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Abstract: The concept of globally optimal controlled variable selection has recently been
proposed to improve self-optimizing control performance of traditional local approaches.
However, the associated measurement subset selection problem has not be studied. In this
paper, we consider the measurement subset selection problem for globally self-optimizing control
(gSOC) of Tennessee Eastman (TE) process. The TE process contains substantial measurements
and had been studied for SOC with controlled variables selected from individual measurements
through exhaustive search. This process has been revisited with improved performance recently
through a retrofit approach of gSOC. To extend the improvement further, the measurement
subset selection problem for gSOC is considered in this work and solved through a modification
of an existing partially bidirectional branch and bound (PB3) algorithm originally developed for
local SOC. The modified PB3 algorithm efficiently identifies the best measurement candidates
among the full set which obtains the globally minimal economic loss. Dynamic simulations are
conducted to demonstrate the optimality of proposed results.
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1. INTRODUCTION

Since published in 1993, the well-known Tennessee East-
man (TE) process (Downs and Vogel, 1993) has been
extensively studied by researchers from the field of process
control. Various control strategies and algorithms were
proposed to address the control problems posed by Downs
and Vogel. McAvoy and Ye (1994) used the relative gain
array and other controllability analysis tools to configure
a basic PID control system, which operates the process
around the base case point and met basic requirements
posed in the problem. Later, Ricker (1995) identified the
optimal steady-state point of process operation, he also
presented a well-configured decentralized control struc-
ture (Ricker, 1996), which achieved excellent performances
for various control tasks. Meanwhile, nonlinear model
predictive control (NMPC) algorithm (Ricker and Lee,
1995) was also considered. Jockenhövel et al. (2003) per-
formed dynamic optimization of the TE process using a
MATLAB-based OptControlCentre toolbox.

On the other hand, although there are many approaches
developed for either control or optimization of the TE
process, only a few were concerned with the economic per-
? The author Lingjian Ye gratefully acknowledge the National
Natural Science Foundation of China (NSFC) (61304081), Zhejiang
Provincial Natural Science Foundation of China (LQ13F030007),
National Project 973 (2012CB720500) and Ningbo Innovation Team
(2012B82002).

formance by means of selecting controlled variables (CVs),
which are of critical importance for a control system.
The control system designed by Ricker (1996) controls
the active constraints identified from steady state opti-
mization, however, the sensitivity part is not appropriately
addressed. Another successful one is the work of Larsson
et al. (2001), where the self-optimizing control (SOC)
methodology (Skogestad, 2000) was applied to select the
best CVs to achieve economic improvements. The SOC is
a control strategy that by means of selecting particular
CVs, the economic performance of plant operation is au-
tomatically “self-optimizing” with an acceptable loss, in
spite of disturbances and uncertainties. Such a strategy is
particularly appealing for large scale process plants, such
as the TE process, where installing and maintaining an
extra computationally expensive “real-time optimization”
(RTO) layer is unnecessary for economically optimal op-
eration if a well-designed SOC system is implemented.

However, the self-optimizing control structure designed by
Larsson et al. (2001) has several limitations. Firstly, only
the individual measurements are considered as the CV
candidates. It has been well recognized that one achieves
better self-optimizing performance by controlling the mea-
surement combinations, because they provide more intrin-
sic knowledge of the process (Alstad and Skogestad, 2007;
Kariwala, 2007; Kariwala et al., 2008; Alstad et al., 2009;
Ye et al., 2013). However, an application of measurement
combination CVs to the TE process has not yet been
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Table 1. Manipulated variables for TE process

Number Variable name

XMV(1) D feed flow

XMV(2) E feed flow

XMV(3) A feed flow

XMV(4) A and C feed flow

XMV(5) Compressor recycle valve

XMV(6) Purge value

XMV(7) Separator liquid flow

XMV(8) Stripper liquid product flow

XMV(9) Stripper steam valve

XMV(10) Reactor cooling water flow

XMV(11) Condenser cooling water flow

XMV(12) Agitator speed

reported elsewhere. Moreover, to select out the CVs, the
full measurement set was screened largely according to
their heuristic judgements of the process characteristics.
Although easily understood from an engineer’s perspec-
tive, too much subjective judgements may omit promis-
ing CV candidates that cannot be obviously detected.
Since selecting a measurement subset to constitute CV
is a combination problem in nature, an exhaustive search
way is intractable with substantial measurements. In re-
cent years, a number of algorithms for fast identifying a
measurement subset were reported, e.g. the bidirectional
branch and bound (BAB) (Cao and Kariwala, 2008; Kari-
wala and Cao, 2009, 2010) and the mixed integer quadratic
programming algorithms (Yelchuru and Skogestad, 2012).

In this study, we consider the measurement subset selec-
tion problem for TE process in the framework of SOC.
Firstly, we investigate the TE process by applying a new
globally SOC (gSOC) method, which approximately min-
imizes the average loss for all operating conditions for a
plant operation (Ye et al., 2015). The new gSOC method
is developed in terms of “operating condition” instead of
some perturbed “disturbance variables”. This method al-
lows us to derive measurement combinations as CVs for the
TE process. Then, we investigate the measurement subset
selection problem with a modified partially bidirectional
branch and bound (PB3) algorithm, which was earlier
employed in local SOC methods based on local average loss
minimization. Finally, we implement the derived subsets
for gSOC of the TE process through a retrofit approach
proposed recently (Ye et al., 2016), dynamic simulations
are carried out to validate the optimality.

2. OVERVIEW OF THE PROCESS

2.1 Process description

The plant-wide TE process consists of the following 4
reactions

A(g) + C(g) + D(g)→ G(liq)
A(g) + C(g) + E(g)→ H(liq)

A(g) + E(g)→ F (liq)
3D(g)→ 2F (liq)

where A, C, D, E are the reactants, G and H are the
products and F is the byproduct. Besides, there exists
an inert component B in the material circle, which is
contained in the feed and removed through purge to
maintain inventory balance. The process includes 5 major
operating units: the reactor, product condenser, vapor-
liquid separator, recycle compressor and product stripper.

Table 2. Measurements for TE process

Number Variable name

XMEAS(1) A feed

XMEAS(2) D feed

XMEAS(3) E feed

XMEAS(4) A and C feed

XMEAS(5) Recycle flow

XMEAS(6) Reactor feed rate

XMEAS(7) Reactor pressure

XMEAS(8) Reactor level

XMEAS(9) Reactor temperature

XMEAS(10) Purge rate

XMEAS(11) Product separator temperature

XMEAS(12) Product separator level

XMEAS(13) Product separator pressure

XMEAS(14) Product separator underflow

XMEAS(15) Stripper level

XMEAS(16) Stripper pressure

XMEAS(17) Stripper underflow

XMEAS(18) Stripper temperature

XMEAS(19) Stripper steam flow

XMEAS(20) Compressor work

XMEAS(21) Reactor cooling water outlet temperature

XMEAS(22) Separator cooling water outlet temperature

XMEAS(23–28) mole fraction of A–F in feed

XMEAS(29–36) mole fraction of A–H in purge

XMEAS(37–41) mole fraction of D–H in product

The process includes 12 manipulated variables (MVs) and
41 measurements, as listed in Table 1 and Table 2. For
the MVs, they have all been scaled within the 0-100%
range, which are considered as valve positions. For the
measurements, they are defined with different sampling
frequencies and dead time to keep consistence with the
industrial practice. An economic index is also introduced,
which is composed of the cost/loss of raw materials and
energy, see Downs and Vogel (1993) for more details.

2.2 Overview of control structure

In open literature, there have been many control structures
developed for the TE process. However, in the remainder
of this paper, we will mainly introduce two control systems
proposed by Ricker (1996) and Larsson et al. (2001) to get
an overview for controlling the TE process. (For the sake
of convenience, they will be denoted as “CS Ricker” and
“CS Skoge” after the corresponding authors respectively.
Furthermore, the choice of CV selection is of particular
interest in this study and outlined as below.

According to their control policies, the following process
variables should be controlled in closed-loops:

(1) Separator level and stripper level. These two liquid
levels are integrating variables and have no steady
state effects, they must be stabilized in the first place.

(2) Production rate (stripper underflow) and product
quality (mole %G in product). Manufacturing objec-
tive defines their targets under different operating
modes and specifications, these equality constraints
should be controlled to satisfy the targets.

(3) At the optimum, there are 5 active constraints
that needs to be controlled at their boundaries:
reactor pressure (maximum) and level (minimum),
compressor recycle valve (closed), stripper steam
valve (closed) and agitator speed (maximum). Ricker
(1996) provided detailed physical interpretations why
these constraints are active at the optimum.

Above control requirements consume 9 degrees of free-
dom (DOF) for plant operation. For the remaining un-
constrained 3 DOF, Ricker (1996) chose to control the



reactor temperature (Trct), %A and %C in the feed (more
precisely, yA: the combined %A+%C and yAC : %A/(%A+
%C) in the feed) based on heuristic analysis. Decentralized
control structure was considered with appropriately con-
figured loop pairing relationships. Controller tuning is also
carried out for all PI controllers, see Ricker (1996) for more
detail. The designed control system was very efficient and
nicely completed various control tasks proposed by Downs
and Vogel (1993) .

On the other hand, Larsson et al. (2001) applied the so-
called SOC methodology to improve the operational eco-
nomic performance for TE process. Their control strategy
addressed the situations when the plant is operated under
disturbances and different operating conditions (specifi-
cally, production rate/throughput change by ±15%). A
systematic procedure for control structure design and self-
optimizing CVs selection was carried out. They found that
the most promising CVs for the remaining unconstrained
3 DOF are reactor temperature, recycle flowrate and %C
in the purge. These results were at first surprising and
contradicting to engineers’ insights of process control,
however, the authors had conducted dynamic simulations
to demonstrate that their control strategy is viable. As
compared to the one in Ricker (1996), the main economic
improvements were achieved in the cases of throughput
changes.

3. SUBSET SELECTION FOR SOC

3.1 A new SOC method for CV selection

Recently, a new SOC approach for CV selection (Ye et al.,
2015), which approximately minimizes the average loss
under all operating conditions, has been proposed. Two
algorithms were proposed therein to minimize the average
loss. Between these two, this work adopts the less rigorous
but simpler one, which is based on a convex formulation
hence CVs can be solved analytically in terms of various
optimal values of a subset of measurements. Furthermore,
the sensitivity matrix required in the algorithm is to be
evaluated at a single reference point.

Consider the next static optimization problem
min
u

J(u,d) (1)

with measurements
y = f(u,d) (2)

where J is the cost function to be minimized, u ∈
Rnu , d ∈ Rnd , and y ∈ Rny are the manipulated
variables, disturbances, and measurements, respectively.
f : Rnu×nd → Rny is the measurement model. The
objective is to select c = Hy as CVs such that the
economic loss is minimized under different disturbance
scenarios and operating conditions.

Remark: Although the symbol d is used above to denote
disturbances (Ye et al., 2015), the method can be easily
extended to any possible operating conditions that cannot
be easily described by simple disturbance variables, e.g.
a particular case with a pressure setpoint change or a
case of instrument failure. Also, since the occurrence of
disturbance can be considered as a type of operating

condition, we will refer the term “operating condition” to
all possibilities afterwards, without loss of generality.

A brief description of the algorithm (Ye et al., 2015)
involves the following steps:

(1) For all N operating conditions, say d(i), i = 1, ...N ,
the cost function J is minimized using an optimiza-
tion solver. The optimal values of measurements, yopt

(i)

are obtained and form a matrix as

Y =
[
yopt

(1) yopt
(2) · · · yopt

(N)

]T

(3)

Here, the measurement vector y is defined to include
an artificial measurement: constant 1, so that the set-
points of all final derived CVs are 0.

(2) In the presence of measurement noises, construct an
extended matrix Ỹ as

Ỹ =

 1√
N

Y

Wn

 (4)

where Wn is a diagonal matrix with its diagonal ele-
ments as the error magnitudes of each measurement.

(3) Choose a particular operating point as the reference
point, the gain matrix of y with respect to the MVs
is evaluated as Gy,r.

(4) Following above steps, an approximated global aver-
age loss Lav, is expressed as

Lav =
1
2
‖ỸHT‖2F (5)

by enforcing H satisfying HGy,r = J1/2
uu,r.

(5) The optimal H minimizing Lav is analytically given
as

H = J1/2
uu,r(GT

y,r(ỸTỸ)−1Gy,r)−1GT
y,r(ỸTỸ)−1 (6)

3.2 PB3 algorithm for subset selection

For the subset selection problem, Kariwala and Cao (2010)
has developed a PB3 algorithm based on the local aver-
age loss criterion. In the PB3 algorithm, candidate mea-
surement subsets are divided into branches and evalu-
ated against upwards and downwards pruning criteria.
Branches, which satisfy either upwards or downwards
pruning criteria will be fixed or removed from candidate
list, respectively. In this way, most non-optimal candidate
subsets will be eliminated without further evaluations so
that the optimal subset can be efficiently identified. The
reader is referred to Kariwala and Cao (2010) for more
detailed description of this algorithm.

By making a comparison of the gSOC method (Ye et al.,
2015) to the local formulation (Alstad et al., 2009; Kari-
wala et al., 2008), one finds that the approaches are equiv-
alent except for that an intermediate matrix (Ỹ in gSOC
and Y in loacl SOC) is constructed differently, see these
references for more details. Therefore, the partially bidi-
rectional branch and bound (PB3) algorithm developed for
subset selection based on a local SOC method (Kariwala
and Cao, 2010) is modified to fit the gSOC method.



Table 3. Optimization results

Cost[$/h] yA[%] yC [%] XMEAS(9)
◦C

normal 114.01 32.21 18.75 122.9
IDV(1) 111.27 32.35 19.69 123.0
IDV(2) 169.03 30.47 17.94 124.2
throughput +15% 140.55 33.45 19.68 124.3
throughput -15% 91.01 30.80 17.50 121.6
40 G/ 60 H 129.07 32.92 18.93 123.4
rct press 2645 kPa 134.93 32.01 18.82 123.6

4. SUBSET SECTION FOR THE TE PROCESS

4.1 Optimization for operating conditions

Firstly, 9 CVs, including two liquid levels and 7 equality
constraints (see Section 2), should be controlled. These
CVs are selected with the same reasons as in CS Ricker
and CS Skoge. This leaves 3 CVs to be selected for SOC.

Originally, Downs and Vogel (1993) defined 20 disturbance
scenarios, IDV(1-20), among which Larsson et al. (2001)
considered IDV(1) and IDV(2) (changes in A/C ratio and
B composition in C feedstream, respectively), because
other disturbances are either with no steady state effects
or too severe to be handled in a simple control struc-
ture. Besides, they also considered the situations when
the set-point of production rate (throughput) is changed
by ±15%. In this study, we additionally incorporate two
situations as posed by Downs and Vogel (1993): (1) when
the product mix changes from 50 G/50 H to 40 G/60 H;
(2) a step change of set-point for reactor pressure to be
2645 kPa. Therefore, there will be 7 operating conditions
in total (including the normal operating condition) inves-
tigated in this study.

Following the gSOC method, firstly, the economic index J
is minimized for all 7 operating conditions using a Genetic
Algorithm. Based on CS Ricker, the set-points of yA, yAC

and XMEAS(9) are solved to minimize J , i.e.

u = [yA yAC XMEAS(9)]T (7)
in the formulated optimization problem.

Results of the minimal cost and optimal decision variables
are summarized in Table 3. Meanwhile, optimal values
of all 41 measurements are also obtained for these 7
cases (numerical values are not shown here). Besides, the
magnitudes of the measurement errors are also estimated
from the process variables. The sensitivity matrix Gy and
the Hessian Juu are evaluated at the normal condition
with finite difference method, by perturbing the set-points
of yA, yAC and XMEAS(9) while keeping other active
constraints controlled.

4.2 Subset selection results

Measurement candidates. In principle, both the output
measurements and input MVs can be considered as can-
didates for constituting CVs. This gives us a set of
42+12=54 measurements. However, there have been 9
loops closed with variables maintained at constants, hence
they cannot be used as measurement candidates, these are:
XMEAS(7,8,12,15,17,19,40) and XMV(5,9,12), see Section
2. Note, XMEAS(19) (steam flow) and XMV(9) (steam

valve) are actually the same variables. Therefore, we are
left with 44 candidate measurements which are, however,
still substantial and intractable to search exhaustively.

For SOC purpose, Larsson et al. (2001) used heuristic
approach together with substantial quantitative analysis
to eliminate undesired CV candidates. However, this could
be time consuming and very much rely on the designer’s
insights toward the process under consideration. In the
sequence, the modified PB3 algorithm is applied based on
the global average loss criterion.

The tests are conducted on a Windows 7 SP1 operating
system with i5 @3.3GHz CPU and 8 GB RAM using
MATLAB R2013a. The sizes of measurement subset 3 ≤
m ≤ 44 are considered, all the promising subsets are
automatically picked in a short period of time by using
the PB3 algorithm. The computation times (averaged for
100 times) are plotted in Figure 1 (a), where the largest
time is 3.14 s occurring at m=15. The minimal average
loss as m ranging from 3 to 44 is illustrated in Figure 1
(b). As indicated evidently in the figure, a choice of m = 5
or 6 can be considered to make a good balance between
the economic performance and CV complexity.
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Fig. 1. PB3 algorithm for subset selection against m

The average losses of promising measurement subsets for
m = 3−6, together with those of CS Ricker and CS Skoge,
are shown in Table 4. First of all, when m = 3, the average
losses of CS Ricker and CS Skoge are calculated as 1.4615
and 0.9083, which are significantly larger than the minimal
one obtained in this study (0.7001). The best subset is
XMEAS(9,20,31) (Reactor temperature, compressor work,
mole fraction of C in purge). Interestingly, this was iden-
tified by Larsson et al. (2001) as the second best choice,
which in their paper gave 0.1 more total loss as compared
to the best one, XMEAS(5,9,31). The big loss of control-
ling XMEAS(5,9,31) could be due to several reasons, e.g.,
two additional operating conditions were not included in
CS Skoge. Actually, we have found that CS Skoge gives
a quite big loss for the operating condition when reactor
pressure is set to be 2645 kPa. Moreover, the measurement
errors are not considered therein.

Secondly, MVs are rarely included except for that XMV(6)
(the purge valve) is used when m=5. Besides, one sees that
the promising subsets contain many composition variables



Table 4. Promising measurement subsets

XMEAS XMV average
index index loss

m=3 [9, 20, 31] - 0.7001
[21, 31, 33] - 0.7211
[31, 33, 34] - 0.7518
[28, 31, 34] - 0.7576

(CS Ricker) [9, 23, 25] - 1.4615
(CS Skoge) [5, 9, 31] - 0.9083
m=4 [25, 29, 34, 38] - 0.1063

[23, 25, 34, 38] - 0.1081
[29, 31, 34, 38] - 0.1101

m=5 [9, 29, 31, 38] [6] 0.0328
[9, 23, 31, 38] [6] 0.0356

[9, 10, 29, 31, 38] - 0.0359
m=6 [4, 18, 20, 30, 31, 34] - 0.0169

[4, 18, 20, 24, 31, 34] - 0.0177
[4, 18, 20, 28, 30, 31] - 0.0179

(XMEAS index≥23), which are generally key variables in a
typical chemical process. Among them, XMEAS(31,34,38)
(mole fraction of C and F in purge, mole fraction of
E in product) are frequently contained, indicating that
they are important variables for optimal operation. Note,
XMEAS(31) has been identified in CS Skoge and con-
trolled, however, XMEAS(34,38) were omitted but con-
sidered as good measurements in this paper.

4.3 Dynamic simulations

For dynamic simulations, the two best subsets in the cases
of m = 3 and 6 are tested to validate the results obtained
above: (1) XMEAS(9,20,31); (2) XMEAS(4,18,20,30,31,34).
Since CS Ricker was so well-configured in stabilizing
the plant operation and completes fundamental control
tasks, it is used as a basis to control the obtained self-
optimizing CVs by adjusting the set-points of yA, yAC and
XMEAS(9). The optimal combination matrices for the two
alternatives are calculated as

H1 =

[ −65.8 0.118 0.199 −0.192
−8.7 0.021 −0.010 0.692
−123.3 1 0 0

]

H2 =

[−43.9 0.98 0.39 0.09 −0.32 −0.43 −0.71
−12.6 0.14 0.17 −0.03 0.05 0.64 −0.27
−29.5 0.57 0.22 −0.003 0.16 0.16 0.87

]
Note these matrices are transformed by multiplying a non-
singular matrix for steady-state decoupling of CVs.

In the dynamic simulations, 3 PI controllers are tuned to
control the self-optimizing CVs. Firstly, the two alterna-
tives are tested for all the 7 operating conditions with a du-
ration of 150 h. As a comparison, CS Ricker and CS Skoge
are also tested in the same fashion. With the system states
initially as steady state values for the normal condition,
the economic performances for these 4 control systems are
obtained in Table 5, where the achieved minimal loss is
in bold face (for dynamic performance in the presence
of measurement noises, we consider a difference of ±0.1
average loss is negligible).

Among 7 operating conditions tested, the two alternatives
designed in this paper achieve significant improvements
over CS Ricker and CS Skoge. For example, the Alterna-
tive 1 (m=3) reduces the loss mainly in the operating

Table 5. Average cost [$/h]

CS Ricker CS Skoge m=3 m=6

normal 114.00 113.94 114.00 114.14
IDV(1) 111.62 111.49 111.59 111.79
IDV(2) 171.85 170.35 170.00 168.51
throughput +15% 147.15 143.15 143.05 141.72
throughput -15% 93.41 90.35 90.79 90.35
40 G/ 60 H 130.85 130.60 130.63 130.68
rct press 2645 kPa 137.68 142.89 139.74 137.36

sum 906.56 902.77 899.8 894.55

conditions of thourghput change by ±15% as compared
to CS Ricker. Although the same improvements can be
achieved by CS Skoge, Alternative 1 is able to maintain
the loss small (139.74) even when the reactor pressure is
set to be 2645 kPa, in which case CS Skoge gives a big
loss (142.89). The economic performance is even better
for Alternative 2 by controlling combinations of 6 mea-
surements. The control system archives 5 minimal loss out
of 7 operating conditions. In the other 2 cases (normal and
IDV(1)), Alternative 2 also gives small losses although it
is not the best anyway. Finally, based on the calculated
overall economic losses, the 4 control systems are ranked as
Alternative 2 (894.55)> Alternative 1 (899.8)>CS Skoge
(902.77)> CS Ricker (906.56), where the symbol “>” is
read as “better than”.

In the following, we investigate an arranged series of oper-
ating scenario as: (1) Initially, the system is operated under
normal condition; (2) At 10 h, the setpoint of production
rate (throughput) is increased by +15%. To avoid abrupt
fluctuation, the set-point change is ramped within a period
of 10 h (10 h - 20 h); (3) At 80 h, the production rate is
reset to normal condition, simultaneously, the set-point of
reactor pressure is changed from 2800 kPa to 2645 kPa.
Similarly, both the set-point changes are ramped within a
period of 10 h.
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Fig. 2. Dynamic performance of Alternative 1

Both the two schemes work nicely for the operating condi-
tion switching, as indicated in the top two sub-figures, the
setpoints of production rate and reactor pressure (red line)
are tracked quickly and smoothly. This is because the con-
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Fig. 3. Dynamic performance of Alternative 2

trol system is directly configured upon CS Ricker with the
lower regulatory controllers unchanged, hence the merits
of CS Ricker are preserved. However, by maintaining the
self-optimizing CVs around their constant setpoints (all 0)
in added upper control layer, the setpoints of lower loops
are automatically adjusted accordingly (green line). Note,
they are adjusted to different positions for Alternative 1
and 2 because different self-optimizing CVs are adopted.
As expected, the economic cost (right bottom sub-figure)
is operated around the minimum (red line) in all the sim-
ulation time for both cases, thus indicating good economic
performances. Although visually hard to tell the difference,
the overall economic costs are calculated as 20965 $ and
20641 $ for Alternative 1 and 2, respectively.

Finally, the same arranged series of operating scenario is
tested for CS Ricker and CS Skoge. The obtained results
give their overall economic costs as 21088 $ and 21195 $,
which are higher than the control systems in this paper.
Therefore, the proposed control strategy would be more
favored by an economy-sensitive designer.

5. CONCLUSIONS

In this paper, we investigate the measurement subset
selection problem for self-optimizing control of the TE
process. A PB3 algorithm is used to efficiently screening
the full measurement set based on a global average loss
criterion. For the TE process, it was found that using 5
or 6 measurements makes a good compromise between the
economic performance and CV complexity. Also, it was
revealed that the composition variables are key variables
for optimal control of the TE process. Based on the subsets
obtained, two alternatives were tested through dynamic
simulations, their optimality was verified with comparisons
to the control systems designed by Ricker (1996) and
Larsson et al. (2001).
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