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Abstract

This work addresses the problem of real-time object detection in automotive en-

vironments using monocular vision. The focus is on real-time feature detection,

tracking, depth estimation using monocular vision and �nally, object detection by

fusing visual saliency and depth information.

Firstly, a novel featuredetection approach is proposed for extracting stable and

dense features even in images with very low signal-to-noise ratio. This methodology

is based on image gradients, which are rede�ned to take account of noise as part of

their mathematical model. Each gradient is based on a vector connecting a negat-

ive to a positive intensity centroid, where both centroids are symmetric about the

centre of the area for which the gradient is calculated. Multiple gradient vectors

de�ne a feature with its strength being proportional to the underlying gradient-

vector magnitude. The evaluation of the Dense Gradient Features (DeGraF) shows

superior performance over other contemporary detectors in terms of keypoint dens-

ity, tracking accuracy, illumination invariance, rotation invariance, noise resistance

and detection time.

The DeGraF features form the basis for two new approaches that perform dense

3D reconstruction from a single vehicle-mounted camera. The �rst approach tracks

DeGraF features in real-time while performing image stabilisation with minimal

computational cost. This means that despite camera vibration the algorithm can

accurately predict the real-world coordinates of each image pixel in real-time by com-

paring each motion-vector to the ego-motion vector of the vehicle. The performance

of this approach has been compared to di�erent 3D reconstruction methods in order

to determine their accuracy, depth-map density, noise-resistance and computational

complexity. The second approach proposes the use of local frequency analysis of
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gradient features for estimating relative depth. This novel method is based on the

fact that DeGraF gradients can accurately measure local image variance with sub-

pixel accuracy. It is shown that the local frequency by which the centroid oscillates

around the gradient window centre is proportional to the depth of each gradient

centroid in the real world. The lower computational complexity of this methodology

comes at the expense of depth-map accuracy as the camera velocity increases, but

it is at least �ve times faster than the other evaluated approaches.

This work also proposes a novel technique for deriving visual-saliency maps by

using Division of Gaussians (DIVoG). In this context, saliency maps express the

di�erence of each image pixel to its surrounding pixels across multiple pyramid levels.

This approach is shown to be both fast and accurate when evaluated against other

state-of-the-art approaches. Subsequently, the saliency information is combined with

depth information to identify salient regions close to the host vehicle. The fused

map allows faster detection of high-risk areas where obstacles are likely to exist.

As a result, existing object-detection algorithms, such as the Histogram of Oriented

Gradients (HOG) can execute at least �ve times faster.

In conclusion, through a step-wise approach, computationally-expensive algorithms

have been optimised or replaced by novel methodologies to produce a fast object-

detection system that is aligned to the requirements of the automotive domain.
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Chapter 1

Introduction

This work addresses the problem of real-time object detection in automotive environ-

ments using monocular vision. The motivation is based on the potential of obstacle-

detection systems to prevent or mitigate accidents. A key limiting factor is the

processing power of low-cost embedded hardware, which requires optimised vision

algorithms to make such a system a�ordable [13]. A wide-range of top-tier vehicles

already ship with obstacle-detection systems based on monocular vision, while also

performing other tasks such as lane detection and lane departure warning [14�16]. If

the cost of these systems could be lowered, while preserving accuracy and reliability,

then a wider range of vehicles and autonomous driving systems [17�22] would be able

to bene�t from this type of safety technology. Achieving this objective requires the

optimisation of current computationally-expensive approaches. This thesis presents

a set of novel and highly e�cient methodologies for object detection in automot-

ive environments. Figure 1.1 gives an overview of the system architecture, while

outlining the speci�c research areas that the literature review focussed on.

In Chapter 2, the state-of-the-art is reviewed and a number of technological lim-

itations are identi�ed. Each of these limitations is addressed by a chapter of this

thesis. The focus is on real-time feature detection and tracking, depth estimation

using monocular vision, visual-saliency techniques and object-detection methodolo-

gies. Firstly, a broad range of feature detectors are reviewed including Hessian [23],

Moravec [24], Förstner [25], Harris [26], Tomasi Kanade [27], Shi Tomasi [28], Har-

alick [29], Heitger [30], SUSAN [31], SIFT [1], SURF [2], FAST [32], Harris-a�ne [33],

1



Chapter 1. Introduction 2

Figure 1.1: An overview of the system architecture.

Hessian-a�ne [34], MSER [35], Kadir�Brady [36], EBR [37], IBR [37], CenSurE [38],

AGAST [39] and ORB [40]. These detectors have been selected based on their area

of application. In certain applications, they are used to describe the contents of

an image before performing object detection by matching features to an existing

database [41]. In other cases, the features are tracked in order to perform 3D re-

construction [5, 42�45], which in turn allows prioritised object detection using the

derived depth map. The real-time performance and accuracy of all these detectors is

assessed, using a wide range of metrics as proposed by Mikolajczyk et al. [34]. This

evaluation shows that there is a gap for a feature detector that is computationally

e�cient, while producing high keypoint density. Most contemporary approaches can

only produce sparse keypoints in real-time, which lowers the probability of successful

object detection.

A group of 3D reconstruction algorithms has also been reviewed, while mostly fo-

cussing on Simultaneous Localisation and Mapping (SLAM) techniques [4,5,44,46�

53]. Despite the recent radical improvements in this area, such algorithms are still

not suitable for dense 3D reconstruction in automotive environments due to their
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high dependance on the aforementioned feature detectors. In scenarios where keypo-

int density is low, such as motorways, the depth-map density of SLAM approaches is

also lower. Finally, the computational complexity of probabilistic localisation makes

SLAM hard to implement on embedded hardware [5, 44, 49,54].

The �nal section of Chapter 2, examines the literature for detection and classi�c-

ation of targets, since it is an integral part of modern automotive safety applications

such as pedestrian protection systems (PPS) [55], tra�c sign recognition [56] and

collision avoidance [57]. Such systems, also known as Advanced Driver Assistance

Systems (ADAS) [58], pose a major machine-vision challenge since both the fore-

ground and the background are highly changeable in terms of colour, shape and

texture. For example, in the case of pedestrians there is a very high degree of

variability in the type of clothing, articulated pose, skin colour, body size, aspect

ratio, viewing angle, lighting direction and more importantly background complex-

ity [8]. Developing accurate models that describe such targets is not feasible, thus

machine-learning techniques are used to build an implicit representation based on

examples [8]. The majority of these approaches focus on a single object class (e.g.

tra�c signs, cars, pedestrians) although there are also some multi-class classi�-

ers [59,60]. Reviewing all of these methodologies is a complex task since each object

on its own has been the subject of extensive research over the past decades. As a

result, the focus has been shifted to just the pedestrian class, which is one of the

most studied and challenging subjects to date. In particular, the state-of-the-art in

real-time pedestrian detection is described, while trying to identify limitations in the

optimisation process. Di�erent methods for performance evaluation are also invest-

igated, while the most common public datasets are used for reliable benchmarking.

The most signi�cant gap is related to the use of prioritised image indexing to reduce

the number of unsuccessful iterations. It is proposed that current object-detection

approaches [61] could bene�t by data fusion of 3D reconstruction algorithms and

visual-saliency algorithms [10,62�67].

In Chapter 3, a novel feature-detection approach is described for extracting stable

and dense features even in images with very low signal-to-noise ratio. This meth-

odology is based on image gradients, which are rede�ned to take account of noise
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as part of their mathematical model. Each gradient is based on a vector connect-

ing a negative to a positive intensity centroid, where both centroids are symmetric

about the centre of the area for which the gradient is calculated. Multiple gradient

vectors de�ne a feature with its strength being proportional to the underlying gradi-

ent vector magnitude. The results clearly show superior performance over GFTT

(Shi Tomasi) [28], CenSurE [38], AGAST [39], SIFT [1], SURF [2], FAST [32], and

ORB [40], MSER [35] in terms of keypoint density, tracking accuracy, illumination

invariance, rotation invariance, noise resistance and detection time.

In Chapter 4, the DeGraF features form the basis for two new approaches that

perform dense 3D reconstruction from a single vehicle-mounted camera. The �rst

approach tracks DeGraF features in real-time while performing image stabilisation

with minimal computational cost. This means that despite camera vibration the al-

gorithm can accurately predict the real-world coordinates of each image pixel in real-

time by comparing each motion-vector to the ego-motion vector of the vehicle. The

3D reconstruction performance has been evaluated using di�erent feature-detection

methods, including the pyramidal Lucas-Kanade optical �ow [68], AGAST [39],

FAST [32], GFTT [28], SIFT [1] and ORB [40]. The aim is to determine their

accuracy, depth-map density, noise-resistance and computational complexity. The

second approach proposes the use of local frequency analysis of gradient features

for estimating relative depth. This novel method is based on the fact that DeGraF

gradients can accurately measure local image variance with sub-pixel accuracy. It is

shown that the local frequency by which the centroid oscillates around the gradient

window centre is proportional to the depth of each gradient centroid in the real

world. The lower computational complexity of this methodology comes at the ex-

pense of depth-map accuracy as the camera velocity increases, but it is at least �ve

times faster than the other evaluated approaches.

In Chapter 5, a novel technique is presented for deriving high-resolution visual-

saliency maps in real-time. In this context, saliency maps show how di�erent each

image pixel is to its surrounding pixels across multiple pyramid levels. The proposed

method replaces the computationally-expensive centre-surround �lters [10, 62�64]

with a simpler mathematical model named Division of Gaussians (DIVoG). The
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results are compared to �ve di�erent approaches [10,69�72], demonstrating at least

six times faster execution than the current state-of-the-art whilst maintaining high

detection accuracy. Given the multitude of computer vision applications that make

use of visual-saliency algorithms such a reduction in computational complexity is

essential for improving their real-time performance. Subsequently, the saliency in-

formation is combined with depth information to identify salient regions close to

the host vehicle. The fused map allows faster detection of high-risk areas where

obstacles are likely to exist. As a result, existing object-detection algorithms, such

as the Histogram of Oriented Gradients (HOG) [61] can execute at least �ve times

faster.

Finally, Chapter 6 summarises the four major contributions to knowledge, namely:

a) a novel real-time feature-detection algorithm, b) a novel real-time depth-estimation

algorithm using monocular vision, c) a fast visual-saliency algorithm and d) a novel

image-indexing algorithm for prioritising high-risk areas by fusing visual-saliency

and depth information (see Table 1.1). Directions for future research in this domain

are also proposed.
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Theme Key references Contribution to knowledge

Chapter 3

Real-time

feature

detection

[1, 2, 28,32,

35,38�40,68]

- A new method for

calculating image gradients

that are robust to noise.

- A feature detector based

on gradients that combines

real-time performance with

high keypoint density.

Chapter 4

Real-time

dense 3D re-

construction

[1, 28, 32,39,

40,68]

- A new method based on

gradient features for

performing dense 3D

reconstruction in real-time

using monocular vision.

Chapter 5 -

Section 2

Real-time

visual

saliency

[10,69�72]

- A new (patent-pending)

method for deriving high

resolution visual-saliency

maps in real-time.

Chapter 5 -

Section 3

Real-time

object

detection

using

prioritised

image

indexing.

[61]

- A new method for

prioritising image indexing

and accelerating object

detection and classi�cation.

Table 1.1: Existing research and contribution to knowledge

Material from this thesis is presented in the following peer-reviewed publications:

� I. Katramados, S. Crumpler, T.P. Breckon, �Real-Time Traversable Surface

Detection by Colour Space Fusion and Temporal Analysis�, ICVS '09 Pro-

ceedings of the 7th International Conference on Computer Vision Systems:
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Computer Vision Systems Pages 265 - 274

� I. Katramados, T.P. Breckon, "Real-time visual saliency by Division of Gaus-

sians", 2011 18th IEEE International Conference on Image Processing (ICIP),

pp.1701,1704, 11-14 Sept. 2011

� L. Bordes, T.P. Breckon, I. Katramados, A. Kheyrollahi, �Adaptive object

placement for augmented reality use in driver assistance systems�, Proceedings

of the 8th European Conference for Visual Media Production, London, 16-17

November 2011, paper number sp-1.

The following patent is pending:

� International Application Number PCT/GB2012/000705, MB ref. P8936WOP

Cran�eld University, �Real-Time Visual Saliency by Division of Gaussians�



Chapter 2

Visual object detection in

automotive environments using

monocular vision - State of the art

2.1 Overview

This chapter examines a wide range of approaches in order to assess their suitabil-

ity for object detection in an automotive context. Automotive applications require

computationally-e�cient algorithms that execute in real-time on embedded hard-

ware. The state-of-the-art review focusses on feature detection and tracking, depth

estimation and visual-saliency techniques as a way of accelerating object detection

by directly focussing on the high-risk regions of interest, while at the same time

using a single monocular camera. Subsequently, a set of object-detection methodo-

logies are analysed with focus on pedestrian detection, which is the most common

and widely-studied class of objects in the �eld of automotive vision. The chapter

concludes by identifying a set of technological limitations that are subsequently

addressed by each chapter of this thesis.

8
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2.2 Real-time image analysis

2.2.1 Feature Detection

In this section, a broad range of feature detectors are described based on the lit-

erature study. The aim is to identify a set of approaches that meet the following

criteria:

� Real-time performance

� Suitability for object detection

� Stability under changing conditions in an automotive context

An image feature corresponds to an image pattern that is locally unique within

neighbourhood or globally within an image [73]. This means that an image can

be characterised by a subset of robust keypoints rather than by the entire set of

raw pixel values. Subsequently, the keypoints can be tracked or matched between

images. A wide range of feature-detection methodologies exist from basic corner-

based detectors to a�ne detectors. The most common are the following [74]:

� Hessian detector

Hessian features are extracted by calculating the determinant of the Hessian

matrix, which is used to detect corners as local maxima. The determinant

is rotation invariant since it is derived from the Gaussian curvature of the

signal [23].

� Moravec detector

Moravec introduced the idea of �points of interest� by computing the local auto-

correlation function of the image in four directions. The lowest results indicate

points of interest with large intensity variations in all four directions [24].

� Förstner detector

Förstner features are also based on the auto-correlation function for detecting

interest points, edges and regions. However, this approach is more complex

with low real-time performance [25].
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� Harris detector

Harris features are basically corners derived from the principal curvatures of

the auto-correlation function. Two high curvatures indicate an interest point

that is invariant to rotation [26].

� Tomasi-Kanade detector

A good feature is detected when two eigenvalues of an image patch are smaller

than a pre-speci�ed threshold [27].

� Haralick operator

The Haralick operator extracts interest points as the weighted centre of gravity

of all points within a prede�ned window. The windows of interest are selected

based on their gradient and the normal matrix [29].

� Heitger

The Heitger detector uses Gabor �lters in di�erent directions to extract key-

points. It is computationally very demanding [30].

� SUSAN corner detector

The SUSAN algorithm detects corners within circular regions that have a

centroid far from the nucleus [31].

� Scale Invariant Feature Transform (SIFT)

SIFT extracts features by detecting scale-space extrema [1]. It comprises four

main steps:

� Scale-space extrema detection

In this �rst step, a pyramid of resolutions is generated from the input

image, which is subsequently used to calculate the di�erence of Gaussians

between pyramid levels (Figure 2.1). Each pixel is compared to all its

neighbours in scale space, which can be visualised as a 3×3×3 cube where
its centre is compared to all its neighbours (i.e. 26 neighbours per pixel).

An extrema is registered as a keypoint candidate if the central pixel value

is greater or less than all its neighbours [1].
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Figure 2.1: SIFT features are detected in scale-space using Di�erence of Gaussian
(image from [1]).

� Accurate keypoint localisation

The aim of this process is to select the most stable features among all

the keypoint candidates that were extracted from scale-space extrema

detection. A poor keypoint candidate is normally one with very low

contrast compared to its neighbours. Such keypoints are prone to be

sensitive to noise, thus they are eliminated. In addition, a threshold on

the ratio of principal curvatures (edge responses) is applied for increased

stability [1].

� Orientation assignment

For each image region a histogram of orientations is built from local

gradients. The peaks of this histogram denote dominant orientations of

each keypoint. This way the keypoint descriptor can be expressed relative

to its orientation, which makes it rotation invariant [1]. This is one of

the key advantages of SIFT over previous approaches.

� Keypoint descriptor
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Figure 2.2: SIFT keypoint descriptor derived from image gradients (image from [1]).

Figure 2.3: SIFT iteratively reduces the image size, whereas SURF up-scales the
box �lter which is computationally more e�cient (image from [2]).

The SIFT descriptor is constructed by combining orientation histograms

of neighbouring regions after weighting each gradient's magnitude and

orientation using a Gaussian function. Lowe proposed the use of 4×4
descriptors based on 8-bin histograms. This results in a 128 elements

feature vector for each keypoint [1] as illustrated in Figure 2.2.

� Speeded-Up Robust Features (SURF)

SURF is a scale and rotation-invariant detector and descriptor with high re-

peatability, distinctiveness and robustness. It is computationally more e�cient

than SIFT, which makes it a good candidate for real-time image analysis [2].

It comprises the following steps:

� Integral image calculation
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Figure 2.4: SURF features with each box indicating the size and orientation of the
descriptor (image from [2]).

Integral images allow the fast computation of box type convolution �lters

[2]. A location a = (x, y)ᵀ in an integral image IΣ(a) equals to the sum of

all pixels in the input image I within a rectangular region formed by the

origin and a (see Equation 2.1). This means that the sum of intensities

inside any rectangular region of image I can be calculated using only

three additions and four memory accesses [2].

IΣ(a) =

i≤x∑

i=0

j≤y∑

j=0

I(i, j) (2.1)

� Derivation of Hessian matrix-based interest points

Blob-like structures can be detected as locations where the determinant

of the Hessian matrix is maximum [2]. For a point ~a = (x, y) in an image

I, the Hessian matrix H(a, σ) in a at scale σ is:

H(a, σ) =


 Lxx(a, σ) Lxy(a, σ)

Lxy(a, σ) Lyy(a, σ)


 (2.2)
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where Lxx(a, σ) is the convolution of the Gaussian second-order derivat-

ive ∂2

∂x2
g(σ) with the image I at point a and similarly for Lxy(a, σ) and

Lyy(a, σ) [2].

� Scale-space representation

Probably the most important contribution of SURF is the the fast ap-

proximation of Gaussian derivatives irrespective of the �lter size, which

is possible due to the use of integral images. Compared to SIFT (Figure

2.3), the discretised and cropped Gaussian second-order partial deriv-

atives are replaced by 9×9 box �lters [2]. This means that scale-space

representation can be achieved without iteratively reducing the image

size as ruled by the Di�erence of Gaussians (DoG) approach. Instead

the box �lters of varying size are applied directly on the integral image.

� Interest point localisation

The interest points are localised by applying non-maximum suppression

in a 3×3×3 neighbourhood, followed by interpolation in scale and image

space. An example of SURF features being localised on a sample image

is illustrated in Figure 2.4.

� Features from Accelerated Segment Test (FAST)

The FAST corner detector considers a Bresenham circle of radius r = 3 (16

pixels in total) around a point ~p [75]. This point is a corner if a set of 12

contiguous pixels exist which are all brighter (or all darker) than the intensity

of the candidate pixel [32]. FAST-9 and FASTer [76] are based on the same

principles but are computationally much more e�cient.

� Adaptive and Generic Accelerated Segment Test (AGAST)

This technique is based on FAST [32, 39], but has been enhanced to use a

pair of a binary decision trees for faster feature extraction, while maintaining

the same corner response and repeatability as the (complete) FAST corner

detector [39].

� Centre Surround Extrema (CenSurE)
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CenSurE [38] derives the extrema of the centre-surround �lters over multiple

scales, using the original image resolution for each scale. They are an ap-

proximation to the scale-space Laplacian of Gaussian and can be computed in

real-time using integral images [38].

� Oriented FAST and Rotated BRIEF (ORB)

ORB [40] is an e�cient alternative to SIFT [1] and SURF [2]. It introduces

a fast and accurate orientation component to FAST [32], while proposing a

more e�cient way of computing the oriented BRIEF features [77].

� Harris-a�ne detector

The Harris a�ne detector detects interest points at di�erent scales using the

the second-moment matrix of Harris corners. The �rst step determines loc-

alisation and scale using the Harris-Laplace detector. Subsequently, a�ne

shape adaptation is used to normalise candidate regions of interest, which are

iteratively estimated by selecting the proper integration and di�erentiation

scale [33, 34,74].

� Hessian-a�ne detector

The Hessian-a�ne detector is highly similar to Harris-a�ne detector, except

that interest points are chosen when the determinant of the Hessian matrix is

maximum [33,34,74].

� Maximally Stable Extremal Regions (MSER)

The MSER detector extracts regions closed under continuous transformation

of the image coordinates and under monotonic transformation of the image

intensities [35, 74].

� Kadir�Brady saliency detector

The Kadir�Brady detector identi�es salient circle regions at di�erent scales

based on the Shannon entropy of local image attributes [36,74,78,79].

� EBR detector



2.2. Real-time image analysis 16

The EBR detector extracts regions by combining Harris corners with Canny

edges [37, 74].

� IBR detector

The IBR detector extracts a�ne-invariant regions studying the image intensity

function and its local extreme [37,74].

2.2.1.1 Feature-detector-performance evaluation

A keypoint descriptor has to be highly distinctive allowing a single feature to be

identi�ed consistently in an image sequence or database of images [1]. Performance

evaluation of feature detectors is a crucial step for identifying the right level of

trade-o� between real-time performance and accuracy. Mikolajczyk et al. [37] have

presented a framework that associates feature-detection performance to:

� Number of correspondences: �The number of corresponding regions detec-

ted in images under di�erent geometric and photometric transformations.� [37]

� Repeatability of features (%): �The repeatability score for a given pair of

images is computed as the ratio between the number of region-to-region corres-

pondences and the smaller of the number of regions in the pair of images.� [37].

Two regions are considered as corresponding only if the overlap error is smaller

than a certain threshold, as described below [37]:

1− Rµa ∩R(HTµbH)(
Rµa ∪R(HTµbH)

) < threshold (2.3)

where:

Rµ : the elliptic region de�ned by xTµx = 1

H: the homography of two temporally-adjacent frames

A more detailed evaluation and comparison of di�erent feature-detection ap-

proaches is performed in Chapter 3, where additional criteria have been added in-

cluding keypoint density, tracking accuracy, illumination invariance, rotation invari-

ance, noise resistance and detection time.
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2.2.2 Feature Tracking

Feature and region tracking is an integral part of most automotive vision applications

[80]. The most common approaches can be separated into three groups: a) point

tracking, b) kernel tracking and c) silhouette tracking [81].

� Point Tracking

This approach requires the detection and matching of interest points between

image frames. Managing uncertainty is key to creating an accurate point-

tracking methodology. In this context there are two main types of point track-

ers:

� Deterministic methods

Deterministic methods use qualitative motion heuristics to constrain the

correspondence problem [81,82]. Certain feature correspondences are ex-

cluded after applying motion constraints. Such constraints include prox-

imity, maximum velocity, smooth motion assumption, rigidity and prox-

imal uniformity [81]. Common tracking algorithms that belong to this

category are Modi�ed Greedy Exchange (MGE) [83] and Greedy Optimal

Assignment (GOA) [82].

� Statistical methods

Statistical methods model the object/feature properties such as position,

velocity, and acceleration using a state-space approach [81]. Common

tracking algorithms that belong to this category are Kalman �lter [84],

Probabilistic Data Association (PDA) [85], Probabilistic Multi-Hypothesis

Tracker (PMHT) [86].

� Kernel Tracking

Kernel-based approaches track objects by calculating the motion of the kernel

in consecutive frames using parametric transformation such as translation,

rotation, and a�ne [81]. There are two main types of kernel trackers:

� Template and density-based appearance models
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Common tracking algorithms that belong to this category are Meanshift

[87], Kanade-Lucas-Tomasi (KLT) [27,28] and Layering [88].

� Multi-view appearance

Common tracking algorithms that belong to this category are Eigentrack-

ing [89], Support Vector Tracking (SVT) [90].

� Silhouette Tracking

Silhouette-tracking approaches are based on the estimation of image regions in

each frame. In the temporal domain they use priors generated from previous

frames to estimate the position of each region using appearance density and

shape models usually in the form of edge maps [81]. There are two main types

of silhouette trackers:

� Contour evolution

Common tracking algorithms that belong to this category are Active Con-

tours [91], Variational methods [92], Heuristic methods [93].

� Matching shapes

Common tracking algorithms that belong to this category are Hausdor�

[94] and Hough transform [95].

Feature tracking is further examined in Chapter 3 and Chapter 4 for performing

real-time 3D reconstruction.

2.2.3 Optical Flow

Starting with a point [ux, uy]
ᵀ in image It, optical �ow is used to �nd the correspond-

ing point [ux+δx, uy+δy]
ᵀ in image It+1that minimises energy ε. There are two main

approaches to solving this problem: a) performing local summation of overlapping

regions (known as patch-based or window-based approach), b) using regularisation

or Markov random �elds to search for a global minimum [96]. The patch-based

approach is usually based on Taylor series expansion of the displaced image func-

tion in order to obtain sub-pixel estimates as proposed by Lucas and Kanade [97].

Performance can be improved by using a coarse-to-�ne pyramid scheme to estimate
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larger motions using a series of discrete search steps [98]. However, uncertainty and

errors can easily propagate in a pyramidal approach. Thus several approaches have

adopted optimisation methods for uncertainty estimation based on Markov random

�elds [96]. Overall, there are more than 60 optical �ow approaches with excellent

evaluation results on the Middlebury dataset [99]. Optical �ow is further examined

Chapter 4 for performing 3D reconstruction.

2.2.4 Shadow removal

Dynamic environments are often associated with changes in lighting, which may

cause shadows and re�ections. Detecting and eliminating these features from an im-

age is essential in visual object extraction before identifying the boundaries of each

surface. Since this is a major problem in a wide range of computer vision applic-

ations, there is a wealth of di�erent approaches available [100�105]. For example,

Tao et al. [105] propose the use of a fuzzy neural network that has been trained to

recognise shadows and water prints. Furthermore, lighting artefacts can be detec-

ted by combining the hue and saturation components of the HSV colourspace [100],

which in contrast to the RGB colourspace describes colour perception more closely

to the human visual system. In a similar approach, Cucchiara et al. [101] propose

the use of chrominance and luminance to further improve accuracy of object detec-

tion. Analysing the results of all these approaches, shows that there is no single

colourspace that is shadow invariant under all lighting conditions. Based on this

observation, Alvarez et al. have created a shadow-invariant feature space combined

with a model-based classi�er [106]. Finally, detection of moving shadows is addressed

by statistical analysis as proposed by Prati et al. [103]. Although it is di�cult to

objectively evaluate the performance of all these methodologies without applying

them on a common data-set, their performance is better in environments with light

shadows and light re�ections [106]. In contrast, dark shadows cannot be handled

as e�ciently as they tend to alter the visual properties of surfaces and especially

their hue. These techniques are further examined in the additional chapters in the

Appendix.
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2.2.5 Extracting regions of interest using visual saliency

As a concept, visual saliency started as a biologically-inspired process for focusing

visual attention to certain parts of an image, thus reducing the complexity of scene

analysis [107]. Subsequently, it formed the basis of several computer vision applic-

ations, such as in automatic object detection [108�111], medical imaging [112] and

robotics [65]. Di�erent saliency de�nitions exist, however, in this thesis a general-

ised version of the de�nition by Achanta et al. [10] is used: �Visual saliency is the

perceptual quality that makes a group of pixels stand out relative to its neighbours�.

As a research topic, visual saliency theory has evolved rapidly to produce a wide

range of approaches. However, their computational cost remains signi�cantly high

for real-time applications that require execution at full frame rate (> 25 frames per

second (fps)).

Most of the visual saliency models can be categorised into two main groups, as

proposed by Achanta et al. [62] and Ngau et al. [113]: a) biological models and b)

computational models. The majority of biological models are using a bottom-up

approach for feature extraction mainly based on colour, intensity and orientation

[69]. Inspired by the structure of the human eye, this approach detects the contrast

di�erence between an image region and its surroundings, which is also known as

centre-surround contrast. Itti et al. [69] use the Di�erence of Gaussians (DoG)

�lter for deriving the centre-surround contrast, whereas Walther and Koch [114] take

this algorithm further by adopting the concept of salient proto-objects. A common

characteristic of these approaches is that they usually produce saliency maps that

lack sharpness and detail [111]. Furthermore, the complexity of the biological models

means that performance is slow, thus they are more suitable for use in non-real-time

applications. One of the few exceptions is found in the approach proposed by Ma

and Zhang [70], who calculate the centre-surround contrast by fuzzy growing. The

computation takes approximately 60 milliseconds for a 320×240 image on a 2.6 GHz

CPU [10], which corresponds to 16.6 fps.

Examples of computational-saliency methods include frequency-tuned salient re-

gion detection by Achanta et al. [10], graph-based visual saliency by Harel et al. [72],

a�ne-invariant salient region detection by Kadir et al. [79] and real-time visual-
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attention system using integral images by Frintrop et al. [115]. The method by

Frintrop et al. [115], is one of the most successful attempts to produce a real-time

visual-saliency algorithm (known as VOCUS) using integral images to reduce exe-

cution time. The improvement in performance is impressive with a 400×300 image

being processed in approximately 50 milliseconds using a 2.8 GHz CPU, which cor-

responds to 20 fps. In addition, the approach proposed by Achanta et al. [10] comes

close to achieving real-time performance by using frequency domain analysis to pro-

duce full resolution saliency maps. The execution time for a 400×300 image is 100

milliseconds on a 2.4 GHz notebook. Although, this algorithm is proportionally

slower than Frintrop et al. [115], it generates maps with signi�cantly higher quality.

Ultimately, the target of a new saliency algorithm would be to produce saliency

maps of similar quality to those by Achanta et al. [10, 64] at full frame rate (> 25

fps). Visual saliency is further examined in Chapter 5 for performing prioritised

image indexing for faster object detection.

2.3 3D reconstruction using monocular vision

Visually localising objects in space requires the estimation of the real-world coordin-

ates of each image pixel. In automotive applications, this transformation between

coordinate systems is essential in order to calculate the angle and distance between

the host and the target, which can later be used in a wide range of applications such

as collision avoidance. One way of addressing this problem is by using stereo-vision

to create a depth map based on the disparity between two images of the same scene

taken from slightly di�erent angles. On the other hand, in monocular vision there

is only one image available at a time, thus reconstructing a three-dimensional scene

becomes far more complex The reason is that the temporal properties of multiple

sequential images need to be analysed in real-time before estimating the real-world

coordinates of each image pixel. Despite that limitation, the majority of existing

production-level automotive systems use monocular vision and recover the lost di-

mension by making assumptions about the visual and geometric properties of the

environment, while using pre-de�ned vehicle-motion models for increased reliabil-
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ity [14, 15]. In addition to these approaches the robotics community has developed

a wide range of Simultaneous Localisation and Mapping techniques (also known as

SLAM) for estimating the position of the vehicle and the objects in space by tracking

image features across di�erent frames.

2.3.1 Inverse perspective mapping

A digital image from a monocular camera represents a real-world scene, where the

projected object's size is proportional to its distance from the camera due to the

perspective e�ect [16]. Robotic and automotive systems often remap the 2D image

onto a grid of real world coordinates by using a methodology known as the inverse

perspective transform. This approach is based on the following assumptions:

� The host vehicle and the target object are on the same plane

� The camera height is known

� The focal length is known

� The pixel width and height are known

� The camera model is very close to that of a pin-hole camera

If all the conditions above are satis�ed then object localisation can be performed

by applying simple trigonometry. For the sake of simplicity, let us assume that the

camera xy coordinate system and the real-world xy coordinate system are parallel as

illustrated in Figure 2.5. Subsequently, the calculation of the distance zW between

the camera lens and a real-world point PW is given by the following equation:

zW =
f h

yR
(2.4)

where:

f : the focal length (pre-de�ned)

h: the camera height (pre-de�ned)

yR: the projected height of point PW on the camera plane (equals to image

row×pixel height)
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Figure 2.5: Real-world projection in image plane

In the case that the camera xy plane is not parallel to the real-world xy plane

then Equation 2.4 can be adjusted to take into account the roll, pitch and yaw

angle, making inverse-perspective transform a very powerful technique for obstacle

localisation on �at surfaces. On the other hand, such a technique cannot be used

for generic obstacle detection, since there is no guarantee that the host vehicle and

the target object will lie on the same plane.

Figure 2.6: Inverse Perspective Transform example - Courtesy of Bertozzi et al. [3]
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2.3.2 SLAM Approaches

Simultaneous localisation and mapping (SLAM) is a technique commonly used in

robotics to incrementally build a map of an unknown environment while estimating

the position of the host vehicle. As a methodology it can be found in a wide range

of applications using both monocular and stereo vision sensors as well as laser range

�nders, sonar and data-fusion platforms [116,117]. However, this section only exam-

ines how SLAM can be applied in monocular vision applications and introduces the

theoretical concepts that form the basis of this technique. Figure 2.7 illustrates the

essence of SLAM which is mathematically described by the following probability [4]:

P (xk ,m|Z0:k,U0:k, x0) (2.5)

where:

k : present time

xk : the vehicle state vector for location and orientation at time k

m: a vector of all landmarks

U0:k: the history of all control vectors applied to the vehicle

Z0:k: the history of all landmark observations from the vehicle's perspective

In other words, at any time k, the vehicle reaches a state xk following a control

input uk. Thus the probability distribution 2.5, describes a recursive solution where

the joint posterior is computed using Bayes theorem, by taking into account the

distribution P (xk−1,m|Z0:k−1,U0:k−1) at time k − 1. As Durrant-Whyte and Bailey

explain in [4], this computation requires a vehicle motion model and an observation

model, which are described below:

Motion Model : P (xk|xk−1, uk) (2.6)

Observation Model : P (zk|xk,m) (2.7)

Since SLAM continuously tries to estimate the vehicle position and the position of

the landmarks there are two mechanisms required for prediction (time update) and
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Figure 2.7: SLAM Description: Simultaneous estimation of vehicle's and landmark's
position. Note the error between the actual and the estimated locations. Courtesy
of Durrant-Whyte and Bailey [4]

correction (measurement update) as speci�ed by the following equations [4]:

Time Update :

P (xk,m|Z0:k−1,U0:k, x0) =

∫
P (xk|xk−1, uk)P (xk−1 ,m|Z0:k−1,U0:k−1, x0)dxk−1

(2.8)

Measurement Update:

P (xk,m|Z0:k,U0:k, x0) =
P (zk|xk,m)P (xk ,m|Z0:k−1,U0:k, x0)

P (zk |Z0:k−1,U0:k)
(2.9)

Based on the theory above, two main approaches have been developed known as

EKF-SLAM and FastSLAM [48, 51, 53]. EKF-SLAM makes use of the extended

Kalman Filter [118] assuming additive Gaussian noise, whereas FastSLAM makes

use of the Rao-Blackwellized particle �lter by assuming a non Gaussian probability

distribution. Both approaches are presented in depth by [4, 116].
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Although SLAM is a very powerful technique for solving the localisation problem

it also comes with drawbacks such as:

� Noise: Noise in SLAM is statistically-dependent which means that errors

accumulate over time and thus a�ect future measurements [119, 120]. Thus

accurate noise models or noise �lters are required for improved consistency.

� Performance: In its basic form SLAM complexity increases quadratically

every time a new landmark is detected [116] assuming that all landmarks

are updated after every observation. This makes SLAM computationally ex-

pensive and often unsuitable for low-cost real-time systems. However, in re-

cent times a multitude of methodologies have been developed for performance

optimisation. Examples of such improvements include: state augmentation,

sparsi�cation, partitioned updates and submapping. Speci�cally, state aug-

mentation focuses on reducing computation complexity in the time-update

process (described in Equation 2.8), whereas, partitioned updates are used

to accelerate the measurement update process (described in Equation 2.9) by

updating only those landmarks that have changed since the last measurement.

� Data association: SLAM operation is based on making measurements and

associating them with existing landmarks. However, it is possible that data

association comes across two indistinguishable landmarks, leading to an incor-

rect estimate and subsequently to a non-reversible failure [120]. This problem

and its solutions are extensively discussed in [116].

� Environmental changes: Features in an automotive environment have a

di�erent visual signature under varying conditions. Since SLAM depends on

accurate feature matching between observations and existing landmarks such

environmental changes may lead to false localisation estimates [120]. This

drawback also refers to moving objects which may be registered as landmarks

leading to incorrect maps. So the question is how can we build an accurate

map in dynamic environments? Some papers propose the pre-processing of

video data in order to remove dynamic features before applying the SLAM

algorithm [116]. Alternatively, it is possible to track stationary and moving
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landmarks within a SLAM system however the processing cost is very high.

Such an approach is proposed by Fox and Burgard in [121].

Regarding SLAM implementations there is a wealth of solutions within the robotics

and autonomous vehicles community, focusing on both indoors [5,44,50,52,122] and

outdoors environments [47,51]. However, SLAM systems for automotive applications

are limited mainly due to their weakness to deal with changing environmental condi-

tions and moving targets. Current solutions propose the �ltering of moving features

before applying SLAM [45] or alternatively the introduction of feature tracking for

moving objects [51].

As a methodology SLAM has been extensively applied in the robotics community,

however, the �rst successful implementation of a monocular vision-based SLAM

system was by Davison et al. [5] as outlined in the next paragraph.

2.3.3 Mono-SLAM

MonoSLAM is a technique by Davison et al. for recovering �the 3D trajectory of a

monocular camera, moving rapidly through a previously unknown scene� [5]. Ac-

cording to its authors this system �is the �rst successful application of the SLAM

methodology from mobile robotics to the `pure vision' domain of a single uncon-

trolled camera, achieving real-time but drift-free performance�. The following para-

graphs outline the main characteristics of this technique mainly based on the core

methodology description by Davison et al. [5] as well as other contributions by vari-

ous authors [43,46,49,50,123].

2.3.3.1 3D Scene Reconstruction

Based on a technique by Smith et al. [124], Mono-SLAM builds a probabilistic

3D map of the environment by processing sequential images from an uncontrolled

monocular camera and continuously tracking features of interest, estimating the

motion of the camera and calculating the uncertainty of these estimates [5]. In

addition, the map is constantly updated with new estimates, which are derived

using an Extended Kalman Filter (EKF). The mathematical representation of the
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map is given by the following equation:

x̂ =




x̂u

ŷ1

ŷ2

...



, P =




Pxx Pxy1 Pxy2 . . .

Py1x Py1y1 Py1y2 . . .

Py2x Py2y1 Py2y2 . . .
...

...
...




(2.10)

where:

x: a state vector of all the estimated camera states and features

yi : the 3D position vectors of the locations of point features as illustrated in

Figure 2.8

P: a square covariance matrix comprising of covariance sub-matrices

Furthermore,xu is the camera's state vector as described below:

Figure 2.8: �Frames and vectors in camera and feature geometry�. Courtesy of
Davison et al. [5]

xu =




rW

qWR

vW

ωR




(2.11)

where:

rW : a metric 3D position vector

qWR: the orientation quaternion
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vW : the velocity vector

ωR: the angular velocity vector

It is important to note that the derived map is not a full 3D representation of the

scene, but a map of a sparse set of features that correspond to important landmarks.

The remainder of this section describes the process by which these landmarks are

chosen, tracked and mapped.

A. Feature Selection

The feature selection process in a SLAM system is directly related to the envir-

onment in which the system is required to operate. Davison et al. [5] apply a

technique by Shi and Tomasi [28] to automatically detect features by using relat-

ively large image patches (11x11 pixels) as visual landmarks. This choice is based

on the assumption that larger image segments increase the probability of selecting

unique features that can be used for mapping of a small area (e.g. a room) while

the camera is freely moved in all directions. On the other hand, in an automotive

environment the requirements are di�erent in the sense that the system must detect

at least one feature per obstacle, which may vary in size. Thus choosing the right

approach requires careful evaluation of di�erent alternatives (e.g. corner detectors).

B. Map Initialisation

Before using MonoSLAM for mapping of an unknown environment, the system needs

to go through an initialisation process [5]. This means that the algorithm needs some

pre-existing knowledge about the real-world size of of some pre-recorded features in

order to:

a) create a precise map scale

b) initialise the estimation process with features that have very low uncertainty,

which is certain to improve future performance

This phase is mostly required if the camera is freely moving in an unknown envir-

onment. On the other hand, in an automotive environment there are some �xed

parameters such as the �xed height and position of the horizon, which make this

step redundant.
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C. Motion Modelling and Prediction

MonoSLAM requires the use of a camera motion model in order to improve the

accuracy of predictions and thus the quality of the estimates [5]. When using a

freely moving camera such a model cannot be derived unless some assumptions are

made. Speci�cally, Davison et al. [5] consider that the velocity and acceleration of

the camera is constant between two sequential frames at 30Hz frame-rate. Although,

this assumption has given good results, other techniques make use of more restricted

kinematic models [116].

D. Active Feature Measurement and Map Update

One of the major strengths of MonoSLAM is its real-time performance, which partly

relies on the use of an active search technique for updating existing features on the

map [5]. By predicting the position of the camera and the state of the features,

the algorithm expects to �nd most features within a limited distance from their

original position. In other words, this approach �rstly de�nes areas of interest be-

fore matching the features, whereas other approaches extract all the image features

before matching them to the existing ones [5]. Either of these approaches come with

their strengths and weaknesses and the choice is dependent on the application and

the expected uncertainty level of the estimates.

E. Depth Estimation

Once a feature is detected in an image its depth is unknown. One way of estimat-

ing it would be by tracking the feature and estimating the camera position across

a number of sequential frames. Subsequently, the depth of the feature can be de-

rived via triangulation as in stereo vision [5]. However, depending on the amount

of features this estimation can become computationally very expensive. In contrast,

MonoSLAM has opted out for a di�erent methodology [5], where each new feature

is assumed to lie along a 3D line that denotes all the possible depth values. Then

a set of hypotheses about the depth of this feature are generated and evaluated

across di�erent observations on a frame-by-frame basis using Bayes rule. Once the
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uncertainty associated with the depth estimation drops below a certain threshold

then the feature is added to the 3D map.

Regarding hardware, it is worth mentioning an experiment performed by Davison

et al. [44, 50], which proved that using a wide-angle monocular camera (approxim-

ately 100 degrees �eld-of-view) improves the MonoSLAM performance. Practically,

this improvement is based on the fact that larger �eld-of-view allows the object to

stay longer in the image thus more observations are made and the 3D map becomes

more accurate.

In conclusion, MonoSLAM is powerful technique for real-time object localisa-

tion in completely unstructured environments. So far there has been no research

on automotive MonoSLAM applications, thus it would be interesting to evaluate its

performance when the camera is mounted on a vehicle in a dynamic environment.

However, in that case several challenges would have to be addressed including man-

agement of dynamic features on the 3D map as well as localisation of objects with

low motion parallax. Further analysis of the MonoSLAM approach can be found

in [5, 43,46,49,123].

2.3.4 Monocular or Stereo Vision?

Probably the �rst approach that comes to mind when solving the problem of ob-

ject detection in 3D space is stereo vision, because the depth information can be

derived through basic image processing. The fact is that nowadays stereo vision is

a well-established technique that has been thoroughly researched and implemented

even in real-time embedded applications. Although it is generally more expensive

in terms of required hardware resources and processing overhead, its performance

has been proved across a multitude of applications including Mars exploration mis-

sions [125]. However, if one of the two cameras fails then the whole system fails

since epipolar geometry can no longer be applied in the same way. On the other

hand, in nature mammals can still cope very well with one eye [126], which may

lead to the conclusion that stereo-vision and monocular-vision should not be con-

sidered as two entirely di�erent methodologies. In this context, techniques such

as MonoSLAM [5] and Make3D [127] have demonstrated new ways of extracting
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3D information from 2D images. Subsequently, stereo-vision systems could bene�t

from such advances in monocular vision to create more robust and fault-tolerant

computer vision approaches.

2.4 Object detection and classi�cation for automot-

ive applications

2.4.1 Overview

Detection and classi�cation of targets is an integral part of modern automotive

safety applications such as pedestrian protection systems (PPS) [55], tra�c sign

recognition [56] and collision avoidance [57]. Such systems, also known as Advanced

Driver Assistance Systems (ADAS) [58], pose a major machine vision challenge since

both the foreground and the background are highly changeable in terms of colour,

shape and texture. For example, in the case of pedestrians there is a very high

degree of variability in the type of clothing, articulated pose, skin colour, body size,

aspect ratio, viewing angle, lighting direction and more importantly background

complexity [8]. Developing accurate models that describe such targets is not feasible,

thus machine learning techniques are used to build an implicit representation based

on examples [8].

There is a wide range of machine learning techniques developed for detection

and classi�cation of objects in automotive environments. The majority of these

approaches focus on a single class of objects (e.g. tra�c signs, cars, pedestrians)

although there are also some multi-class classi�ers [59, 60]. Reviewing all of these

methodologies is a complex task since each object on its own has been the subject

of extensive research over the past decades. In this section, the focus will be on

the pedestrian class, which is the most studied and challenging subject to date. In

particular, the state-of-the-art in real-time pedestrian detection will be described,

while trying to identify gaps in the optimisation process. Di�erent methods for

performance evaluation are also investigated, while the most common public datasets

are examined for reliable benchmarking.
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2.4.2 Image pre-processing

Automotive vision applications need to cope with highly variable weather and light-

ing conditions in structured, semi-structured and unstructured environments. Achiev-

ing high reliability in object detection requires dynamic adjustment of camera para-

meters in order to reproduce shades and/or colours as accurately as possible. The

main techniques used are:

� Dynamic Range

� High Dynamic Range (HDR)

Camera pixels sense light in terms of brightness, which is digitally ex-

pressed an as 8-bit or 16-bit value. However, there are often cases where

the range of brightness within a scene is so wide that certain image areas

appear over-saturated or under-saturated leading to loss of visual inform-

ation. HDR techniques aim to recover this information by generating an

image with non-linear brightness representation [128]. The most common

HDR methodologies fuse multiple images of the same scene while varying

exposure settings [6]. This way saturation levels are normalised to better

re�ect the true shades / colours of a scene. For example, this approach

is useful when a car is entering or exiting a tunnel, where there is a step

change in illumination. This causes underexposure of the scene at the

entrance of the tunnel and overexposure at the exit.

� Adaptive Dynamic Range (ADR)

ADR is able to temporarily adjust the exposure of each individual pixel

using a controllable optical attenuator [6]. As Figure 2.9 illustrates, the

exposure of each pixel continuously adapts to the scene's radiance by

adjusting the transmittance of the attenuator based on the brightness

value of each pixel. According to Nayar et al. [6] �this ability to vary

the exposures of individual pixels over time gives adaptive imaging a

signi�cant edge over conventional HDR techniques�.
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Figure 2.9: Adaptive Dynamic Range (ADR) model. The brightness I of a pixel
measured at time t is used to adjust the transmittance T of the attenuator at time
t+1 [6].

� Multi-resolution image pyramid

Several object recognition methodologies use a pyramid of resolutions for

multi-scale detection. The most popular approaches include the Gaussian

and the Laplacian pyramids [129].

� Visual-saliency-map generation

Image indexing can be accelerated by using via visual-attention algorithms

that prioritise candidate locations where an object might exist. This is achieved

by measuring the saliency of neighbouring areas throughout the image as de-

scribed in section 2.2.5.

� Gamma normalisation

Some approaches [61, 130] use gamma correction to reduce the e�ect of illu-

mination variance on object detection. This is computed either by calculating

the square root or the log of each pixel value [131].

2.4.3 Selecting a region of interest

Localising an object in an image in real-time can be achieved by reducing the search

area size. Instead, the majority of object-detection approaches use a sliding win-

dow of prede�ned aspect ratio to scan the entire image [8, 132]. This brute-force

approach is computationally very expensive since a moving classi�er is searching for
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maximal detection responses at all possible positions and scales [133]. Additionally,

some automotive approaches restrict the search space by making certain assumptions

about the environment (e.g. �at-world, ground-based objects, expected height range

and expected aspect ratio) and using �xed camera parameters [8, 55, 61]. Further-

more, the foreground can be separated from the background using stereo depth-map

segmentation. In the case, of monocular cameras this can be achieved by motion

segmentation between the ego-motion �eld of the camera and the observed optical

�ow [8].

2.4.4 Object detection & classi�cation

Object detection and classi�cation comprises numerous approaches based on di�er-

ent cues such as gradients, motion vectors, shape and texture. In this section, a

small subset of the most widely used approaches are presented. For a full evalu-

ation of the state of the art researchers can refer to the PASCAL Visual Object

Challenge [7], where the best approaches are evaluated every year. Figure 2.10

illustrates the person detection results for 2011.

2.4.4.1 Histograms of oriented gradients with linear support vector ma-

chines

Histogram of Oriented Gradients (HOG) has been at the centre of numerous ob-

ject detection methodologies and especially pedestrian detection [8, 55]. Originally

proposed by Dalal and Triggs [61], this approach models local shape and appear-

ance using dense normalised histograms of oriented gradients. Based on Enzweiler

and Gavrila de�nition [8] � local gradients are binned according to their orientation,

weighted by their magnitude, within a spatial grid of cells with overlapping blockwise

contrast normalisation. Within each overlapping block, a feature vector is extracted

by sampling the histograms from the contributing spatial cells. The feature vectors

for all blocks are concatenated to yield a �nal feature vector, which is subject to clas-

si�cation using a linear support vector machine (linSVM)� [8]. The main drawback

of the original approach is that it is based on a sliding window scanning the entire

image at di�erent scales, which makes it computationally ine�cient for real-time
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Figure 2.10: Person detection precision-recall graph from the PASCAL Visual Ob-
ject Challenge 2011 (image from [7])

systems.

2.4.4.2 Neural network using local receptive �elds (NN/LRF)

Local receptive �elds are limited local regions within an image, connected to speci�c

neurones. In a neural network, each branch is formed of several neurones that share

synaptical weights, thus each neural branch forms a spatial feature detector [8]. Ob-

ject detection can be performed using these features to train a linear support vector

machine in combination with a multilayer feed-forward neural network architecture

(NN/LRF) [8,134]. Non-linear support vector machines have shown better perform-

ance but their training algorithm is computationally very expensive and requires

vast amounts of available memory space [8, 135].

2.4.4.3 Haar-wavelet-based cascade

Haar-wavelet cascades are computationally more e�cient than sliding window ap-

proaches due their decision tree architecture that quickly rejects areas of the image
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Figure 2.11: Approach overview of Histogram of Oriented Gradients (image from [8])

where an object is unlikely to exist [59,136]. Haar-wavelet features are extracted at

di�erent scales and locations using di�erent types of Haar wavelets (Figure 2.12).

AdaBoost [137] is used to construct a classi�er at each cascade layer using weighted

linear combination of selected features of both positive and negative samples [8].

Figure 2.12: Di�erent types of Haar wavelets (image from [8])

2.4.4.4 Combined shape-texture-based detection

This approach is interesting because it combines neural networks (NN/LRF) for

classifying image regions based on texture and hierarchical shape-based detection

using the Chamfer distance [8,138]. It is based on the PROTECTOR system [139],

which can be implemented in real-time when using a monocular camera. Figure

2.13 gives a brief overview of this approach for detecting pedestrians.

2.5 Conclusions

This chapter reviewed the state-of-the-art and a number of technological limitations

were identi�ed. The focus has been on real-time feature detection and tracking,

depth estimation using monocular vision, visual saliency techniques and object de-

tection methodologies. Firstly, a broad range of feature detectors have been reviewed
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Figure 2.13: Combined shape-based detection and texture-based classi�cation(image
from [8])

including Hessian [23], Moravec [24], Förstner [25], Harris [26], Tomasi Kanade [27],

Shi Tomasi [28], Haralick [29], Heitger [30], SUSAN [31], SIFT [1], SURF [2],

FAST [32], Harris-a�ne [33], Hessian-a�ne [34], MSER [35], Kadir�Brady [79],

EBR [37], IBR [37], CenSurE [38], AGAST [39] and ORB [40]. In certain ap-

plications, these detectors are used to describe the contents of an image before

performing object detection by matching features to an existing database. In other

cases, the features are tracked in order to perform 3D reconstruction [5, 42�45],

which in turn allows prioritised object detection using the derived depth map. The

real-time performance and accuracy of all these detectors varies signi�cantly, thus

highly complex algorithms have been ruled out, whereas the performance of the

remaining methodologies is evaluated in Chapter 3, using a wide range of metrics

proposed by Mikolajczyk et al. [34]. This evaluation shows that there is a gap for

a feature detector that is computationally e�cient, while producing high keypo-

int density. Most contemporary approaches can only produce sparse keypoints in

real-time, which lowers the probability of successful object detection.

A group of 3D reconstruction algorithms has also been reviewed, while mostly fo-

cussing on Simultaneous Localisation and Mapping (SLAM) techniques [4,5,44,46�

53]. Despite the recent radical improvements in this area, such algorithms are still

not suitable for dense 3D reconstruction in automotive environments due to their

high dependance on the aforementioned feature detectors. In scenarios where keypo-

int density is low, such as motorways, the depth map density of SLAM approaches is

also lower. Finally, the computational complexity of probabilistic localisation makes
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SLAM hard to implement on embedded hardware [4, 116].

The literature for detection and classi�cation of targets has also been examined,

since it is an integral part of modern automotive safety applications such as pedes-

trian protection systems (PPS) [55], tra�c sign recognition [56] and collision avoid-

ance [57]. The majority of these approaches focus on single object detection (e.g.

tra�c signs, cars, pedestrians) although there are also some multi-class classi�-

ers [59,60]. Reviewing all of these methodologies would have been a major complex

task since each object on its own has been the subject of extensive research over

the past decades. As a result, the focus was shifted to just the pedestrian class,

which is one of the most studied and challenging subjects to date. In particular,

the state-of-the-art in real-time pedestrian detection was described, while trying to

identify limitations in the optimisation process. The most signi�cant gap in this

area is related to prioritised image indexing for reducing the number of unsuccessful

iterations. It is proposed that the performance of object detection approaches [61]

is enhanced by data fusion of 3D reconstruction algorithms and visual saliency al-

gorithms [10,62�67].

As a conclusion, this chapter has highlighted a set of signi�cant technological

gaps that form the basis of each of the following chapters in this thesis. Chapter

3 evaluates the aforementioned feature-detection methodologies and attempts to

identify which feature detectors are more suitable for depth-estimation and object

detection. The technological gap is addressed by proposing a new type of feature

detector that ful�ls the criteria of high-keypoint density and real-time performance.

In Chapter 4, these features are tracked using an enhanced variant of the Lucas and

Kanade tracking approach [97]. This new implementation compensates for the extra

computational cost of image stabilisation by tightly integrating it into the tracking

algorithm. Finally, in Chapter 5, the literature study has contributed to creating

a novel visual-saliency detector that addresses the current limitations by deriving

saliency maps at the same resolution as the input image.



Chapter 3

Real-time feature detection in

automotive environments

3.1 Overview

The aim of this chapter is to identify the most suitable types of feature detectors

for performing dense 3D reconstruction in automotive environments using a mon-

ocular camera. Recovering depth information requires the detection and tracking of

keypoints across multiple frames. In this context, the real-time requirements of auto-

motive applications are considered in order to propose a computationally-e�cient

methodology that o�ers high feature density and tracking accuracy. In section 3.2,

a novel feature detector is proposed that produces dense keypoints based on gradi-

ent features. Section 3.2.3 compares this new approach to the state-of-the-art using

a broad range of evaluation criteria including keypoint density, repeatability and

tracking accuracy.

3.2 Dense Gradient-based Features (DeGraF)

A novel feature detector is presented, suitable for dense tracking of features in real-

time. This detector, denoted as DeGraF (Dense Gradient Features), is based on the

calculation of gradients using intensity-weighted centroids [140].

40
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Figure 3.1: The positive centroid Cpos is the intensity-weighted centroid of the ori-
ginal image region, whereas the negative centroid Cneg is the intensity-weighted
centroid of the inverted image region. Both centroids are calculated before choosing
the strongest (i.e. the one with the highest weight). The weakest centroid is likely
to sensitive to noise, thus it is replaced by a new point which is anti-symmetric to
the strongest centroid about the centre of the image region. The vector connecting
these two centroids is the gradient of that region. This new way of deriving gradient
vectors signi�cantly minimises the e�ect of image noise.

3.2.1 Gradients from centroids (GraCe)

A method for calculating image gradients using intensity-weighted centroids is pro-

posed as an alternative to the Sobel operator used in other algorithms [61, 136]. In

this context, any image area A with dimensions w × h and central point C(xc, yc),

has two symmetrical centroids Cpos and Cneg that de�ne a gradient vector (see Fig-

ure 3.1). Cpos or positive centroid is de�ned as the weighted average of pixel values

as given by Equation 3.1.

Cpos(xpos, ypos) = Cpos




h−1∑
i=0

w−1∑
j=0

iAij

Spos
,

h−1∑
i=0

w−1∑
j=0

jAij

Spos


 (3.1)

where Spos =
h−1∑
i=0

w−1∑
j=0

Aij.

The negative centroid is de�ned as the weighted average of the inverted pixel

values as given by Equation 3.2.
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Cneg(xneg, yneg) = Cneg




h−1∑
i=0

w−1∑
j=0

i(1 +m− Aij)

Sneg
,

h−1∑
i=0

w−1∑
j=0

j(1 +m− Aij)

Sneg


 (3.2)

where m is the local maximum pixel value of area A and Sneg =
h−1∑
i=0

w−1∑
j=0

(1 +m−
Aij). It should be noted that all pixel values are expressed as �oating point numbers

greater than 1.0. For example, a greyscale or RGB image with pixel value range 0 -

255 is converted to have a range 1.0 - 256.0. This conversion preserves colourspace

linearity while eliminating the unwanted e�ect of division by zero.

Once Cpos and Cneg have been derived then the gradient can be expressed as

a vector
−−−−−→
CnegCpos. However, such a gradient would be sensitive to noise, since the

signal-to-noise ratio (SNR) depends on the value of Spos and Sneg. For example,

calculating the gradient of a dark noisy image area will lead to a lower Spos value

and a higher Sneg value, thus Cneg will have a better SNR whereas Cpos will be

unstable. This issue can be addressed by choosing the centroid with the higher

SNR (i.e. the centroid with the larger S value) as the positive centroid and then

expressing the negative centroid as the symmetric point about the centre C(xc, yc)

of area A (see Equation 3.3). This method dramatically increases the accuracy of

the calculated angle and magnitude of each gradient vector in noisy environments.

With the centroids having sub-pixel accuracy, stable and dense feature points can

be detected using gradients.

Cneg(xneg, yneg) = (2xc − xpos, 2yc − ypos) (3.3)

Once the gradient vector has been derived its magnitude r and angle φ can be

calculated using the following standard equations :

r =
√
dx2 + dy2 (3.4)

φ = atan2(dy, dx) (3.5)
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where dx = xpos−xneg, dy = ypos−yneg and atan2 is the quadrant-aware version
of arctan.

The pseudocode of the gradient calculation is the following:

1 read image with dimensions image_width , image_height;

2 generate grid with dimensions grid_width , grid_height , cell_width , cell_height;

3 for each grid cell

4 set max_value to the local maximum pixel value;

5 set s_pos to the sum of the pixel values;

6 set s_neg to the sum of the inverted pixel values , where inverted_pixel_value =

1 + max_value - pixel_value;

7 if s_pos > s_neg

8 set c_pos.x to the average of x values weighted by their corresponding

pixel values;

9 set c_pos.y to the average of y values weighted by their corresponding

pixel values;

10 else

11 set c_pos.x to the average of x values weighted by their corresponding

inverted pixel values;

12 set c_pos.y to the average of y values weighted by their corresponding

inverted pixel values;

13 endif

14 c_neg.x = 2* cell_centre.x - c_pos.x;

15 c_neg.y = 2* cell_centre.y - c_pos.y;

16 dx = c_pos.x - c_neg.x;

17 dy = c_pos.y - c_neg.y;

18 gradient_magnitude = sqrt(dx*dx + dy*dy);

19 gradient_angle = atan2(dy, dx);

20 end loop

As Figure 3.2 illustrates, the centroid gradient approach has several advantages

over Sobel, Gabor and Lagrange [9] approaches:

� It calculates the gradient vector magnitude and direction for any symmetric

or asymmetric image area of any size.

� It o�ers sub-pixel accuracy, which is essential when processing low-resolution

images. In this context, a gradient centroid may exist in the space between

four neighbouring pixels.

� It is signi�cantly more resistant to noise.

� It is computationally more e�cient than Gabor and Lagrange and only slightly

more complex than Sobel, when comparing the number and complexity of the
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mathematical operations that are used for each calculation.

3.2.2 From gradients to features

This section describes the process of extracting dense gradient-based features (De-

GraF) from a gradient map generated using the GraCe algorithm. The steps are

the following:

Di�erence of Gaussians (DoG) (Optional)

The di�erence of Gaussians (DoG) image is derived using a novel algorithm called

the Inverted Gaussian Di-pyramid (IGD). A di-pyramid is a shape comprising two

pyramids symmetrically placed base-to-base, whereas an inverted di-pyramid com-

prises two pyramids symmetrically placed peak-to-peak (see Figure 3.3). In image

processing terms, the input image is used to perform bottom-up construction of

a Gaussian pyramid. Subsequently, the peak of this pyramid is used to perform

top-down construction of a second Gaussian pyramid (inverted pyramid). This way

the two Gaussian pyramids form an inverted di-pyramid. Calculating the absolute

di�erence between the two Gaussian pyramid bases gives a DoG image with the

same resolution as the input image but invariant to illumination. In more detail,

the DoG image is derived as follows:

� a Gaussian pyramid U is constructed with n levels

� the nth level Un is then used to build an inverted Gaussian pyramid D

with base D0.

� the DoG image I is given by the following equation:

I = |U0 −D0| (3.6)

Figure 3.4 illustrates an example of a DoG image derived using a 5-level

pyramid with a 5 × 5 Gaussian �lter. Without the pyramidal approach

Gaussian smoothing would have to be performed on the input image us-

ing a 81× 81 Gaussian kernel. More generically the equivalent Gaussian
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Comparison of gradient algorithms: a) dataset image of a guitar, which
has been used for evaluation by Ahmad et al. [9], b) Gradient map using the Sobel
3 × 3 �lter, c) gradient map using the Gabor mask [9], d) gradient map using the
Lagrange mask [9], e) gradient map using GraCe, f) a subset of the GraCe gradient
vectors with the largest magnitude.
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Figure 3.3: Di�erence of Gaussians calculation using a di-pyramid. The down-
sampled image at the top of the �rst pyramid is used to reconstruct the inverted
pyramid. The base images of the two pyramids generate a DoG image when sub-
tracted.

kernel at full resolution has dimensions ((2n−1kx) + 1) × ((2n−1ky) + 1),

where n is the number of pyramid levels, which have been derived us-

ing a kx × ky Gaussian kernel (usually 5 × 5). As demonstrated by the

SIFT approach [1], the DoG image improves the performance of feature

detection. However, the IGD approach produces DoG images far more

e�ciently when compared to the standard DoG calculation method (us-

ing convolution). This is because the IGD algorithm uses a pyramid of

lower resolution images as opposed to applying the Gaussian kernel dir-

ectly on the full-sized image . For example, the di�erence of Gaussians

by convolution would involve the following operations:

* Perform convolution of the input image I1 with a k × k Gaussian

�lter. The mathematical operations involve k2 multiplications and

k2 additions per pixel (total 2k2 operations per pixel). The output

image is denoted as I2.

* Calculate the di�erence of Gaussians I1 − I2 (1 operation per pixel).

* As a result, the traditional convolution approach requires (2k2 + 1)

operations per pixel for all image pixels. For an image with dimen-
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sions w × h the total number of required operations is (2k2 + 1)wh

operations per pixel.

If the di�erence of Gaussians is calculated using the IGD approach, the

required operations would be:

* Build a 3-level Gaussian di-pyramid with a k
2
× k

2
Gaussian �lter.

Note that the Gaussian �lter size is smaller than that used by the

traditional approach. The reason is that the �lter is used across two

pyramid levels, thus the combined e�ect is the same as using a k× k
�lter on the full resolution image.

* The �rst level of the di-pyramid is the input image I1.

* The second level is derived by resolution reduction of I1 using a

k
2
× k

2
Gaussian �lter, in order to produce image I2 with size equal

to a quarter of the original image size. The mathematical operations

involved are 0.25k2 multiplications and 0.25k2 additions per pixel

(total 0.5k2 operations per pixel) but only for a quarter of the total

pixels.

* The third level is derived by resolution reduction of I2 using a k
2
×

k
2
Gaussian �lter, in order to produce image I3 with size equal to

a quarter of the original image size. The mathematical operations

involved are 0.25k2 multiplications and 0.25k2 additions per pixel

(total 0.5k2 operations per pixel) but only for a quarter of the total

pixels of I2.

* The last two steps are repeated in the inverse order to reconstruct

the remaining part of the di-pyramid, where I4 has the same same

as I2 and I5 has the same size as I1.

* The total number of operations for building the di-pyramid is 2
(

0.5k2

4
+ 0.5k2

16

)
=

0.3125k2 operations per pixel.

* Calculate the di�erence of Gaussians I1 − I5 (1 operation per pixel).

* The total number of operations is (0.3125k2 + 1)wh

If for example k = 10, w = 100 and h = 100 the convolution-based
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Figure 3.4: Di�erence of Gaussians using a 5-level pyramid with a 5 × 5 Gaussian
�lter.

approach would require 2,010,000 operations, whereas the IGD approach

would require only 322,500 operations. As a result, the IGD approach is

more than 6 times faster.

This approach di�ers from SIFT [1] since the di�erence of Gaussians is not calculated

on subsequent pyramid levels of a single pyramid. Instead we calculate the di�erence

of Gaussians between the base a Gaussian pyramid and the base of an inverted

Gaussian pyramid.

1. Gradient matrix calculation

A grid G is overlaid over the input image. A gradient vector is calculated for

each grid cell C. Let's de�ne the image, grid and cell dimensions as w × h,
wG×hG and wC×hC respectively. Cells may overlap by δx pixels horizontally

and δy pixels vertically. Subsequently, the dimensions of the gradient matrix

G are given by the following equation:

wG =

⌊
w − δx
wC − δx

⌋
hG =

⌊
h− δx
hC − δy

⌋
(3.7)

where 0 ≤ δx ≤ wc − 1 and 0 ≤ δy ≤ hc − 1. For example, a 640× 480 image

can be divided into 2 × 2 cells with no overlap, which generates a 320 × 240

gradient matrix. However, using 4 × 4 cells with 2-pixel overlap would give

a gradient matrix of similar size (i.e. 319 × 239) but with more accurate

gradients that are less sensitive to noise. This choice of parameters depends
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Input Image Cell Size 8× 8, Spacing 4× 4

Cell Size 16× 16, Spacing 4× 4 Cell Size 32× 32, Spacing 8× 8

Figure 3.5: Positive centroids generated for di�erent cell size and spacing. The grey
shade of the centroid indicates the magnitude of the associated gradient. Stronger
gradients have darker shades.

on the trade-o� between real-time performance, required density of features

and noise resistance. The quality of features also depends on the signal-to-

noise ratio of the imaging sensor. Noisy low-cost cameras can still be used to

extract stable DeGraF features by increasing the cell size. It should be noted

that grid cells may have any size or shape. For example circular cells can be

used for deriving rotation invariant features. The size of each cell may also be

adjusted dynamically in order to cope with local noise patterns. Figures 3.5

and 3.6 illustrate some examples where the gradient vectors have been derived

with di�erent cell size and overlap. Three graphical representations (vector

and centroid point) are used to highlight the distribution of gradients.

2. Feature extraction

In the context of the DeGraF approach, feature extraction is the process of

selecting those gradient vectors that are suitable for tracking or matching.
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Input Image Cell Size 8× 8, Spacing 4× 4

Cell Size 16× 16, Spacing 4× 4 Cell Size 32× 32, Spacing 8× 8

Figure 3.6: Gradient vectors generated for di�erent cell dimensions and spacings.

Feature tracking refers to identifying a feature in subsequent frames, whereas

feature matching refers to identifying a feature in two separate frames captured

from di�erent viewing angles. Depending on the application, local features can

be used for the purpose of tracking keypoints between successive frames, or

global features can be detected for the purpose of matching them between two

frames where the position or viewing angle of the camera are di�erent.

(a) Method A: Global feature extraction using α-gradients

In this method, we use an approach similar to CenSurE [38] and SIFT [1],

where local minima and extrema are identi�ed. However, in this case we

use the gradient matrix derived by the GraCe approach to detect good

gradient features. A good gradient feature is de�ned as one with the

stronger or weaker magnitude amongst all the neighbouring gradient vec-

tors in the gradient matrix. In other words, features are either local

gradient peaks or gradient troughs. Such gradient-based features are

called an α-gradients. The process begins by scanning all the neighbour-
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ing gradient vectors for each cell in the gradient matrix. If the stronger or

weaker gradient is at the edge of the neighbourhood then it is considered

an unstable gradient and is ignored, whereas if it is positioned right at the

centre of the neighbourhood then this is an α-gradient. An o�set can also

be used to de�ne the distance from the centre of the neighbourhood that

an α-gradient is allowed to exist. The size of the neighbourhood is also

con�gurable. Larger neighbourhoods are less likely to have the stronger

gradient at the centre, thus the features become sparser. Although this is

not desired for most automotive applications, it could have interesting ap-

plications in other computer-vision problems, such as detecting the a�ne

transformation of a surface or object in augmented reality applications.

In more detail the pseudocode for extracting good gradient features is

the following:

1 minimum_magnitude = 0;

2 maximum_magnitude = 1000;

3 for y = offset; y < gradient_matrix.width - offset; y++

4 for x = offset; x < gradient_matrix.width - offset; x++

5 // Identify the position of the stronger and weaker gradient

vector

6 for i = y - offset; i <= y + offset; i++

7 for j = x - offset; j <= x + offset; j++

8 if gradient(i,j).magnitude > maximum_magnitude

9 maximum_magnitude = gradient(i,j).magnitude;

10 feature_point_max.x = gradient(i,j).

positive_centroid.x;

11 feature_point_max.y = gradient(i,j).

positive_centroid.y;

12 endif

13 if gradient(i,j).magnitude < minimum_magnitude

14 minimum_magnitude = gradient(i,j).magnitude;

15 feature_point_min.x = gradient(i,j).

positive_centroid.x;

16 feature_point_min.y = gradient(i,j).

positive_centroid.y;

17 endif

18 end loop

19 end loop

20

21 // Check if the stronger or weaker gradient is positioned at the

centre (alpha gradient)

22 if(feature_point_max.x == x && feature_point_max.y == y)
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23 return feature_point;

24 else if(feature_point_min.x == x && feature_point_min.y == y)

25 return feature_point;

26 endif

27 end loop

28 end loop

(b) Method B: Local feature extraction using β-gradients

As an alternative to extracting unique keypoints, the use of every gradient

vector as a feature is proposed. Since the stronger gradient vector is no

longer detected let's call these β-gradients. The theory is simple and is

based on the fact that each gradient is a vector that describes an image

area. The positive and negative centroids have been formed using the

underlying pixels. As a result, if these pixels change value, the gradient

will also change. Since 3D reconstruction is based on tracking points

between frames, each positive centroid can be de�ned as a local keypoint.

The distance that each centroid travels between two frames could also be

indicative of the underlying change that happened in the scene. Still

there may be gradients that describe areas that are too dark, noisy or

textureless in which case tracking is impossible. Such gradients can be

�ltered out by considering some gradient quality metrics such as:

i. Gradient magnitude: gradient vectors with no magnitude are nor-

mally describing areas where all the pixels have the same value.

ii. Centroid ratio: Centroid ratio R refers to the signal-to-noise ratio for

each of the positive and negative centroids. One of the two centroids

is likely to have higher SNR value than the other. This di�erence is

measured using the following equation:

R = min

(
Spos
Sneg

,
Sneg
Spos

)
(3.8)

where Spos and Sneg are derived from equations 3.1 and 3.2.
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3.2.3 DeGraF characteristics and analysis of α and β types

The DeGraF approach derives stable keypoints from a gradient matrix using intensity-

weighted centroids. This algorithm is primarily designed for deriving noise resistant

and high density features. The GraCe approach introduces a novel way of hand-

ling noise by separately estimating the signal-to-noise ratio for each gradient. In

this context, a gradient is de�ned as the combination of a positive and a negative

centroid. Since the weakest of the two centroids is more vulnerable to noise, only

the dominant centroid is considered. The weakest centroid is then rede�ned as the

anti-symmetric positive centroid (see Figure 3.1). This novel approach of calculat-

ing gradients is the key contributing factor to the performance of DeGraF features.

In addition extracting DeGraF features from a DoG image makes the detected fea-

tures become illumination invariant, whereas using di�erent pyramid levels o�ers

higher density and scale-invariance. Most importantly, features can be detected in

real-time since the computational complexity is very low. The parallel nature of the

algorithm also allows it to be implemented e�ciently on multi-processor systems,

GPUs or FPGAs, thus making it suitable for automotive applications.Evaluation of

feature detectors

The DeGraF feature detector is compared to state-of-the-art methodologies using

a wide range of quality metrics that are applicable to automotive vision applications.

Firstly, the algorithms evaluated in this section, have been selected based on liter-

ature study on real-time dense 3D reconstruction. The evaluated approaches are

listed below together with a brief description, the source code used for evaluation

and the parameters for running each algorithm in order to achieve maximum feature

density.

� Adaptive and Generic Corner Detection Based on the Accelerated Segment

Test (AGAST) [39]

� Brief Description: AGAST is based on FAST [32], but uses decision trees

to detect corners more reliably and e�ciently.

� Source code: http://www6.in.tum.de/Main/ResearchAgast

� Evaluation Parameters: b = 1 with non-maximum suppression enabled.
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� Centre Surround Extremas for Realtime Feature Detection and Matching (CenSurE)

[38]

� Brief Description: CenSurE detects local extrema as features that are

scale and rotation invariant. The approach has several similarities to

DeGraF, but is is point-based instead of gradient-based.

� Source code: OpenCV 2.4.2 [11]

� Evaluation Parameters: maximum size = 5, response threshold = 0, line

threshold projected = 10, line threshold binarised = 5, suppress non-max

size = 2.

� Dense Gradient Features Alpha (DeGraF-α)

� Brief Description: Local extrema and minima are extracted from a gradi-

ent matrix.

� Source code: Implemented using OpenCV 2.4.2 [11]

� Evaluation Parameters: gradient window width = 2, gradient window

height = 2, gradient window overlap = 1.

� Dense Gradient Features Beta (DeGraF-β)

� Brief Description: The positive centroids in gradient matrix are used as

features.

� Source code: Implemented using OpenCV 2.4.2 [11]

� Evaluation Parameters: gradient window width = 3, gradient window

height = 3, gradient window overlap = 3, minimum magnitude 0.015.

� Features from Accelerated Segment Test (FAST) [32]

� Brief Description: FAST detects corners using an accelerated segment

test, which depends on several user de�ned thresholds. This means that

FAST needs to be adapted for each scene.

� Source code: OpenCV 2.4.2 [11]
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� Evaluation Parameters: threshold = 0 with non-maximum suppression

enabled.

� Shi & Tomasi Good features to track (GFTT) [28]

� Brief Description: The GFTT approach computes the local minimum

Eigen values as the most suitable features to track.

� Source code: OpenCV 2.4.2 [11]

� Evaluation Parameters: maximum corners = 0 (no limit), quality level =

0.001, minimum distance = 1.0, block size = 3, k = 0.04.

� Scale-invariant feature transform (SIFT) [1]

� Brief Description: SIFT detects local scale-space extrema that are scale

invariant features. Since each feature is oriented according to the strongest

gradient magnitude SIFT features are also rotation-invariant.

� Source code: OpenCV 2.4.2 [11]

� Evaluation Parameters: number of features = 0 (no limit), number of

octave layers = 3, contrast threshold = 0.015, edge threshold = 10, sigma

= 0.7.

� Speeded Up Robust Features (SURF) [2]

� Brief Description: SURF is a faster alternative to SIFT, that uses integral

images instead of Gaussian pyramids, whereas features are extracted from

the Hessian matrix.

� Source code: OpenCV 2.4.2 [11]

� Evaluation Parameters: hessian threshold = 0, number of octaves = 4,

number of octave layers = 2.

� Oriented Fast and Rotated BRIEF (ORB) [40]
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� Brief Description: The algorithm uses FAST in pyramids to detect stable

keypoints, then selects the strongest features using FAST or Harris re-

sponse. Each keypoint is assigned an orientation using �rst-order mo-

ments.

� Source code: OpenCV 2.4.2 [11]

� Evaluation Parameters: number of features = 0 (no limit), scale factor =

1.2, number of levels = 8, edge threshold = 0, �rst level = 0, number of

output points = 2, patch size = 1, score type = 0 (Harris).

� Maximally stable extremal regions (MSER) [35]

� Brief Description: MSER uses blob detection to detect features that are

invariant to a�ne transformation and scale.

� Source code: OpenCV 2.4.2 [11]

� Evaluation Parameters: delta = 5, minimum area = 60, maximum area

= 1000, maximum variation = 0.25, minimum diversity = 0.2, maximum

evolution = 200, area threshold = 1.01, minimum margin = 0.003, edge

blur size = 5.

The evaluation is based on the following six criteria:

1. Keypoint Density: Average number of detected keypoints per image frame.

2. Tracking accuracy: Average number of detected keypoints that were tracked

successfully between two frames.

3. Repeatability with variable illumination: The error introduced by varying

image brightness.

4. Repeatability with variable rotation: The error introduced by varying image

rotation.

5. Repeatability with noise: The error introduced by adding noise to the input

image.
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6. Detection time: Execution time per frame in milliseconds.

The criteria above refer to a slightly di�erent approach than the one proposed by

Mikolajczyk et al. [37], since it has been adapted to the requirements of automotive

applications. For example, an automotive camera is expected to vibrate or rotate

slightly but this will not result in signi�cant a�ne transformations as is the case

with Mikolajczyk's dataset. In the context of this research, an ideal detector would

have high density, tracking accuracy and repeatability, while being invariant to

illumination changes, resistant to noise and rotation with very low execution time.

Although extensive tests have been performed on real-life video sequences, most of

the experiments in this section are solely based on 3D modelled scenes from the

MiTECH dataset [141, 142] (provided by University of Auckland, DAIMLER AG).

The reason for using this dataset is that it allows the algorithms to be evaluated

against accurate ground truth data in the absence of noise.

The MiTECH dataset has been used for the experiments in this chapter, which

includes more than 3000 image frames that illustrate automotive scenes at variable

resolution and with fully-labelled ground truth. All of the images are used in every

experiment. The results correspond to the average performance across all frame

sequences. The optimised parameters for each algorithm where initially set using

each author's recommendations and veri�ed using the OpenCV documentation [11].

Manual parameter adjustments were also performed, followed by visual inspection of

the output, in order to ensure that the maximum keypoint density has been achieved

using the recommended parameters.

3.2.4 Keypoint Density

One of the key requirements for accurate 3D reconstruction is the density of key-

points. This is tested by analysing a set of automotive scenes, extracting keypoints

and calculating the average number of keypoints per frame normalised by the image

size. The con�guration parameters of each feature detector are adjusted in order to

achieve the highest possible feature density. Table 3.1 illustrates some characteristic

examples.
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Table 3.1: Features detection using di�erent algorithms

Input Image AGAST

CenSurE (STAR) FAST

GFTT SIFT

SURF ORB
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MSER DeGraF-α

DeGraF-β

The derived keypoint density results can be viewed on Table 3.2 and Figure

3.7. The values correspond to the average keypoint density across all images of the

processed dataset. In this case, an error measurement is not included since the key-

point density is di�erent for each image frame. Analysing those results shows that

DeGraF-β produces the highest density, although this is to be expected since the en-

tire gradient-matrix is used to produce one feature per positive centroid. Disregard-

ing DeGraF-β, high keypoint density is also demonstrated by DeGraF-α, AGAST,

SIFT, FAST GFTT and ORB. Interestingly, during the experimental phase both
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Feature Detector Keypoint Density (%)

AGAST 4.35
CenSurE 0.44
DeGraF-α 4.47
DeGraF-β 6.07
FAST 3.41
GFTT 3.18
SIFT 3.84
SURF 0.97
ORB 2.96
MSER 0.19

Table 3.2: Keypoint density results for di�erent feature detectors (higher is better
in the context of this thesis)

SIFT and DeGraF-α reached a density peak around 11% of the image resolution,

however since the execution speed was signi�cantly lower, these measurements have

been excluded. Other feature detectors, such as CenSurE, SURF and MSER did

not produce very dense keypoints. In the case of MSER, such low performance

was expected since each keypoint is describing a region. As a conclusion, keypoint

density by itself is not a meaningful measure without taking other parameters into

consideration. There is a wide range of feature detectors that can produce high

density keypoints, but these are only useful if they can be tracked accurately and

within the real-time constraints.

3.2.5 Tracking Accuracy

Tracking accuracy is tested in an automotive context for each of the evaluated

feature detectors. Achieving high accuracy for 3D reconstruction is essential but

also challenging using dense keypoints. In this experiment, tracking accuracy is

evaluated for each feature detector using image sequences with arti�cial vibration

of amplitude equal to 1, 2, 4, 8, 16 and 32 pixels in di�erent directions. This is

achieved by displacing the image o�-centre by the corresponding amount of pixels.

This is representative of the vibration experienced in automotive environments from

motorways to rural roads. Each frame is separated by a distance of d pixels from
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Figure 3.7: Evaluation of keypoint density for a wide range of features detectors.

the next, thus the ground truth measurement is known a priori. This choice of

evaluation approach is based on the condition that the tracking performance should

be measured for all detected keypoints under the same conditions. Using a standard

sequence of a moving camera would mean that only part of the detected keypoints

are actually moving (as illustrated in Table 3.3). In addition, establishing the ground

truth in such scenarios would be a challenging task with variable accuracy.

Table 3.3: Using pyramidal KLT tracker to highlight the

di�erence between optical �ow and feature tracking of

FAST, GFTT, SIFT and DegraF-β features.

Input Image Optical Flow
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FAST GFTT

SIFT DeGraF-β

A pyramidal implementation of the iterative Lucas-Kanade tracking algorithm

[68] is used to track keypoints between frames. Figure 3.8 shows the average tracking

error for each feature detector, which is de�ned as:

error =

k∑

i=1

|d−s|

k

n
(3.9)

where d is the prede�ned vibration amplitude, s is the measured displacement of

each keypoint, k denotes the number of detected keypoints and n denotes the total

number of frames in the image sequence. The chart clearly shows that most fea-

ture detectors demonstrate similar performance under vibration with DeGraF-α

and DeGraF-β being the most reliable. As expected, higher vibration leads to lower

tracking performance. The majority of the evaluated feature detectors extract most
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of the keypoints in high-saliency areas, leading to over-concentration of features in

a small part of the image. Such keypoints are hard to track and match between

di�erent frames. DeGraF features address this issue by ensuring the detected fea-

tures are evenly distributed throughout the image, which increases the probability

of detecting the same feature in subsequent frames. The e�ect of this algorithmic

design is re�ected in the results, where the DeGraF features have signi�cantly lower

tracking error, when the vibration is up to eight-pixels wide. For 16 and 32-pixel

vibration the tracking error is still competitive relative to the other approaches, but

DeGraF is not the most accurate method. The reason is that DeGraF features de-

scribe an image area (in this case 4x4 pixels), which is signi�cantly smaller than the

vibration amplitude.

3.2.6 Repeatability with variable illumination

Automotive cameras often need to dynamically adjust to lighting changes (e.g. driv-

ing out of tunnel), which introduces a requirement for illumination-invariant al-

gorithms. In this context, feature detectors are evaluated using image sequences

with variable brightness settings. Given a set of keypoints in the input image, the

detection error is derived by measuring the repeatability of features in adjusted

images with 25%, 50%, 75% and 100% higher brightness level. For each of the pro-

cessed images a binary image is generated where the keypoints are represented as

circles with radius equal to one pixel. The conjunction of the original binary image

with each of the adjusted images expresses the repeatability of each feature detector.

Practically, this means that the overlap of such binary images will be pixel-perfect

if identical keypoints are detected despite changes in brightness. As a result, the

repeatability error can be expressed as:

error =

h∑
y=1

w∑
x=1

A∨B−
h∑
y=1

w∑
x=1

A∧B
h∑
y=1

w∑
x=1

A∨B
(3.10)

where binary images A, B have dimensions w × h.
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Figure 3.8: Chart of keypoint tracking accuracy for a wide range of features de-
tectors. The horizontal axis describes the vibration amplitude in pixels. The meas-
urement unit is pixels, denoting the the o�set between the detected and the actual
feature position.
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Figure 3.9: Sample images used in the illumination test. From left to right the
brightness is increased by 25%, 50%, 75%, 100%.

Figure 3.10 shows the average error caused by illumination variance. DeGraF-

β is outperforming all other methodologies with the lowest error, while DeGraF-α

shows comparable performance at higher brightness levels. ORB has the third lowest

error rate, which is important since it is the only other approach apart from DeGraF

that is based on intensity centroids, albeit low density. This is a clear indication that

using gradient centroids to extract features leads to illumination-invariant features.

MSER demonstrates the poorest performance, which can be justi�ed since each

keypoint corresponds to a larger region. Finally, AGAST, FAST, GFTT, SIFT and

SURF are demonstrating an average error rate of 37% at the lower brightness level.

Such features detectors are designed to detect fewer good features rather than dense

poor features. Adjusting their parameters in order to achieve high density has a

counter e�ect on their illumination invariance.

3.2.7 Repeatability with variable rotation

In this test the error associated with variable image rotation is measured. The

simulation represents the camera rolling e�ect between -3 and 3 degrees (see Figure

3.11). The rotation range corresponds to the maximum expected rolling angle of

most road vehicles. Features are detected on the input image as well as on each

rotated image. The rotated features are then back-projected on the original image

since the initial rotation angle is known. This back-projection is achieved by aligning

the feature matrix of each image to the feature matrix of the non-rotated image.

For example, the feature matrix of the with 2-degree image is rotated by -2 degrees.

The evaluation process is then exactly the same as in the illumination test above.

Having a set of aligned binary images, allows the overlap of corresponding features

to be measured and the error to be calculated as illustrated in Figure 3.12. This
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Figure 3.10: Chart of error introduced by varying image brightness for a wide range
of features detectors. The horizontal axis describes the increase in illumination as a
percentage of the original brightness level.



3.2. Dense Gradient-based Features (DeGraF) 67

Figure 3.11: Sample images used in the rotation test. From left to right the angle
of rotation is -3 ,-2, -1, 0, 1, 2, 3 degrees.

chart clearly shows that rotation-angle variance directly a�ects the performance

of most feature detectors. In particular, ORB and DeGraF-β have the highest

rotation invariance, albeit with signi�cant error of around 41%. This means that

a signi�cant number of detected keypoints are displaced by at least 2 pixels when

the image is rotated. GFTT and SIFT are followed by AGAST and FAST with

medium performance. Finally, SURF, MSER, CenSurE and DeGraF-α have the

highest error rate, which means that the majority of keypoints are displaced by

more than 2 pixels following rotation. SURF and DeGraF-αuse rectangular image

areas to derive the properties of each feature, thus their rotation invariance could

be improved by using circular patches instead.

3.2.8 Repeatability in noisy images

In this test the error associated with variable image noise is measured. The simula-

tion represents the camera noise as a Gaussian distribution with each image having

5% more added noise than the previous one (see Figure 3.13). Features are detected

on the input image as well as on each noisy image. Subsequently, the same evalu-

ation process is applied as in the illumination test above. The error is calculated

from the aligned binary images and the results are shown in Figure 3.14. This chart

clearly illustrates that DeGraF-β outperforms all other approaches by a signi�cant

margin. For example, comparing DeGraF-β to the second best approach (ORB)

shows a performance gap between 28% and 62% when image noise increases by 5%

and 20% respectively. The fact that ORB and DeGraF-α are second and third in
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Figure 3.12: Chart indicating the error introduced by image rotation for a wide
range of features detectors. The horizontal axis describes the image rotation in
degrees.
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Figure 3.13: Sample images used in the noise test. From left to right the Gaussian
noise is increasing by 5%, 10%, 15%, 20%.

the performance order is important, since they are the only other approaches that

use intensity-weighted centroids as part of the feature-extraction process. This is a

remarkable result since it allows the development of real-time feature detectors that

extract stable features in low-quality images. The remaining approaches have an

estimated error rate of at least 68-76% in images with 5% added noise.

3.2.9 Detection time

The execution time of a feature detector is one of the key factors in performing

real-time 3D reconstruction. Table 3.4 and Figure 3.15 show the average detection

time in milliseconds across all the dataset images. The number of mathematical

operations for each detected feature is �xed thus an error measurement is negligible

in all cases, since the di�erence in CPU execution time is measured in nanoseconds.

FAST, DeGraF-β and CenSurE are the fastest with similar performance. AGAST,

DeGraF-a, GFTT, SURF and ORB are slightly slower but still suitable for real-time

applications. SIFT and MSER are the most computationally-expensive. In the case

of SIFT, higher performance can be achieved by adjusting the σ parameter, however,

this happens at the expense of keypoint density. Generally, the presented results

should be considered only as a rough guideline since execution time of each detector

depends on hardware-speci�c optimisation and the nature of the evaluated dataset.

3.3 Discussion & Conclusions

This chapter presented a detailed evaluation of a wide range of feature-detection

approaches in order to measure their suitability for developing automotive vision

applications and more speci�cally for performing real-time 3D reconstruction. In
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Figure 3.14: Chart of error introduced by the presence of noise for a wide range
of features detectors. The horizontal axis describes the added Gaussian noise as a
percentage of the a�ected image pixels.
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Feature Detector Time (msec)

AGAST 0.033
CenSurE 0.027
DeGraF-α 0.035
DeGraF-β 0.024
FAST 0.02
GFTT 0.043
SIFT 0.109
SURF 0.039
ORB 0.037
MSER 0.293

Table 3.4: Feature detector execution time

Figure 3.15: Feature detector execution time chart.
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addition, a novel approach for real-time dense feature extraction has been proposed

based on gradient maps. Like ORB, DeGraF uses intensity weighted centroids but

using a new noise-resistant mathematical model. A gradient is rede�ned as a vector

connecting a negative to a positive centroid, where both centroids are symmetric

about the centre of the area for which the gradient is calculated. As Figure 3.2

illustrates, the proposed gradient calculation approach outperforms other approaches

when applied to noisy images. In this context, each gradient centroid is a stable

local feature that describes the underlying area. This class of features is called

DeGraF-β. Combining neighbouring DeGraF-β features allows the detection of

more distinctive features. DeGraF-α features are de�ned as centre-surround features

(similar to CenSurE) where the central gradient vector is either a local maxima

or minima. Both DeGraF-α and DeGraF-β features are compared to AGAST,

CenSurE, FAST, GFTT, SIFT, SURF, ORB and MSER by analysing a diverse

range of quality criteria such as keypoint density, tracking accuracy, illumination

invariance, rotation invariance, resistance to noise and execution time.

The �rst evaluation methodology focussed on keypoint density, which is essential

for dense 3D reconstruction. In this case, all existing methodologies are optimised

for maximum keypoint density, which is achieved by lowering the value of various

feature quality-related thresholds. DeGraF-β demonstrated the highest perform-

ance followed by DeGraF-α, AGAST, SIFT, FAST GFTT and ORB. On the other

hand CenSurE, SURF and MSER had the lowest density values. However, keypoint

density by itself is not a useful measure unless it is combined with high tracking

accuracy and repeatability of features.

For measuring tracking accuracy, a car vibration simulation model was chosen.

This way, the tracking error of each detected keypoint is measured for 1, 2, 4,

16 and 32-pixel vibration amplitude. As expected, most feature detectors start

with low error rates at low amplitudes that gradually get worse. DeGraF-α and

DeGraF-β performed slightly better than the other methodologies, although the

di�erence is small compared to the potential measurement error that might be caused

by non-optimum algorithm con�guration. Generally, �nding the perfect evaluation

parameters for each approach is a time-consuming task that should be considered
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in future work.

Repeatability of features under variable illumination conditions was evaluated by

gradually increasing the brightness of images. In this case, DeGraF-α and DeGraF-

β outperformed all other approaches by a signi�cant margin, with ORB being the

only close competitor. MSER was by far the approach with the largest error margin,

whereas the remaining approaches demonstrated similar behaviour. The main con-

clusion from this test is that methodologies based on intensity-weighted centroids

(DeGraF-α, DeGraF-β and ORB) perform reliably under variant illumination con-

ditions.

Repeatability of features in rotated images is another important aspect of the

evaluation process since it guarantees the stability of feature-detection algorithms

when the camera rotates around the axis of motion (rolling e�ect). In a car, this

e�ect can be described as uneven vibration of the front suspension causing the image

to rotate by ±3 degrees. This behaviour was simulated by arti�cially rotating the

images around their centre. Subsequently features were extracted from each rotated

image before being back-projected on the original image. The error caused by image

rotation was then measured, showing that each feature detector exhibits di�erent

behaviour. The total error margin was in the range of 38% to 68% with DeGraF-β

and ORB giving better results albeit with signi�cant error. GFTT and SIFT also

demonstrated reasonable performance, whereas all the other approaches failed to

achieve high repeatability in this test. Speci�cally, for DeGraF-α and SURF this

can be explained by the fact that the features are extracted from rectangular areas

that are dependent on rotation by de�nition.

The resistance of feature detectors to noise was also evaluated by incrementally

adding Gaussian noise to the dataset. The results in this case were remarkable.

DeGraF-β outperformed all other approaches by a large margin of 28% for low-

noise images and 62% for high-noise images. ORB had the second lowest error

rating with also a signi�cant margin over DeGraF-a that came third. All other

approaches demonstrated high sensitivity to noise. The conclusion from this test

is similar to the illumination test in that intensity-weighted centroids lead to more

reliable features being detected in poor quality images.
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Finally, the real-time performance of all approaches was evaluated with most ap-

proaches demonstrating low execution times with the exception of SIFT and MSER

that were signi�cantly slower. The fastest detectors were FAST, DeGraF-β and

CenSurE followed by AGAST, DeGraF-a, GFTT, SURF and ORB.

Overall, some interesting conclusions can be drawn from comparing a wide range

of feature detectors. Firstly, assessing feature-detection methodologies in an auto-

motive context highlights some di�erent challenges which would not be obvious using

generic non-automotive datasets. For the �rst time, the e�ect of increasing keypo-

int density is evaluated based on a wide range of quality criteria such as tracking

accuracy, illumination, rotation and noise variance. The novel DeGraF-β approach

proves competitive in most tests with exceptional performance in the noise and illu-

mination tests. On the other hand, DeGraF-a demonstrates similar performance to

well established feature detectors, but still needs further work on optimising certain

aspects of the proposed methodology (e.g. rotation variance). However, since 3D

reconstruction is likely to be based on local features rather than global features,

DeGraF-β is a good starting point for producing dense 3D point clouds since it

demonstrated the highest keypoint density of any detector, highest tracking accur-

acy, second highest repeatability at the rotation test, highest repeatability score at

the illumination and noise tests by a signi�cant margin and �nally the second fastest

execution time.



Chapter 4

Real-time depth estimation using

monocular vision

4.1 Overview

The aim of this chapter is to produce a 3D map of the environment around a moving

vehicle in order to facilitate faster obstacle detection by prioritising high-likelihood

areas. Speci�cally, the developed methodology is required to work with a single

monocular camera and low-cost embedded hardware. Performing real-time 3D re-

construction with such constraints requires a trade-o� between low computational

complexity, high accuracy and reliability. As outlined in Chapter 2, the �rst step

towards monocular 3D reconstruction is the detection of reliable feature points. A

detailed comparison of di�erent feature detectors was performed and it was demon-

strated that DeGraF features are the most suitable in terms of high density, re-

peatability, tracking accuracy, illumination invariance, rotation invariance and low

execution time. Most approaches detect such features in multiple frames in order to

perform triangulation between di�erent viewpoints. Triangulation data is then com-

bined with the ego-motion parameters of the moving vehicle in order to accurately

measure depth. Such approaches also rely on visual odometry for ego-motion es-

timation, however, in this case the ego-motion parameters are available through the

vehicle's Controller-Area-Network (CAN) bus, thus visual odometry is not required.

This chapter describes two novel approaches for performing real-time 3D recon-

75
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struction by dense feature tracking. The �rst approach tracks DeGraF features with

sub-pixel accuracy in order to produce relative depth information. Apart from the

novelty of the DeGraF feature detector, this approach also introduces a di�erent

method for storing tracking information within the gradient matrix, which signi�c-

antly increases real-time performance. Furthermore, this methodology eliminates

the need for image stabilisation, since noise patterns such as vibration are automat-

ically �ltered out by the feature-tracking approach.

A second approach is also proposed for estimating depth by local frequency

analysis of DeGraF features. In this case, each image region is described by its

gradient. Depth is estimated by measuring the accumulative displacement of the

gradient centroid over time. Although the results are not as accurate as with the

former approach, the computational overhead is signi�cantly lower.

Finally, a detailed evaluation is performed where the DeGraF-based approaches

are compared to other state-of-the-art methodologies. It is shown that DeGraF

feature tracking produces the most dense and accurate depth maps in real-time

even under challenging conditions.

4.2 Depth estimation by dense feature tracking

4.2.1 Background

This section describes a novel way of using Bougeut's variant of the Lucas Kanade

(LK) algorithm [68] to accurately track dense gradient features and estimate depth.

The input to the LK algorithm is a set of feature points that can be tracked reliably.

Previous approaches have used known feature detectors such as AGAST [39], FAST

[32], CenSurE [38], Good Features To Track (GFTT) [28], SIFT [1], SURF [2],

ORB [40] and others. The primary aim of all these feature detectors is the extraction

of locally or globally unique features, so they are usually sparse. In order to achieve

dense 3D reconstruction, dense features are needed. The keypoint density of feature

detectors such as SIFT, FAST or GFTT can be increased by lowering certain quality-

related thresholds, however in this case the detected features are not uniformly

distributed across the entire image area, leading to high concentration of tracked



4.2. Depth estimation by dense feature tracking 77

features only in certain parts of the image. In this case the computational overhead

is signi�cant. Alternatively, feature matching can be performed by using the feature

descriptors to associate corresponding features between two images, thus eliminating

the need for tracking. However, in a high frame rate video sequence feature matching

does not have any advantages over the aforementioned LK approach since the dense

features tend to have similar descriptors making their detection problematic. Finally,

another way of solving this problem is by using dense optical �ow algorithms [98,

99, 143], which are generally featureless and can track each image pixel separately

[144]. However, their accuracy is dependent on image texture, whereas high real-

time performance is achieved by image subsampling, which causes partial loss of

information.

The proposed approach is a hybrid between traditional feature tracking and

dense optical �ow that demonstrates high real-time performance without image sub-

sampling. Instead of tracking each pixel in an image, the image is divided into a

grid of overlapping regions, with each region described by its gradient. Although the

gradient-matrix resolution can be lower than the image resolution, the gradient vec-

tors have been formed by all the underlying pixels, thus accuracy remains high. In

this case, the LK-tracking algorithm uses evenly distributed gradient features so the

maximum number of tracked points is constant regardless of texture. Textureless

surfaces have zero gradient so they can be excluded a priori. It is shown that this

approach outperforms other real-time feature-tracking and optical-�ow approaches

while producing very dense motion �elds that are subsequently converted to depth

maps. Finally, by using a unique way of storing tracking information within the

gradient matrix, the need for image stabilisation is eliminated, which further re-

duces the overall computational complexity of the algorithm.

The proposed methodology for estimating depth from gradient features can be

outlined as follows:

1. Generate gradient matrix for image It−1

2. Extract DeGraF features (DeGraF-α or DeGraF-β) for image It−1

3. Track features between images It−1 and It using the LK algorithm (without
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Kalman �lter)

4. Store the horizontal and vertical displacement (dx, dy) within the gradient

matrix

5. Calculate the accumulative euclidean displacement over n frames

6. Calculate the accumulative ego-motion vector over n frames

7. Estimate depth of each gradient feature by comparing its motion vector to the

ego-motion vector

The following section describes this methodology in depth.

4.2.2 Methodology

The �rst step is to generate a gradient matrix G for image It−1 with each cell

corresponding to an image area with dimensions wC × hC pixels (see Section 3.2.2).

Neighbouring image regions overlap by δx horizontally and δy vertically. In this

chapter the results have been produced using wC = hC = 15 and δx = δy = 5,

unless otherwise mentioned. The choice of these parameters is based on the size

of the processed images and the real-time requirements of the 3D reconstruction

algorithm. Lower wC and hC values can be used for faster processing, whereas lower

δx and δy lead to a denser gradient matrix. A denser gradient matrix would in turn

increase the resolution of the reconstructed 3D map. Subsequently, DeGraF-α or

DeGraF-β features are extracted before they are passed to a pyramidal LK tracker.

Since DeGraF-β features are denser this section will focus only on those.

Bougeut's implementation of the pyramidal Lucas Kanade (LK) tracking al-

gorithm1 [68] tracks DeGraF-β keypoints between two subsequent frames It−1 and

It. Practically these keypoints correspond to the weighted centroids of the underly-

ing image region. As a result, they are optimal for tracking even when the visible

texture is minimal. They are also very robust to noise, thus guaranteeing repeat-

ability and tracking accuracy even in poorly illuminated areas of the image. Once

1The OpenCV implementation of the pyramidal LK tracking algorithm is used with the following
parameters: ε = 0.03, max_count = 20, window_width = 31, window_height = 31.
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tracking information has been extracted the horizontal and vertical displacement of

each feature are derived as:

dx = xt − xt−1 (4.1)

dy = yt − yt−1 (4.2)

where (xt, yt) and (xt−1, yt−1) are the coordinates of the tracked point Px,y at time

t and t − 1 respectively. Tracking information is stored in the gradient matrix by

moving the gradient from position (it−1, jt−1) to gradient-matrix position (it, jt),

where:

it = it−1 +
dx
δx

(4.3)

jt = it−1 +
dy
δy

(4.4)

Historical information of the position of each feature in the past n frames is also

stored in the gradient matrix structure. As a result, the magnitude d and angle ϕ

of the motion vector of each feature are de�ned as:

d =

√√√√√√√√




t∑
t−n
dx

n




2

+




t∑
t−n
dy

n




2

(4.5)

ϕ = atan2(dx, dy) (4.6)

where atan2 is the quadrant-aware version of arctan.

The advantage of this approach is that unwanted noise such as vibration is

eliminated since the accumulative displacement in the case of vibration is close to

0. This behaviour is clearly illustrated on Table 4.5 in the results section below.

Relative depth can be estimated by comparing the motion vector of each feature

with the ego-motion vector ~ε of the vehicle. Firstly, the vehicle-velocity vector is

projected on the image plane so that it represents the pixels per frame travelled
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by a point on the bottom row of the image. In Figure 4.1, the ego-motion vector

ε1 is projected on the ground plane as vector ε2, which is equal in magnitude to

ε1, but points in the opposite direction since it indicates how fast a given point

is approaching the moving vehicle. The projection of ε2 on the image as vector

ε3 indicates how fast an image feature moves in pixels per frame. Since the real-

world location of this point is known as well as its actual velocity vector, then each

other motion vector on the image can be calculated by comparing its angle and

magnitude to the projected ego-motion vector. The relative depth D is derived

using the following equation:

D(x,y) =

√√√√√√√√




t∑
t−n

dxsinϑ
1+εx

n




2

+




t∑
t−n

dycosϑ

1+εy

n




2

(4.7)

where εx and εy is the projection of the ego-motion vector on the x and y axis

respectively (measured in pixels) and ϑ is the angle between the z-axis and the ego-

motion vector, as illustrated in Figure 4.1. In practice, when a vehicle is moving in

a straight line then ϑ = 0 and εx = 0, so the equation is simpli�ed as:

D(x,y) =

t∑
t−n

dy
1+εy

n
(4.8)

The main contribution of this approach is that it produces dense depth maps from

monocular video sequences with minimal computational overhead. This is down to

the novel DeGraF features as well as the integration of tracking information with

the gradient matrix. Only dense optical �ow approaches can demonstrate similar

performance in terms of density but at signi�cantly lower execution speed [54]. Fur-

thermore, the proposed approach performs stabilisation of the tracked features thus

eliminating the need for full-image stabilisation as proposed by alternative method-

ologies [120, 145]. Finally, most approaches work best in well-textured images with

the camera moving laterally. In contrast, the above methodology, works equally well

for both longitudinal and lateral camera motion. This is an important advantage,

considering that a vehicle is moving forward and in a straight line for most of the
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Figure 4.1: Top: The projection of the ego-motion vector ε1 to the ground plane as
vector ε2 and subsequently to the image plane as vector ε3. Bottom: The projected
ego-motion vector is projected onto the image x and y axis as εx and εy.
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time.

4.3 Depth estimation by local frequency analysis

In this section an alternative methodology is presented for estimating depth by

measuring the oscillation frequency of local gradient features. This novel method

is based on the fact that DeGraF gradients can accurately measure local image

variance with sub-pixel accuracy. It is shown that the local frequency by which the

centroid oscillates around the gradient window centre is proportional to the depth

of each gradient centroid in the real world. Additionally, by eliminating the need

for conventional feature tracking, signi�cant gains in real-time performance can be

made. Of course the lower computational complexity of this methodology comes at

the expense of depth-map accuracy as the camera velocity increases. However, it is

still mentioned as an alternative solution for low-cost obstacle-detection applications

that only require a rough depth map in order to prioritise higher-risk areas during

image indexing. The steps described in the following paragraphs are:

1. Perform image stabilisation (Optional)

2. Calculate di�erence of Gaussians image

3. Generate gradient matrix

4. Calculate local oscillation frequency

5. Generate depth map

Firstly, the input image is stabilised using the method by Grundmann et al. [145]

in order to reduce the e�ect of vibration that may be present during capture. This

step is recommended if no optical stabilisation is present.

In the second step, the input image is converted to the equivalent DoG image as

outlined in Section 3.2.2. This conversion makes the gradients illumination invariant.

In the third step, the gradient matrix is derived with each gradient being calcu-

lated for a prede�ned window with dimensions wg × hg. The choice of window size

depends on:
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Figure 4.2: The input image with overlaid centroids (yellow) that have been cal-
culated from the DoG image. Here the centroids are sparser than in practice for
improved visualisation.

� the image noise level (larger window size leads to more robust gradient meas-

urement in noisy images)

� the expected maximum displacement of features between subsequent frames.

For example, if a feature moves by 4 pixels or more in a single frame then a

3 × 3 window is too small for measuring this displacement. In this case, the

solution is to either use a larger gradient window or perform local frequency

analysis at multiple pyramid levels.

Figure 4.2 illustrates an example where the gradient centroids have been derived for

each gradient window. In this case, the centroids appear sparse for better visualisa-

tion since the actual density is too high.

In the �nal step, the horizontal and vertical displacement of each centroid is

calculated between two subsequent frames It−1 and It. The centroid displacement

is accumulated over n frames in order to derive the local oscillation frequency. This

frequency is linked to the depth of each centroid in the real world.
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The main di�erence between this approach and general structure from motion

(SfM) approaches is that DeGraF features are not being explicitly tracked. Instead

the accumulative displacement of the centroids is measured over n frames (i.e. os-

cillation frequency). Each time one or more pixels change value then the gradient

centroid moves accordingly. Since the pixel values represent the di�erence of Gaus-

sians, the centroid motion is directly related to the actual displacement of each

image feature. Using this novel method, the need for a tracking algorithm is elim-

inated, albeit at the expense of depth-map accuracy. The algorithm pseudocode is

as follows:

1 read image with dimensions image_width , image_height;

2 generate grid with dimensions grid_width , grid_height , cell_width , cell_height ,

cell_spacing_x , cell_spacing_y;

3 for each grid cell

4 set max_value to the local maximum pixel value;

5 set s_pos to the sum of the pixel values;

6 set s_neg to the sum of the inverted pixel values , where inverted_pixel_value =

1 + max_value - pixel_value;

7 if s_pos > s_neg

8 set c_pos.x to the average of x values weighted by their corresponding

pixel values;

9 set c_pos.y to the average of y values weighted by their corresponding

pixel values;

10 else

11 set c_pos.x to the average of x values weighted by their corresponding

inverted pixel values;

12 set c_pos.y to the average of y values weighted by their corresponding

inverted pixel values;

13 endif

14 c_neg.x = 2* cell_centre.x - c_pos.x;

15 c_neg.y = 2* cell_centre.y - c_pos.y;

16 dx = c_pos.x - c_neg.x;

17 dy = c_pos.y - c_neg.y;

18 gradient_magnitude = sqrt(dx*dx + dy*dy);

19

20 add gradient_magnitude to accumulative_displacement;

21 average_displacement = accumulative_displacement / accumulator_size;

22 end loop

The size of the accumulator is dependent on the application and the framerate

of the camera. For example, when using a camera capturing images at 30 frames

per second and the required reaction time is 1 second then the accumulator uses the
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Figure 4.3: A relative depth map derived by measuring the oscillation frequency of
DeGraF features.

past 30 frames.

Assuming a scene with all objects stationary and a vehicle-mounted camera mov-

ing forward in a straight line then the displacement of the gradient-feature centroids

over time is proportional to the depth of each feature in the real-world. Any moving

object is detected as an anomaly on the depth map since it has signi�cantly higher

frequency. In the case, of lateral camera motion then the ego-motion parameters

shall be used to correct the depth map. Figure 4.3 illustrates a relative depth map

derived using this approach. It should be noted that it is called relative because it

only calculates the position of each feature relative to the camera, but not the abso-

lute position in the real-world coordinate system. Still such an output is useful for

prioritising image indexing, if depth accuracy is not an issue. This method is men-

tioned as a lower-performance and faster alternative to the feature-tracking method

since it is at least �ve times faster. The speed increase is caused by the elimination

of the Lucas-Kanade tracking algorithm [68]. Evaluating such a method presents a

problem. There are no datasets with ground-truth on relative-depth maps and on

the other hand, there is no way to convert an absolute depth-map into a relative

one. A new dataset would have to be developed but such a task is outside the scope

of this thesis. As a result, this methodology is presented as an alternative type of

3D reconstruction but it is not evaluated in the following sections.
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4.4 Experimental Methodology

The DeGraF-based approach for 3D-reconstruction is compared to other state-of-

the-art approaches. The aim is to identify the methodology that o�ers the most

accurate and dense depth maps by just using monocular vision while keeping com-

putational complexity low. The selected approaches derive structure from motion

either by feature tracking or by dense optical �ow. Based on the results from Chapter

3, the following approaches were chosen: 1) AGAST [39], 2) SIFT [1], 3) FAST [32],

4) GFTT [28], 5) ORB [40].

4.4.1 Data Capture Hardware

Ego-motion measurement is normally derived by automotive sensors including yaw-

rate sensor, speedometer and accelerometer. Such sensor data is available on the

Controller Area Network (CAN bus), which exists in most modern vehicles. How-

ever, practical limitations such as availability and high cost of commissioning a real

vehicle with accessible CAN information, meant that alternative hardware had to be

used to simulate normal vehicle behaviour. In this case, a phidget sensor was used

that combines a digital compass, 3-Axis Gyroscope and 3-Axis Accelerometer. Since

none of these sensors measures velocity, this data was extracted from a bluetooth

GPS. Finally, a wide range of cameras were tested from low-cost webcams to high-

quality PointGrey Fire�yMV cameras with a wide angle lens attached.

4.4.2 Data Capture Software

Capturing data from multiple sensors requires accurate synchronisation especially

in the case where di�erent hardware components capture data at di�erent frequen-

cies. For example, in this case camera frames are acquired at a frequency of 30 Hz,

the motion sensor is operating at 200 Hz and the GPS at 1Hz. Logging and syn-

chronisation of data from these sensors can be achieved using one of the following

approaches:

1. The most straightforward solution to sensor synchronisation is to use the cam-

era as the main sensor and store motion and GPS information within each
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frame header. This approach is commonly used and it is also the easiest

to implement. However, such an implementation would mean that the mo-

tion sensor data is less accurate since its actual refresh rate is signi�cantly

faster than the camera framerate. Attempting to lower the motion sensor fre-

quency to match the camera framerate produces very noisy results. Also in the

scenario where data is captured from multiple cameras operating at di�erent

framerates the cameras cannot remain in sync using this approach.

2. The second option is to use commercially-available or open-source software.

Unfortunately, none of the available options was suitable either due to high

cost or hardware incompatibility.

3. The third option is to develop an interrupt driven approach for capturing

data from each sensor separately as soon as information becomes available. In

the case of using multiple sensors the information bandwidth can signi�cantly

increase, thus all sensor data needs to be stored in memory before storing it

on the hard-disk. In addition, a global time-stamping mechanism needs to be

used so each sensor reading can be synchronised with the rest. Although, this

approach o�ers several advantages, the main disadvantage is that it is hard to

implement and requires separate data-capture and data-playback mechanisms

for online and o�ine processing.

After careful consideration and with the aim of producing a long-term solution for

di�erent computer-vision projects, the third option was implemented producing a

software solution known as Visioner. Its main features include:

1. Interrupt driven data capture and synchronisation with global time-stamping.

Each time data becomes available on a sensor an interrupt service routine is

executed on a separate thread. This routine stores the acquired information

in memory. Subsequently, a background low-priority thread stores the inform-

ation on the hard-disk. This is done to avoid the usual bottleneck of low

hard-drive bandwidth, especially when writing large video �les from multiple

cameras.
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2. Synchronisation using global timestamp

Each sensor output is timestamped as soon as an interrupt is raised. Using a

global timestamp means that each sensor output can be logged in a separate

�le and played back using a timer.

3. Multiple camera support.

Although, this speci�c project uses monocular-vision, video may need to be

captured using multiple cameras in order to assess di�erent camera con�gura-

tions. Recording multiple cameras concurrently poses an interesting challenge

due to the large amount of information that needs to be managed in real-time.

Having a global timestamp allows the capture of synchronised video even if

the framerate is di�erent.

4. Memory bu�ering

All information is �rstly stored in RAM to ensure no data loss. Out of memory

exceptions pause recording in order to allow the memory contents to be saved.

5. Asynchronous data logging to hard-disk.

A low priority background thread saves memory contents to the hard-disk.

This functionality ensures that data quality is the same regardless of the under-

lying hardware. Systems with slow hard-drive bandwidth will run out memory

faster when the system is overloaded. However, most systems should be able

to read and write information in real-time when using a single camera, motion

sensor and GPS.

6. Synchronised data playback.

In o�ine mode a global timer is used to playback the captured information.

As the timer value increases the system checks for expired timestamps and

thus all sensors remain fully synchronised.

7. Online and o�ine algorithm evaluation.

Algorithms can run both in online and o�ine mode, making Visioner suitable

for both algorithm development and system deployment.
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8. Software development library for hardware independent computer-vision-algorithm

development.

A software library has been developed to allow hardware-independent vision

algorithm development, that works with any type of camera, motion sensor

and GPS.

9. Plugin support for GUI independent development.

Each algorithm can be developed in the form of a plugin using the standard

Visioner API. This means that the GUI implementation is separated from the

core-algorithm development. Likewise, wherever, GUI is required there are

API functions for fast deployment.

10. Cross-platform support (Windows, Linux, MacOSX).

Modern computer-vision systems run on a variety of platforms. Visioner has

been built using cross-platform development tools such Qt and OpenCV, thus

it is compatible with the most commonly used operating systems. It can also

run in embedded linux systems making it suitable for a wide-range of embed-

ded applications.

4.4.3 Datasets

Evaluating a 3D-reconstruction algorithm requires accurate ground-truth data in-

cluding the real-world coordinates of each voxel. Such datasets have recently emerged

where real-world coordinates are derived by a multitude of sensors including laser-

scanners (see KITTI dataset [17]). Still, the easiest and most accurate way of testing

is using a 3D simulator with rendered automotive environments. The 3D-simulator

data guarantees noise-free input for initial algorithm evaluation and allows stepwise

noise addition in order to measure robustness. In this case, the 3D coordinates are

known with sub-pixel accuracy regardless of range. The results in this chapter have

been derived using the MITEC 3D-rendered dataset [141] to compare algorithm
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Figure 4.4: Visioner: A data-logging and algorithm-evaluation platform. Here the
gradient-tracking algorithm is evaluated on the KITTI dataset.

performance. Subsequently, it is shown that the algorithm performs equally well

in real conditions with a noticeable resistance to camera noise and vibration. For

this purpose, a dataset has been created using the capture hardware and software

mentioned above. Video sequences from the KITTI dataset [17] are also used.

4.5 Results

In this section, 3D reconstruction is performed using a wide range of approaches.

These approaches are based on di�erent feature detectors that produce depth maps,

which are then evaluated using simulated data. The simulated data includes ground-

truth information about the inter-frame motion of each pixel as well as its depth.

Real-world examples are also shown in order to illustrate the relative strengths and

weaknesses of each approach in the presence of noise and camera vibration.
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Figure 4.5: Top: The input image from the MITEC dataset. Middle: The motion
vector ground truth. Bottom: The motion vector output produced by DeGraF
feature tracking.



4.5. Results 92

Figure 4.6: The motion-vector map derived by feature-tracking is converted to depth
map.

4.5.1 Optical-�ow Accuracy

The accuracy of the optical-�ow algorithms is tested in an automotive context for

each of the evaluated methodologies. As part of the evaluation process, all the al-

gorithms produce velocity vectors for each tracked feature or pixel. These vectors

represent the displacement of each point over time on the image plane. All the

following experiments have been performed using the 3D-rendered MITEC data-

set [141], where the ground truth is a matrix with dimensions equal to the input

image. Each matrix element corresponds to the displacement of each image pixel

between two consecutive frames with sub-pixel accuracy. Such ground-truth im-

ages are illustrated in Figure 4.5 and are usually used for evaluating dense optical-

�ow algorithms. Although, most of the evaluated methodologies do not fall in this

category, the key component is the accuracy of the displacement of each feature

between temporally-adjacent frames. Unfortunately, real data, as provided by the

KITTI dataset [17], cannot be used since the resolution of the ground-truth data

is not high enough for accurate evaluation. Finally, it is important to note, that

the optical-�ow accuracy is used as a direct measure of 3D reconstruction accuracy

based on Equation 4.7. This equation shows that the accuracy of the motion vec-

tor is the only contributing factor that a�ects the actual accuracy of the produced

depth map. The remaining parameters are related to the ego-motion vector of the

vehicle that is derived using an accelerometer. Since the contribution to knowledge
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is based on the image-processing aspect of 3D reconstruction, the ego-motion meas-

urement has been excluded from this evaluation. Otherwise, possible inaccuracies

in the ego-motion estimation would result in errors that cannot be attributed to a

single source.

Figure 4.7: Optical-�ow-accuracy results using di�erent approaches.

A pyramidal implementation of the iterative Lucas-Kanade tracking algorithm

[68] is used to track keypoints between frames. The output is a motion-vector map

M as outlined in Table 4.2. The displacement of each keypoint is compared to the
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ground-truth map G and the average error is de�ned as:

error =

1−
h∑

i=1

w∑

j=1

min
(

1+M(i,j)

1+G(i,j)
,

1+G(i,j)

1+M(i,j)

)

n
(4.9)

where M(i,j) and G(i,j) correspond to the measured and actual displacement of an

image point between time t − 1 and t. Also n denotes the total number of frames

in the image sequence with each frame having a resolution w × h. This technique

is useful for error measurement when comparing image matrices since it guarantees

that the error will always be in the range between 0.0 and 1.0. As a result, the

algorithm accuracy can then be expressed as a percentage. Without this method, the

error would be expressed in pixels, but such a measurement would not take the size

of the image into account. Alternative ratio-metric equations for error measurement

are also suitable, but then the error would not be in the 0.0-1.0 range, while division

by zero could cause discontinuities in the results. The chart on Figure 4.7 clearly

shows that the DeGraF-β approach produced the most accurate motion-vector map,

closely followed by dense optical �ow. The FAST-based approach also performed

well whereas GFTT, AGAST, SIFT and ORB approaches were less accurate at

motion estimation. It is worth noting that these results are derived from the raw

output of the tracking algorithm without any interpolation. Interpolation could

have signi�cantly increased the accuracy of some techniques, however, it would not

give a good indication of the underlying performance. The main conclusions that

can be drawn from these results is that using gradient-based features for tracking

proves more robust than any other technique. Of course, di�erent feature detectors

have speci�c strengths that favour certain applications. For example, it could be

argued that SIFT is more suited to global feature matching for object detection than

local feature tracking [1], however, no previous work had measured its performance

in this �eld.
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Approach Optical �ow accuracy (%)

PLK Dense Optical Flow 88.72
AGAST 46.97
DeGraF-β 91.11
FAST 69.98
GFTT 49.76
SIFT 49.06
ORB 46.58

Table 4.1: Optical-�ow accuracy results based on di�erent feature detectors

4.5.2 Depth-map density

One of the key qualities of a depth map is its density. This measurement indicates

what percentage of the image pixels has an allocated depth value. If an approach

is based on feature tracking then the result is directly proportional to the keypoint

density as presented in Section 3.2.4. In the case of dense optical �ow the density is

always 100% since every pixel is tracked separately, although this is not necessarily

linked to its accuracy. In this section, a wide range of 3D reconstruction approaches

are tested by analysing a set of automotive scenes and calculating the average pixel

density per motion-vector map over 1000 frames. The relation between motion-

vector map density and depth-map density is linear based on Equation 4.7. For

feature-based approaches the con�guration parameters of each detector are adjusted

in order to achieve the highest possible feature density. Table 4.2 illustrates some

characteristic examples.
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-insert

Table 4.2: Motion-vector maps using di�erent ap-

proaches.

Input Image AGAST

FAST GFTT

SIFT ORB

Dense Optical Flow DeGraF-β
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Figure 4.8: Evaluation of depth-map density for a wide range of 3D reconstruction
approaches based either on feature-detection or dense optical �ow.

The derived motion-vector map density results can be viewed on Table 4.3 and

Figure 4.8. Analysing those results shows that performing 3D reconstruction using

dense optical �ow based on the pyramidal Lucas-Kanade algorithm produces the

densest output with 100% coverage. This means that every pixel from the input im-

age has an allocated depth-value. The DeGraF-β-based approach closely matches

this performance. In addition, the DeGraF-β output produces more surface detail

than the optical-�ow approach, which appears blurred. The reason for this beha-

viour is that the DeGraF approach guarantees that each feature will be located at a

centroid, which in turns increases the maximum likelihood of accurate tracking. On

the other hand, the optical-�ow approach pre-selects �xed keypoints without meas-

uring their quality. As a result, the tracking algorithm may track unstable features,

leading to lower accuracy. The FAST-based approach also performs relatively well
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Feature Detector Motion-vector Map Density (%)

PLK Dense Optical Flow 100
AGAST 3.62
DeGraF-β 99.64
FAST 48.71
GFTT 10.54
SIFT 10.47
ORB 3.40

Table 4.3: Motion-vector map density results for di�erent feature detectors and
dense optical �ow.

by estimating depth for almost half of the image pixels, while the rest can easily

be interpolated. Approaches based on AGAST, GFTT and SIFT produce evenly

distributed sparse motion vectors that again could provide high area coverage via

interpolation. Finally, ORB shows low performance since motion vectors are pro-

duced only for highly textured areas. On their own, these measurements are not

enough for deriving any useful conclusions without considering motion-vector ac-

curacy and other quality criteria. However, the DeGraF-β-based approach has the

highest performance amongst feature-based methodologies, whereas on the other

end ORB proves unsuitable for 3D reconstruction.

4.5.3 Noise Sensitivity

The source of noise in a moving-vehicle scenario is dependent on:

� Camera vibration and rolling

� Illumination changes

� Camera sensor noise

In the last chapter, the sensitivity of each feature detector to vibration noise was

measured by arti�cially vibrating an image using a prede�ned amplitude (1, 2, 4, 8,

16 or 32 pixels). The sensitivity to image rotation was also tested in order to eval-

uate the rolling-camera e�ect caused by uneven vehicle-suspension vibration. The

sensitivity to illumination was then evaluated by gradually increasing the brightness
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of the image. These results directly a�ect the sensitivity of the 3D-reconstruction

techniques to noise, because if the features are not repeatable across a range of

frames, the tracking algorithm will certainly fail to measure the motion-vector mag-

nitude. As a result, the noise sensitivity of a 3D reconstruction algorithm is directly

related to the results that have already been presented in Figures 3.10, 3.12 and

4.4. This evaluation refers to simulated data. However, it is still interesting to eval-

uate the noise sensitivity of the aforementioned techniques in real conditions. The

problem is that for real scenarios there is no ground-truth data on the amount nor

the source of noise, since the environment is changing dynamically in an unpredict-

able manner. As a result, it is impossible to measure the accuracy of the produced

motion-vector maps. Some real-world examples are illustrated in Tables 4.4 and

4.5. These can be assessed only by visual inspection, which shows that DeGraF-β

produces the least noisy output. The e�ect of noise can be observed either as er-

ror on the motion-vector magnitude or as error in the feature-tracking leading to

missed to areas with zero motion-vector magnitude (black shade). These errors can

be viewed by examining the colour-coded images in Table 4.4. By examining the

bottom-right part of the image, it can be seen that the motion-vector magnitude

of the vehicle-surface features does not always correspond to the expected values.

For example, the corner of the vehicle should appear in white or red shade since it

is closest point to the camera. This is not the case on all of the images. The er-

ror can be attributed to tracking inaccuracy, since there is a signi�cant inter-frame

displacement of features at this part of the image. On the other hand, features

that are further away from the camera appear more accurate since the inter-frame

displacement is minimal. In the presence of vibration it is also clear that DeGraF-β

returns by far the most accurate measurements by making use of the built-in fea-

ture stabilisation mechanism. This behaviour is illustrated in Table 4.5 that shows

that DeGraF is the only approach that estimates the distance of the building at the

top-centre part of the image correctly. The other approaches are a�ected by camera

rolling and vibration and attempt to track the features on the building, which in

turn leads to incorrect depth estimation. As already discussed, these results cannot

be mathematically veri�ed, however, this is a common evaluation technique that
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other authors have adopted, like for example on the YouTube image stabilisation

algorithm [145].

Table 4.4: Motion-vector maps using di�erent approaches

on real-world data in order to assess sensitivity to noise.

Input Image

AGAST

FAST

GFTT
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SIFT

ORB

Dense Optical Flow
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DeGraF-β

Table 4.5: Motion-vector maps using di�erent approaches

on real-world data in order to assess sensitivity to vi-

bration. Note the di�erence in performance of the De-

GraF approach which uses its built-in feature stabilisa-

tion function to �lter camera vibration.

Input Image AGAST

FAST GFTT
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SIFT ORB

Dense Optical Flow DeGraF-β

4.5.4 Computational complexity

Low computational complexity is essential for embedded 3D reconstruction algorithms.

Currently, most real-time approaches are based on parallel execution of complex

algorithms on GPUs [54]. In this section, the real-time performance of the afore-

mentioned approaches is analysed. Table 4.6 and Figure 4.9 show the average 3D
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Table 4.6: Feature detector execution time
Feature Detector Time (msec)

PLK Dense Optical Flow 1379.99
AGAST 60.27
DeGraF-β 56.05
FAST 703.08
GFTT 160.34
SIFT 167.07
ORB 41.65

Figure 4.9: Feature detector execution time chart.

reconstruction time in milliseconds across all the datasets. The error is negligible

compared to the execution time of each algorithm and has not been included in these

results. The fastest algorithms are based on tracking AGAST, DeGraF-β and ORB

features. Producing depth maps by tracking GFTT and SIFT is a slightly slower

process. Finally, approaches based on dense optical �ow and FAST features are by

far the most computationally expensive. Of course real-time performance is directly

related to the number of features being tracked, which explains why dense optical

�ow is the slowest since it attempts to track every pixel. Generally, the presented

results should be considered only as a rough guideline since execution time of meth-

odology depends on hardware-speci�c optimisation and the nature of the evaluated

dataset.
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4.6 Discussion & Conclusions

In this chapter, two novel approaches were presented for performing real-time 3D

reconstruction using monocular vision. The �rst approach tracks DeGraF-β features

using Bougeut's variant of the Lucas-Kanade (LK) algorithm [68] and produces a

dense motion-vector map. Subsequently, this map is converted to a depth-map by

comparing individual motion vectors to the ego-motion vector of the camera. The

performance of this approach was compared to di�erent 3D-reconstruction methods

in order to determine their accuracy, depth-map density, noise-resistance and compu-

tational complexity. The evaluated approaches were based either on dense optical

�ow or dense feature tracking using a set of feature detectors including AGAST,

FAST GFTT, SIFT and ORB. The motion-vector �eld of each methodology was

evaluated using the MITEC-rendered dataset and the output of each algorithm

was compared to the ground-truth data. Real-world examples were also used to

demonstrate the performance of each algorithm in the presence of noise and camera

vibration.

The second approach proposed the use of local frequency analysis of gradient

features for estimating relative depth. This novel method is based on the fact that

DeGraF gradients can accurately measure local image variance with sub-pixel accur-

acy. It was shown that the local frequency by which the centroid oscillates around

the gradient-window centre is proportional to the depth of each gradient centroid in

the real world. Of course the lower computational complexity of this methodology

comes at the expense of depth-map accuracy as the camera velocity increases, how-

ever, it is at least �ve times faster than any other approach. Another disadvantage is

that the produced depth map shows relative depth only, meaning that the real-world

depth of each image point cannot be measured. Certain applications that perform

distance-based prioritisation of image indexing may still �nd this output useful, but

in this case it has been excluded from evaluation.

Other state-of-the-art 3D reconstruction approaches, such as the one proposed

by Newcombe, Lovegrove and Davison [54] perform accurate 2D to 3D estimation

by stereo-type triangulation, which works best in the presence of lateral camera

motion. However, a vehicle moves forward in a straight line for the majority of the



4.6. Discussion & Conclusions 106

time. Therefore, triangulation-based monocular approaches were not considered.

Likewise, SLAM-based approaches [4, 5, 44, 46�53] were considered but proved to

be more e�ective for ego-motion estimation while measuring the depth of speci�c

landmarks without producing dense 3D maps.

Overall, 3D reconstruction based on DeGraF feature-tracking emerged as the

most accurate feature-based approach, producing dense depth maps in real-time,

while being resistant to noise and vibration. Starting with optical-�ow accuracy,

the DeGraF exceeded 90% accuracy followed by the dense-optical �ow approach.

The remaining approaches did not perform equally well, which can be attributed to

the repeatability of the features on which optical �ow was measured. This means

that certain features were not stable between temporally-adjacent frames and as a

result tracking failed. The next experiment assessed the motion-vector map density,

where the proposed approach achieved higher than 99% coverage, which is only

matched by the dense optical �ow approach that by de�nition has 100% coverage.

In terms of computational complexity, DeGraF produced the highest score while

being 24 times faster than the runner up and the second-fastest overall behind

ORB. ORB produced the least dense depth-maps with the lowest accuracy, thus its

low-computational complexity could not be exploited further. Finally, the built-in

feature stabilisation of the DeGraF approach meant that it performs equally well in

both simulated and real environments in the presence of noise and vibration. All the

other approaches would require an image-stabilisation algorithm before performing

3D reconstruction, which would further increase their computational complexity.

The DeGraF approach makes several contributions to the current state-of-the-

art, however it could also be questioned as just being another dense optical �ow

variant. Contrary to this argument a number of reasons stand against this opinion:

� Dense optical �ow [96] tries to track every pixel, regardless if that is possible or

not. With the DeGraF approach, the gradient of an image region is calculated

before choosing whether to track it or not. The results may look similar

in the end if the scene is well textured everywhere. However, in scenarios

where textureless surfaces are part of the image, then the optical �ow error is

signi�cant, compared to the DeGraF approach.



4.6. Discussion & Conclusions 107

� The DeGraF approach produces uniformly arranged asymmetrical features.

This is a unique advantage. Most feature detectors detect numerous keypoints

in highly textured areas and no keypoints in areas with little or no texture.

On the other hand, dense optical �ow approaches track either every pixel,

or equally spaced pixels, which means that accuracy cannot be predicted a

priori. The DeGraF approach addresses these weaknesses, by tracking image

segments that are always centred around gradient features. The results clearly

show that such regions are more suitable for LK tracking. At the same time

by distributing the keypoints evenly across the entire image, the real-time

performance is dramatically increased.

� The DeGraF approach performs feature stabilisation using a unique way of

storing tracking information within the gradient matrix. By eliminating the

need for a separate image-stabilisation step the computational complexity re-

mains low.



Chapter 5

Real-time object detection by fusing

visual saliency and depth information

5.1 Overview

This chapter addresses the problem of real-time object detection in automotive

environments using a monocular camera. Such systems can already be found in

modern vehicles for detecting pedestrians, obstacles and tra�c signs. The majority

of the existing approaches scan the entire image while looking for speci�c patterns

either by using a sliding-search window or a cascade. These methodologies work well

for low-resolution images, however, as the pixel count increases there is a demand

for higher e�ciency. Previous work has focussed on using visual cues such as optical

�ow for image-search optimisation, but in this case an image-stabilisation module

(hardware or software) is also required for reliable operation. This chapter makes

two important contributions in this direction.

A novel method is proposed for deriving highly accurate visual-saliency maps

by division of Gaussians. Such maps highlight areas of interest, where potential

targets such as pedestrians and vehicles, are likely to be located. Subsequently, the

saliency map is fused with the DeGraF depth map leading to signi�cantly faster

object localisation. The approach is validated using the Histogram of Oriented

Gradients (HOG) approach for detecting pedestrians. The results show that the

visual-saliency algorithm outperforms all other approaches by a signi�cant margin,
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Figure 5.1: Colour and greyscale saliency maps of Rubik's cube using the DIVoG
approach. Darker colours/shades indicate areas of low-saliency and vice-versa.

whereas data fusion of saliency and depth information leads to accelerated HOG

performance.

5.2 Real-time visual saliency by division of Gaussi-

ans

Di�erent saliency de�nitions exist, however, in this thesis a generalised version of the

de�nition by Achanta et al. [10] is used: �Visual saliency is the perceptual quality that

makes a group of pixels stand out relative to its neighbours�. This section introduces

a novel method for deriving visual saliency maps in real-time without comprom-

ising the quality of the output. This is achieved by replacing the computationally-

expensive centre-surround �lters with a simpler mathematical model named Division

of Gaussians (DIVoG). The results are compared to �ve other approaches, demon-

strating at least six times faster execution than the current state-of-the-art whilst

maintaining high detection accuracy. Given the multitude of computer-vision applic-

ations that make use of visual-saliency algorithms such a reduction in computational

complexity is essential for improving their real-time performance.

5.2.1 Methodology

The Division of Gaussians approach comprises of three distinct steps: 1) Bottom-up

construction of Gaussian pyramid, 2) Top-down construction of Gaussian pyramid

based on the output of Step 1, 3) Element-by element division of the input image

with the output of Step 2.
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Figure 5.2: Saliency map of a pedestrian using DIVoG.

Step 1 : The Gaussian pyramid U comprises of n levels, starting with an image

U1 as the base with resolution w × h. Higher pyramid levels are derived via down-

sampling using a 5 × 5 Gaussian �lter. The top pyramid level has a resolution of

(w/2n−1)× (h/2n−1). Let us call this image Un.

Step 2 : Un is used as the top level Dn of a second Gaussian pyramid D in order

to derive its base D1. In this case, lower pyramid levels are derived via up-sampling

using a 5× 5 Gaussian �lter.

Step 3 : Element-by-element division of U1and D1 is performed in order to derive

the minimum ratio matrixM (also called MiR matrix) of their corresponding values

as described by the following equation:

Mi,j = min

(
D1i,j

U1i,j

,
U1i,j

D1i,j

)
(5.1)

The saliency map S is then given by Equation 5.2, which means that saliency is

expressed as a �oating-point number in the range 0− 1.

Si,j = 1−Mi,j (5.2)

The described approach can be further expanded to include element-by-element

division of all corresponding levels of pyramids U and D. In this case, the MiR

matrix is initialised as a unit matrix (i.e. for each matrix element M0i,j = 1).

Subsequently, each pair of pyramid levels Un and Dn is scaled up to the input's

resolution. Next, the MiR matrix Mn is multiplied by Mn−1 as described by the
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DIVoG equation below, which is a generalised form of Equation 5.1.

Mni,j
= min

(
Dni,j

U1i,j

,
U1i,j

Dni,j

)
Mn−1i,j (5.3)

for n > 1. The saliency map is then derived using Equation 5.2. Deriving the

MiR matrix through processing of all pyramid levels produces more accurate sali-

ency maps than Equation 5.1, but also increases the computational complexity of

the algorithm. In practice, the di�erence between the two approaches is visually

minimal, thus in this thesis all MiR matrices have been calculated using Equation

5.1. Practically, the choice of n value depends on the size of the salient objects that

need to be detected. For example, n = 2 may be adequate calculating the saliency

of an area smaller than 5× 5 pixels. Alternatively, calculating the saliency of larger

areas will require incrementally higher n value. On the other hand, calculating the

saliency of large areas with a small n value will result in detecting the salient edges

of this area, however, the centre of the area will appear as non-salient. The reason

is that there are not enough pyramid levels to separate the foreground from the

background. Finally, a major advantage of this approach is that it is colourspace-

independent, thus it can derive saliency maps even from greyscale images, which

signi�cantly reduces computational cost.

Implementation notes:

a) All operations are performed using 32-bit �oating point matrices.

b) To avoid division by zero, or division with �oating point numbers in the range

0 to 1, we de�ne the minimum pixel value equal to kn, where k is the size of the

Gaussian kernel. This ensures that pyramidal downsampling will always result in a

value greater than 1.

c) For colour images, the algorithm can be used with any colourspace. Each

channel is processed separately to produce a salience map.

d) All the saliency maps in this thesis have been produced using 24-bit colour

images in the RGB colourspace. The Gaussian pyramid is constructed with n = 5.

e) All saliency maps in Figure 5.1, 5.2, 5.3, have been normalised to �t the

0− 255 pixel range for e�ective visualisation.
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5.3 Real-time object detection using saliency & depth

information

This section proposes a basic yet powerful methodology for fusing saliency and depth

information into a single matrix which represents the likelihood of each image pixel

belonging to an object. Subsequently, the HOG algorithm [61] is evaluated on the

high-likelihood areas in order to con�rm the existence of an object. As a result, the

process of object detection in signi�cantly accelerated.

5.3.1 Methodology

Firstly, the DIVoG saliency map is derived using the aforementioned technique. This

map assigns a value to each image pixel ranging from 0.0 to 1.0, with 1.0 repres-

enting the highest saliency value. Likewise, the DeGraF depth map is extracted by

feature tracking as described in the last chapter. This map assigns a value to each

image pixel which represents the depth (distance) between the camera and the real-

world coordinate of the point. In an automotive scenario, the areas of interest refer

to objects within a certain range from the vehicle that could potentially cause an

accident. In practice, this translates to relatively low depth value and high saliency

value. As a result the most basic fusion could be performed by element-wise multi-

plication of the saliency and depth matrices. Figures 5.13, 5.14 and 5.15 illustrate

the saliency, depth and fused output, which uses false colour to highlight areas of

interest. The data fusion equation is:

Fi,j = Si,j ∗Di,j (5.4)

where element-wise multiplication of saliency matrix S is performed with depth

map D to derive the fused map F . This map forms the basis for extracting a

list of regions of interest within the image. Currently, this is achieved by running

the sliding window HOG algorithm [61] only in windows with high accumulative

likelihood. However, the fused map can also be used to prioritise the candidate
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Input IT98 [69] MA03 [70] HO07 [71] HA07 [72]

Figure 5.3: A set of saliency maps generated using di�erent approaches (based on
work by Achanta et al. [10]).

windows by likelihood. This is useful in the case of real-time detection algorithms

that must return a response within a given time limit before advancing to the next

frame.

5.4 Results

5.4.1 Visual saliency results

The DIVoG approach is compared with �ve other saliency algorithms using an eval-

uation framework created by Achanta et al [10,64]. As part of this procedure, sali-

ency maps are extracted for 1000 images using �ve di�erent approaches [10,69�72],

as illustrated in Figure 5.3, 5.4. Bright shades indicate high saliency values. For

example, in images with a single object and simple background the object surface
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Input AC09 [10] DIVoG DIVoG-F

Figure 5.4: DIVoG-F enhances these results of the standard DIVoG algorithm by
adding a low-pass �lter to reduce background noise.

appears as the most salient part of the image. However, this is also dependent on

the contrast-di�erence between the foreground and the background. For example,

in the �rst image there are three players in a green �eld. The players appear as

salient objects whereas the green �eld as a non-salient area. Most approaches sep-

arate the players relatively clearly. On the other hand, the last image shows a white

dog against a white background. In this case, most approaches only identify the

black nose and ears of the dog as salient but completely miss the body. Of course,

there are also examples with complex foreground and background, where saliency

measurement is more problematic (e.g. kid cycling in front of trees). By visual in-

spection of the processed dataset, the DIVoG approach gives the clearer separation

between foreground and background. Previous approaches [10,62�64] have used the

saliency maps to segment the images and compare the extracted segments to the
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ground-truth in order to derive the algorithm's accuracy. This is a reasonable ap-

proach for simple scenes with a small number of distinct objects. However, for more

complex images the speci�cation of ground-truth is more subjective. In addition,

the performance of the chosen segmentation approach directly a�ects the perform-

ance of the saliency detector, which makes the evaluation of saliency algorithms

problematic. Since the main contribution of this section is related to the real-time

performance of the algorithm, we compare the execution time of our approach with

Achanta et al. [10], which is one of the most e�cient saliency methodologies for

producing high-resolution maps.

For performance evaluation a mobile 2.4GHz Intel Core 2 Duo processor was

used with 4GB RAM. Figure 5.5 and Table 5.1 show a comparison in execution

time between DIVoG and [10] at di�erent resolutions using colour and greyscale

images. Furthermore, Figures 5.3 and 5.4 show some examples of saliency maps

generated using DIVoG and �ve other approaches.

The original implementation by Achanta et al [10] (AC09 ), produces much

sharper saliency maps than IT98 [69], MA03 [70], HO07 [71] and HA07 [72]. In

terms of computational performance AC09 [10] is at least comparable to the afore-

mentioned approaches as presented in [10]. On the other hand, the DIVoG approach

demonstrates similar or higher quality saliency maps to AC09 [10], but at a frac-

tion of the time. DIVoG is faster than AC09 [10] by a factor of 6 when processing

24-bit colour images and by a factor of 16 when processing greyscale images. This

massive gap could not be justi�ed by the theoretical di�erence in computational

complexity, thus the AC09 [10] was re-implemented using the OpenCV library [11]

(AC-OPENCV ). This way the execution time reduced by a factor of 3. Even so, AC-

OPENCV remained 56% slower than DIVoG. An indication of performance can also

be given by quoting the achieved framerate. At the lowest resolution of 320× 240,

DIVoG executed at 333 fps on greyscale images and 111 fps on colour images, show-

ing a linear relationship between data size and execution time. Overall, the DIVoG

approach has demonstrated an ability to calculate full resolution saliency maps with

the minimum computational cost.
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AC09 [10] AC-OPENCV

Resolution Time (s) fps Time (s) fps
320×240 0.078 12.8 0.015 66.6
512×512 0.187 5.3 0.052 19.2
640×480 0.218 4.6 0.057 17.5
1024×1024 0.718 1.4 0.200 5.0
2048×2048 2.699 0.4 0.803 1.6

DIVoG-3CH DIVoG- 1CH

320×240 0.009 111 0.003 333
512×512 0.032 31.2 0.009 111
640×480 0.036 27.7 0.012 83.3
1024×1024 0.115 8.7 0.041 24.3
2048×2048 0.456 2.2 0.161 6.2

Table 5.1: Performance evaluation data showing execution time and framerate.
AC09 is the original implementation by Achanta et al. [10].

5.4.2 Object detection results

The proposed object detection approach is evaluated on the ETH pedestrian de-

tection dataset [12]. The performance of HOG-based pedestrian detection [61] is

initially measured on the raw images using the standard sliding window approach.

Subsequently, the saliency and depth maps are used to select a subset of regions of

interest. The HOG algorithm is then evaluated only on these regions. Ideally, the

output of both approaches should be exactly the same with the proposed approach

being signi�cantly faster.

The evaluation methodology is on deriving the number of true positives (TP),

true negatives (TN), false positives (FP) and false negatives (FN) for both the

original HOG sliding window approach and the proposed approach. Subsequently,

ROC curves are used to measure the overall performance. These curves highlight

the relationship between the True Positive Rate (TPR) and the False Positive Rate

(FPR) as given below:

TPR =
TP

TP + FN
(5.5)

FPR =
FP

FP + TN
(5.6)
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Figure 5.5: Performance evaluation of DIVoG and �Frequency-tuned Salient Region
Detection� by Achanta et al. [10] (AC09 ). AC-OPENCV is our AC09 real-time
implementation using the OpenCV library [11]. DIVoG-3CH denotes the DIVoG
algorithm running on 3 channel input (i.e. RGB image), whereas DIVoG-1CH de-
notes the DIVoG algorithm running on a single channel input (i.e. greyscale 8-bit
image).

Figure 5.6, shows the ROC curves for both the sliding window and the salient-

region approaches. The sliding window indexing is slightly more accurate mainly

due to detecting pedestrians at a longer range than our approach. However, it is

important to note that these results are derived from the ETH Bahnhof dataset [12],

which is captured at 15 frames per second rate. Such a low rate reduces the accuracy

of the feature tracker, which in turn leads to lower than expected performance.

Nevertheless, the two ROC curves are only separated by a small margin. Finally,

is worth noting that the proposed approach executed �ve times faster than the

sliding window algorithm. Practically, this means that there were �ve times fewer

windows that the HOG algorithm had to process. The conclusion is that by selecting

salient regions of interest the HOG algorithm can be accelerated without a signi�cant

impact on accuracy.

Below there is a comprehensive set of examples illustrating:

� The output of the DIVoG saliency algorithm (Figures 5.7, 5.8, 5.9)

In these images, saliency is denoted by a grayscale shade with black denoting

zero saliency and white denoting the maximum saliency. For example, most
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Figure 5.6: ROC curve denoting the relation between true positive rate and false
positive rate.
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pedestrians in the distance appear much more salient than the pavement,

where saliency is zero. On the other hand, objects that are very close to

the camera often have large non-salient regions. This is expected since the

DIVoG algorithm performs multi-scale element-wise saliency calculation, thus

it is limited by the number of pyramid levels. In this case six pyramid levels

have been used to produce each saliency map. In addition, noise �ltering and

normalisation have been applied on the raw output in order to better highlight

the salient objects.

� The output of the DeGraF-depth-estimation algorithm (Figures 5.10, 5.11,

5.12)

In these images, false colour has been used to denote depth. The sequence

from white to red, yellow, green, blue and black denotes the distance from

the camera (close to far). Visually, the output does not look as sharp as in

the previous chapter, since the Bahnhof sequence from the ETH dataset [12] is

only captured at 15 frames per second. This means that the tracking algorithm

needs a larger temporal bu�er for performing accurate stabilisation. However,

this optimisation leads to blurred depth maps. Still given the poor quality,

low framerate and extreme camera vibration the results are at the expected

level.

� The fused output from depth and saliency information (Figures 5.13, 5.14,

5.15)

In these images, false colour has been used to denote the likelihood of the

corresponding pixel belonging to an object. The sequence from white to red,

yellow, green, blue and black denotes the order in which regions should be

scanned for objects. Again the output looks slightly noisy, which is due to the

poor quality, low framerate and extreme camera vibration of the ETH Bahnhof

dataset [12]. This means that although the saliency map is very clean when

it is fused with a noisy depth map it generates a noisy fused map. Still it

is clearly evident that the algorithm is choosing the right areas as regions of

interest. For example, all of the pedestrians appear with brighter shades than
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the background, thus highlighting them as areas of interest.

� The HOG algorithm output based only on salient regions of interest (Figures

5.16, 5.17, 5.18)

In these images the output of the HOG algorithm is denoted by drawing rect-

angles around the detected pedestrians. The HOG algorithm uses the default

parameters as proposed by Dalal et al. [61]. The ROC curve in Figure 5.6

con�rms that the pedestrian detection accuracy is comparable to the original

HOG approach, albeit signi�cantly faster.

5.5 Discussion & Conclusions

In this chapter, a novel visual saliency algorithm was presented for calculating full

resolution saliency maps in real-time by using Division of Gaussians. Compared

to recent work by Achanta et al. [10], DIVoG showed a signi�cant increase in per-

formance by a factor of 6 when using colour images. A real-time implementation

of Achanta's work was also performed using the OpenCV library [11], which is

more than three times faster than the original implementation, but still 56% slower

than the DIVoG approach. Given that for VGA resolution the achieved framer-

ate exceeds 80 fps on greyscale images, this algorithm could signi�cantly improve

the performance of a wide range of applications including salient feature detection,

object extraction and classi�cation.

In addition, the DeGraF depth estimation approach was used to improve the

real-time performance of object detection methodologies and in particular the HOG

pedestrian detection algorithms. Fusing information from a DIVoG saliency map and

a DeGraF depth map, gives a clear indication of the regions of interests where objects

are likely to exist. The results show comparable accuracy between the original HOG

implementation and our accelerated variant that improves real-time performance by

at least �ve times.

Overall, this chapter o�ers major contributions to knowledge by proposing a

faster visual saliency algorithm and a novel methodology for fusing DIVoG saliency

and depth information for more e�cient object detection.
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Figure 5.7: DIVoG saliency output based on the ETH pedestrian detection dataset
[12].
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Figure 5.8: DIVoG saliency output based on the ETH pedestrian detection dataset
[12].
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Figure 5.9: DIVoG saliency output based on the ETH pedestrian detection dataset
[12].
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Figure 5.10: DeGraF depth map based on the ETH pedestrian detection dataset [12].
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Figure 5.11: DeGraF depth map based on the ETH pedestrian detection dataset [12].
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Figure 5.12: DeGraF depth map based on the ETH pedestrian detection dataset [12].
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Figure 5.13: Fusion of DIVoG saliency and DeGraF depth information in order to
accelerate pedestrian detection. (ETH Dataset [12])
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Figure 5.14: Fusion of DIVoG saliency and DeGraF depth information in order to
accelerate pedestrian detection. (ETH Dataset [12])
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Figure 5.15: Fusion of DIVoG saliency and DeGraF depth information in order to
accelerate pedestrian detection. (ETH Dataset [12])
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Figure 5.16: Pedestrian detection using visual saliency and monocular depth estim-
ation. (ETH Dataset [12])
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Figure 5.17: Pedestrian detection using visual saliency and monocular depth estim-
ation. (ETH Dataset [12])
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Figure 5.18: Pedestrian detection using visual saliency and monocular depth estim-
ation. (ETH Dataset [12])



Chapter 6

Conclusions & Future Work

6.1 Concluding remarks

This thesis addresses the problem of real-time object detection in automotive envir-

onments using monocular vision. Through a step-wise approach computationally-

expensive algorithms have been optimised or replaced by novel methodologies to

produce a fast object detection system that is aligned to the requirements of the

automotive domain.

In Chapter 2, the state-of-the-art was reviewed and the main technological limit-

ations were identi�ed. Each of these limitations was addressed in a separate chapter

focussing on real-time feature detection and tracking, depth estimation using mon-

ocular vision and �nally, object detection by fusing visual saliency and depth in-

formation. The common theme across all of these chapters is the design and imple-

mentation of real-time algorithms that facilitate object detection.

Chapter 3 proposed a novel approach for real-time dense feature extraction based

on gradient maps. This method, DeGraF, uses intensity weighted centroids as pro-

posed by the ORB detector [40] but implemented using a new mathematical model

with signi�cantly lower noise sensitivity. In this context, the gradient vector con-

nects a negative to a positive centroid, where both centroids are symmetric about the

centre of the area for which the gradient is calculated. Each pair of positive and neg-

ative centroids forms a stable local feature that describes the underlying area. These

local features are called DeGraF-β. Combining neighbouring DeGraF-β features al-

133
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lows the detection of more distinctive features, called DeGraF-α. These are de�ned

as centre-surround features, similar to CenSurE [38], where the central gradient vec-

tor is either a local maxima or minima. Gradient-derived features (DeGraF-α and

DeGraF-β) are compared to GFTT (Shi Tomasi) [28], CenSurE [38], AGAST [39],

SIFT [1], SURF [2], FAST [32], and ORB [40] and MSER [35] by analysing a diverse

range of quality criteria [37] such as keypoint density, tracking accuracy, illumina-

tion invariance, rotation invariance, resistance to noise and execution time. DeGraF

performance proved superior in the majority of the tests, making it suitable for 3D

reconstruction algorithms based on feature tracking.

More speci�cally, the �rst evaluation methodology focussed on keypoint density,

which is essential for dense 3D reconstruction. DeGraF-β demonstrated the highest

performance followed by DeGraF-α, AGAST [39], SIFT [1], FAST [32], GFTT [28]

and ORB [40]. On the other hand CenSurE [38], SURF [2] and MSER [35] had the

lowest density values.

For measuring tracking accuracy, a car vibration simulation model was chosen.

This way, the tracking error of each detected keypoint was measured for 1, 2, 4, 16

and 32-pixel vibration amplitude. As expected, most feature detectors start with

low error rates at low amplitudes that gradually increase. In this case, DeGraF-α

and DeGraF-β performed only slightly better than the other methodologies.

Repeatability of features under variable illumination conditions was evaluated by

gradually increasing the brightness of images. In this case, DeGraF-α and DeGraF-

β outperformed all other approaches by a signi�cant margin, with ORB [40] being

the only close competitor. MSER [35] was by far the approach with the largest

error margin, whereas the remaining approaches demonstrated similar behaviour.

Subsequently, the main conclusion from this test is that methodologies based on

intensity-weighted centroids (DeGraF-α, DeGraF-β and ORB [40]) perform reliably

under variant illumination conditions.

Repeatability of features in rotated images is another important aspect of the

evaluation process since it guarantees the stability of feature detection algorithms

when the camera rotates around the axis of motion (rolling e�ect). In a car, this

e�ect can be described as uneven vibration of the front suspension causing the
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image to rotate by ±3 degrees. This behaviour was simulated by arti�cially rotating

the images around their centre. Subsequently features were extracted from each

rotated image before being back-projected onto the original image. The error caused

by image rotation was then measured, showing that each feature detector exhibits

di�erent behaviour. The total error margin was in the range of 38% to 68% with

DeGraF-β and ORB [40] giving better results albeit with signi�cant error. GFTT

[28] and SIFT [1] also demonstrated reasonable performance, whereas all the other

approaches failed to achieve high repeatability in this test. Speci�cally, for DeGraF-

α and SURF [2] this can be explained by the fact that the features are extracted

from rectangular areas that are dependent on rotation by de�nition.

The resistance of feature detectors to noise was also evaluated by incrementally

adding Gaussian noise to the dataset. The results in this case were remarkable.

DeGraF-β outperformed all other approaches by a large margin of 28% for low-

noise images and 62% for high-noise images. ORB had the second lowest error

rating with also a signi�cant margin over DeGraF-a that came third. All other

approaches demonstrated high sensitivity to noise. The conclusion from this test

is similar to the illumination test in that intensity-weighted centroids lead to more

reliable features being detected in poor quality images.

Finally, the real-time performance of all approaches was evaluated with most

approaches demonstrating low execution times with the exception of SIFT [1] and

MSER [35] that were signi�cantly slower. The fastest detectors were FAST [32],

DeGraF-β and CenSurE followed by AGAST [39], DeGraF-a, GFTT [28], SURF [2]

and ORB [40].

Overall, some interesting conclusions can be drawn by comparing a wide range of

feature detectors. Firstly, assessing feature detection methodologies in an automot-

ive context highlights some di�erent challenges which would not be obvious using

generic non-automotive datasets. For the �rst time, the e�ect of increasing keypo-

int density is evaluated based on a wide range of quality criteria such as tracking

accuracy, illumination, rotation and noise variance. The novel DeGraF-β approach

proves competitive in most tests with exceptional performance in the noise and illu-

mination tests. On the other hand, DeGraF-a demonstrates similar performance to
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well established feature detectors, but still needs further work on optimising certain

aspects of the proposed methodology (e.g. rotation variance). However, since 3D

reconstruction is likely to be based on local features rather than global features,

DeGraF-β is a good starting point for producing dense 3D point clouds since it

demonstrated the highest keypoint density of any detector, highest tracking accur-

acy, second highest repeatability at the rotation test, highest repeatability score at

the illumination and noise tests by a signi�cant margin and �nally the second fastest

execution time.

In chapter 4, two novel approaches have been presented for performing real-time

3D reconstruction using monocular vision. The �rst method tracks DeGraF-β fea-

tures using Bougeut's variant of the Lucas Kanade (LK) algorithm [68] and produces

a dense motion-vector map. Subsequently, this map is converted to a depth-map

by comparing individual motion vectors to the ego-motion vector of the camera.

The performance of this approach has been compared to di�erent 3D reconstruction

methods in order to determine their accuracy, depth-map density, noise-resistance

and computational complexity. The evaluated approaches were based either on

dense optical �ow or dense feature tracking using a set of feature detectors includ-

ing AGAST [39], FAST [32], GFTT [28], SIFT [1] and ORB [40]. A motion-vector

�eld was produced using each of these methodologies, which was then evaluated

using a 3D rendered dataset. In this case, the output of each algorithm was com-

pared to the ground truth data. Real-world examples were also used to demonstrate

the performance of each algorithm in the presence of noise and camera vibration.

Overall, 3D reconstruction based on DeGraF feature-tracking emerged as the most

accurate feature-based approach, producing dense depth maps in real-time, while be-

ing resistant to noise and vibration. Starting with depth-map density, the proposed

approach achieved higher than 99% coverage, which is only matched by the dense

optical �ow approach, which by de�nition has 100% coverage. In terms of accuracy,

DeGraF produced the highest score while being 24 times faster than the runner up

and the second-fastest overall behind ORB [40] . ORB [40] produced the least dense

depth-maps with the lowest accuracy, thus its low-computational complexity could

not be exploited further. Finally, the built-in stabilisation feature of the DeGraF
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approach meant that it performs equally well in both simulated and real environ-

ments in the presence of noise and vibration. All the other approaches would require

a separate image stabilisation algorithm before performing 3D reconstruction, which

would further increase their computational complexity.

The second approach proposed in Chapter 4, performs local frequency analysis

of gradient features for estimating relative depth. This novel method is based on

the fact that DeGraF gradients can accurately measure local image variance with

sub-pixel accuracy. It was shown that the local frequency by which the centroid

oscillates around the gradient window centre is proportional to the depth of each

gradient centroid in the real world. Of course the lower computational complexity

of this methodology comes at the expense of depth map accuracy as the camera

velocity increases, however, it is at least �ve times faster than any other approach.

In chapter 5, a novel visual saliency algorithm was presented for calculating full

resolution saliency maps in real-time by using division of Gaussians. The method

comprises three distinct steps: 1) Bottom-up construction of Gaussian pyramid,

2) Top-down construction of Gaussian pyramid based on the output of Step 1, 3)

Element-by element division of the input image with the output of Step 2. Com-

pared to recent work by Achanta et al. [10], DIVoG showed a signi�cant increase in

performance by a factor of 6 when using colour images. A real-time implementation

of Achanta's work has also been carried out, leading to three times faster execution

time than the original implementation, which is still 56% slower than the DIVoG

approach. Given that for VGA (640 × 480) resolution the achieved framerate ex-

ceeds 80 fps on greyscale images using standard computer hardware, this algorithm

could signi�cantly improve the performance of a wide range of applications based

on salient feature detection. In addition, the DeGraF depth estimation approach

was used to improve the real-time performance of object detection methodologies

and in particular the HOG pedestrian detection algorithm [61]. Fusing information

from a DIVoG saliency map and a DeGraF depth map, gives a clear indication of the

regions of interest where objects are likely to exist. The results show comparable ac-

curacy between the original HOG implementation and our accelerated variant while

execution time has improved by at least �ve times.
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Overall, this thesis o�ers some major contributions to knowledge by proposing

signi�cantly faster algorithms for performing e�cient object detection. The chosen

approach is based on detecting and tracking features in order to perform 3D re-

construction before fusing the derived depth map with a saliency map. An object

detector then scans a limited subset of regions of interest in order to con�rm whether

the detected object belongs in a prede�ned class. Each algorithm contributes not

only to more e�cient object detection but also to a wide range of computer vision

applications that could bene�t from faster feature detection, 3D reconstruction or

visual saliency measurement.

6.2 Future work

This thesis has developed a set of real-time algorithms for automotive applications,

however, there is more research still required in several directions. The �rst area

is related to feature detection. The approach presented in Chapter 3 proposes a

new noise-resistant model for calculating gradients, which fundamentally increases

the accuracy and performance of gradient-based approaches. DeGraF-α features

are derived by grouping DeGraF-β features and and then marking the local maxima

and minima as potential features. Instead a probabilistic framework could be used

for making a weighted decision on which is the most dominant feature. In addition,

when this approach is combined with existing feature descriptors, such as those pro-

posed by SIFT [1] and SURF [2], then DeGraF feature matching could be performed

for more e�cient object detection.

The algorithms in Chapter 4 that perform 3D reconstruction by tracking DeGraF

features should also be revisited. In this case, the focus should be on evaluating

di�erent types of feature tracking techniques, especially those that perform faster

than Bougeut's variant of the Lucas Kanade (LK) algorithm [68]. The fact that

gradient centroids o�er subpixel accuracy with high noise resistance should lead to

a wide range of applications that could be developed using low-cost cameras. In

addition, the 3D reconstruction algorithm shall be enhanced to support complex

vehicle motion. Currently, the majority of the tests are performed with the vehicle
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moving in a straight line. More testing is required when the vehicle is moving with

di�erent patterns in both motorways and urban environments.

The novel visual saliency algorithm proposed in Chapter 5 should �rstly be

tested with more object detection approaches in order to assess the bene�ts of sa-

liency information. A particular area of further research would be the accuracy of

deriving gradients from the saliency map rather than the raw image. Additionally,

the proposed approach could also be expanded into new areas outside the auto-

motive domain. For example, the proposed visual saliency approach could be used

in photography for faster autofocus or in security applications for more e�cient

identi�cation of suspects.

Finally, di�erent fusion strategies need to be adopted for combining visual sali-

ency and depth information. Currently, this is performed by pixel-wise multiplic-

ation of the two input maps, which performs at a satisfactory level, however, a

more probabilistic approach would ensure that the two maps do not always have

equal weight. For example, in an environment with very low saliency information,

the depth map should be the main source of extracting information and vice versa.

With the current approach both depth and saliency information need to be present

for the algorithm to operate reliably.



Bibliography

[1] D. G. Lowe, �Distinctive Image Features from Scale-Invariant Keypoints,� International
Journal of Computer Vision, vol. 60, no. 2, pp. 91�110, Nov. 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, �Speeded-up robust features (SURF),�
Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346�359, 2008.

[3] M. Bertozzi, A. Broggi, D. Colla, and R. Fascioli, �Sensing of automotive environments using
stereo vision,� in In 30th International Symposium on Automotive Technology and Automa-
tion ISATA Special Session on Machine Vision and Intelligent Vehicles and Autonomous
Robots, 1997, pp. 187�193.

[4] H. Durrant-Whyte and T. Bailey, �Simultaneous localization and mapping: part I,� IEEE
Robotics Automation Magazine, vol. 13, no. 2, pp. 99�110, 2006.

[5] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, �MonoSLAM: real-time single camera
SLAM.� IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 6, pp.
1052�67, Jun. 2007.

[6] S. K. Nayar and V. Branzoi, �Adaptive dynamic range imaging: optical control of pixel expo-
sures over space and time,� Proceedings Ninth IEEE International Conference on Computer
Vision, pp. 1168�1175 vol.2, 2003.

[7] M. Everingham and J. Winn, �The PASCAL Visual Object Classes Challenge 2011 (
VOC2011 ) Development Kit,� pp. 1�29, 2010.

[8] M. Enzweiler and D. M. Gavrila, �Monocular pedestrian detection: survey and experiments.�
IEEE transactions on pattern analysis and machine intelligence, vol. 31, no. 12, pp. 2179�95,
Dec. 2009.

[9] F. Ahmad, M. Gilbert, S. Myers, J. Pacheco, R. Castellane, and E. Miller, �Lagrange Gra-
dient Mask for Optical Image Processing,� The Open Optics Journal, vol. 1, no. 1, pp. 4�7,
2007.

[10] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk, �Frequency-tuned salient region detec-
tion,� in IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2009, pp. 1597�1604.

[11] G. R. Bradski and A. Kaehler, Learning OpenCV: Computer Vision in C++ with the
OpenCV Library, ser. Oreilly and Associate Series. O'Reilly Vlg. GmbH & Company,
2013. [Online]. Available: http://books.google.co.uk/books?id=qXH_uAAACAAJ

[12] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, �A mobile vision sys-
tem for robust multi-person tracking,� in 2008 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, Jun. 2008, pp. 1�8. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4587581' escapeXml='false'/>

[13] W. Jones, �Building safer cars,� IEEE Spectrum, vol. 39, no. 1, pp. 82�85, 2002.

[14] Mobileye, �Driver Assistance Vision Applications, Vehicle, Pedestrian, Lane Detection.�
[Online]. Available: http://www.mobileye-vision.com/default.asp?PageID=202

140



Bibliography 141

[15] C. Connolly, �Driver assistance systems aim to halve tra�c ac-
cidents,� Sensor Review, vol. 29, no. 1, pp. 13�19, Jan.
2009. [Online]. Available: http://www.emeraldinsight.com/journals.htm?issn=0260-
2288&volume=29&issue=1&articleid=1768982&show=html

[16] V. Kastrinaki, M. Zervakis, and K. Kalaitzakis, �A survey of video processing techniques for
tra�c applications,� Image and Vision Computing, vol. 21, no. 4, pp. 359�381, 2003.

[17] A. Geiger, P. Lenz, and R. Urtasun, �Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite,� 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3354�3361, Jun. 2012. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6248074

[18] M. L. Eichner and T. P. Breckon, �Real-Time Video Analysis for Vehicle
Lights Detection using Temporal Information,� in Proc. 4th European Confer-
ence on Visual Media Production. IET, Nov. 2007, pp. I�9. [Online]. Available:
http://www.cran�eld.ac.uk/ toby.breckon/publications/papers/eichner07headlights.pdf

[19] I. Katramados, S. Crumpler, and T. Breckon, �Real-Time Traversable Surface Detection by
Colour Space Fusion and Temporal Analysis,� in Lecture Notes in Computer Science, Volume
5815/2009, ser. Lecture Notes in Computer Science, M. Fritz, B. Schiele, and J. Piater, Eds.
Springer Berlin / Heidelberg, 2009, vol. 5815, pp. 265�274.

[20] A. Kheyrollahi and T. P. Breckon, �Automatic Real-time Road Mark-
ing Recognition Using a Feature Driven Approach,� Machine Vision and
Applications, vol. 23, no. 1, pp. 123�133, 2012. [Online]. Available:
http://www.cran�eld.ac.uk/ toby.breckon/publications/papers/kheyrollahi12marking.pdf

[21] F. Mroz and T. P. Breckon, �An Empirical Comparison of Real-time Dense Stereo
Approaches for use in the Automotive Environment,� EURASIP Journal on Image
and Video Processing, vol. 2012, no. 13, pp. 1�19, 2012. [Online]. Available:
http://www.cran�eld.ac.uk/ toby.breckon/publications/papers/mroz12stereo.pdf

[22] I. Tang and T. P. Breckon, �Automatic Road Environment Clas-
si�cation,� IEEE Transactions on Intelligent Transportation Systems,
vol. 12, no. 2, pp. 476�484, Jun. 2011. [Online]. Available:
http://www.cran�eld.ac.uk/ toby.breckon/publications/papers/tang11classi�cation.pdf

[23] P. R. Beaudet, �Rotationally invariant image operators,� in International Joint Conference
on Pattern Recognition, vol. 579, no. 2. Proceedings of the International Joint Conference
on Pattern Recognition, 1978, pp. 579�583.

[24] H. P. Moravec, �Visual mapping by a robot rover,� in Proc of the 6th International Joint
Conference on Arti�cial Intelligence. Morgan Kaufmann Publishers Inc., 1979, pp. 598�600.

[25] W. Förstner and E. Gülch, �A fast operator for detection and precise location of distinct
points, corners and centres of circular features,� in ISPRS Intercommission Workshop Inter-
laken, 1987, pp. 281�305.

[26] C. Harris and M. Stephens, �A combined edge and corner detector,� Proc 4th Alvey Vision
Conference, 1988.

[27] C. Tomasi and T. Kanade, �Detection and Tracking of Point Features,� Order A Journal On
The Theory Of Ordered Sets And Its Applications, vol. 7597, no. 7597, p. 22, 1991.

[28] J. Shi and C. Tomasi, �Good features to track,� Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition CVPR94, vol. 94, no. June, pp. 593�600, 1994.

[29] R. M. Haralick, �Digital step edges from zero crossing of second directional derivatives.�
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 1, pp. 58�68,
1984.

[30] F. Heitger, L. Rosenthaler, R. Von Der Heydt, E. Peterhans, and O. Kubler, �Simulation
of neural contour mechanisms: from simple to end-stopped cells,� Vision Research, vol. 32,
no. 5, pp. 963�981, 1992.



Bibliography 142

[31] S. M. Smith and J. M. Brady, �SUSAN - A New Approach to Low Level Image Processing,�
International Journal of Computer Vision, vol. 23, no. 1, pp. 45�78, 1997.

[32] E. Rosten and T. Drummond, �Machine learning for high-speed corner detection,� European
Conference on Computer Vision (ECCV ), pp. 430�443, 2006.

[33] K. Mikolajczyk and C. Schmid, �An a�ne invariant interest point detector,� Image Rochester
NY, vol. 1, no. 1, pp. 128�142, 2002.

[34] K. Mikolajczyk, �Scale & A�ne Invariant Interest Point Detectors,� International Journal
of Computer Vision, vol. 60, no. 1, pp. 63�86, 2004.

[35] J. Matas, �Robust wide-baseline stereo from maximally stable extremal regions,� Image and
Vision Computing, vol. 22, no. 10, pp. 761�767, 2004.

[36] T. Kadir and M. Brady, �Saliency, Scale and Image Description,� International Journal of
Computer Vision, vol. 45, no. 2, pp. 83�105, 2001.

[37] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Scha�alitzky, T. Kadir,
and L. V. Gool, �A Comparison of A�ne Region Detectors,� International Journal of Com-
puter Vision, vol. 65, no. 1-2, pp. 43�72, 2005.

[38] M. Agrawal, K. Konolige, and M. R. Blas, �CenSurE: Center Surround Extremas for Realtime
Feature Detection and Matching,� Lecture Notes in Computer Science, vol. 5305/2008, pp.
102�115, 2008.

[39] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, �Adaptive and Generic Cor-
ner Detection Based on the Accelerated Segment Test,� Computer Vision ECCV 2010, vol.
6312, pp. 183�196, 2010. [Online]. Available: http://www6.in.tum.de/Main/ResearchAgast

[40] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, �ORB: An
e�cient alternative to SIFT or SURF,� 2011 International Conference
on Computer Vision, pp. 2564�2571, Nov. 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6126544

[41] B. Zitova, �Image registration methods: a survey,� Image and Vision Com-
puting, vol. 21, no. 11, pp. 977�1000, Oct. 2003. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0262885603001379

[42] M. Andriluka, S. Roth, and B. Schiele, �Monocular 3D pose estimation and tracking by
detection,� IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), no. 2, pp. 623�630, Jun. 2010.

[43] J. Civera, A. J. Davison, and J. M. M. Montiel, �Inverse Depth to Depth Conversion for
Monocular SLAM,� Proceedings 2007 IEEE International Conference on Robotics and Au-
tomation, vol. 10, no. April, pp. 2778�2783, 2007.

[44] A. J. Davison, Y. G. Cid, and N. Kita, �Real-Time 3D SLAM with Wide-Angle Vision,� in
Proc IFAC Symposium on Intelligent Autonomous Vehicles Lisbon. Citeseer, 2004.

[45] D. Hahnel, R. Triebel, W. Burgard, and S. Thrun, �Map building with mobile robots in
dynamic environments,� 2003 IEEE International Conference on Robotics and Automation
Cat No03CH37422, vol. 2, pp. 1557�1563, 2003.

[46] J. Civera, A. J. Davison, and J. Montiel, �Inverse Depth Parametrization for Monocular
SLAM,� IEEE Transactions on Robotics, vol. 24, no. 5, pp. 932�945, 2008.

[47] J. E. Guivant and E. M. Nebot, �Optimization of the simultaneous localization and map-
building algorithm for real-time implementation,� pp. 242�257, 2001.

[48] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix, �Vision-Based SLAM: Stereo and Monoc-
ular Approaches,� International Journal of Computer Vision, vol. 74, no. 3, pp. 343�364,
2007.

[49] J. M. M. Montiel, J. Civera, and A. J. Davison, �Uni�ed Inverse Depth Parametrization for
Monocular SLAM,� Proc Robotics Science and Systems, vol. 9, p. 1, 2006.



Bibliography 143

[50] O. Stasse, A. Davison, R. Sellaouti, and K. Yokoi, �Real-time 3D SLAM for Humanoid Robot
considering Pattern Generator Information,� Camera, pp. 348�355, 2006.

[51] C.-c. Wang, C. Thorpe, and S. Thrun, �Online simultaneous localization and mapping with
detection and tracking of moving objects: theory and results from a ground vehicle in
crowded urban areas,� 2003 IEEE International Conference on Robotics and Automation
Cat No03CH37422, vol. 1, pp. 842�849, 2003.

[52] B. Williams, G. Klein, and I. Reid, �Real-Time SLAM Relocalisation,� IEEE 11th Interna-
tional Conference on Computer Vision (2007), vol. 07, pp. 1�8, 2007.

[53] D. C. K. Yuen and B. A. MacDonald, �An evaluation of the sequential Monte Carlo technique
for simultaneous localisation and map-building,� Robotics and Automation 2003 Proceedings
ICRA 03 IEEE International Conference on, vol. 2, pp. 1564�1569, 2003.

[54] R. Newcombe, S. J. Lovegrove, and A. J. Davison, �DTAM:
Dense tracking and mapping in real-time,� 2011 International Confer-
ence on Computer Vision, pp. 2320�2327, Nov. 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6126513

[55] D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, �Survey of pedestrian detection for
advanced driver assistance systems.� IEEE transactions on pattern analysis and machine
intelligence, vol. 32, no. 7, pp. 1239�58, Jul. 2010.

[56] M. L. Eichner and T. P. Breckon, �Integrated speed limit detection and recognition from
real-time video,� in IEEE Intelligent Vehicles Symposium. IEEE, Jun. 2008, pp. 626�631.

[57] T. Gandhi and M. Trivedi, �Pedestrian Protection Systems: Issues, Survey, and Challenges,�
IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 3, pp. 413�430, Sep.
2007.

[58] R. Bishop, Intelligent Vehicle Technology and Trends. Artech House, 2005.

[59] I. Kallenbach, R. Schweiger, G. Palm, and O. Lohlein, �Multi-class Object Detection in
Vision Systems Using a Hierarchy of Cascaded Classi�ers,� in IEEE Intelligent Vehicles
Symposium. IEEE, 2006, pp. 383�387.

[60] F. Xiaodong, �E�cient Multiclass Object Detection by a Hierarchy of Classi�ers,� in IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05),
vol. 1. IEEE, 2005, pp. 716�723.

[61] N. Dalal and W. Triggs, �Histograms of Oriented Gradients for Human Detection,� 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR05,
vol. 1, no. 3, pp. 886�893, 2004.

[62] R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk, �Salient Region Detection and Segmen-
tation,� in Computer Vision Systems, ser. LNCS. Springer Berlin / Heidelberg, 2008, vol.
5008, pp. 66�75.

[63] R. Achanta and S. Süsstrunk, �Saliency detection for content-aware image resizing,� in IEEE
ICIP, 2009, pp. 1005�1008.

[64] R. Achanta and S. Susstrunk, �Saliency detection using maximum symmetric surround,� in
IEEE ICIP, 2010, pp. 2653�2656.

[65] N. J. Butko, L. Z., G. W. Cottrell, and J. R. Movellan, �Visual saliency model for robot
cameras,� in IEEE ICRA, May 2008, pp. 2398�2403.

[66] D. G. and N. Vasconcelos, �Bottom-up saliency is a discriminant process,� in IEEE ICCV,
2007, pp. 1�6.

[67] D. Gao, V. Mahadevan, and N. Vasconcelos, �On the plausibility of the discriminant center-
surround hypothesis for visual saliency,� Journal of Vision, vol. 8, no. 7, 2008.



Bibliography 144

[68] J. Bouguet, �Pyramidal implementation of the a�ne lucas kanade feature tracker description
of the algorithm,� Intel Corporation, vol. 1, no. 2, pp. 1�9, 2001. [Online]. Available:
http://robots.stanford.edu/cs223b04/algo_a�ne_tracking.pdf

[69] L. Itti, C. Koch, and E. Niebur, �A model of saliency-based visual attention for rapid scene
analysis,� IEEE PAMI, vol. 20, no. 11, pp. 1254�1259, Nov. 1998.

[70] Y.-F. Ma and H.-J. Zhang, �Contrast-based image attention analysis by using fuzzy growing,�
in Proceedings of the 11th ACM international conference on Multimedia. ACM, 2003, pp.
374�381.

[71] X. Hou and L. Zhang, �Saliency Detection: A Spectral Residual Approach,� in IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007, pp.
1�8.

[72] J. Harel, C. Koch, and P. Perona, �Graph-based visual saliency,� Advances in Neural Infor-
mation Processing Systems, vol. 19, pp. 545�552, 2007.

[73] T. Tuytelaars and K. Mikolajczyk, �Local Invariant Feature Detectors: A Survey,� Founda-
tions and Trends in Computer Graphics and Vision, vol. 3, no. 3, pp. 177�280, 2007. [Online].
Available: http://www.nowpublishers.com/product.aspx?product=CGV&doi=0600000017

[74] F. Remondino, �Detectors and descriptors for photogrammetric applications,� International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36,
no. 3, pp. 49�54, 2006.

[75] E. Rosten and T. Drummond, �Fusing points and lines for high performance tracking,� 10th
IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp. 1508�1515
Vol. 2, 2005.

[76] E. Rosten, R. Porter, and T. Drummond, �Faster and better: a machine learning approach to
corner detection.� IEEE transactions on pattern analysis and machine intelligence, vol. 32,
no. 1, pp. 105�19, Jan. 2010.

[77] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, �BRIEF: binary robust in-
dependent elementary features,� pp. 778�792, Sep. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1888089.1888148

[78] T. Kadir and M. Brady, �Scale Saliency: a novel approach to salient feature and scale
selection,� in International Conference on Visual Information Engineering VIE 2003 Ideas
Applications Experience. IET, 2003, pp. 25�28.

[79] T. Kadir, A. Zisserman, and M. Brady, �An A�ne Invariant Salient Region Detector,� in
ECCV, ser. LNCS. Springer Berlin / Heidelberg, 2004, vol. 3021, pp. 228�241.

[80] T. Morris, Computer Vision and Image Processing, ser. Cornerstones of Computing Series.
Palgrave Macmillan Limited, 2003.

[81] A. Yilmaz, O. Javed, and M. Shah, �Object tracking,� ACM Computing Surveys, vol. 38,
no. 4, p. 13, 2006.

[82] C. J. Veenman, M. J. T. Reinders, and E. Backer, �Resolving motion correspondence for
densely moving points,� pp. 54�72, 2001.

[83] V. Salari and I. K. Sethi, �Feature point correspondence in the presence of occlusion,� IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 87�91, 1990.

[84] T. J. Broida and R. Chellappa, �Estimation of Object Motion Parameters from Noisy Im-
ages,� IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 1, pp.
90�99, 1986.

[85] T. Kirubarajan and Y. Bar-Shalom, �Probabilistic data association techniques for target
tracking in clutter,� pp. 536�557, 2004.

[86] R. L. Streit and T. E. Luginbuhl, �Maximum likelihood method for probabilistic multihy-
pothesis tracking,� in Proceedings of SPIE, vol. 2235, 1994, p. 394.



Bibliography 145

[87] D. Comaniciu, V. Ramesh, and P. Meer, �Kernel-based object tracking,� IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564�577, 2003.

[88] H. T. H. Tao, H. S. Sawhney, and R. Kumar, �Object tracking with Bayesian estimation
of dynamic layer representations,� IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 1, pp. 75�89, 2002.

[89] M. J. Black and A. D. Jepson, �EigenTracking : Robust Matching and Tracking of Articulated
Objects Using a View-Based Representation,� International Journal of Computer Vision,
vol. 26, no. 1, pp. 63�84, 1998.

[90] S. Avidan, �Support vector tracking.� IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 8, pp. 1064�1072, 2004.

[91] A. Blake and M. Isard, �Active Contours,� Signal Processing Image Communication, vol. 17,
no. 6, 1998.

[92] M. Bertalmio, L. Cheng, S. Osher, and G. Sapiro, �Variational Problems and Partial Dif-
ferential Equations on Implicit Surfaces,� Journal of Computational Physics, vol. 174, no. 2,
pp. 759�780, 2001.

[93] R. Ronfard, �Region-based strategies for active contour models,� International Journal of
Computer Vision, vol. 13, no. 2, pp. 229�251, 1994.

[94] D. P. Huttenlocher, J. J. Noh, and W. J. Rucklidge, �Tracking non-rigid objects in complex
scenes,� in Computer Vision 1993 Proceedings Fourth International Conference on, no. TR92-
1320, Cornell University. IEEE Computer Society Press, 1993, pp. 93�101.

[95] K. Sato and J. Aggarwal, �Temporal spatio-velocity transform and its application to tracking
and interaction,� Computer Vision and Image Understanding, vol. 96, no. 2, pp. 100�128,
2004.

[96] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed., Nov. 2010.

[97] B. D. Lucas and T. Kanade, �An iterative image registration technique
with an application to stereo vision,� International Joint Conference on Ar-
ti�cial Intelligence, vol. 130, no. x, pp. 674�679, 1981. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.2019&amp;rep=rep1&amp;type=pdf

[98] P. Anandan, �A computational framework and an algorithm for the measurement of visual
motion,� International Journal of Computer Vision, vol. 2, no. 3, pp. 283�310, 1989.
[Online]. Available: http://www.springerlink.com/index/10.1007/BF00158167

[99] S. Baker, D. Scharstein, and J. Lewis, �A database and evaluation methodology for optical
�ow,� Vision, 2007. ICCV, vol. 92, no. 1, pp. 1�31, Nov. 2007.

[100] V. Marion, �Method of color image processing to eliminate shadows and re�ections,� Word
Intellectual Property Organisation, vol. WO 2004/02, 2002.

[101] R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, �Improving shadow suppression
in moving object detection with HSV color information,� ITSC 2001 2001 IEEE Intelligent
Transportation Systems Proceedings Cat No01TH8585, pp. 334�339, 2001.

[102] C. Fredembach and G. Finlayson, �Simple Shadow Removal,� Pattern Recognition, pp. 18�21,
2006.

[103] A. Prati, I. Mikic, M. M. Trivedi, and R. Cucchiara, �Detecting moving shadows: algorithms
and evaluation,� IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 7, pp. 918�923, 2003.

[104] L. Xu, F. Qi, and R. Jiang, �Shadow Removal from a Single Image,� Sixth International
Conference on Intelligent Systems Design and Applications, vol. 2, pp. 1049�1054, 2006.

[105] X. Tao, M. Guo, and B. Zhang, �A neural network approach to the elimination of road shadow
for outdoor mobile robot,� 1997 IEEE International Conference on Intelligent Processing
Systems Cat No97TH8335, vol. 2, pp. 1302�1306, 1997.



Bibliography 146

[106] J. Alvarez and A. Lopez, �Road Detection Based on Illuminant Invariance,� IEEE Transac-
tions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 184�193, 2011.

[107] J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, Y. Lai, N. Davis, and F. Nu�o, �Modeling
visual attention via selective tuning,� Arti�cial Intelligence, vol. 78, no. 1-2, pp. 507�545,
1995.

[108] N. Ouerhani and H. Hugli, �MAPS: multiscale attention-based presegmentation of color im-
ages,� in Proceedings of the 4th International conference on scale space methods in computer
vision. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 537�549.

[109] S. L. M. Won W.J. Jeong, �Road Tra�c Sign Saliency Map Model,� in Proceedings of Image
and Vision Computing New Zealand, 2007, pp. 91�96.

[110] J. Sokalski, T. P. Breckon, and I. Cowling, �Automatic Salient Object Detection in UAV
Imagery,� in Proc. 25th International Unmanned Air Vehicle Systems, Apr. 2010, pp. 11.1�
11.12.

[111] H. Yu, J. Li, Y. Tian, and T. Huang, �Automatic interesting object extraction from im-
ages using complementary saliency maps,� in Proceedings of the international conference on
Multimedia. ACM, 2010, pp. 891�894.

[112] Z. Gu and B. Qin, �Nonrigid Registration of Brain Tumor Resection MR Images Based on
Joint Saliency Map and Keypoint Clustering,� Sensors, vol. 9, no. 12, pp. 10 270�10 290,
2009.

[113] C. W. H. Ngau, L. M. Ang, and K. P. Seng, �Bottom-up visual saliency map using wavelet
transform domain,� in IEEE ICCSIT, vol. 1, 2010, pp. 692�695.

[114] D. Walther and D. Koch, �Modeling attention to salient proto-objects,� Neural Networks,
vol. 19, no. 9, pp. 1395�1407, 2006.

[115] S. Frintrop, M. Klodt, and E. Rome, �A real-time visual attention system using integral
images,� ICVS, 2007.

[116] T. Bailey and H. F. Durrant-Whyte, �Simultaneous Localization and Mapping (SLAM): Part
II State of the Art,� IEEE Robotics and Automation Magazine, vol. 13, no. 3, pp. 108�117,
2006.

[117] C. Brenneke, O. Wulf, and B. Wagner, �Using 3d laser range data for slam in outdoor
environments,� Proceedings 2003 IEEERSJ International Conference on Intelligent Robots
and Systems IROS 2003 Cat No03CH37453, vol. 1, no. section 2, pp. 188�193, 2003.

[118] P. Newman, J. Leonard, J. D. Tardos, and J. Neira, �Explore and return: experimental
validation of real-time concurrent mapping and localization,� in Proceedings 2002 IEEE
International Conference on Robotics and Automation Cat No02CH37292, vol. 2, no. May,
IEEE Internation Conference on Robotics and Automation. IEEE, 2002, pp. 1802�1809.

[119] S. Thrun, �Robotic Mapping : A Survey,� Science, vol. 298, no. February, pp. 1�35, 2002.

[120] T. A. V. Calleja, �Visual Navigation and Environment Modeling for Wheeled Mobile Robots,�
Ph.D. dissertation, Institut de Robotica i Informatica Industrial, Universitat Politecnica de
Catalunya, 2007.

[121] D. Fox, W. Burgard, and S. Thrun, �Markov localization for mobile robots in dynamic
environments,� Journal of Arti�cial Intelligence Research, vol. 11, no. 3, pp. 391�427, 1999.

[122] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller, �An Atlas framework
for scalable mapping,� 2003 IEEE International Conference on Robotics and Automation
Cat No03CH37422, vol. 2, no. September, pp. 1899�1906, 2003.

[123] J. Civera, A. J. Davison, J. A. Magallón, and J. M. M. Montiel, �Drift-Free Real-Time
Sequential Mosaicing,� International Journal of Computer Vision, vol. 81, no. 2, pp. 128�
137, 2008.



Bibliography 147

[124] R. Smith, M. Self, and P. Cheeseman, �A stochastic map for uncertain spatial relationships,�
in Proceedings of the 4th international symposium on Robotics Research, O. Faugeras and
G. Giralt, Eds., no. 0262022729, MIT Press. MIT Press, 1988, pp. 467�474.

[125] S. B. Goldberg, M. W. Maimone, and L. Matthies, �Stereo vision and rover navigation
software for planetary exploration,� Proceedings IEEE Aerospace Conference, vol. 5, no.
March, pp. 5�2025�5�2036, 2002.

[126] J. Adkisson, Lost Eye: Coping with Monocular Vision after Enucleation or Eye Loss from
Cancer, Accident, Disease. iUniverse, 2006.

[127] A. Saxena, M. Sun, and A. Y. Ng, �Make3D: learning 3D scene structure from a single still
image.� IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp.
824�40, 2009.

[128] P. E. Debevec and J. Malik, �Recovering high dynamic range radiance maps from pho-
tographs,� in ACM SIGGRAPH 2008 classes on - SIGGRAPH '08. New York, New York,
USA: ACM Press, Aug. 2008, p. 1.

[129] U. Rutishauser, D. Walther, C. Koch, and P. Perona, �Is Bottom-Up Attention Useful for
Object Recognition?� IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2, pp. 37�44, 2004.

[130] V. A. Prisacariu and I. Reid, �fastHOG - a real-time GPU implementation of HOG,� Science,
vol. 2310, no. 2310, pp. 1�13, 2009.

[131] B. Verma and M. Blumenstein, Pattern recognition technologies and applications: recent
advances. Idea Group Inc (IGI), 2008.

[132] M. Verma and P. W. McOwan, �A semi-automated approach to balancing of bottom-up
salience for predicting change detection performance,� Journal of Vision, vol. 10, no. 6,
2010.

[133] M. Pedersoli, J. Gonz, A. D. Bagdanov, and J. J. Villanueva, �Recursive Coarse-to-Fine
Localization for fast Object Detection,� European Conference on Computer Vision (ECCV
), vol. 6316, pp. 280�293, 2010.

[134] C. Wohler and J. K. Anlauf, �An adaptable time-delay neural-network algo-
rithm for image sequence analysis.� pp. 1531�1536, 1999. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/18252656

[135] S. Munder and D. M. Gavrila, �An experimental study on pedestrian classi�cation.� IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1863�1868,
2006. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/17063690

[136] S. Avidan, �Fast Human Detection Using a Cascade of Histograms of Oriented Gradients,�
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 2, no. c, pp. 1491�1498, 2006.

[137] Y. Freund, �A Decision-Theoretic Generalization of On-Line Learning and an Application
to Boosting,� Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119�139, 1997.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S002200009791504X

[138] G. Borgefors, �Distance transformations in digital images,� Computer Vision Graphics
and Image Processing, vol. 34, no. 3, pp. 344�371, 1986. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0734189X86800470

[139] D. M. Gavrila and S. Munder, �Multi-cue Pedestrian Detection and Tracking from a
Moving Vehicle,� International Journal of Computer Vision, vol. 73, no. 1, pp. 41�59, 2006.
[Online]. Available: http://www.springerlink.com/index/10.1007/s11263-006-9038-7

[140] P. L. Rosin, �Measuring corner properties,� Computer Vision and Im-
age Understanding, vol. 73, no. 2, pp. 291�307, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1077314298907196



Bibliography 148

[141] T. Vaudrey, C. Rabe, R. Klette, and J. Milburn, �Di�erences between stereo and motion
behaviour on synthetic and real-world stereo sequences,� 23rd International Conference
Image and Vision Computing New Zealand, pp. 1�6, Nov. 2008. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4762133

[142] A. Wedel, C. Rabe, T. Vaudrey, and T. Brox, �E�cient dense scene
�ow from sparse or dense stereo data,� pp. 1�12, 2008. [Online]. Available:
http://researchspace.auckland.ac.nz/handle/2292/3257

[143] S. Baker and I. Matthews, �Lucas-Kanade 20 Years On : A Unifying Framework,� Interna-
tional Journal of Computer Vision, vol. 56, no. 3, pp. 221�255, 2004.

[144] M. Tao, J. Bai, P. Kohli, and S. Paris, �SimpleFlow: A Non-iterative, Sublinear Optical
Flow Algorithm,� Computer Graphics Forum, vol. 31, no. 2pt1, pp. 345�353, May 2012.
[Online]. Available: http://doi.wiley.com/10.1111/j.1467-8659.2012.03013.x

[145] M. Grundmann, V. Kwatra, and I. Essa, �Auto-Directed Video Stabilization with Robust L1
Optimal Camera Paths,� in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2011), 2011.



Appendix A

Publications

A.1 Real-Time Traversable Surface Detection by Col-

our Space Fusion and Temporal Analysis

The following paper has been published in the �Lecture Notes in Computer Science�,

Volume 5815/2009, p265-274. This paper was presented in the �7th International

Conference on Computer Vision Systems (ICVS'09)� in Liège, Belgium on 14th

October 2009. The details are:

� Paper title

Real-Time Traversable Surface Detection by Colour Space Fusion and Tem-

poral Analysis

� Authors

Ioannis Katramados, Steve Crumpler, Toby P. Breckon

A copy of this paper is attached.

149



Real-time traversable surface detection by colour

space fusion and temporal analysis

Ioannis Katramados1, Steve Crumpler2 and Toby P. Breckon1

1Cran�eld University, School of Engineering, Cran�eld, MK43 0AL, UK
{i.katramados, toby.breckon}@cran�eld.ac.uk

2TRW Conekt, Stratford Road, Solihull, B90 4GW, UK
steve.crumpler@trw.com

Abstract. We present a real-time approach for traversable surface de-
tection using a low-cost monocular camera mounted on an autonomous
vehicle. The proposed methodology extracts colour and texture informa-
tion from various channels of the HSL, YCbCr and LAB colourspaces
by temporal analysis in order to create a �traversability map�. On this
map lighting and water artifacts are eliminated including shadows, re�ec-
tions and water prints. Additionally, camera vibration is compensated by
temporal �ltering leading to robust path edge detection in blurry images.
The performance of this approach is extensively evaluated over varying
terrain and environmental conditions and the e�ect of colourspace fusion
on the system's precision is analysed. The results show a mean accuracy
of 97% over this comprehensive test set.

1 Introduction

This work addresses the problem of autonomous vehicle navigation in semi-
structured or unstructured environments where geometrical road models are not
applicable. Speci�cally, a real-time approach is presented which facilitates the
detection of traversable surfaces via temporal analysis of multiple image proper-
ties. These properties are speci�cally selected to provide maximally descriptive
image information with a minimal computational overhead per image frame. Ini-
tially, a multi-stage approach is proposed for feature extraction based on colour
and texture analysis. This information is then stored in a temporal memory
structure to improve algorithm robustness by means of noise �ltering. The pro-
posed methodology has been implemented on the SATURN unmanned ground
vehicle as part of the MoD Grand Challenge competition (2008).

Engineering road and obstacle detection systems has long been at the centre
of academic and industrial research, leading to a number of successful imple-
mentations, ranging from the early road-following systems [4, 16] to the most
recent fully automated vehicles in the DARPA Urban Challenge competition
(2007) [1, 5, 14]. Additionally, signi�cant research has been motivated by various
vehicle platforms for Mars exploration missions [7, 8]. However, the sensing and
processing complexity of these systems has often led to costly solutions which
whilst useful for exploiting the current limits of technology, do not address the



demand for low-cost autonomous platforms utilising widely available low-cost
sensors. Creating such vision systems is not a new concept [3, 11]. Embedded
lane-departure warning systems [9, 10], are increasingly becoming commonplace
in commercial vehicles, motivated by the demand for improved driver safety.
However, not every driving environment is as structured as a conventional road-
way and an autonomous vehicle may also be required to traverse unstructured
environments under varying conditions.

Fig. 1. Traversable area detection methodology

Several prior approaches focus on obstacle detection and avoidance by analysing
basic image properties such as texture, colour, hue and saturation of the monoc-
ular image. Such approaches are often built on the assumption that the area
directly in front of the vehicle is always traversable (initial state assumption)
and use a �safe� window to derive the properties of that surface [13]. Obstacles
and non-traversable areas are normally identi�ed through a probabilistic model
which is based on the similarity of each image pixel to the �safe window� [2, 13,
7]. This becomes the initial a priori model from which the system is driven as
demonstrated by the Pebbles III robot [13]. The advantages of this approach
include �exibility to changing conditions/terrains, limited training requirements
and real-time performance. On the other hand, a major disadvantage is its in-
ability to distinguish between surfaces with similar properties due to noise, il-



lumination and environmental e�ects. To solve this problem Kröse et al. [12]
proposed the use of optical �ow-based techniques, however this is often sensitive
to camera vibration and incurs additional computational cost. The work of [12]
does however introduce the important aspect of temporal analysis (via frame-
to-frame optical �ow) as a driver to overcome the earlier limitations of [16, 13].
By contrast, this paper proposes a real-time solution as inspired by the Navlab
�Road Following� module [16] and Pebbles III robot [13], with some fundamen-
tal changes in the image feature selection from multiple colourspaces and the
addition of a novel temporal memory model.

2 Feature extraction for traversable area detection

The following methodology aims to extract information from the video stream
output of a vehicle-mounted camera in order to create a map of the traversable
and non-traversable areas in real-time. The main challenge is the creation of an
algorithm that is adaptable to variable environmental conditions while utilising
the least possible computational resource that would facilitate execution on a
low-cost processing unit. Figure 2 provides some examples of such challenging
conditions that were experienced during the MoD Grand Challenge competi-
tion. The proposed approach is divided into four incremental stages: a) camera
image pre-processing, b) multi-dimensional segmentation by histogram analysis,
c) temporal information processing, d) traversable area mapping. As illustrated
in the overview diagram of Figure 1, the �rst stage deals with colour and tex-
ture extraction by using intensity-invariant channels of di�ering colourspaces.
The resolution of each input channel is then pyramidically reduced in order to
improve system performance and reduce noise (Figure 1 centre). Finally, the
lower-resolution images are segmented and �ltered using a temporal memory
model that produces the �traversability� map (Figure 1 lower).

Fig. 2. Examples of challenging environmental conditions with shadows, re�ections
from standing water and wet prints

2.1 Camera Image Pre-processing

First we describe the noise-�ltering approach that is applied prior to segmenta-
tion in order to eliminate shadows, re�ections and water prints. This is achieved



by combining individual channels from di�ering colourspaces to extract colour
and texture information that is insensitive to illumination changes. Prior re-
search [17, 6, 15, 13] has shown that choosing the right colourspace is crucial for
extracting accurate path and obstacle features. In fact this methodology com-
bines the HSL, YCbCr and LAB colourspaces [15] to derive four illumination
invariant features as listed below:

� Saturation (based on the S channel of the HSL colourspace)
By converting the RGB colourspace to HSL, the saturation channel is ex-
tracted (as illustrated in Figure 3) and further resized to a coarse 64 × 48
saturation intensity map by Gaussian pyramid decomposition of the 320×240
input image.

� Saturation-based texture

This can be derived by applying an edge detector on the S channel of the
HSL colourspace (Figure 3). Then the texture is de�ned as the density of
edges in di�erent parts of the image. Practically, this is achieved by Gaussian
pyramid decomposition of the output of the Sobel edge detector in order to
generate a low-resolution 64× 48 grid.

� Mean Chroma (based on combining the Cb and Cr components of the
YCbCr colourspace with the A component of the LAB colourspace)
Chroma provides luminance-independent colour information in the YCbCr
colourspace. As with the S channel of the HSL colourspace, dark shadows
and re�ections alter the chroma level making their detection di�cult. To
solve this problem Wu et al. [17] propose the combination of the two chroma
components (Cb and Cr) in order to detect features that are entirely light
intensity invariant. However, the Cb and Cr components have a relatively
small variation range when compared to the Y component. Based on this
observation, the Cb and Cr values are scaled to �t the 0− 255 (8-bit) range
and subsequently their mean value is derived. The A channel of the LAB
colourspace also provides intensity invariant information, thus by combining
it with the mean value of Cb and Cr, a map of colour distribution (Figure
4a) is created as described by equation 1.

chromamap =
sCb+ sCr + 2sA

4
(1)

where sCb is the Cb channel of the YCbCr colourspace, sCr is the Cr channel
of the YCbCr colourspace and is the A channel of the LAB colourspace.
These three parameters have been scaled to 8-bit (0− 255 range).
An example of a mean chroma map is illustrated in Figure 4a, where most
re�ections have successfully been eliminated. This map is also pyramidically
reduced to a coarse 64× 48 grid.

� Chroma-based texture (based on the Cb and Cr components of the
YCbCr colourspace)
This is derived by calculating the mean value of the Cb and Cr components
to generate a new chroma map. The Sobel edge detector is subsequently
applied to this map in order to calculate a chroma-based texture density



Fig. 3. Image analysis into four input channels: saturation, saturation-based texture,
mean chroma and chroma-based texture

using the process described in the saturation-based texture above (Figure
3).

At this point we have four 64×48 arrays (8-bit) representing a set of characteristic
image properties. These arrays form the input of the segmentation algorithm as
described in the following section.

2.2 Segmentation by Histogram Analysis

Several prior path-following techniques have been developed around the assump-
tion that the area immediately in front of the vehicle is initially traversable and
thus they identify the pathway by comparison to �safe� window near the bottom
of the image [13, 2]. The current approach also adopts this idea since the �safe�
window can always be validated by low-cost active short-range sensors such as
ultrasonic or infrared. A histogram is calculated for each of the four input im-
age arrays (from the pre-processing stage) within the safe area. The histogram
resolution is then reduced by a factor of 8 in order to simplify its processing and
improve performance. Thus four di�erent histograms are derived, from which
the dominant features of the traversable area are extracted by detecting the his-
togram peaks based on the assumption that each surface is characterised by a
certain combination of saturation, chrominance and texture density levels. Each
histogram peak is considered as a feature with �ve attached properties:

� Left histogram peak edge: The point where the left side of the peak meets
the �mean level�1 line

� Right histogram peak edge: The point where the right side of the peak
meets the �mean level� line

� Histogram peak value: The peak value of the low-resolution histogram
� Mean segment value: The mean value of the left and right edges of the
histogram peak

� Age: The time that the peak has remained consistent (in terms of persistence
over multiple image frames). A peak is considered as a valid feature only if
its age is above a certain threshold. In our tests, the age threshold was set
to 10 frames (0.4 sec) with a maximum possible age of 30 frames (1.2 sec).

1 De�ned as the mean of all the histogram values



The left and right histogram peak edges form a histogram segment. Each image
pixel is marked as traversable only if its value falls within one of the histogram
segments. The remaining pixels are marked as non-traversable. In most cases,
the histogram will have only one main segment thus the image will essentially
be thresholded. However, more complex surfaces may result in two or more
histogram peaks and thus two or more segments. This feature makes the current
approach suitable for identifying simple as well as composite traversable surfaces.
At this stage, we have four segmented image arrays for each of the four inputs.
These arrays are then stored in a temporal memory structure as described in
the next section.

2.3 Temporal memory model and correlation

Creating high-level representations of complex raw data can be improved by in-
troducing a temporal memory structure as a way of reducing noise and increasing
system accuracy and reliability. This approach proposes the use of temporal be-
haviour analysis on the output of the segmentation as a top-level �lter before cor-
relation. Speci�cally, the segments identi�ed by histogram analysis are tracked
over a series of video frames in order to check their consistency. This is done
by assigning a con�dence level to each type of surface, which adjusts depending
on whether a similar surface appears repeatedly or not. In this way, the system
compensates for noise and image blur on a frame-by-frame basis. Similarly, each
grid cell of the segmented images is also assigned a con�dence level, which in-
creases if its status as �traversable� or �non-traversable� remains unchanged over
time. The �nal output consists of four new �traversability� maps based on the
saturation, saturation-based texture, mean chroma and chroma-based texture
analysis over time. The �nal traversability map is then derived by majority vot-
ing. Although, more sophisticated techniques could have been implemented, this
speci�c one was preferred as the best compromise between overall robustness
and real-time performance. Four di�erent levels of traversability are possible for
each pixel as illustrated in Figure 4b, where the darker shades of grey indicate
non-traversable areas.

3 Results

The presented approach has been evaluated using a video dataset comprising of
sequences captured under a wide range of environmental conditions and di�erent
terrain types (Table 1, Figure 5). In each video, path and obstacle boundaries
(ground truth) were manually marked at 1 sec intervals. The algorithm output
was compared to the ground truth and its accuracy was derived as follows:

Accuracy (%) =


1−

M−1∑
i=0

N−1∑
j=0

(|gij − oij |)

M ×N


× 100 (2)



where gij is the ground truth array of size M ×N and oij is the output array of
sizeM×N . In each of the gij and oij arrays the traversable pixels are denoted by
`1' and the non-traversable pixels by `0'. Error measurement is then performed
by calculating the absolute di�erence of the two arrays. Note that throughout
testing no horizon level was used although this would normally increase the
system performance and accuracy further. The results for each scenario are listed
in Table 2, where the algorithm accuracy was derived using di�erent number of
input channels as follows: a) 1-channel test : Using saturation only, b) 2-
channel test : Using saturation and saturation-based texture, c) 3-channel
test : Using saturation, saturation-based texture and mean chroma and d) 4-
channel test : Using saturation, saturation-based texture, mean chroma and
chroma-based texture.

a) b)

Fig. 4. a) Chroma-based analysis: Areas of low chrominance are eliminated including
the foreground water re�ections, b) Segmentation result after temporal analysis

The algorithm has generally been robust in predicting the traversability of
an area regardless of the image quality, noise and camera vibration. Figure 5
provides some characteristic examples of the system output. As we can see from
Table 2, a performance of between 95.2% - 97.8% against the ground truth is
achieved over a range of conditions (cloudy, wet, sunny, shadow, snow) and a
range of terrains (concrete, grass, soil, tarmac, snow) with varying levels of vi-
bration (empirically) recorded on the vehicle platform (Figures 4b, 5). The error
is measured for each test by calculating the standard deviation of the samples.
The overall accuracy and error are then derived by calculating the weighted
mean. It should also be noted that using more input channels does not always
increase the system accuracy and as a matter of fact the system can sometimes
perform better with fewer inputs. This is logical since the colour properties of a
surface change with weather and lighting conditions. As a matter of fact, if the
system had chosen the right number of input channels for each test, the mean
accuracy would have been 97.9% ± 2.5% (based on the maximum accuracy per
test as highlighted by italic characters in Table 3). Given the subjective nature
of ground truth labelling such a result is also subject to a ≈2% error, which is
highly acceptable within an autonomous driving scenario.

The evaluation was done using the architecture described in Figure 1, which
performed in real-time (25 frames per second) when implemented in C++ and ex-



ecuted on a 2GHz Intel Core2Duo CPU using up to four input channels. The cam-
era was mounted on a vehicle that was moving at approximately walking pace.
While testing, most obstacles were accurately detected as non-traversable areas
except in situations where they were indistinguishable from the underlying sur-
face. Regarding changing environmental conditions (Table 1), the performance
was good, although re�ections were sometimes detected as non-traversable areas.
The video dataset, ground truth data and results can be accessed via the following
URL: http://tiny.cc/yannis.

ID Conditions Terrain Type Vibrations Samples

1 Cloudy Dry concrete Light 81

2 Cloudy Wet concrete Light 103

3 Cloudy Muddy soil, grass, gravel Medium 10

4 Sunny Wet concrete Light 20

5 Complex Shadows tarmac Very Intense 100

6 Sunny Dry poor quality tarmac Very Intense 18

7 Strong shadows concrete Light 56

8 Snow snow-covered tarmac Medium 104

Total 492

Table 1. Environmental and terrain conditions during testing

1-channel 2-channel 3-channel 4-channel

ID Weight Accuracy Error Accuracy Error Accuracy Error Accuracy Error

1 0.16 94.87% 3.38% 97.63% 1.73% 96.18% 2.20% 97.04% 1.47%

2 0.21 93.68% 4.04% 98.33% 1.09% 98.52% 1.32% 98.72% 0.86%

3 0.02 94.35% 2.42% 95.47% 2.96% 97.79% 1.90% 98.10% 2.37%

4 0.04 97.12% 4.04% 99.12% 0.74% 99.42% 0.24% 99.24% 0.41%

5 0.20 92.47% 8.75% 96.07% 5.45% 95.44% 5.50% 95.41% 6.03%

6 0.04 96.46% 3.22% 98.24% 1.32% 96.70% 2.81% 96.47% 2.30%

7 0.11 98.95% 1.07% 99.14% 0.73% 99.20% 0.66% 99.05% 0.86%

8 0.21 97.01% 4.43% 98.18% 3.63% 98.06% 3.04% 98.09% 3.81%

Weighted mean 95.19% 4.57% 97.79% 2.61% 97.44% 2.63% 97.60% 2.70%

Table 2. Algorithm accuracy results in changing conditions using varying number
of input channels (the numbers in bold-italic font denote the test with the highest
accuracy in each row)

4 Conclusions

In this paper an e�ective real-time methodology was presented for detecting
traversable surfaces by fusing colour and texture information from HSL, YCbCr
and LAB colourspaces to perform image segmentation using a temporal memory
model. By initially assuming that the area in front of the vehicle is traversable,
the algorithm compares the characteristics of the �safe window� to the rest of
the image and creates a �traversability� map. Furthermore, the temporal infor-
mation is used to �lter noise and thus improve system robustness. Testing has



proved that this approach is well-suited for autonomous navigation in unstruc-
tured or semi-structured environments (up to 97.8% ±2.6% accuracy) and can
perform in real-time on platforms with limited processing power. Future work
will concentrate on developing an algorithm that can be trained to classify the
environmental and terrain conditions in order to optimise colour space fusion.
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ABSTRACT

This paper introduces a novel method for deriving visual sa-
liency maps in real-time without compromising the quality of
the output. This is achieved by replacing the computationally
expensive centre-surround filters with a simpler mathematical
model named Division of Gaussians (DIVoG). The results are
compared to five other approaches, demonstrating at least six
times faster execution than the current state-of-the-art whilst
maintaining high detection accuracy. Given the multitude of
computer vision applications that make use of visual saliency
algorithms such a reduction in computational complexity is
essential for improving their real-time performance.

Index Terms— division of gaussians, DIVoG, salient fea-
tures, center-surround, ratiometric saliency

1. INTRODUCTION

As a concept, visual saliency started as a biologically inspired
process for focusing visual attention to certain parts of an
image, thus reducing the complexity of scene analysis [1].
Subsequently, it formed the basis of several computer vision
applications, such as in automatic object detection [2, 3, 4,
5], medical imaging [6] and robotics [7]. Different saliency
definitions exist, however, in this paper a generalised version
of the definition by Achanta et al. [8] is used: “Visual saliency
is the perceptual quality that makes a group of pixels stand
out relative to its neighbours”. As a research topic, visual sa-
liency theory has evolved rapidly to produce a wide range of
approaches. However, their computational cost remains signi-
ficantly high for real-time applications that require execution
at full frame rate (> 25 frames per second (fps)). This pa-
per proposes a fast alternative to calculating visual saliency
maps by using Division of Gaussians (DIVoG), which deliv-
ers a multifold increase in performance when compared to the
current state-of-the-art.

This research has been supported by the Engineering and Physical Sci-
ences Research Council (EPSRC, CASE/CNA/07/85) and TRW Conekt.

Fig. 1. Colour and greyscale saliency maps of Rubik’s cube
using the DIVoG approach. Darker colours/shades indicate
areas of low-saliency and vice-versa.

2. EXISTING APPROACHES

Most of the visual saliency models can be categorised into
two main groups, as proposed by Achanta et al. [9] and Ngau
et al.[10]: a) biological models and b) computational models.
The majority of biological models are using a bottom-up ap-
proach for feature extraction mainly based on colour, intensity
and orientation [11]. Inspired by the structure of the human
eye, this approach detects the contrast difference between an
image region and its surroundings, which is also known as
centre-surround contrast. Itti et al. [11] use the Difference-
of-Gaussians (DoG) filter for deriving the centre-surround
contrast, whereas Walther and Koch [12] take this algorithm
further by adopting the concept of salient proto-objects. A
common characteristic of these approaches is that they usu-
ally produce saliency maps that lack sharpness and detail [5].
Furthermore, the complexity of the biological models means
that performance is slow, thus they are more suitable for use
in non-real-time applications. One of the few exceptions
is found in the approach proposed by Ma and Zhang [13],
who calculate the centre-surround contrast by fuzzy growing.
The computation takes approximately 60 milliseconds for a
320×240 image on a 2.6 Ghz CPU [8], which corresponds to
16.6 fps.

Examples of computational saliency methods include
frequency-tuned salient region detection by Achanta et al.
[8], graph-based visual saliency by Harel et al. [14], affine
invariant salient region detection by Kadir et al. [15] and
real-time visual attention system using integral images by
Frintrop et al. [16]. The method by Frintrop et al. [16], is one



Fig. 2. Saliency map of a pedestrian using DIVoG.

Fig. 3. Performance evaluation of DIVoG and “Frequency-
tuned Salient Region Detection” by Achanta et al. [8] (AC09).
AC-OPENCV is our AC09 real-time implementation using
the OpenCV library [18]. DIVoG-3CH denotes the DIVoG
algorithm running on 3 channel input (i.e. RGB image),
whereas DIVoG-1CH denotes the DIVoG algorithm running
on a single channel input (i.e. greyscale 8-bit image).

of the most successful attempts to produce a real-time visual
saliency algorithm (known as VOCUS) using integral images
to reduce execution time. The improvement in performance
is impressive with a 400×300 image being processed in ap-
proximately 50 milliseconds using a 2.8 Ghz CPU, which
corresponds to 20 fps. In addition, the approach proposed
by Achanta et al. [8] comes close to achieving real-time per-
formance by using frequency domain analysis to produce full
resolution saliency maps. The execution time for a 400×300
image is 100 milliseconds on a 2.4 Ghz notebook. Although,
this algorithm is proportionally slower than Frintrop et al.
[16], it generates maps with significantly higher quality.

Ultimately, the target of our algorithm was to produce
saliency maps of similar quality to those by Achanta et al.
[8, 17] at full frame rate (> 25 fps). In fact, we will show that
for a 400×300 image the DIVoG approach generates high-
detail saliency maps at 50 fps (20 milliseconds per frame)
using a 2.4 Ghz CPU.

3. ALGORITHM DESCRIPTION

The Division of Gaussians approach comprises of three dis-
tinct steps: 1) Bottom-up construction of Gaussian pyramid,
2) Top-down construction of Gaussian pyramid based on the
output of Step 1, 3) Element-by element division of the input
image with the output of Step 2.

Step 1: The Gaussian pyramid U comprises of n levels,
starting with an image U1 as the base with resolution w × h.
Higher pyramid levels are derived via downsampling using a
5 × 5 Gaussian filter. The top pyramid level has a resolution
of (w/2n−1)× (h/2n−1). Let us call this image Un.

Step 2: Un is used as the top level Dn of a second Gaus-
sian pyramid D in order to derive its base D1. In this case,
lower pyramid levels are derived via upsampling using a 5×5
Gaussian filter.

Step 3: Element-by-element division of U1and D1 is per-
formed in order to derive the minimum ratio matrix M (also
called MiR matrix) of their corresponding values as described
by the following equation:

Mi,j = min

(
D1i,j

U1i,j

,
U1i,j

D1i,j

)
(1)

The saliency map S is then given by equation 2, which means
that saliency is expressed as a floating-point number in the
range 0− 1.

Si,j = 1−Mi,j (2)

The described approach can be further expanded to in-
clude element-by-element division of all corresponding levels
of pyramids U and D. In this case, the MiR matrix is initial-
ised as a unit matrix (i.e. for each matrix element M0i,j = 1).
Then each pair of pyramid levels Un and Dn is scaled up to
the input’s resolution. Then the MiR matrix Mn is multiplied
by Mn−1 as described by the DIVoG equation below, which
is a generalised form of equation 1.

Mni,j
= min

(
Dni,j

U1i,j

,
U1i,j

Dni,j

)
Mn−1i,j (3)

for n > 1. The saliency map is then derived using equa-
tion 2. Deriving the MiR matrix through processing of all
pyramid levels produces more accurate saliency maps than
equation 1, but also increases the computational complexity
of the algorithm. In practice, the difference between the two
approaches is visually minimal, thus in this paper all MiR
matrices have been calculated using equation 1. Finally, a
major advantage of this approach is that it is colourspace-
independent, thus it can derive saliency maps even from grey-
scale images, which significantly reduces computational cost.

Implementation notes: a) All operations are performed
using 32-bit floating point matrices. b) To avoid division by
zero, or division with floating point numbers in the range 0 to
1, we define the minimum pixel value equal to kn, where k is
the size of the Gaussian kernel. This ensures that pyramidal



Input IT98 [11] MA03 [13] HO07 [19] HA07 [14] AC09 [8] DIVoG DIVoG-F

Fig. 4. A set of saliency maps generated using different approaches (based on work by Achanta et al. [8]). DIVoG-F enhances
these results of the standard DIVoG algorithm by adding a low-pass filter to reduce background noise.

downsampling will always result into a value greater than 1.
c) For colour images, the algorithm can be used with any col-
ourspace. Each channel is processed separately to produce a
salience map. d) All the saliency maps in this paper have been
produced using 24-bit colour images in the RGB colourspace.
The Gaussian pyramid is constructed with n = 5. e) All sa-
liency maps in Fig. 1, 2, 4, have been normalised to fit the
0− 255 range.

4. RESULTS

The DIVoG approach is compared with five other saliency al-
gorithms using an evaluation framework created by Achanta
et al [8, 17]. As part of this procedure, saliency maps are ex-
tracted for 1000 images using five different approaches [11,
13, 19, 14, 8], as illustrated in Fig. 4. These maps are then
used to segment the images. Finally, the extracted segments
are compared to the ground-truth in order to derive the al-
gorithm’s accuracy. This is a reasonable approach for simple
scenes with a small number of distinct objects. However, for
more complex images the specification of ground-truth is be-
coming subjective. Since the main contribution of this paper
is related to the real-time performance of the algorithm, we
compare the execution time of our approach with Achanta et
al. [8], which is one of the most efficient saliency methodo-
logies for producing high-resolution maps.

For performance evaluation a mobile 2.4GHz Intel Core
2 Duo processor was used with 4GB RAM. Fig. 3 and Table
1 show a comparison in execution time between DIVoG and

[8] at different resolutions using colour and greyscale images.
Furthermore, Fig. 4 shows some examples of saliency maps
generated using DIVoG and five other approaches.

The original implementation by Achanta et al [8] (AC09),
produces much sharper saliency maps than IT98, MA03,
HO07 and HA07. In terms of computational performance
AC09 is at least comparable to the aforementioned approaches
as presented in [8]. On the other hand, the DIVoG approach
demonstrates similar or higher quality saliency maps to AC09,
but at a fraction of the time. DIVoG is faster than AC09 by
a factor of 6 when processing 24-bit colour images and by a
factor of 16 when processing greyscale images. This massive
gap could not be justified by the theoretical difference in com-
putational complexity, thus the AC09 was re-implemented
using the OpenCV library [18] (AC-OPENCV). This way
the execution time reduced by a factor of 3. Even so, AC-
OPENCV remained 56% slower than DIVoG. An indication
of performance can also be given by quoting the achieved
framerate. At the lowest resolution of 320 × 240, DIVoG ex-
ecuted at 333 fps on greyscale images and 111 fps on colour
images, showing a linear relationship between data size and
execution time. Overall, the DIVoG approach has demon-
strated an ability to calculate full resolution saliency maps
with the minimum computational cost.

5. CONCLUSIONS

We presented a novel visual saliency algorithm for calculat-
ing full resolution saliency maps in real-time by using Divi-



AC09 [8] AC-OPENCV
Resolution Time (s) fps Time (s) fps
320×240 0.078 12.8 0.015 66.6
512×512 0.187 5.3 0.052 19.2
640×480 0.218 4.6 0.057 17.5

1024×1024 0.718 1.4 0.200 5.0
2048×2048 2.699 0.4 0.803 1.6

DIVoG-3CH DIVoG- 1CH
320×240 0.009 111 0.003 333
512×512 0.032 31.2 0.009 111
640×480 0.036 27.7 0.012 83.3

1024×1024 0.115 8.7 0.041 24.3
2048×2048 0.456 2.2 0.161 6.2

Table 1. Performance evaluation data showing execution
time and framerate. AC09 is the original implementation by
Achanta et al. [8].

sion of Gaussians. Compared to recent work by Achanta et
al. [8], DIVoG showed a significant increase in performance
by a factor of 6 when using colour images. This paper also
introduced a real-time implementation of Achanta’s work us-
ing the OpenCV library [18], which is more than three times
faster than the original implementation, but still 56% slower
than the DIVoG approach. Given that for VGA resolution the
achieved framerate exceeds 80 fps on greyscale images, this
algorithm could significantly improve the performance of a
wide range of applications including salient feature detection,
object extraction and classification.
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Abstract 

We present an approach for adaptive object placement for 

Augmented Reality (AR) use in driver assistance systems. 

Combined vanishing point and road surface detection enable the 

real-time adaptive emplacement of AR objects within a drivers’ 

natural field of view for on-road information display. This work 

combines both automotive vision and multimedia production 

aspects of real-time visual engineering. 

Keywords: automotive vision, augmented reality. 

1 Introduction 

Recent advances in vehicle technology embed a range of 

different sensors for road environment monitoring and 

additionally employ computer vision techniques to extract road 

information from onboard cameras [1, 2, 3]. The accumulation 

of this data presented to the driver, in addition to existing 

satellite navigation, can distract the drivers from their natural 

road view. This work aims at using combined vanishing point 

and road surface detection to enable the adaptive emplacement 

of such information, on the road surface, within the driver’s 

natural field of view. Augmented Reality (AR) could be used in 

this context for the presentation of both navigation, vehicle 

status and environment sensed information. Specifically, this 

work investigates the use of intelligent placement techniques to 

avoid other environment objects present on the road surface. 

2 Road surface detection 

In an initial calibration stage, we determine the vanishing point 

of the road scene using the approach of [1]. This approach uses 

temporal averaging of an initial calibration sequence to calculate 

the RANSAC-based intersection of straight lines within the 

scene. This one time calibration facilitates the recovery of the 

scene vanishing point from which the road plane homography 

can be recovered (see Figure 1a). 

Subsequently, we have to identify the available space within the 

defined road area. This is performed using a histogram analysis 

technique on the saturation channel of the HSL colour transform 

of the original road image using the technique of [4]. Histogram 

back-projection is then used to create a probability map of road 

surface colour occurrence. This is averaged over 10 frames from 

which a segmented available road surface area (free of other 

vehicles and environment clutter) is identified. An example is 

shown in Figure 1b of the identified available road surface area 

from the original Figure 1a road image. 

           
a: vanishing point detection           b: road surface detection           

Figure 1: Road area estimation using [1, 4] 

3 Adaptive object placement 

The AR information should be presented without interfering 

with existing objects present in the road environment. A distance 

transform is used to identify the central point of the segmented 

road area (Figure 1b) which is maximally distant from the usable 

road area edges for object emplacement. An inverse perspective 

mapping using the recovered homography transforms the road 

surface to a bird eye view upon which an AR marker can be 

placed. An AR marker and text are rendered onto this view 

before inverse perspective mapping. The output of the distance 

transform upon a segmented road image represents the distance 

to the nearest boundary of the usable (free) road area (Figure 

2a). The maximum which is the most central space within the 

usable road surface is suitable for AR object placement (Figure 

2b). 

                         
a: distance transform position               b: AR text insertion        

Figure 2: Position identification and emplacement of AR text 

in road scene 

The approach of [5] is used to place AR text and 3D objects 

upon the road surface at the identified position (Figure 2b). 

4 Results 

Overall the usable road area detection approach is successful but 

can be somewhat dependent on the video image quality. A range 

of different road examples with AR display is shown in Figure 3 

where we see adaptation to a number of road occupancy 

conditions. 

   

   
Figure 3: Adaptive AR object placement on road scenes 

5 Conclusions 

The combination of vanishing point detection [1] and road 

surface detection [4] enables the adaptive emplacement of AR 

objects within a dynamic road environment suitable for a driver 

assistance system. Future work could investigate improved road 

area detection using feature-based or adaptive machine learning 

techniques. 
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Appendix B

Additional Chapters

This appendix contains additional chapters that were authored during the earlier

part of this degree, but are no longer linked to the main theme of the thesis. However,

certain aspects of this work are novel and they have also been included in the

aforementioned peer-reviewed publications. As a result, these chapters are included

for future reference since they could form the basis of further work in the �eld of

autonomous navigation, terrain recognition and real-time feature detection.
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