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Abstract 

 

Determination of crop coefficients (Kc), the ratio between actual (ETa) and reference 

evapotranspiration (ET0), is necessary to schedule irrigation. Our objective was to 

determine Kc, turf quality and growth rate under daily irrigation to field capacity (FC 

= - 3 kPa tension) and drying. Mini-lysimeters installed in a green (mowing height 3-

5 mm) and fairway (15 mm) were weighed during four periods of 4-10 days duration 

in 2009 and 2010. Crop coefficients on the second and subsequent days after 

irrigation were not significantly different among species and averaged 0.81and 0.91 

on green and fairway, respectively. On the first day after irrigation, the Kc varied 

from 1.67 to 2.85 and decreased in the order Agrostis capillaris > Festuca rubra ssp. 

litoralis > F. rubra ssp. commutata > A. stolonifera > A. canina on the green, and 

F.rubra ssp. litoralis > Lolium perenne > F. rubra ssp. rubra > Poa pratensis > F. 

rubra ssp. commutata on the fairway. Drying reduced the average daily height 

growth from 0.98 to 0.74 mm on the green and 1.97 to 1.72 mm on the fairway. 

Scores for turf quality were reduced but remained acceptable. Although the Kc 

during the first day after irrigation to FC may be over-estimated due to latent soil 

heat and a possible oasis effect, we conclude that irrigation to FC should be avoided 

as it causes excessive water use.  
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Introduction 

 

Globally, the availability and cost of irrigation water are the most serious threats to 

further expansion of golf courses and other turfgrass areas. Many golf courses in 

Denmark, Spain and other European countries are already facing restrictions on 

irrigation abstraction with a changing climate only likely to exacerbate the situation 

(Rodriguez Diaz et al. 2010, Strandberg et al. 2012). Even in Scandinavia where 

water sources are generally abundant, turf quality is often compromised by an 

insufficient capacity of the public water supply system to meet peak irrigation 

demands during dry summers. On the other hand, unconstrained access to water may 

also result in excessive irrigation practices (over-irrigation), that lead to poor root 

development, disease pressure, nutrient and pesticide leaching and reduced playing 

quality (e.g. Espevig and Aamlid 2012a,b).  

Methods used by turfgrass managers to determine irrigation water requirements 

vary. In many cases, water is applied for a defined period every night or every other 

night without knowledge of crop demand or recognition of the amount of water 

added (M. Frisk, irrigation specialist, Swedish Golf Federation, personal 

communication, June 2014). More experienced turfgrass managers adjust the 

irrigation settings on a daily basis depending on in-situ measurements of soil water 

content (SWC) in combination with visual assessments of turfgrass attributes such as 

turgidity or color. 

Scheduling irrigation based on evapotranspiration (ET) rates is widely used in 

agriculture and turf management. Evaporation pans or atmometers of various types 

have been used in many environments (e.g. Fry & Huang 2004, Riley and Berentsen 

2009, Knox et al. 2011, Espevig & Aamlid 2012a,b), but are gradually being 
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replaced by automatic weather stations to calculate reference evapotranspiration 

(ET0) from climate data using the original (Penman 1948) or modified versions of the 

Penman equation (Allen et al. 1989, Qian et al. 1996). A widely used version is FAO 

56, developed by the United Nations Food and Agricultural Organization (Allen et 

al. 1994). According to FAO 56, the ‘reference’ surface is a hypothetical crop with 

assumed height of 12 cm closely resembling an extensive surface of green grass that 

is actively growing, completely shading the ground and not short of water (Allen et 

al. 1994).  

To calculate actual ET (ETa) from a non-water-limited turfgrass surface, reference 

ET is multiplied by a crop coefficient (Kc) describing the characteristics that 

distinguish the canopy from the reference surface, thus ETa = ET0 x Kc.  Published 

Kc values vary from 0.8 to 1.3 for cool-season turfgrasses and from 0.6 to 0.8 for 

warm-season grasses (Aronsen et al. 1987b, Carrow 1995, Brown et al. 2001, Sass 

and Horgan 2006, Ebdon and DaCosta 2014).  Kc values will normally increase with 

mowing height as a greater leaf area translates into more stomata (Feldhake et al. 

1983, Orick and Throssell 1991, Ebdon and DaCosta 2014), but this effect may be 

counteracted by reduced rooting at lower mowing heights (Fry and Huang 2004). Fry 

and Butler (1989) reported a 12 % increase in water use of annual bluegrass (Poa 

annua) and creeping bentgrass (Agrostis stolonifera) ‘Penncross’ as the mowing 

height was raised from 6 to 12 mm.  

Actual evapotranspiration (ETa) from a turfgrass canopy can also be determined 

by weighing mini-lysimeters filled with undisturbed soil at regular intervals 

(Feldhake et al. 1983, 1984, Qian et al. 1996, Kim and Beard 1988, Aronson et al. 

1987a, b; Bremer 2003; Ebdon and DaCosta 2014). Such studies have shown that 

ETa on any date during a drying cycle depends not only on turfgrass species, but also 
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on soil water content and thus irrigation frequency (Biran et al. 1981). Using mini-

lysimeters, 0.245 m in diameter, 0.28 m deep and equipped with tensiometers at 10 

cm depth, a study in New England (USA) found that Kc levels started to decline at 

matric potentials of approximately -40, -60 and -80 kPa in Kentucky bluegrass (Poa 

pratensis), perennial ryegrass (Lolium perenne) and chewings fescue (Festuca rubra 

ssp. commutata), respectively (Aronson et al. 1987a). Crop coefficients  of cool-

season grasses were unaffected by soil water potential in the range -10 to -50 KPa 

and the authors therefore defined ‘well-watered conditions’ as any soil water 

potential higher than -40 kPa. In their studies, the mini-lysimeters were drained for 

24 h after saturation before weighing and starting the drying cycles. However, this 

does not seem particularly relevant after saturation of a USGA specification green 

(USGA 2004), in which the soil water potential at field capacity varies from -1 kP at 

the bottom to -4 kPa at the top of the sand-based rootzone (Bigelow et al. 2001).  

Studies in the USA have shown that the Kc value of well-watered turf of the same 

species varies depending on season and between climatic regions, suggesting that 

regional values should be derived to ensure optimal irrigation efficiency (Carrow 

1995, Brown et al. 2001, Ebdon and DaCosta 2014). Thus, the objective of this 

research was to determine Kc values, under both well-watered conditions and during 

drying, of the most widely used turfgrass species used on the greens and fairways on 

Scandinavian golf courses.  

 

Materials and Methods 

 

Experimental site 
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The study was conducted during the growing seasons 2009 and 2010 on an 

experimental green and fairway at the Bioforsk Turfgrass Research Centre Landvik, 

Grimstad, Norway (58º20’N, 8 º32’E, 12 m a.s.l.). The green and fairway were 

located 20-30 m apart. The experimental green was constructed in 2007 with a 30 cm 

sand-based and peat-amended rootzone above a 10 cm gravel layer (USGA 2004). 

On 17 August 2007 the green was split into five sections and seeded with chewings 

fescue ‘Center’, slender creeping red fescue (F. rubra  ssp. litoralis syn. 

trichophylla) ‘Cezanne’, colonial bentgrass (Agrostis capillaris) ‘Barking’, velvet 

bentgrass (Agrostis canina)  ‘Legendary’ and  creeping bentgrass ‘Independence’, 

respectively. The soil on the fairway was a silt loam (64% sand, 29% silt, 7% clay). 

From seeding in July 2005 until October 2008, the area had been used in another trial 

comparing different species and varieties. In May 2009, chewings fescue ‘Center’, 

slender creeping red fescue ‘Barcrown’, strong creeping red fescue (F. rubra ssp. 

rubra) ‘Celianna’, perennial ryegrass  ‘Bargold’ and Kentucky bluegrass 

‘Limousine’ were retained for use in this study.   

 

Maintenance of green and fairway  

During the measurement periods in 2009 and 2010, the green was cut on Mondays, 

Wednesdays and Fridays with a walk-behind green mower at 3 mm (bentgrasses) or 

5 mm (fescues) mowing height. The fairway was cut on Mondays and Fridays to 15 

mm with a triplex mower without collection of clippings. Mowing was always 

conducted shortly after reinsertion of the mini-lysimeters (see later). After mowing, 

the turf was also exposed to abrasive wear from a wear machine with golf spikes 

mounted on two drums rotating at different speed. The amount of wear corresponded 

to approximately 20.000 rounds of golf per year.   
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The green received weekly applications of liquid and granular fertilizer 

corresponding to a seasonal rate of 16 g N m
-2

 to all species in 2009 and 15 g N m
-2

 

to creeping bentgrass and 7.5 g N 100 m
-2

 to the other species in 2010. The fairway 

received granular fertilizer every second week in 2009 and every third week in 2010, 

with the total inputs corresponding to 12 and 10 g N m
-2

, respectively.  

 

 

Physical soil analyses 

Three undisturbed soil cores, 37 mm deep and 55 mm diameter, were taken at each 

of four depths on the green and at each of two depths on the fairway and then 

analyzed in the soil laboratory at Bioforsk Apelsvoll Research Center, as described 

by Riley (1996). The analyses showed a higher air-filled porosity and saturated 

hydraulic conductivity, but a lower plant available water capacity in the 10-1500 kPa 

tension range on the green compared to the fairway (Table 1). The ignition loss was 

on average three times higher on the fairway than on the green. Higher bulk density 

and lower hydraulic conductivity at 150-187 than at 27-64 mm depth on the fairway 

was associated with a tendency for the formation of a hard pan. The experimental 

area had been used for arable farming with annual ploughing until the fairway was 

established in 2005.   

 

Root dry weight 

Samples for determination of root dry weight in various layers were taken before the 

first registration period in May/June 2009. Three undisturbed cores, 56 mm in 

diameter and 30 cm deep, were extracted from each species on the green and on the 

fairway. The cores were cut immediately below the thatch/mat layer and at 5, 10 and 
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20 cm depths. Roots were washed carefully and root weight in each layer determined 

after drying at 60°C for 48 h. The effective root depth was defined as 20 cm in all 

species, as virtually no roots could be found at greater depth in samples from either 

green or fairway.  

 

Measuring actual evapotranspiration (ETa) 

Six mini-lysimeters (metal cylinders), each 30 cm deep and 10 cm in diameter, 

were inserted randomly in each of the five grass species/subspecies on the green in 

November 2008 and in in each of the five grass species/subspecies on the fairway in 

May 2009. Thus, our experimental approach includes observations of 60 mini-

lysimeters altogether.  One special cylinder with sharpened edges was inserted into 

the soil and the intact, undisturbed profile then transferred carefully to a permanent 

mini-lysimeter containing fine wire-mesh at the base. In order to prevent the pit from 

collapsing when the mini-lysimeter was extracted, each mini-lysimeter was 

surrounded by a metal sleeve with a diameter 5 mm wider than the mini-lysimeter. 

The top of the mini-lysimeters and sleeves were at ground level thus allowing 

mowing practices to be carried out as usual.  

As the mini-lysimeters were not set up to collect drainage water, nor covered in 

the event of rain, the determination of turfgrass water use could only be 

accomplished during periods without rainfall. In 2009, we collected daily values for 

ETa during three periods, 27 May – 2 June, 24 June – 2 July and 10-14 August. The 

experimental protocol during these periods was as follows:  

1. On the first day of each evaluation period, all mini-lysimeters were removed 

from their sleeves at around 11:00h and hand-watered gently and repeatedly 

using a fine spray nozzle until water dripped through the fine mesh at the 
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bottom. After this, the mini-lysimeters were allowed to drain for one hour before 

re-weighing and reinsertion into their sleeves, usually at around 13:00h. In this 

study, the soil water content after one hour’s drainage is referred to as ‘field 

capacity’ (FC). 

2. On subsequent days, the mini-lysimeters were removed and then weighed at 

approximately 11:00. After weighing, three mini-lysimeters per species were 

watered to FC following the procedure described above (1) before reinsertion . 

The remaining three cylinders were reinstalled without irrigation (drying 

treatment).  

3. In the green trial, the turf surrounding the mini-lysimeters was irrigated two to 

three times per week using an overhead sprinkler system once the cylinders had 

been removed for weighing. Irrigation of the surrounding turf was not possible 

on the fairway trial as the lysimeter holes would have filled with water due to the 

limited hydraulic conductivity of the compact soil layer at 15-20 cm depth.  

4. During the first observation period (27 May – 2 June 2009) we found that 

turfgrass water use was much higher than expected for cylinders that were 

watered daily to FC. Therefore, it was questioned whether some of the weight 

loss was due to drainage from the cylinders after reinstallation into the sleeves. 

During the subsequent observation periods, the bottom of each cylinder was 

sealed with a plastic bag to collect any drainage water; however, we observed 

virtually no water in these plastic bags.  

 

In 2010, measurements of turfgrass ETa were conducted from 20 May to 30 May 

on the green and from 20 May to 9 June on the fairway. As with the two last 

measurement periods in 2009, the cylinder bases were sealed with plastic bags to 
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prevent drainage. Three of the six cylinders were watered back to FC twice each 

week; the remaining three were subjected to progressive drying (no irrigation) with 

irrigation to FC only at the start of the measurements. Registrations on the green also 

included six cylinders located on nearby plots where the USGA-specification sand 

had been exposed because the turf had been removed due to winter damage.    

 

Reference ET-values (ET0) and crop coefficients (Kc) 

Daily values for ET0 were calculated for Landvik weather station  (ca. 200 m from 

the green and fairway) using the FAO 56 version of the Penman-Monteith equation 

(WaSim software, Cranfield University, UK). Daily crop coefficients for irrigated 

and unirrigated turf for each species during the measurement periods were calculated 

as Kc = ETa/ET0, where ETa is the actual and ET0 the reference evapotranspiration, 

respectively.   

 

Turfgrass growth rate and turfgrass quality 

Turfgrass height was measured using a Turf Check Prism device (Check Signature 

Inc., Shoreview, MN, USA) before mowing on Mondays, Wednesdays (green only) 

and Fridays during each measurement period. Growth rates were expressed as the 

daily height increment based on the bench settings of the mowers used on the green 

and fairway, respectively. At the end of each measurement period,  turf quality was 

rated on a scale from 1-9, where 5 was the lowest acceptable quality. 

 

Statistical analyses 

Data for thatch thickness and root weight in various layers were subjected to one-

way analyses of variance (PROC ANOVA, SAS Institute, Cary, NC, USA) with 
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turfgrass species as the fixed factor with five levels. These analyses were performed 

on the assumption that that the root samples were uncorrelated and independent as 

the physical soil analyses showed very uniform conditions within the green and 

within the fairway. Crop coefficients were analyzed as two separate data sets, one for 

the mini-lysimeters that were irrigated back to FC on a daily basis (three periods in 

2009) or twice per week (2010), and the other for the mini-lysimeters that were 

subjected to progressive drying. In the first dataset, Kc values were averaged over all 

days during each period (in 2010 only the first day after irrigation) before analysis. In 

the second dataset, values were averaged for the second and subsequent days during 

the dry-down cycle, thus excluding the first 24 h after irrigation back to FC. The 

analyses were performed using the SAS PROC MIXED, with turfgrass species as the 

fixed variable and mini-lysimeter number within species (1-3) and measurement 

period (1-4) as the random variables. Possible correlations due to repeated 

observations on the same mini-lysimeter were modelled by either the UN 

(unstructured) or the auto-regressive (AR(1)) options of the REPEATED statement 

in PROC MIXED, whichever gave the lower AIC-value, and mean Kc values for 

turfgrass species were then estimated using the LSMEANS procedures.  

Data for daily height increment and turfgrass quality at the end of each 

observation period were modelled using PROC MIXED, again using the 

REPEATED statement to ensure independency among observations. For these 

variables, not only turfgrass species, but also irrigation treatment and their interaction 

were regarded as fixed effects. Tukey’s HSD at P = 0.05 was used to identify any 

significant differences between treatments for all response variables. In this paper the 

term ‘significant’ refers to  P ≤ 0.05, but higher P-values, up to P = 0.15, have also 

been shown in the tables.  



12 

 

 

  



13 

 

Results 

 

Root dry weight 

The measured differences in root dry weight between the turf species were 

significant at both sites. Most roots were found in the thatch/mat layer, the weight of 

which was especially high in velvet bentgrass on the green (Table 2), and in the 

chewings fescue and slender creeping red fescue on the fairway (Table 3). Below the 

thatch/mat layer, chewings fescue and velvet bentgrass had the highest root weight 

on the green, while perennial ryegrass had significantly more roots than Kentucky 

bluegrass and strong creeping red fescue on the fairway. 

 

Turfgrass ETa in treatments with irrigation to FC and during drying 

Actual values of turfgrass water use on the green and fairway during the 

measurement period 10-14 August 2009 are shown in Fig. 1. On both green and 

fairway, the ETa from the mini-lysimeters that received daily irrigation back to FC 

showed considerable day to day variation but were on average for the period between 

50 and 300 % higher than the reference value ET0. By contrast, the mini-lysimeters 

that were only irrigated at the start of the measurement period showed a 

characteristic drop in water use with time. From the second or third day after 

irrigation back to FC, the ETa on the unirrigated plots was mostly lower than the ET0. 

Data from the two first measurement periods in 2009 are not included as they 

showed similar patterns.  

ETa values for the period 20 – 30 May 2010 (green) and 20 May – 9 June 2010 

(fairway) for treatments irrigated back to FC twice per week and without irrigation 

are shown in Fig 2. As in 2009, turfgrass water use was two to four times higher than 
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ET0 on the first day after irrigation back to FC. The lowest water use on the first day 

after irrigation to FC was found in velvet bentgrass on the green and in chewings 

fescue and Kentucky bluegrass on the fairway. ETa from the mini-lysimeters without 

turf cover (bare soil) on the green was two to three times higher than ET0 on the first 

day after irrigation to FC, but lower than ET0 on subsequent days.  

The differences in Kc values between the turfgrass species are shown in Table 4. 

Differences on the first day after irrigation to FC were significant on the fairway and 

almost significant (P=0.055) on the green. On this day, chewings fescue took up less 

water than any other turfgrass species on the fairway, while velvet bentgrass took up 

less water than any other species on the green. On the second and subsequent days 

after irrigation to FC, differences between species were not significant on either 

green or fairway, but there was a tendency for chewings fescue to use more water 

than the other species on the green.  

 

Turfgrass growth rate 

On average for species and the four measurement periods, withholding irrigation 

reduced the turfgrass growth rate significantly by 24 % on the green (Table 5) and by 

13 % on the fairway (Table 6). Differences among turfgrass species were significant 

on the green, where red fescues, especially chewings fescue, and colonial bentgrass, 

grew more strongly in height than did creeping and velvet bentgrass. Differences in 

height growth on the fairway were almost significant (P=0.065, Table 6) as there was 

a tendency for perennial ryegrass and strong creeping red fescue to grow more 

strongly than the Kentucky bluegrass, while chewings fescue and slender creeping 

red fescue were intermediate. The interaction between species and irrigation 
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treatments was not found to be significant on either green or fairway.  

 

Turfgrass quality 

Withholding irrigation reduced turfgrass quality significantly on the fairway (Table 

8) and showed a similar tendency (P=0.14) on the green (Table 7). However, the 

quality scores remained higher than 5.0 (= acceptable) for all species in both trials. 

Velvet bentgrass had higher scores than the other species in the green trial; its overall 

impression also showed negligible effects of drying. The interactions between 

species and irrigation treatment were not significant in any of the trials.  

 

Discussion  

 

Possible reasons for high Kc-values on the first day after irrigation back to FC 

The crop coefficients for the second and following days after irrigation back to FC, 

0.76-0.87 on the green and 0.84-0.99 on the fairway were similar to those reported 

earlier for cool-season grasses (Aronson et al. 1987b, Brown 2001, Sass and Horgan 

2006). In contrast, Kc values on the first day after irrigation to FC were higher than 

any previously reported. This is most likely due to the fact that the mini-lysimeters 

were left to drain for only one hour after irrigation before sealing the base and 

returning them back to the turfgrass plots. Other researchers (Aronson et al. 1987a, b, 

Bremer 2004) allowed the turf to drain for 24 h before returning the mini-lysimeters 

back into the turf; this likely removed some of the easily available water that would 

otherwise have been used by the turf. A 24 h drainage period before the start of 

measurements might be reasonable on heavy agricultural soils with infrequent 
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irrigation and if the soil in the mini-lysimeters is in hydraulic contact with the 

underlying soil, but not on sand-based USGA greens that have a maximum hydraulic 

head of 4 kPa (Bigelow et al. 2001) and a more frequent irrigation schedule than 

agricultural soils. In the fairway trial, the fact that root development in the mini-

lysimeters was restricted by a compact layer with poor drainage at about 20 cm 

depth, helps to substantiate our conclusion that FC should be based on the -3-1500 

kPa rather than the -10-1500 kPa tension range. During the measurement periods 2-4, 

the plastic bags used to seal the base of the lysimeters contained virtually no drainage 

water, so there is little doubt that the water loss on the first day after irrigation to FC 

was due to evapotranspiration, perhaps also with a marginal contribution from 

guttation water which has been shown to increase with turf density, soil temperature 

and soil water content (Hughes and Brinklecombe 1994). We therefore contend that 

inclusion of the easily available water in the 3-10 kPa tension range, which 

contributed about 35 and 25 % of the total FC on the green and fairway, respectively, 

was an important source of the high water loss on the first day after irrigation to FC. 

This reflects typical conditions with frequent irrigation used on many golf courses.  

Earlier investigations by Bremer (2003) have shown that gravimetric 

determination of actual water use depends on mini-lysimeter design, including 

diameter, depth and construction material, and even the leaf area index and shoot and 

root biomass within the mini-lysimeters compared with those of the surrounding turf. 

In order to obtain robust measurements, the authors recommended using mini-

lysimeters filled with intact (undisturbed) soil cores and sealed bases rather than 

draining mini-lysimeters filled with soil and prepared in the greenhouse before use in 

the field. As these recommendations were adopted in our study, the high Kc rates on 

the first day after filling the soil reservoir to FC cannot be ascribed to either drainage 
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or to higher biomass in the mini-lysimeters than in their surroundings. However, on 

the fairway trial, the surrounding turf was not irrigated after mini-lysimeter removal, 

as the holes would have filled with water due to low infiltration rates. This may well 

have resulted in an ‘oasis effect’ when the freshly irrigated mini-lysimeters were 

reinstalled into the dry surrounding soil. This was especially apparent in 2010 when 

the lysimeters were visible as small ‘green islands’ in an otherwise dry and brownish 

fairway by the end of the measurement period between 20 May and 9 June. We have 

later tried to quantify this ‘oasis effect’ by comparing the weight loss from six mini-

lysimeters filled with undisturbed cores of chewings fescue ‘Center’, three installed 

in a well-irrigated fairway and three in an open field with a dry surface of bare soil. 

This small trial showed about 20 % higher water use on the first day after installation 

in dry versus wet surrounding soil, which may well be viewed as an indication of the 

over-estimation in Kc values on the first day after irrigation back to FC in the 

fairway trial.   

The upper limit for the amount of water that can be evaporated into the 

atmosphere from an open surface is determined by the global radiation intercepted by 

the surface. The FAO 56 equation uses a factor (0.408) to convert radiation (MJ m
-2

) 

into ‘evaporation equivalents’ (mm) (Allen et al. 1994). Table 9, based on records of 

global radiation at the Landvik weather station, show that the average measured ETa 

was below this limit in the early summer of 2009, but above the limit in August 2009 

and May 2010.  The soil temperature in the mini-lysimeters was not recorded, but 

standard measurements at 10 cm soil depth at the Landvik weather station showed 

values of 12.3, 17.1, and 18.4 °C at the start of the three measurement periods in 

2009, respectively. Thus, in addition to the oasis effect, one possible explanation 

why the theoretical ET limit was exceeded in August 2009 may be that latent heat 
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stored in, and perhaps around, the mini-lysimeters resulted in higher ET-rates. On the 

green where the upper edges of the mini-lysimeters and surrounding sleeves were 

less covered by grass leaves than on the fairway, this might also include any possible 

direct effect of radiation on the temperature of the metal used in the mini-lysimeters 

and sleeves. Feldhake and Boyer (1986) observed a strong effect of soil temperature 

on ET rates, and Riley and Berentsen (2009) found a seasonal trend that the Penman 

model over-estimated pan evaporation in spring and early summer, but then under-

estimated evaporation rates in late autumn. During May 2010, the mini-lysimeters 

were replenished to FC twice weekly instead of every day as in 2009; this may also 

have allowed more latent heat to build up between successive irrigations. This could 

be observed even in the mini-lysimeters that that had no turf cover but where the ETa 

on the first day after irrigation back to FC was two to three times higher than ET0. 

For the latter, it is, however, worth noting that drying of the surface caused the 

evaporation rate to decrease below the reference value and the ETa from turfgrass 

canopies on the second and subsequent days after irrigation.  

Hyperbolic functions describing Kc values for unirrigated turf during the first 

week after irrigation back to FC are shown in Fig. 3. Except for slender creeping red 

fescue and perennial ryegrass which on the fairway had 0.61 and 0.73, respectively, 

coefficients of determination were always higher than 0.80. In most cases the models 

suggest that crop coefficients below 1.0 were not reached until the third day after 

irrigation to FC.  

 

Effects of turfgrass species and mowing heights 

The generally higher ETa values measured on the fairway compared to the green 

agree with findings from Feldhake et al. (1983), Orick and Throssell (1991), and 
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Ebdon and DaCosta (2014). They found that higher mowing, and thus a higher leaf 

area index, results in higher Kc values. However, chewings fescue ‘Center’, the only 

variety that was studied at both mowing heights, was an exception. It used more 

water on the green than on the fairway during the first day after irrigation back to FC 

and approximately the same amount of water on subsequent days. Red fescues are 

usually considered to be among the more drought resistant turfgrasses because of 

their fine leaves (Kim and Beard 1988, Fry and Huang 2004), but our data, along 

with those of Blankenship (2011), suggest that the water-saving effect of narrow 

leaves becomes less important at low mowing heights. Our data also showed 

considerable variation among the cultivars representing various sub-species of red 

fescue, especially on the fairway where slender creeping red fescue ‘Barcrown’ and 

strong creeping red fescue ‘Celianna’ transpired significantly more water on the first 

day after irrigation back to FC than chewings fescue ‘Center’. The turfgrass growth 

rate and overall impression during drying was also less affected in ‘Barcrown’ than 

in ‘Center’, despite the fact that ‘Center’ had a higher root mass. Although the best 

drought avoidance in the fairway trial was found in perennial ryegrass, which also 

had the most extensive root system, our results for the red fescues support similar 

findings with Kentucky bluegrass cultivars (Richardson et al. 2008); namely, that 

turfgrass water use is often better correlated with turfgrass canopy characteristics 

than with rooting capacity (Kim and Beard 1988), at least during the first days after 

replenishment to FC. Deeper roots in chewings fescue than in the creeping sub-

species of red fescue agrees with with Boeker (1974), but our results showed an 

effect of root development on drought resistance of the different sub-species of red 

fescue only at the mowing height used on the green.   
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Finally, in the green trial, velvet bentgrass had significantly lower crop 

coefficients on the first day after irrigation back to FC than had the colonial 

bentgrass and red fescues. One possible reason is that the extremely high tiller 

density and thick thatch layer in velvet bentgrass resulted in a more humid 

microclimate with a thicker boundary layer that limited transpiration. The large 

difference in crop coefficients among the bentgrasses on the first day after irrigation 

back to FC supports DaCosta and Huang (2006) who found that ETa increased in the 

order velvet bentgrass < creeping bentgrass < colonial bentgrass. Shearman and 

Beard (1972) also found that that velvet bentgrass had a lower stomatal density than 

other cool-season turfgrasses.  

 

Conclusion 

 

This research has shown that crop coefficients for cool season grasses on a green and 

fairway are up to three times higher on the first day than on the second and 

subsequent days after irrigation back to FC. Frequent irrigation back to FC would 

thus lead to excessive water use that cannot be justified by a corresponding increase 

in turf quality. Crop coefficients for cool season turfgrass species vary significantly 

on the first day after irrigation back to FC due to differences in canopy 

characteristics, but there is less variation on subsequent days. The findings have 

important implications for the turfgrass industry in promoting more sustainable 

management and efficient use of water and helping reduce the environmental impacts 

associated with over-irrigation. 
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Figure legends:  

Fig. 1. Reference ET-values and daily water use (mm) for five turfgrass species on 

green (a-e, left column) and fairway (f-j, right column) during the measurement 

period 10 – 14 Aug. 2009. ± 1 SE (standard error of the mean, n=3) has been 

indicated. Turfgrass water use refers to cylinder weight loss from 11:00–13:00 h on 

the actual day to 11:00-13:00 h on the day after. Reference ET0 values were 

calculated using data from the official Landvik weather stations and the FAO 56 

Penman Monteith equation. 

 

 

Fig. 2. Reference ET0-values and daily water use (mm) for five turfgrass species and 

bare soil on green (a-f, left column) and five turfgrass species on fairway (g-k, right 

column) during the measurement period 20 – 30 May 2010. ± 1 SE (standard error of 

the mean, n=3) has been indicated. Turfgrass water use refers to cylinder weight loss 

from 11:00–13:00 h on the actual day to 11:00-13:00 h on the day after. Reference 

ET0 values were calculated using data from the official Landvik weather stations and 

the FAO 56 Penman Monteith equation. 

 

 

Fig. 3. Crop coefficients (Kc) of various turfgrass species on green (a) and fairway 

(b) as functions of day number after irrigation to field capacity. Data are means of 

four observation periods.  
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Table 1. Physical parameters in undisturbed soil cores taken at four depths on green and two depths on fairway.  

Values represent means of three replicate samples taken at each depth in June 2009.  

 

 Sample 

depth  

 

mm 

Loss  

on  

ignition  

% 

Bulk  

density 

g cm
-3

 

Sat. 

hydraulic 

conductivity 

(Ksat),  

mm h
-1 

Total 

poro-

sity,  

vol% 

Air-filled 

porosity  

at  

-3 kPa,  

vol%  

Unavailable 

water at  

-1500  

kPa, 

vol%   

Plant available 

water at field 

capacity, vol%  

 -3-10  

kPa 

-10-1500 

kPa,  

Green 13-50 
 

1.38 1.58 208 44.6 31.5 2.2 3.6 7.3 

 55-92 
 

1.02 1.59 197 41.6 29.3 1.6 3.6 7.1 

 105-142  1.01 1.50 232 46.1 34.2 1.5 3.7 6.7 

 155-192  1.06 1.44 235 46.8 35.0 1.5 3.8 6.5 

Fair-

way 

27-64 
 

3.67 1.36 101 45.9 20.7 4.5 5.5 15.2 

150-187 
 

3.16 1.46 69 42.6 20.5 4.8 3.8 13.8 
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Table 2. Root dry weight for selected turfgrass species on the green, June 2009  

Values represent means of three replicate samples per species.   

 

Turfgrass species   

Root dry weight in various layers, g m
-2

 

In  

thatch 

Thatch – 

5 cm 5-10 cm 10-20 cm 

Total under 

thatch 

Chewings fescue 
 

609 b 191 ab 106  a 113 410  a 

Slender creeping red fescue  614 b 158  b 63  b 81 302 ab 

Colonial bentgrass  538 b 154  b 82 ab 93 329 ab 

Creeping bentgrass  474 b 144  b  63  b 38 244  b 

Velvet bentgrass  1215 a 285  a 65  b 73 423  a 

P-value  0.010 0.0069 0.016 0.061 0.015 

1
 Within each column, means followed by the same letter are not significantly different according to Tukey’s HSD0.05. 
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Table 3. Root dry weight for selected turfgrass species on the fairway, June 2009 

 Values represent means of three replicate samples per species.   

 

Turfgrass species  

Root dry weight in various layers, g m
-2

 

In 

thatch 

Thatch – 

5 cm 5-10 cm 10-20 cm 

Total under 

thatch 

Chewings fescue  1833  a 289 67 b 65  ab 421 ab 

Slender creeping red fescue  1834  a 418 44 b 18   bc 480 ab 

Strong creeping red fescue  1438 ab 244 70  b  33 abc 348 ab 

Perennial ryegrass  977 b 400 147 a 69   a 617  a 

Kentucky bluegrass  1179 ab 190 54 b 13   c 258  b 

P-value  0.014 0.10 0.0017 0.0091 0.027 

1
 Within each column, means followed by the same letter are not significantly different according to Tukey’s HSD0.05. 
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Table 4.  Crop coefficients (Kc) on the first day after irrigation to field capacity and on subsequent days for selected turfgrass species growing on green and 

fairway. Mean of registration periods 27 May – 2 June 2009, 24 – 30 June 2009, 10-14 Aug. 2009 and 20-30 May 2010.  

 

Green  Fairway 

Turfgrass  

species  

Days after irrigation 

to field capacity 

 Turfgrass  

species  

 

Days after irrigation 

to field capacity 

First 

day 

after 

Mean of 

following 

days 

First  

day after 

Mean of 

following 

days 

Chewings fescue 2.54
 

0.87   Chewings fescue 1.82 b
1 

0.89  

Slender creeping red fescue 2.57 0.78   Slender creeping red fescue 2.83 a 0.84 

Colonial bentgrass 2.85  0.82   Strong creeping red fescue 2.57 a 0.91 

Creeping bentgrass  2.39 0.76   Perennial ryegrass 2.67 a 0.99 

Velvet bentgrass 1.67 0.80   Kentucky bluegrass  2.29 ab 0.94 

P-value 0.055 0.12  P-value 0.029 >0.15 

1
 Within each column, means followed by the same letter are not significantly different according to Tukey’s HSD0.05. 
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Table 5. Turf growth rate (mm d
-1

) on the green as influenced by irrigation treatment and turfgrass species.   

Means of three registration periods in 2009 and one registration period in 2010.   

 

 

 Irrigation to  

field capacity 

No  

irrigation 

 

Mean
1 

Chewings fescue  1.49  1.21 1.35  a 

Slender creeping red fescue  1.03 0.88 0.96  ab 

Colonial bentgrass 1.14  0.74 0.94  abc 

Creeping bentgrass  0.61  0.41 0.51     c 

Velvet bentgrass  0.51  0.45 0.53   bc 

Mean
2
 0.98 A 0.74 B 0.86

3 

1
 P-value for comparison of species: 0.0003.  Values with the same lower-case letters are not significantly different according to Tukey’s HSD0.05. 

2
 P-value for comparison of irrigation treatments:  0.047. Values with the same capital letters are not significantly different according to Tukey’s HSD0.05. 

3
 P-value for interaction: >0.15  
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Table 6. Turf growth rate (mm d
-1

) on the fairway as influenced by irrigation treatment and turfgrass species.  

Means of three registration periods in 2009 and one registration period in 2010.   

 

 

 Irrigation to  

field capacity 

No  

irrigation 

 

Mean
1 

Chewings fescue  2.05  1.52     1.78 

Slender creeping red fescue  1.83  1.57    1.70 

Strong creeping red fescue  2.36     1.96   2.16 

Perennial ryegrass  2.13   1.97   2.05 

Kentucky bluegrass  1.48   1.58   1.53 

Mean
2
 1.97 A         1.72 B 1.84

3 

1
 P-value for comparison of species: 0.065 

2
 P-value for comparison of irrigation treatments: 0.013.  Values with the same capital letters are not significantly different according to Tukey’s HSD0.05. 

3
 P-value for interaction: >0.15.   
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Table 7. Turfgrass quality (1-9, 5 is acceptable turf) by the end of registration periods on the green as influenced  

by irrigation treatment and turfgrass species. Means of three registration periods in 2009 and one registration period in 2010.   

 

 Irrigation to  

field capacity 

No  

irrigation 

 

Mean
1 

Chewings fescue 6.3 6.0 6.2  b 

Slender creeping red fescue 6.9 5.8 6.4 ab 

Colonial bentgrass 7.0 6.0 6.5 ab 

Creeping bentgrass 6.9 5.5 6.2  b 

Velvet bentgrass 7.4 7.3 7.3  a 

Mean
2
 6.9  6.1  6.5  

3 

1
 P-value for comparison of irrigation treatments: 0.025. Values with the same lower-case letters are not significantly different according to Tukey’s HSD0.05. 

2
 P-value for comparison of irrigation treatments: 0.14.  

3
 P-value interaction: >0.15 
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Table 8. Turfgrass quality (1-9, 5 is acceptable turf) by the end of registration periods on the fairway as influenced by  

irrigation treatment and turfgrass species. Means of three registration periods in 2009 and one registration period in 2010.   

 

 Irrigation to  

field capacity 

No  

irrigation 

 

Mean
1 

Chewings fescue 6.7 5.7 6.2   

Slender creeping red fescue 7.0 6.3 6.6  

Strong creeping red fescue 6.5 5.5 6.0   

Perennial ryegrass 7.4 6.9 7.1 

Kentucky bluegrass 6.5 5.6 6.0 

Mean
2
  6.8 A  6.0 B    6.4 

3 

1
 P-value for comparison of species:  >0.15.  

2
 P-value for comparison of irrigation treatments: 0.041. Values with the same capital letters are not significantly different according to Tukey’s HSD0.05. 

3
 P-value interaction: >0.15 
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Table 9. Actual daily evapotranspiration rates (ETa) measured on green and fairway on the first day after irrigation to field capacity compared with the 

maximum evaporation equivalents as determined by average daily global radiation at Landvik weather station during  

the four measurement periods in 2009 and 2010.   

 

 
27 May – 2 

June 2009 

24 June -2 

July 2009 

10-14 Aug. 

2009 

20-30 May 

2010 

ETa, mean for all species, green 

 

7.3 

 

8.5 

 

7.6 

 

11.2 

ETa, mean for all species, fairway 

 

9.3 

 

10.6 

 

9.1 

 

12.2 

Global radiation, MJ m
-2

 

 

26.5 

 

26.0 

 

16.8 

 

21.7 

Evaporation equivalent, mm 

 

10.8 

 

10.6 

 

6.9 

 

8.8 

 

 

 



Daily irrigation No irrigation ET0 (FAO 56)

 Green                                                          Fairway 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



Irrigation twice per week

No irrigation

ET0 (FAO 56)

      Green                                                  Fairway 
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