel and the wheel hub so that the
bores of the wheel are in the same angular position as the studs
on the wheel hub at the time of loading. The misalignment
scenarios are also reproduced during the experiments by po-
sitioning the wheel hub on the robot arm with varying angular
positions.

3.2 Experiment setup

The wheel loading workstation, simulated in the laboratory, is
divided into two motion sensing zones, namely the far sensing
zone and the near sensing zone. In the far sensing zone, the
coarse motion of the moving wheel hub is tracked whereas in
the near sensing zone, the motion characteristics are closely
monitored. In the near sensing zone, the alignment features on

Fig. 8 Location of wheel hub
studs

Fig. 9 a Wheel hub tracking and
feature recognition b Wheel hub
drawing
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the moving wheel hub are also recognised, and their angular
positions are measured.

Two depth imaging sensors, one in the far sensing zone
(called the ‘far sensor’) and one in the near sensing zone
(called the ‘near sensor’), are used (Fig. 2). The wheel hub
is mounted on the robot arm in such a way that the studs face
the depth sensors. The robot used is Comau NM-45, a 6-axis
industrial robot arm with a maximum payload of 45 kg and
position reproducibility of 0.06mm. The robot is programmed
to mimic the 5 conveyor motion patterns listed in Section 3.1,
and each pattern is repeated 10 times to obtain multiple data
sets to determine reproducibility of results.

3.3 Depth sensor positioning

The depth sensors are reported to have maximum accuracy
over the distance range of 1 to 3 m from the sensor with an
effective field of view of 54.0° horizontal and 39.1° vertical
[16]. Khoshelham and Elberink have reported that the random
error of measurement results increases quadratically with in-
creasing distance from the sensor and reaches 40 mm at the
maximum range of 5 m [17]. These inputs influenced the

positioning of the depth sensors in the far and near sensing
zones along with the primary requirement to cover the entire
length of the wheel loading workstation with the combined
frames of view of the two sensors.

Therefore, the far sensor is placed at a perpendicular dis-
tance of 2 m from the moving wheel hub plane covering a
horizontal field of view of about 2 m. The near sensor is
placed at a distance of 850 mm covering a horizontal field of
view of about 800 mm. The two sensors are laterally separated
by a distance of 1 m to attain a 400 mm of view overlap with
each other and are placed at the same height as that of the
moving wheel hub from the ground. The two sensors together
cover an area of 2.4 m of the workstation that has a total length
of 2.5 m at a typical assembly line (Fig. 3).

In addition to the two depth sensors, a laser motion tracker
(Leica Absolute Tracker AT402) is also used to track the mo-
tion of the moving wheel hub (Fig. 2). The laser tracker uses a
laser beam that is reflected off a reflector that is attached to the
wheel hub to track its motion. It has a resolution of 0.1 μm,
accuracy of ±10 μm and repeatability of ±5 μm which makes
it a very accurate device for tracking motion and therefore is
used as a gold standard in the industry and in this work to

Fig. 10 a Depth image of the
wheel with bores recognised and
b 2D drawing of the wheel

Fig. 11 Misalignment of wheel
and wheel hub features

Int J Adv Manuf Technol



gauge the accuracy and precision of the proposed depth sensor
based method.

The third depth sensor is placed directly in front of the
wheel placed on the storage rack and at the same height as
that of the centre of the wheel from the ground (Fig. 4). This
sensor recognises the alignment features on the wheel, which
are the 4 tapped bores, and measures their angular position. In
an actual shopfloor setting, the near sensor described above
could also be mounted in an eye-in-hand configuration with
the camera mounted on the robot end effector as an extended
fixture of the wheel loading robot. This setup will enable the
near motion tracking and alignment feature detection of the

moving wheel hub as well as alignment feature detection of
the wheel to be performed by the same depth sensor.

3.4 Sequence of events

This experiment imitates the wheel loading operation as it is
performed in an actual automotive trim and final assembly
line. The sequence of events reproduced is as follows:

(a) The robot arm moves the wheel hub linearly across the
workstation (along x-axis) for a distance of about 2.5 m
at an average speed of about 67 mm/s. Typical conveyor

Table 1 Angle of the first bore on the stationary wheel

Iteration 1 2 3 4 5 6 7 8 9 10 Mean Standard deviation

Angle 102.95 102.98 102.99 103.01 103.03 103.08 103.25 103.42 103.57 103.73 103.20 0.28
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Fig. 12 Wheel hub positions captured by the far sensor and the laser tracker
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motion deviations are programmed into the path as per
the 5 patterns listed in section 3.1.

(b) The wheel hub first enters the far sensing zone in which
the far sensor tracks its centre and records its spatial
position in all 3 axes. The speed of motion is also
computed.

(c) The wheel hub then enters the near sensing zone in which
the near sensor tracks its centre and records its spatial
position in all 3 axes. The speed of motion is also com-
puted. The near sensor also recognises the alignment
features, the 4 studs, on the moving wheel hub and re-
cords their angular positions.
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Fig. 13 Wheel hub motion speed (x-axis) captured by the far sensor and the laser tracker
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Fig. 14 Wheel hub positions captured by the near sensor and the laser tracker
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(d) The depth sensor placed in front of the stationary wheel
recognises the alignment features, the 4 bores, on the
wheel and records their angular positions.

(e) The data generated in each of the above steps enables the
automated wheel loading scenario of the future to make
critical human-like decisions such as when, where and
how to load the wheel onto the moving wheel hub and to
dynamically correct the misalignments if any between
the wheel and the wheel hub before loading. Any data
that is out of the tolerance limits can be used to trigger an
abort.

3.5 Determination of optimum setup

The use of depth imaging sensors in a real manufacturing
environment to obtain live moving assembly data is a relative-
ly new concept in literature. Little is known on the optimum
sensor positioning parameters and their influence on data cap-
ture precision and accuracy, such as the perpendicular distance
of the sensor from the objects to be tracked and the sensor face
plane angle with respect to the assembly line plane. Therefore,
a few experiments are conducted to determine the effects of
variations in sensor positions on the measured data and to
obtain the optimum setup for data capture.

The test case of wheel feature recognition is used to
conduct these experiments (Fig. 5). In the first experi-
ment, the effect of sensor face angle with respect to the
wheel face plane was investigated. Instead of varying the
sensor face plane angle, the wheel face plane angle was

varied for convenience of setup. This angle was varied
from −20° to +20°, and the optimum angle range in which
the wheel features were successfully recognised was de-
termined. In the second experiment, the distance of the
sensor from the wheel face was varied from 700 to
950 mm, and the optimum distance for successful feature
recognition was determined. In the third experiment, the
number of depth image frames used to apply cumulative
averaging of feature recognition data was varied to obtain
the optimum number that gave the best-averaged result.

Each of the 3 experiments is repeated for 10 iterations to
check for reproducibility of the results. The setup that pro-
duces results with the least standard deviation is chosen for
positioning the depth sensors in the digitisation of the simu-
lated wheel loading operation.

Despite optimum setup, the sources of errors that could
impact the measurement results in this work are as follows:

(a) Improper levelling of the Kinect sensors with respect to
the wheel hubmotion plane will provide inaccurate depth
values of the objects to be tracked.

(b) Presence of localised infrared shadows on the objects
that could affect the quality of the depth images.

(c) Presence of stray infrared light from sources other than
the Kinect sensors could affect the quality of the depth
images.

(d) Presence of sunlight in the experiment environment
could affect the quality of the depth images.

(e) Variation between programmed motion path and pro-
duced motion path by the robot arm could result in an
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Fig. 15 Wheel hub motion speed (x-axis) captured by the near sensor and the laser tracker

Table 2 Angle of the first wheel hub stud

Motion pattern Angular position of first wheel hub stud (degrees)

1 2 3 4 5 6 7 8 9 10 Mean Standard
deviation

Linear motion in x-axis with no
deviations in y and z-axis

335.31 334.94 335.72 335.56 333.67 334.57 334.90 335.30 335.41 335.78 335.12 0.63
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incorrect basis for comparison between the Kinect and
laser tracker results.

(f) Improper or obsolete calibration of the laser tracker will
not provide accurate benchmarking to validate the Kinect
sensor results.

3.6 Motion tracking and feature recognition of the moving
wheel hub

The algorithms used to track the moving wheel hub and rec-
ognise the angular positions of the alignment features of both

the moving wheel hub and the stationary wheel are based on
the comparison of depth values of the pixels that belong to the
object with those of the background as reported by Prabhu
et al. [13]. To track the moving wheel hub, the depth images
provided by the far sensor are continuously monitored for
depth values of pixels belonging to the wheel hub motion
plane, represented by the far motion sensing zone, to be in
the range of 800 and 900 mm, indicating the presence of the
wheel hub. The algorithm then scans the zone to determine
object extremities in the horizontal and vertical directions.
Once the extreme points are identified, computing and aver-
aging their midpoints results in identification of the wheel hub
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centre point (Fig. 6). Since the Kinect sensor produces up to
30 depth images per second, the continuous identification of
the centre point within these images results in tracking the
motion of the moving wheel hub.

The new concept introduced in this work is the use of
multiple depth sensors and the segregation of the workstation
into far and near motion sensing zones (Fig. 7). The moving
wheel hub first enters the field of view of the far sensor in the
far motion sensing zone. This zone covers the pre-loading area
where the x, y and z positions of the centre of the wheel hub
are tracked, and its motion speed is constantly computed. Any
deviations or disruptions in motion along any of the 3 axes are
captured and recorded. Since the far sensor is placed at a
relatively larger distance from the wheel hub motion plane,
it can track a wider area but is also less accurate and therefore
can only measure coarse motion characteristics.

The wheel hub then moves into the field of view of the near
sensor in the near motion sensing zone. This zone covers the
loading area, and therefore, the fine motion is tracked with
more accuracy and precision than in the far sensing zone. In
this zone, along with tracking the wheel hub centre point, the
alignment features of the moving wheel hub are also
recognised. To recognise the alignment feature (stud), the
depth images provided by the near sensor are continuously
monitored to identify the wheel hub centre point. From the
centre point, the pitch centre diameter (PCD) line, which is
located at a radial distance of 108 mm from the centre point, is
tracked in order to find pixels that have depth values around
900 mm, indicating the presence of the stud (Fig. 8). Once the
stud is identified, its centre point is obtained by locating its
extremities.

The centre points of the remaining three studs are comput-
ed easily since the studs are radially located 90° apart. The
angular positions of the studs are represented by the angular
position of the stud located within the 90° to 180° quadrant
(Fig. 9).

3.7 Motion tracking and feature recognition
of the stationary wheel

The depth sensor placed in front of the stationary wheel also
uses the same edge detection algorithm to detect the wheel
centre as the one used to detect the moving wheel hub centre
(Fig. 10a). The 4 bores located 90° apart from each other at a
pitch centre diameter of 108 mm from the wheel centre
(Fig. 10b) are recognised, and their angular positions are mea-
sured in terms of the angle of the bore located within the 90° to
180° quadrant.

The difference between the angular positions of the align-
ment features on the wheel and those on the wheel hub denote
a misalignment (Fig. 11) that needs to be corrected before
loading can take place.

4 Results

Digitisation of the wheel loading operation is the process of
obtaining key shopfloor data that will be used by the automat-
ed version of the operation in the future. The results of this
digitisation process are presented in this section in the follow-
ing order:
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Fig. 19 Wheel hub speed captured by the near sensor and the laser tracker (x-axis)

Table 3 Angle of the first wheel hub stud

Motion pattern Angular position of first wheel hub stud (degrees)

1 2 3 4 5 6 7 8 9 10 Mean Standard
deviation

Jerky motion in x-axis with no
deviations in y and z-axis

336.70 335.16 334.07 336.26 335.67 333.18 338.56 334.36 336.08 335.79 335.58 1.51
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1. Identification of wheel features and measurement of the
angular positions of the bores.

2. Motion tracking of the moving wheel hub and identifica-
tion of the angular positions of the wheel studs for the
following simulated motion patterns:

(a) Linear motion along x-axis with no deviations in y-axis
and z-axis.

(b) Jerky motion along x-axis with no deviations in y-axis
and z-axis.

(c) Linear motion along x-axis with sinusoidal deviation in
y-axis.

(d) Linear motion along x-axis with sinusoidal deviation in
z-axis.

(e) Linear motion along x-axis with sinusoidal deviation in
y-axis and z-axis.

4.1 Recognition of alignment features of the wheel

The depth sensor captures depth images of the stationary
wheel at the rate of up to 30 frames per second. From within
each depth image, the 4 bores of the wheel are recognised and
their angular positions, represented by the angle of the bore
located within the 90° to 180° quadrant (the ‘first bore’), are
measured. To improve the accuracy of this method, the angle

obtained is cumulatively averaged over 45 depth frames be-
fore it is recorded. Ten iterations of the experiment are con-
ducted, and the results are tabulated in Table 1.

4.2 Motion tracking and alignment feature recognition
of the wheel hub

The far and near depth sensors track the motion of the wheel
hub by continuously detecting the centre point of the hub and
recording its x, y and z coordinates along with its speed in the
direction of motion (x-axis). In the far sensing zone, the far
sensor tracks the position and speed of the wheel hub whereas
in the near sensing zone, the near sensor also identifies and
records the angular positions of the studs of the moving wheel
hub.

The motion tracking data obtained from the far and
near sensors is compared to that obtained from the laser
tracker that tracks the same motion. Since the laser tracker
and the depth sensor are not synchronised during motion
tracking, the two sets of data cannot be plotted and
visualised on the same chart. The motion tracking results
for the five simulated motion patterns are presented be-
low. Since each motion pattern is run for 10 iterations, the
wheel hub position and speed values are averaged over
the 10 iterations.
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4.2.1 Linear motion along x-axis at 67 mm/s with no
deviations in y-axis and z-axis

In the far sensing zoneWheel hub motion tracked along all 3
axes by the far sensor and the laser tracker when the wheel hub
is in the far sensing zone is presented in charts shown in
Fig. 12. The corresponding speed computed from the near
sensor and laser tracker motion data is plotted in the charts
shown in Fig. 13.

In the near sensing zoneWheel hub motion tracked along all
3 axes by the near sensor and the laser tracker when the wheel
hub is in the near sensing zone is presented in Fig. 14. The
corresponding speed computed from the near sensor and laser
tracker motion data is plotted in the charts shown in Fig. 15. In
this zone, the angular position of the wheel hub stud located in
the 90° to 180° quadrant (the ‘first stud’) is also measured for
10 iterations as shown in Table 2.

4.2.2 Jerky motion along x-axis with no deviations in y-axis
and z-axis

Since jerky motion is along the x-axis only, the y-axis and z-
axis motion tracking charts are not shown.

In the far sensing zone Figures 16 and 17 show the motion
and speed charts produced by the far sensor and the laser
tracker, respectively.

In the near sensing zone Figures 18 and 19 show the motion
and speed charts produced by the near sensor and the laser
tracker, respectively. Table 3 shows the angular positions of
the wheel hub measured over 10 iterations for this motion
pattern.

4.2.3 Linear motion at 67 mm/s along x-axis with sinusoidal
deviations in y-axis

Since the oscillations are along the y-axis only, x-axis and z-
axis motion tracking charts are not shown.

In the far sensing zone Figure 20 shows the motion charts
produced by the far sensor and the laser tracker.

In the near sensing zone Figure 21 shows the motion charts
produced by the near sensor and the laser tracker, and Table 4
shows the angular positions of the wheel hub measured over
10 iterations.

4.2.4 Linear motion at 67 mm/s along x-axis with sinusoidal
deviations in z-axis

Since the oscillations are along the z-axis only, x-axis and y-
axis motion tracking charts are not shown.

In the far sensing zone Figure 22 shows the motion charts
produced by the far sensor and the laser tracker.

Table 4 Angle of the first wheel hub stud

Motion pattern Angular position of first wheel hub stud (degrees)

1 2 3 4 5 6 7 8 9 10 Mean Standard
deviation

Linear motion in x-axis with
deviations in y-axis

337.70 336.16 334.07 336.26 335.67 333.18 335.56 337.36 336.08 334.79 335.68 1.39
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In the near sensing zone Figure 23 shows the motion charts
produced by the near sensor and the laser tracker. Table 5
shows the angular positions of the wheel hub measured over
10 iterations for this motion pattern.

4.2.5 Linear motion at 67 mm/s along x-axis with sinusoidal
deviations in y-axis and z-axis

Since the oscillations are along the y-axis and z-axis, x-axis
motion tracking chart is not shown.

In the far sensing zone Figures 24 and 25 show the motion
charts produced by the far sensor and the laser tracker for y-
axis and z-axis deviations, respectively.

In the near sensing zone Figures 26 and 27 show the motion
charts produced by the near sensor and the laser tracker for y-
axis and z-axis deviations, respectively. Table 6 shows the
angular positions of the wheel hubmeasured over 10 iterations
for this motion pattern.

5 Discussion

In this paper, a unique method of obtaining live moving as-
sembly data from the shopfloor using low-cost depth imaging
sensors is presented. The moving assembly operation chosen
is wheel loading in the trim and final assembly line in auto-
motive production. The eventual aim of this research is to

enable cost-effective automation of this complex operation.
Therefore, to replace the human operator, it is necessary to
have a solution that can observe the assembly operation and
capture critical operation data, make decisions based on the
data and implement actions based on the decisions made to
successfully perform the assembly. This work proposes a
method of using low-cost depth imaging sensors as a replace-
ment for the human operators ability to observe and digitise
the operation.

The proposed method uses three depth sensors in total, one
sensor to recognise the alignment features of the to-be-loaded
stationary wheel and the other two sensors to capture the mo-
tion characteristics of the moving wheel hub as well as recog-
nise its alignment features. The data obtained from these three
sensors could be used by a decision support/expert system to
make load/abort, align/not align, when-to-load and where-to-
load decisions for the automated wheel loading solution.
However, before the method is implemented, it is necessary
to determine the optimum sensor positioning on the shopfloor
and optimum sensor parameters to obtain the best possible
results. The alignment feature recognition of the stationary
wheel is used as a test case for this purpose, and the results
are discussed.

5.1 The impact of distance of the sensor from the observed
object

From a study of the impact of sensor distance on the
measurement precision of the alignment feature angle, it
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Fig. 23 Wheel hub positions captured by the near sensor and the laser tracker (z-axis)

Table 5 Angle of the first wheel hub stud and its standard deviation measured over 10 iterations

Motion pattern Angular position of first wheel hub stud (degrees)

1 2 3 4 5 6 7 8 9 10 Mean Standard
deviation

Linear motion in x-axis with
deviations in z-axis

335.68 332.52 336.59 336.76 334.60 337.22 337.66 335.45 335.94 337.02 335.94 1.52

Int J Adv Manuf Technol



was observed that at a distance of 950 m and above, the
features of the wheel were too small to be rendered in the
depth image whereas the minimum distance below which
the feature recognition algorithm will not work was
700 mm. Therefore, the distance between the sensor and
the wheel was varied from 700 to 950 mm, and the opti-
mum distance of 850 mm was obtained with the least
standard deviation of 0.28° (Fig. 28).

5.2 The impact of sensor face angle with respect
to the object plane

The feature recognition algorithm uses depth values of the
pixels corresponding to the object being tracked to recognise
features and measure its angular positions. Therefore, it is ex-
pected that the sensor face (Fig. 29) is perfectly parallel (rela-
tive angle is zero) to the object face plane every single time.
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Fig. 25 Wheel hub positions captured by the far sensor and the laser tracker (z-axis)
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However, this is not possible in a real shopfloor scenario,
and therefore, it was necessary to find the angle range within
which the proposed method would work. The results below
show that the feature recognition works reliably only within
the −10° to +10° range (Fig. 30).

5.3 Impact of number of frames used for averaging

In this work, the cumulative averaging technique is used to
reduce the measurement errors while obtaining the angular
positions of the alignment features on the wheel and the mov-
ing wheel hub. The sensor produces 30 depth image frames
per second, and the algorithm processes each image to recog-
nise the features and measure their angular positions. Because
of the noise present in the sensor depth data, measurement
obtained from only 1 frame does not suffice. Therefore, angu-
lar positions measured from multiple frames are averaged to
determine the final angular positions. The number of frames
averaged was varied from 1 frame (no averaging) to 120
frames and the optimum number of frames was found to be
45 with the least standard deviation of 0.17° (Fig. 31). Aver-
aging over 45 frames results in a delay of 1.5 s to obtain the
angular position result, which is satisfactory.

5.4 Impact of IR interference between the two depth
sensors

Depth imaging sensors are infrared (IR) light emitting devices
which measure depth by processing the IR waves that are

reflected back to it from the surfaces in its field of view.
Therefore, when two or more sensors are used to observe the
same scene, such as in this research, the IR waves emitted by
the sensors interfere with each other causing significant noise
in depth data obtained from the two sensors [18]. Due to this
constraint, the far and near sensors were time-multiplexed to
operate at different times during the operation. When the
wheel hub enters the field of view of the far sensing zone,
the near sensor was switched off and when it enters the near
sensing zone, the far sensor is switched off. This way, no two
sensors operate at the same time thereby avoiding noise due to
IR interference. Figure 32 shows the effect of interference on
the quality of depth data. However, the second generation of
the depth sensors, such as the Kinect v2 [19], do not present
any interference problems when multiple sensors are used at
the same time.

5.5 Accuracy of depth sensor motion tracking

In this work, motion data captured by the depth sensors is
compared with that obtained from the industry standard laser
tracker. Hence, the error in depth sensor motion data is com-
puted relative to the motion data produced by the laser tracker.
The motion parameters used for the relative error computation
are values of motion speed, deviation amplitude and deviation
frequency for all 5 motion patterns averaged over 10 iterations
each (Table 7).

From the above results, it can be noted that the near sensor
is more accurate in motion tracking than the far sensor due to

309

310

311

312

313

Z-
Po

si�
on

(m
m
)

90

00

0

20

30

0.2 0.8 1.4

Time

Z-Axis Posi�on vs

2.1 2.7 3.4 4.

(seconds)

s Time (Near Sensor)

0 4.6
3090

3100

3110

3120

3130

Z-
Po

si�
on

(m
m
)

0

0

0

0

0

0.1 0.6 1.1 1.6 2

Time (

Z-Axis Posi�on vs T

2.1 2.6 3.1 3.6 4.1

(seconds)

Time (Laser Tracker)

4.6

Fig. 27 Wheel hub positions captured by the near sensor and the laser tracker (z-axis)

Table 6 Angle of the first wheel hub stud

Motion pattern Angular position of first wheel hub stud (degrees)

1 2 3 4 5 6 7 8 9 10 Mean Standard
deviation

Linear motion in x-axis with deviations
in y and z-axis

336.78 336.79 338.14 333.99 335.99 337.06 333.54 336.42 337.14 334.80 335.92 1.54
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Fig. 28 Impact of sensor distance on feature recognition precision

Fig. 29 Impact of sensor face
plane angle on the depth image
capture

Fig. 30 Alignment feature
recognition at different sensor
face plane angles
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its closer proximity to the moving wheel hub that enables it to
capture better depth images of the wheel hub. It can also be
noted from Table 7 that the near sensor is able to better track
the motion deviations of the wheel hub with lower deviation
frequency error than the far sensor. Therefore, there is signif-
icantly less lag in tracking motion deviations of the moving
hub in the near sensing zone than in the far sensing zone while
maintaining the error difference between them. Finally, from
the error values of motion pattern 4 and 5, it can be observed
that the depth sensors are less accurate in tracking motion in
the depth axis (z-axis) than in the other 2 axes. This phenom-
enon could be linked to the way in which the sensors calculate
the depth values of pixels in the 3D scene by way of interpo-
lation based on the structured light technique [20] rather than
absolute depth measurement of each pixel.

The measurement of wheel hub speed along the direction
of motion is critical in determining the position and time at
which to load the wheel. In this work, the error in

measurement of average wheel hub speed ranges from 0.15
to 8.06 mm/s (Table 7). Contrary to expectation, the far sensor
average speed errors are lower than those of the near sensor for
all motion patterns. However, on closer observation, the error
spread along the entire tracked motion is more erratic for the
far sensor than that of the near sensor, an example of which is
shown in Fig. 33.

5.6 Performance of the proposed method

For the wheel loading use case selected in this work, the wheel
bores are 20 mm in diameter and the wheel hub studs are
12 mm in diameter. Therefore, an assembly tolerance of
4 mm is required for successful wheel loading irrespective
of the motion patterns. It can be noted from table x and y that
the error in measuring motion deviation amplitude, especially
in the crucial near motion sensing zone, is less than the re-
quired assembly tolerance of 4 mm. For the measurement of

Fig. 31 Number of frames averaged impact the data accuracy

Fig. 32 Depth images produced
by far and near sensors a with IR
interference and b without IR
interference
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angular position of the wheel hub studs, the maximum stan-
dard deviation noted was 1.54°, which is an equivalent of
1.46 mm, is also less than the 4 mm tolerance required. There-
fore, the proposed method is feasible to be implemented in
wheel loading operations that use the specifications of the
wheel and the wheel hub used in this work.

5.7 Future work

According to Chen et al., the minimum assembly tolerance
used in the industry is 2 mm [5]. The maximum error recorded
is 2.78 mm for composite y-axis and z-axis deviations in this
work renders the proposed method unsuitable for the industry
in its current version. However, the Kinect v2 with higher
resolution of depth images (512×424 pixels) and better object
recognition algorithms would be investigated in an attempt to
obtain the error values below the required 2 mm.

In order to apply the proposed method of capturing wheel
loading operation data on the actual wheel loading worksta-
tion, firstly, the area between the Kinect sensors and the plane
of wheel hub motion on the conveyor line must be reserved
without any disturbances. Secondly, the distance constraint of
850 mm from the near Kinect sensor to the plane of wheel hub
motion may limit the operational space of the wheel loading
robot. Both these requirements could be met if the near Kinect
sensor is mounted on the wheel loading robot itself. This setup
saves the space taken up by the near sensor on the shopfloor
and at the same time enables the robot arm to be controlled
precisely as the wheel hub motion is tracked in real time.

In a real wheel loading scenario, the wheel hub mounted on
the vehicle axle consists of additional components such as the
brake disc callipers and in some cases the drum brake setup is
installed. Therefore, the tracking method proposed here will
need to be amended to recognise the wheel hub and recognise

Table 7 Relative errors in depth sensor motion tracking data

Sr. no Motion scenario Average speed error
(mm/s)

Average deviation
amplitude error (mm)

Average deviation
frequency error (Hz)

Far sensor Near sensor Far sensor Near sensor Far sensor Near sensor

1 Linear motion along x-axis with no deviations 2.88 3.47 – – – –

2 Jerky motion along x-axis with no deviations 3.05 8.06 – – – –

3 Linear motion along x-axis with deviations in y-axis 0.15 2.52 2.62 1.62 0.12 0.002

4 Linear motion along x-axis with no deviations in z-axis 2.25 3.41 4.29 2.35 0.13 0.038

5 Linear motion along x-axis with deviations in y-axis and z-axis 2.89 3.57 4.22 2.78 0.16 0.138

Fig. 33 Speed values computed by a the far sensor and b the near sensor and the laser tracker
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the alignment features in the presence of such components.
Also, the motion of the car body on the conveyor line and its
effect on the resulting motion of the wheel hub considering all
6° of freedom is complex and needs extensive investigation by
studying the motion characteristics of an actual assembly line
at the wheel loading workstation.

IR interference between the far and the near sensors com-
pelled the motion sensing zone to be divided into mutually
exclusive far and near motion sensing zones. The Kinect v2
sensors are expected to be significantly less affected by IR
interference, and therefore, a motion tracking setup with the
far sensor tracking the moving wheel hub along the entire
length of the loading workstation can be used. This setup will
enable the far sensor to constantly track the moving hub for
major disruptions whereas the near sensor can track the mo-
tion more precisely and determine misalignments more
accurately.

In this work, the depth sensors are not calibrated apart from
the calibration done by the manufacturer, and therefore, object
recognition and tracking quality degrades as the object moves
away from the centre of the field of view of the sensor. A
calibration method is needed to enhance the accuracy of co-
ordinate mapping between the sensor coordinate system and
the real world coordinate system, and this is expected to en-
hance the accuracy of motion tracking and feature recognition.

Finally, as an extension of this work, visual servoing
methods will need to be developed in order to precisely con-
trol the motion and the wheel loading action of the industrial
robot arm. The input data to such methods will be the real-
time motion tracking data provided by the Kinect sensors
using the method proposed in this work.

6 Conclusions

In this paper, a new method to digitise the wheel loading
operation, which is one of the most complex, cost-intensive
and yet to be automated moving assembly operations in the
automotive industry, is presented. Digitisation involved simul-
taneous motion tracking of the vehicle body on the conveyor
line including the measurement of its motion characteristics
and measuring the misalignments between the moving wheel
hub and the wheel to produce data which is critical to the
success of the wheel loading operation. The novelty of this
research is the use of multiple consumer-grade depth imaging
sensors, commonly used in gaming, to obtain the motion and
misalignment data in real-time. The proposed method is
unique also in its approach to divide the wheel loading work-
station into far and near motion sensing zones to use the depth
sensors at varying accuracy levels as demanded at different
times of the operation. This feature attempts to overcome the
relatively lower resolution of the depth sensors in view of their
lower cost of ownership and operation as compared to some of

their more expensive and highly accurate industrial
counterparts.

In this work, the wheel loading operation was simulated in
a controlled lab environment with the wheel hub mounted on
an industrial robot arm to mimic the conveyor line motion.
Two depth imaging sensors, one each in the far and near mo-
tion sensing zones, respectively, were used to track and record
the coarse and fine motion of the moving wheel hub, respec-
tively, along all 3 axes. The alignment features on both the
stationary wheel and the moving wheel hub were also
recognised by the depth sensors and misalignment between
them was measured. These zones were mutually exclusive in
time and never operated at the same time to avoid IR interfer-
ence between the two depth sensors. Five different wheel hub
motion patterns were simulated, and experiments to track mo-
tion and recognise alignment features were conducted for each
pattern with 10 iterations each. A laser tracker was used to
simultaneously capture and record the motion of the wheel
hub in each of the experiments. This allowed the authors to
gauge the motion tracking accuracy of the depth sensors in the
two motion sensing zones vis-à-vis the laser tracker, which is
considered as the gold standard in this research on account of
its high accuracy.

The results show that depth sensor and the associated
image processing code is able to track the moving wheel
hub and measure its motion characteristics in real-time.
The use of a far and near motion sensing zone isolates
the low and high accuracy needs of the wheel loading
operation while being able to capture the entire worksta-
tion length of 2.5 m. Despite the relatively low resolution
of the depth imaging sensor, placing it at a short perpen-
dicular distance of 850 mm from moving wheel hub
plane, the resulting motion tracking error of 2.78 mm is
recorded. This method therefore meets the assembly tol-
erance of 4 mm, which is dictated by the type of wheel
and the wheel hub used in this work. However, this error
margin is higher than the reported maximum assembly
tolerance of 2 mm used in the industry. With the recent
launch of the second generation of the depth imaging
sensors (Kinect V2) with almost double the depth resolu-
tion coupled with improved depth-based object detection
algorithms, it is anticipated that this method will be able
to achieve motion tracking error of less than 2 mm and
therefore be suitable for adoption by the industry.

This paper exploits the consumer-grade nature of the depth
imaging sensors to propose a cost-effective method to digitise
moving assembly operations with an aim to enable the auto-
mation of these operations in the future. The constant market-
driven upgradation of these sensors as a result of their wide-
spread use in the gaming sector will result in the development
of better imaging capability making complex object tracking
and feature recognition possible in the future. The low-cost of
ownership and operation, the consumer-proven robustness
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and the resulting simplification of image processing algo-
rithms due to the availability of constantly improving 3rd di-
mension along the depth axis will therefore open up a whole
new area of moving assembly digitisation research.
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