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ABSTRACT

Thermal Barrier Coatings (TBC) have been widely used in the power

generation industry to protect turbine blades from damage in hostile

operating environment. This allows either a high Turbine Entry temperature

(TET) to be employed or a low percentage of cooling air to be used, both of

which will improve the performance and efficiency of gas turbine engines.

However, with continuous increases in turbine entry temperature aimed at

improving the performance and efficiency of gas turbines, TBCs have

become more susceptible to oxidation. Such oxidation has been largely

responsible for the premature failure of most TBCs. Nevertheless, existing

creep life prediction models that give adequate considerations to the effects

of TBC oxidation on creep life are rare. The implication is that the creep life

of gas turbines may be estimated more accurately if TBC oxidation is

considered. In this paper, a performance-based integrated creep life model

has been introduced with the capability of assessing the impact of TBC

oxidation on the creep life and performance of gas turbines. The model

comprises of a thermal, stress, oxidation, performance, and life estimation
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models. High Pressure Turbine (HPT) blades are selected as the life limiting

component of gas turbines. Therefore the integrated model was employed

to investigate the effect of several operating conditions on the HPT blades of

a model gas turbine engine using a Creep Factor approach. The results show

that different operating conditions can significantly affect the oxidation rates

of TBCs which in turn affect the creep life of HPT blades. For instance, TBC

oxidation can speed up the overall life usage of a gas turbine engine from

4.22% to 6.35% within one year operation. It is the objective of this research

that the developed method may assist gas turbine users in selecting the best

mission profile that will minimize maintenance and operating costs while

giving the best engine availability.

INTRODUCTION

The general trend in the gas turbine power generation industry has been

towards increasing the firing temperature and the pressure ratios of the

engines which are aimed at improving the efficiency and performance of gas

turbine engines [1-3]. Thus, pressure ratios up to 40 and TET up to 1700K

have been achieved in gas turbine engine designs, with materials being

capable of operating at temperatures in excess of 1223K [4]. This increase

in firing temperature has required subsequent advanced designs of gas

turbine engine components, such as super alloy turbine blades and vanes.

To meet these requirements, TBC comprising alumina or zirconia based

ceramics, which provide an insulating protection layer, were introduced in the

mid-1970s and by early 1980s they had entered revenue service on the vane

platforms of aircraft engines [5]. Since inception, TBCs have become a
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critical aspect of gas turbines as they have enabled gas turbine engines to

operate at significantly higher firing temperatures hence improving their

power ratings and thermal efficiencies. However, as TETs are continuously

increased in pursuit of better performance and efficiencies, TBCs have

become more susceptible to time-dependent damage such as corrosion and

oxidation. The situation becomes worse when gas turbines are operated in

chemically aggressive environments and harsh operating conditions.

Since TBCs are critical to gas turbine engine operations, their failure has

significant impact on gas turbine engine creep life; exposing the blade

substrate material to very high temperatures. However, existing creep life

models that give adequate consideration to the impact of TBC failure on gas

turbine creep life are rare. Most of the existing creep life prediction models

only predict the time to failure of the blades without considering the failure of

blade coatings. In addition, studies conducted and reported on the effects of

TBC failure on gas turbines creep life are from a metallurgical point of view

[6]; hence limited information is available in the public domain about the

influence of TBC failure on gas turbine creep life from a performance

perspective.

TBC failure during operations may be attributed to damage phenomena

such as thermal cycling fatigue, erosion, high temperature corrosion,

oxidation etc. [7-8]. This paper aims at introducing a performance-based

integrated creep life model being capable of predicting the impact of TBC

oxidation on gas turbine creep life. An application of the developed model to

a model gas turbine engine on TBC damage and HPT blade creep life
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prediction at different operating conditions is demonstrated to prove the

effectiveness of the model.

METHODOLOGY

A HPT blade of a two-shaft aero derivative model gas turbine engine

is selected as the creep life limiting component of the gas turbine. This is due

to the fact that it experiences the highest oxidation, mechanical and thermal

loads. Consequently, the idea of this research is to analyze the effect of TBC

oxidation on the creep behavior of the HPT blade using a Creep Factor

approach [9]. In doing this, an engine performance model was created using

TURBOMATCH [10], which is a gas turbine performance simulation code

developed at Cranfield University. A creep life model was set up and the data

from the performance model and information available in open literature was

used for the prediction of engine creep life. Thereafter, a TBC oxidation

model was developed and incorporated into the creep life model. The

integrated model was subsequently used to assess the impact of TBC

oxidation on the creep life and performance of the model gas turbine engine.

TBC Oxidation Model

The oxidation model adopted in this research was developed by Meier

et al [11]. The model has the capability to predict the failure of both Air-

Plasma-Spray (APS) and Electron-Beam Physical-Vapor Deposition (EB-

PVD) TBCs. It identifies Thermally Grown Oxide (TGO) and strain rate as

the important and critical factors responsible for TBC failure. TGO is critical
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because it is largely responsible for Bond Coat (BC) oxidation and thermal

mismatch stresses which are largely responsible for the speedy spallation of

the top coat (TC) [12-14]. The TGO growth is responsible for the constrained

volume expansion which most times leads to the compressive “growth”

stresses that persist at all temperatures. Upon cooling, the thermal-

expansion mismatch between the TGO and the BC leads to very high

thermal compressive residual stresses in the TGO which reach a maximum

at Tamb. The strain energy in the TGO scales linearly with the TGO thickness

and quadratically with the TGO stress, and drives fracture [15-16]. In this

model, failure is assumed to have occurred when there is crack initiation.

The damage model was taken to be a power law relation shown in Equation

(1) [11].

N = A∆�� (1)

where N is the number of cycles to failure, A is a coefficient whose value

depends on the amount of oxide growth, ϵ is TGO strain and m is an empirical

power law coefficient. The TGO growth is presented with Arrhenius behavior

as expressed in Equation (2).

δ = {exp �Q �
1

��
−

1

�
�� �}� (2)

where δ is TGO thickness, t is time, Q represents ∆H/R, where ∆H is change

in enthalpy, R is gas constant, T0 is the temperature at a reference condition,

T is gas temperature and n is a constant. The TGO thickness δ in Equation 
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(2) determines the constant of proportionality and the life is expressed in

Equation (3).

N = [�
∆���
∆�

� (1−
�

��
)� + (

�

��
)�]� (3)

where ∆� is the TGO inelastic strain range, b and c are model constants,

∆��� is the mechanical inelastic strain range that causes failure in one cycle,

δ is the oxide growth per cycle (TGO thickness) calculated in Equation (2)

and �� is the critical oxide thickness that causes spallation without cycling.

The critical thickness, �� value is normally taken between 5-6μm [17] and is 

around 3μm in the case of APS-TBCs [18]. The mechanical strain for a cycle 

in the TGO is calculated using Equation (4).

ε(T) = ���(T)−
∆�(�)

�
(4)

where ε is the mechanical strain, ��� is the substrate total strain and
∆�(�)

�
is

the coefficient of thermal expansion (CTE). The coefficient of thermal

expansion (free elongation of the TGO) is assumed to be dependent on

temperature and therefore is expressed in Equation (5).

∆�(�)

�
= ���� − ���� +

1

2
��[(� − ����)� − ���� − �����

�
] (5)
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where T is EB-PVD/metal ceramic interface temperature, Tsf is the strain (or

stress) free temperature for the oxide, Tamb is ambient temperature and α0

and α1 are the thermal expansion coefficients.

The damage term is defined to be the inverse of N (i.e. N-1) and the TBC

is expected to fail when the accumulated damage reaches one (1). The

damage component Di is defined by Equations (6) and (7).

�� =
1

�
= [�

∆���
∆�

� (1 −
�

��
)� + (

�

��
)�]�� (6)

D = ���
�

< 1 (7)

Blade Creep Life Assessment

To predict and analyze the influence of TBC oxidation on gas turbine creep

life, it was imperative to develop a creep life assessment model. Therefore,

a physics-based creep life assessment model was developed based on the

earlier work done at Cranfield University [9, 19] and applied to the HPT first

stage rotor blade. The creep life assessment model was based on a 2D

analytical approach consisting of three main sub models which include

stress, thermal and life estimation models.
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Figure 1: Integrated Creep Life Assessment Model

The stress model calculates the maximum stress acting on the blade

whereas the thermal model estimates the blade metal temperature. The

creep life estimation model evaluates the creep life of the blades and

displays the results as a Creep Factor. Figure 1 shows the methodology used

for the research.

Stress Model

The stress model calculates the total stress acting on the blades. Two

main sources of stress have been considered in this study: stresses due to

centrifugal load caused by engine rotation and stresses due to gas bending

momentum.

The thermodynamic data such as rotational speed, gas temperature

and pressures were calculated by TURBOMATCH. For simplicity, it is

assumed that the axial velocity along the blade span is constant and the
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forces (centrifugal loading, static pressure difference and momentum

change) act on the center of gravity of blade sections.

The variations of the blade stresses are predicted at locations along the

blade span and chord. At span-wise, the blade span was divided into

sections at intervals of 25% of the span whereas the chord was split into

three areas namely blade leading edge (LE), trailing edge (TE) and the back

of the blade as depicted in Figures 3 and 5. The centrifugal force for each

section of the blade (Figure 2) is calculated using Equation (8) [20].

���� = � × ����� × ���� × �� × ��� (8)

where ρ is the material density, ACsAv is the average cross sectional area

between the top and bottom sections, hsec is the blade section height, w is

the angular speed, rcg is the distance between the rotation axis and the

section centre of gravity. The calculated Fsec was used to calculate the

centrifugal stress using Equation (9).

������ =
∑����
���

(9)

where Acs is the cross sectional area of the corresponding section.

The pressure force of each blade section (PFSec) is calculated using

Equation (10) [20] and consequently the blade bending moment due to the

static pressure is calculated using Equation (11) [20].
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����� =
������ × ∆������

��

(10)

������ = �(����� × ������) (11)

where AAnsec is the blade section annulus area, ∆ρAvsec is the average

section static pressure difference, Nb is the number of blades, and dCGsec is

the distance between the section centers of gravity to the respective

sections.

The gas velocity change across the blade (inlet and outlet) causes a

momentum change of the gas along the axial and tangential directions.

Therefore, the blade section momentum forces for both the axial and

tangential directions, VFsec are computed using Equations (12) and (13) [20]

.
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Figure 2: Blade centrifugal forces

������� =
����� × ������ × ∆������

��
(12)

�������� =
����� × ������ × ∆�������

��
(13)

where mArea is the mass flow per unit area of the section annulus, ∆VAxSec

and ∆VTanSec are axial and tangential velocity difference respectively.

The blade bending moments due to the axial and tangential forces at each

blade section BMVAXsec and BMVTansec are calculated using Equations (14)

and (15) [20].
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�������� = �(������� × ������) (14)

��������� = �(�������� × ������) (15)

Subsequently, Equations (16) and (17) [20] are used to compute the

resulting bending moment at the blade direction (about X and Y axis).

��� = (������ + ��������)���� + ������������� (16)

��� = (������ + ��������)���� − ������������� (17)

where θ is the blade stagger angle, Mxx and Myy are the blade section

resulting bending moments about x and y axes, Mxx and Myy are in turn used

to calculate the bending moment at the three different locations along the

blade chord (LE, TE and back of the blade) using Equation (18) [20].

������ =
���

����
� +

���

����
� (18)
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where X and Y are the distances from the LE, TE and the back of the blade

from the XX and YY axes as depicted in Figure 3, Imax and Imin are the

maximum and minimum values of the blade section moments of inertia.

Figure 3: Schematic diagram of the blade and gas directions [20]

The maximum stress at each of the blade sections (centrifugal loading and

gas bending moment) is calculated using Equation (19).

������� = ������ + ������ (19)

The blade geometry and operating condition will determine the location of

the blade section where the maximum stress will occur. It could be either the

LE, TE or back of the blade.
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Thermal Model

The thermal model was developed and used to estimate the blade

temperature. The blade is regarded as a heat exchanger which is subjected

to a mainstream of hot gas flow from the burner. The main elements of the

model are the cooling methods, the blade geometry, the TBC thickness, the

heat transfer coefficients, the gas properties, the Radial Temperature

Distribution Factor (RTDF), the blade material etc. The temperature profile

through the blade with TBC and film cooling is presented in Figure 4.

Similar to the stress model, the thermal model uses a 2-dimensional

approach that evaluates the temperature variation at each blade section. By

specifying a value of RTDF which should not be more than 0.2 [21], the

maximum gas temperature (Tmax) and minimum gas temperature (Tmin) are

calculated using Equations (20) and (21) [21].

Figure 4: Temperature profile of a blade with TBC and film cooling [19]
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RTDF depicted in Figure 5, is the ratio of the difference between the

circumferentially peak gas temperature (Tmax) and the gas mean temperature

(Tmean) to the combustor temperature rise (Tref), Equation (22).

���� = ���� + (���� × ����)
(20)

���� =
(5���� − 2����)

3
(21)

RTDF =
���� − �����

����

(22)

where TOIN is the rotor inlet temperature and Tref is temperature rise of the

burner. It is assumed that the maximum temperature along the blade span

occurs at around 75% distance from the blade root as shown in Figure 5.

Furthermore, the following assumptions were used in the course of building

the thermal model:

 The gas temperature rise from the root to 75% distance from the root

is linear.

 Similarly, the reduction in gas temperature from 75% to the tip of the

blade is also linear.

 The minimum gas temperature occurs at the root and tip of the blade.
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The rotor inlet gas temperature TOIN is evaluated by considering the

mixing effect between the coolant flow exiting the NGV and the core flow as

depicted in Equation (23).

���� =
���������(���) + ��������������

(�� + �����)���
(23)

where mg is gas mass flow rate, Cph and Cpc are specific heats of the hot

and the cold gas flow respectively, mcNGV is the NGV coolant mass flow rate

and TcoNGV is the NGV coolant exit temperature. TOIN(Bef) and TcoNGV in

Equation (23) are calculated using Equations (24) and (25) respectively.

Figure 5: Average radial temperature distribution profile at the inlet of
a turbine rotor blade [19]

����(���) = TET−
��������
�����

(������ − ������) (24)
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������ = ������ + �������(���� − ������)
(25)

where TET is the turbine entry temperature, TciNGV is the NGV inlet coolant

temperature, ηconNGV is the NGV’s convention efficiency and TNGV is the NGV

metal temperature. In order to predict the rotor blade metal temperature, the

coolant inlet temperature for the rotor blade section is taken from the exit

temperature of the previous section from root to top. The rotor blade section

metal temperature is calculated using Equation (26) [22].

����� = ����� − �(����� − ������)
(26)

where TGsec is the section gas temperature, Tcisec is the section coolant

temperature and ε is the rotor cooling effectiveness which is calculated using

Equation (27) [23] and the calculated cooling effectiveness is applicable for

all the blade sections.

� =
(1 + ��)� ∗ �� + ��(1 − ��)

1 + (1 + ��)� ∗ �� − ����
(27)

where, Bi is the Biot number, m* is mass flow function, �� is internal

convection efficiency, ��	is the film cooling effectiveness. Biot number is

calculated using Equation (28) [23].
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Bi = ℎ�
∆�

����
(28)

where hg is the heat transfer coefficient, ∆x is the TBC thickness and kTBC is

the TBC ceramic conductivity. Heat transfer coefficient is calculated using

Equation (29).

ℎ� =
����

����
(29)

where Nug is the Nusselt number, k is conductivity and dsec is the section

blade chord.

Life Estimation Model

The Larson Miller Parameter (LMP) [24] is used to evaluate the creep life.

From Arrhenius’s Law, the LMP equation can be expressed by Equation (30):

P = 10���������� + ��
(30)

Therefore, time to fracture (tf) can be expressed with Equation (31):

�� = 10
�
�����
��

���
(31)
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where TM is the blade material temperature; P is the LMP while C is the

parameter constant. Generally the value of C is chosen between 17 and 23

while for industrial gas turbines, it is generalized as 20.

Once the rotor blade stress and metal temperature are predicted using the

stress and thermal models respectively, the time to fracture of the rotor blade

can be estimated using the creep life estimation model shown by Equations

(30) and (31). The creep life at different sections of the rotor blade may be

different as stresses and metal temperatures vary at different sections of the

blade. Therefore, the creep life is expected to vary in different sections.

Creep Factor

Creep Factor (CF), a concept which was developed by Abdul Ghafir et al.

[9] is defined as the ratio between the actual creep life and the creep life at

a reference condition. The CF approach is adopted for this research to

quantify the impact of actual operating conditions on creep life of gas turbine

engines because it appraises the rate of creep life consumption relative to a

specific operating condition desired by the operator. The CF is denoted as:

CF =
��
�����

(32)
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where Lc denotes the remnant life for engine operated at actual operating

condition and LcRef represents the reference remnant life at an user-defined

reference operating condition. In general:

CF=1 means that the engine has the same creep life as that of the engine

at the reference operating condition, i.e. Lc = LcRef.

CF>1 represents a situation where the engine consumes creep life slower

or has longer creep life compared to that of the engine operating at the

reference operating condition.

CF<1 represents a situation where the engine consumes creep life more

quickly or has shorter creep life compared with that of the engine operating

at the reference condition.

APPLICATION

Engine Performance Simulation and Blade Geometry

In order to study the impact of TBC oxidation on gas turbine engine creep

life, a model aero derivative gas turbine engine similar to GE LM2500+ was

created in this study based on the engine performance specification [25]

listed in Table 1.
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Table 1: Engine Performance Parameters [25].

Parameter Value Unit

Pressure ratio 23.1

Exhaust gas flow rate 82.5 Kg/s

Power Output 28.85 MW

Thermal Efficiency 39 %

TURBOMATCH [10], gas turbine engine performance simulation and

diagnostics software developed at Cranfield University, was used to create

a performance model based on the engine configuration shown in Figure 6

where it has an axial compressor driven by a compressor turbine, a

combustor and a power turbine providing power output.

The performance simulations provided essential performance

information of the thermodynamic cycle of the model engine under

investigation. Using the results from the performance simulations and

available information from open literature, the blades of the first stage of the

HP turbine of the model engine were sized using the constant mean diameter

method [26-27]. The model blade geometry at the mid-height as obtained

from the blade sizing model are presented in Table 2
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Figure 6: Layout of 2-shaft aero-derivative engine.

Table 2: Parameters at blade mid height

Parameter Value Unit

Spacing 0.0234 M

Optimum axial solidity 1.00

Axial chord 0.0234 M

Axial aspect ratio 1.4

Stagger angle 35 Degrees

Results from the blade sizing model were used to obtain the blade shape.

Cooling passages are introduced to depict a cooled blade in order to reduce

blade metal temperature using the air extracted from the compressor. For

simplicity, only four internal cooling passages are introduced in the model

blades. Other important turbine blade data such as blade materials, cooling

effectiveness, size of leading and trailing edges, cross sectional areas, blade

speed, etc. were specified but their values are not stated here for simplicity.
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Effect of TET & PCN on TBC Life

The effect of mechanical strain on the oxidation behavior of TBCs of the

HP turbine blades at different TETs was studied and the results are

illustrated in Figure 7 where strain is represented as a relative value to a

baseline strain. The TBC life is reduced substantially as the strain increases

from the baseline and also reduced as TET increases. For instance, at a TET

of 1505K, a 15% increase in strain reduces the TBC life by 45%. This means

that the strain on the substrate material, which is caused either as a result of

TET or PCN increase, has a significant influence on TBC life as illustrated in

Figure 8.

This is because an increase in engine rotational speed (PCN) increases

the mechanical stress which directly increases the total maximum stress

acting on the blade and the coatings. Given that stress is directly proportional

to the strain, an increase in the stress increases the strain on the blade and

the coatings. This results in shear stress development on the coatings and

the loss of TBC life.

Figure 7: Strain effects on TBC life at different TBCs.
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Figure 8: Effect of TET on TBC life at different PCN.

Similarly, for a strain/ref strain of 1.05, as TET increases from 1505K

to 1520K, the TBC life is reduced by 44%; it is therefore evident that the

increase of firing temperatures (TET) to improve the engine’s power and

efficiency has a detrimental effect on the TBC life. In this case, the effects on

TBC are intensified by the presence of oxidation damage. This is because

the bond coat which has the responsibility of mitigating the effect of thermal

expansion mismatch stresses, oxidizes significantly at high temperatures. As

the bond coat oxidizes, the residual stresses in addition to the increase in

Coefficient of Thermal Expansion (CTE) as well as the thermal stresses

imposed by cycling effect results in the formation of cracks on the surface of

the bond coat which causes spallation. This is in agreement with the findings

of Wright KP [28].

Effect of Ambient Temperature on TBC Life

The ambient temperature also plays a vital role in determining the

oxidation failure of TBCs. By using the integrated model, the impact of

ambient temperature variation on the TBC failure due to oxidation was

Ref
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studied for different strain levels. The results obtained are presented in

Figure 9 which shows that TBC life gradually decreases with an increase in

ambient temperature. It is worth noting that the rate of decline in TBC life is

relatively stable when the ambient temperature is lower than 150C and

becomes more significant when the ambient temperature is higher than

150C.

Figure 9: Ambient temperature effects on TBC life at different strain.

It can be argued that at low ambient temperatures (below 150C), the

TBC oxidation is affected mainly by the mechanical strain and not much by

the thermal strain. There is a sharp decrease in the TBC life when ambient

temperature is higher than 150C, which shows that at higher ambient

temperature, the temperature effect plays a significant role in the oxidation

behavior of TBCs and in fact becomes a more dominant factor than the strain

effect. This is due to the fact that as the ambient temperature increases, the

air becomes hotter and more difficult to be compressed in the compressor.

Therefore the compressor turbine will be required to produce more work to

drive the compressor. In doing this, the turbine entry temperature is raised

and this will cause the bond coat to oxidize at a faster rate. Hence, the

thermal load effect on TBC becomes the determinant factor.
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Impact of TBC Failure on Blade Metal Temperature

The failure of TBCs due to oxidation will result in the exposure of the

substrate materials to very high temperatures. Therefore, the blade

temperature variation along the span of the HPT blade before and after TBC

failure was examined. The results are illustrated in Figure 10 and Figure 11.

Figure 10: Effect of TBC failure on blade temperature.

Figure 11: Blade metal temperature deviation due to different TETs.
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The impact of three different TETs (1490K, 1505K and 1520K) on blade

metal temperature was considered. It can be seen in Figure 10 andFigure

11 that the blade metal temperature would be increased by between 1200C

(at the blade root and tip) and 750C (at the 75% mark from the blade root),

or increased by between 9% and 5.2%.

Effect of TBC Oxidation Failure on Blade Creep Life

The integrated creep life model was used to assess the impact of TBC

oxidation on the HPT blade creep life. This was demonstrated by considering

TBC oxidation on blade creep life at different TETs and strain levels and the

impact of ambient temperature on the blade creep life due to TBC oxidation

failure.

The results of the impact of TBC oxidation on the blade creep life are

illustrated in Figure 12 and they show that the TBC oxidation has a significant

effect on blade creep life. For instance, at a TET/Tref value of 0.98 and for

the reference strain, the creep life of the blade could be reduced by about

14% when compared with that without the effect of TBC oxidation. A further

increase of 5% in the strain from the reference value could reduce the creep

life by 31%. Again at high firing temperatures, the TET variation dominates

the creep behavior because of the fast oxidizing rate of the bond coats while

the effect of mechanical strain becomes less significant as the Creep Factors

for different strains approach to a single value. On the other hand at low TET,

both the strain and the temperature variations affect the creep behavior of

the blades.
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Figure 12: TBC oxidation on blade creep life at different TETs and strain
levels.

To investigate the effect of ambient temperature on the creep life of the

model aero-derivative gas turbine it was assumed that the cycle duration is

12 hours and the average ambient temperature changes every 2 hours.

Therefore, ambient temperature profiles on a typical day in four seasons

were assumed and shown in Figure 13.

Figure 13: Day temperature profile.
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The engine shaft power was kept constant irrespective of the changing

ambient condition. The ambient temperature variations and their impact on

the critical performance parameters of the engine, such as PCN and TET are

illustrated in Figure 14 and Figure 15.

Figure 14: PCN variation for different ambient conditions at constant
power.

Figure 15: TET variation for different ambient temperature at constant
power.
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With the consideration of the changing daily ambient temperatures, the

Creep Factor approach was used to assess the impact of the TBC oxidation

on the creep life of the HPT blades for the different seasons of the year. The

results are presented in Figure 16 and Figure 17 showing that TBC oxidation

reduces the creep life of the HPT blade in two extreme weathers.

Figure 16: Creep variation during winter.

Figure 17: Creep variation during summer.
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Based on the above results, the average Creep Factor for the four

seasons using Equation (32) are shown in Figure 18. It can be seen that the

highest impact was observed in winter (December, January and February)

while the least impact was in summer (June, July and August).

The impact of the TBC oxidation on the life usage for the different

seasons was examined. The life usage represents the percentage of the

blade creep life that has already been consumed relative to the total life of

the blade. The results are illustrated in Figure 19, which demonstrates that

the TBC oxidation increases the life usage of the engine for all the conditions

considered. It can be seen from Figure 19 that the life usage for autumn

increases from 0.64% to 1.32% when TBC oxidation effect is considered.

Similarly in winter, the life usage increased from 0.15% to 0.73% whereas in

spring and summer, the life usage increased from 1.02% to 2.6% and 2.42%

to 2.60% respectively when TBC oxidation effects are considered.

Consequently, TBC oxidation increases the overall life usage of the gas

turbine engine from 4.22% to 6.35% for one calendar year.
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Figure 18: Creep and oxidation effects.

Figure 19: Impact of TBC oxidation on the overall life usage.

CONCLUSIONS

This paper presents a novel creep life analysis model for gas turbine

engines with the consideration of the impact of TBC oxidation on the HPT

blade life. The integrated creep life analysis model comprises of stress,
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thermal, oxidation and creep life estimation models. It has been used to

assess the impact of TBC oxidation on the creep life of the HPT blades, the

critical creep life limiting components of a model aero derivative gas turbine

engine in two test cases. The results show that the TBC oxidation has a

significant detrimental effect on the creep life of the turbine blades. For

example, the creep life of the blade was reduced by about 14% when

compared with that without the effect of the TBC oxidation. The TBC

oxidation increases the cumulative life usage of the model gas turbine during

autumn from 0.64% to 1.32%. Similarly, the engine life usage could be

increased from 0.15% to 0.73% in winter, from 1.02% to 2.6% in spring and

from 2.42% to 2.60% in summer respectively.

NOMENCLATURE

∆H = Change in enthalpy

∆pAvsec = Average section static pressure difference.

∆x  = TBC thickness.

∆ϵ  = TGO inelastic strain range

∆ϵff = Mechanical inelastic strain range

A = Empirical Constant

AAnsec = Blade section annulus area.

Acs = Cross sectional area of the corresponding section.

ACSAv = Average cross sectional area between top and bottom

section

B = Model constant.
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Bi = Biot number

BMPsec = Pressure bending moment at blade section.

BMV = Momentum bending moment at blade section.

C = Model constant.

C = Parameter constant.

CF = Creep Factor.

Fsec = Blade section centrifugal force

Cpc = Specific heat of cold gas.

Cph = Specific heat of hot gas.

dCGsec = Distance between the section’s center of gravity to the

respective section.

Di = Damage component.

dsec = Section blade chord.

hg = Heat transfer coefficient.

Hsec = Blade section height.

Imax, Imin = Maximum and minimum moment of inertia.

ISA = International standard atmosphere.

K = Thermal conductivity.

kTBC = TBC ceramic conductivity.

Lc = Remnant life for engine operated at actual operating

condition.



GTP-16-1081 Ogiriki 35

LcRef = Reference remnant life at a user-defined operating

condition.

m = Empirical power law coefficient.

m* = Mass flow function

marea = mass flow per unit area.

mCNGV = NGV coolant mass flow rate.

mg = gas mass flow rate.

Mxx, Myy = Blade section resulting bending moment about the X and

Y axis.

N = constant.

N = Number of cycles.

Nb = Number of blades.

NGV = Nozzle guide vane.

Nug = Nusselt number.

P = Larson-Miller Parameter,

PCN = rotational speed.

PFsec = Pressure force of each section.

Q = ∆H/R. 

R = Universal gas constant.

rcg = Distance between the rotation axis and the section centre

of gravity.

RTDF = Radial temperature distribution factor.
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T = Gas temperature.

T = time.

T0 = Temperature at a reference condition.

Tamb = Ambient temperature.

Tbc = Blade coolant temperature.

Tbg = Blade metal temperature.

TC = Top coat.

TCin = Inlet coolant temperature.

TcinNGV = NGV inlet coolant temperature.

TCiSec = Section Coolant temperature.

TcoNGV = NGV coolant exit temperature.

Tcout = Outlet coolant temperature.

TET = Turbine entry temperature.

Tf = Film coolant temperature.

tf = time to fracture.

Tg = Gas temperature.

TGsec = Section gas temperature.

TM = Material temperature.

Tmax = Maximum gas temperature.

Tmean = Gas mean temperature.

Tmin = Minimum gas temperature.
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TMSec = Section’s blade metal temperature.

TNGV = NGV inlet coolant temperature.

TOIN = Rotor inlet temperature.

Tref = Burner temperature rise.

Tsf = Strain or stress free temperature.

TTBC = TBC temperature.

VFAxsec = Axial blade section momentum force.

VFTansec = Tangential blade section momentum force.

W = Angular speed.

X, Y = Distance between the corresponding location to the blade’s

section center of gravity.

α0 = Thermal expansion coefficient.

α1 = Thermal expansion coefficient.

δ   = TGO thickness in microns.

δc = Critical oxide thickness.

ϵ   = TGO strain.

ε = Overall cooling efficiency.

ε  = Mechanical strain.

εf = Film cooling efficiency.

ϵss = Substrate total strain.

ηc = Internal convection efficiency.

ηconNGV = NGV convection efficiency.
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θ = Blade stagger angle.

ρ = Density.

σBMSec = Section’s bending moment stress.

σCFSec = Centrifugal stress at each blade section.

σTotSec = Total maximum stress at each blade section.
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