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Abstract

The study of ballistic trajectories is well-established, with work dating back
to the 1940s. More recently, ballistic trajectory analysis has been used by air
accident investigators in an attempt to understand events leading up to an
accident, with notable examples including the investigation into the

Lockerbie bombing.

Building on the history of a previous model, this thesis offers an enhanced
model for the calculation of ballistic trajectories incorporating altitude
dependence for wind, density and gravity. Attempts to solve the model
analytically were unsuccessful, and therefore, the model was solved
numerically using an implicit scheme, to deal with the inherent stiffness of
the equations, and an extrapolation technique. Cubic splines were used to

accurately represent the wind profile in an analytical way.

The numerical solution was verified against a simplified analytical case and
results are presented for two simulated breakup cases. Four key parameters
were then varied to provide information about the sensitivity of final

wreckage location to variation in system parameters.

The results indicate that for simulated large aircraft breakups, low ballistic
coefficient items are most heavily affected by breakup altitude, wind
magnitude and wind angle whereas large ballistic coefficient items are most
heavily affected by breakup velocity, although to a much lesser extent

(around 15% of the distance of low ballistic coefficient).

For small aircraft breakups, wind angle and breakup altitude have the largest
effect on low ballistic coefficient items, with velocity and altitude affecting
high ballistic coefficient items to a larger extent (around 50% of low ballistic

coefficient items).

The results will allow investigators to understand better the factors which
affect items of differing ballistic coefficient in different situations. The project
as a whole provides a new solution engine for the trajectory problem which
can form the basis of a new software package for investigators.
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Notation

a,b,cd, . cubic spline coefficients in the x,y and z direction

C, ballistic coefficient in kg/m’

C, drag coefficient

F, three-dimensional gravitational force vector

F, three-dimensional aerodynamic force vector

& standard acceleration due to gravity, taken as 9.80665 m/ s>
M, sea level mean molar mass taken as 28.964420 kg/kmol

m mass in kg

p air pressure in Pascals

specific gas constant in J/(K<kg) taken to be constant and

definedas R=R"/M,

R universal gas constant taken as 8,314.32J/( K «kmol)
r three-dimensional position vector

I3 nominal radius of the earth, taken as 6,356,766 m

N frontal area in m”

T air temperature in Kelvin

A true airspeed velocity vector

v velocity

Vonp OF V velocity with respect to the ground

Vwmwp OF V' wind speed

W..,. X, y or z component of wind speed

*, the value concerned (*) calculated at the bottom of the layer in
question

B temperature gradient or lapse rate K/km

p air density in kg/m’

viii



Chapter 1 - Introduction

One of the problems faced by air accident investigators is that of aircraft
suffering in-flight breakup. Such breakups can be caused by a number of
mechanisms including mid-air collision, disintegration or detonation of
explosives. High profile examples of this type of event include the sabotage of
Pan Am 103 over Lockerbie [1] and the explosion of flight TWA 800 over the
Atlantic Ocean [2]. In such events, trajectory analysis is often employed in an

attempt to understand certain aspects of the accident.

In general, trajectory analysis involves attempting to understand the
behaviour of unpowered aircraft parts under the effects of gravity and drag
after they have departed the aircraft. This may be to predict where parts
have landed, infer breakup sequence from a wreckage field or to understand

the position of the aircraft prior to breakup.

For example, often in cases of in-flight breakup, questions exist about the
position of the aircraft prior to breakup including altitude, speed, heading etc.
Data recorders can sometimes provide some or all of these details but, as was
the case with the accident at Lockerbie, the recording will often be ended by
some event, such as an explosion or loss of power, which stops the recording.
This leaves unanswered questions regarding the behaviour of the aircraft

after the event and its debris after breakup.

An alternative case exists when aircraft are lost, as was the case with Adam
Air Flight 574 [3], which disappeared from radar over Indonesia and
remained unlocated for 9 days until small parts of wreckage were found. In
such cases, it could be useful to know the possible search region assuming a
catastrophic event occurred between radar returns, particularly if there is a

long delay between returns.

A third example exists when searching for a specific piece of wreckage which

will aid the investigation, such as in the uncontained fan disk failure of flight



UA 232 which crash-landed at Sioux City [4]; despite being a crucial piece of

evidence, the fan was not discovered until 3 months after the accident.

Trajectory analysis is suitable for application to all of these and many other
accidents. As such, many trajectory analysis tools already exist and have been
used for exactly this purpose. One such tool was developed within Cranfield
[5] and was used in support of the Lockerbie accident. The final report into

this accident [1] says

“A detailed trajectory analysis was carried out by Cranfield Institute of
Technology in an effort to provide a sequence for the aircraft
disintegration. This analysis comprised several separate processes,
including individual trajectory calculations for a limited number of key
items of wreckage and mathematical modelling of trajectory paths
adopted by a series of hypothetical items of wreckage encompassing the
drag/weight spectrum of the actual wreckage.”

In addition, Wood and Sweginnis [6] note that,

“During the Pan American B-747 Lockerbie investigation , the British
turned this technique [trajectory analysis] into a science. They had
wreckage scattered over a large portion of Scotland. They had very good
information from the FDR and ATC Radar and they also had good
meteorological information on the upper air winds. They wrote a
computer program that would calculate trajectories for the wreckage
they had and predict where other wreckage would be found.”

The program developed by Cranfield, entitled TRAJAN (from TRAJectory
ANalysis), went through a number of iterations and forms, finally ending up
as a Fortran 95 program producing text output and plots intended to be laid

over Ordnance Survey maps.

Whilst this was appropriate at the time, the step change that has occurred in
Geographic Information Systems (GIS) in the last decade, as embodied by the
ubiquitous Google Earth, means that immediate access to accurate mapping
data of much of the earth is now possible. Coupled with the prevalence of GPS
data, including its incorporation into digital photographs, this technology

opens the possibility of a revolutionary trajectory analysis tool.



Fundamental to this goal is the ‘engine’ (the mathematical approach and the
computational algorithm used for calculation) employed to predict the flight
of each component. All aspects of any trajectory analysis tool will draw on
this engine, making its developmental crucial. Ideally, the engine will provide
an extremely quick and efficient calculation of the desired result, thereby
allowing an interface to be developed that offers almost real-time response to

the user.

Additional areas of interest include:

o use of the tool to establish ‘safe’ areas at airshows, or to restrict flight
areas; and
. protection of sensitive targets from airborne security threats.

Therefore, the primary aim of this research is to develop an efficient, detailed
engine for calculating the trajectory of aircraft debris following in-flight

breakup.

The thesis will deal with the literature surrounding mid-air breakups, before
moving on to the mathematics and numerical approaches around solving the
problem. Verification results and application of the model to example cases
will then be presented and discussed. Additional issues surrounding further
implementation of the solution will be discussed along with possible

approaches. Finally, conclusions will be presented.



Chapter 2 - Literature Review

Early studies of trajectory analysis appear to have been centred at the Royal
Aircraft Establishment (RAE) and the Aeronautical Research Council in the

UK and in Canada at the National Aeronautical Establishment.

One of the earliest references linking trajectory analysis to aircraft accident
investigation dates from 1946 [7] and was informed by bomb trajectory
tables. This work supplied graphs based on terminal velocity which allowed
trajectories to be constructed for differing objects, altitudes and initial
velocities. Despite being written more than 60 years ago, this report
encompasses many of the key features of trajectory analysis such as the
dependence on air density, velocity and wind. In 1949, Owen and Grinsted
[8] used this work to analyze a number of airframe failures from the Second

World War, with useful results regarding breakup order.

In 1956, Templin and Callan [9] noted that solving the trajectory equations
for multiple items in accident investigation could be laborious. Therefore,
they developed a graphical technique for easily calculating trajectories based
upon the initial angle and the ratio of initial velocity to terminal velocity. Also
in 1956, Braun [10] published a similar graphical technique which also
included recommendations regarding confidence limits and was supported
by “dropping tests”. The work of Templin and Callan was then extended in
1960 by Currie [11] who employed a computer (which was 5 foot tall and
weighed 300kg!) to produce a set of tables to calculate trajectory curves in

Cartesian coordinates.

In 1961, Gwilt [12] produced a report which is still used by some workers in
the field today. Part of this report was a detailed description of how to use
Currie’s tables to calculate a range of factors including altitude of breakup.
However, Gwilt also suggested techniques for estimating terminal velocities,

supported by measurements, including the estimation of terminal velocities



for ‘tumbling’ items. As will be discussed in later sections, this tumbling

behaviour presents a major difficulty in trajectory analysis.

In 1966, Waterfall [13] presented a technique for analyzing the trajectory of a
ballistic missile including effects of earth rotation and variable gravity.
However, the base model did not include the effect of wind although this was
included as a separate model. Ultimately, it was a curve-fitting approach to

the trajectory problem.

Boksenbom [14] offered a graphical technique for calculating trajectories,
but this was primarily aimed at space applications, and hence has little

relevance here.

Bergen-Henegouwen [17, 18] developed a computational technique for
calculating the most probable initial breakup conditions given a wreckage
layout. This was achieved by calculating an error function between the
calculated position, based on a trajectory model, and the measured position
and then minimizing that function. This approach used a fifth-order

polynomial fit for the wind data.

Matteson [19] applied iterative calculation using a digital computer to
analyse the dependence of wreckage patterns on a variety of parameters

such as wind speed, wind direction and breakup altitude.

In 1976 Kepert [20] published work detailing the approach taken by the
Australian Aeronautical Research Laboratories when analyzing wreckage
trajectories. This work was limited to breakups below 10,000 ft. The model
employed made no allowance for wind effects in the first instance, but it was
also highlighted that other uncertainties (such as drag coefficient) were
significant as well. Kepert's work drew on data gathered during missile trials
which involved destroying aircraft with a known position and initial velocity

to give guidelines for calculating initial conditions before breakup.



In 1978, work began at Cranfield in participation with the Accidents
Investigation Branch to develop a computerised method for calculating
trajectories. This began with work by Khan [21] and was followed in 1980 by
Hull [22] and in 1983 by Steele [23]. This work was developed by Taylor into
the TRAJAN package which was used for a number of applications including

Lockerbie and the DC-9 over Ustica [1, 5, 24, 25].

More recently, trajectory analyses have also been conducted for a number of
other significant accidents including TWA 800 [26], Air India AI182 [27] and
China Airlines CI611 [28]. All of these analyses used theory similar to that

already in existence.

An alternative, but equally valid use of trajectory analysis tools is for airshow
safety. Calculating where the wreckage would land if an accident were to
happen during a display is a key part of the safety planning process for a
display. There are at least two examples [15, 16] of the application of
standard techniques for this process. Similarly, trajectory analysis could
provide an estimation tool for security purposes, allowing three-dimensional

exclusion zones to be defined around sensitive installations.

Since accident investigation is such an applied science, it is not always
possible to gauge the state of the art from journal publications. Therefore, 9
major NIAs were contacted to establish their trajectory analysis capabilities.
No additional capability was discovered, with most capabilities accurately

represented in the literature.

In addition, it is conceivable that military solutions to this problem exist.
However, assuming they exist, if such solutions are not available for testing
and validation and are only available for civilian purposes in extreme cases,
then their benefit is limited. A publication exists from the Canadian Forces
which offers practical advice for the calculation of trajectories, including
typical drag coefficients and graphical solution techniques. No significant

theory is presented.



2.1 Research aims

The governing research aim is to improve the TRAJAN model thereby

offering investigators an improved tool for accident investigation.

Further to this, given an improved model, it would be beneficial to identify

which parameters investigators should focus on in order to improve overall

accuracy, and conversely, which pieces of ground information are most

useful to inform investigators about prior events.

2.2 Methodology

The initial part of the project involved searching archived hard drives in
order to rediscover, update (from a software perspective) and recompile
the TRAJAN model. This was necessary in order to understand the
processes and approaches adopted by the software and inform the

improvement process.

Following this, a decision was taken as to whether the software TRAJAN

model should be used as a basis, or a new model developed.

The theoretical basis for the improved model was established and

implemented as a software product.

The improved model was then verified against a simple analytical model,
incorporating fewer adjustments than the improved model. It was also

checked for consistency given simplified initial states.

A practical sensitivity analysis was conducted to examine the dependence

of final location on four major parameters.

Finally, the lessons learned and thoughts for the future were documented
in order to provide a starting specification for a commercial

implementation of this approach.



Chapter 3 - Model Development

3.1 Introduction
Accepting that the calculation of trajectories from midair breakups is still
relevant and of interest for accident investigation, it is necessary to develop a

suitable approach to modelling the behaviour of a particle.

The problem is essentially one of calculating ballistic trajectories. Whilst the
investigator is clearly interested in more than the path taken by a part falling
to ground, if the trajectory is understood then other variables such as initial
velocity, final velocity, time to fall to earth, impact velocity, aerodynamic

force etc. are also directly available.

NATO and the US DOD define a ballistic trajectory as the “trajectory traced
after the propulsive force is terminated and the body is acted upon only by
gravity and aerodynamic drag.” [35]. Clearly this definition is appropriate
when considering wreckage created through midair breakup. Exceptions to
this definition would include an aircraft which is damaged but still producing
propulsive force and components which are capable of generating lift. The
latter point is an important one - in the subsequent analysis, the components

will be considered to be acted on by drag alone; no lift force will be included.

In addition, the ‘tumbling’ of parts whilst falling will also be discounted and
instead replaced by a single drag coefficient. Both of these assumptions are
deviations from reality. Whilst they might accurately describe the behaviour
of a high mass, compact body (one with a high value of ballistic coefficient -
see Section 3.5), a lighter part with a large area capable of producing lift
(such as a section of fuselage skin with stringers) is clearly very likely to
produce lift and tumble as it falls, such as a sheet of cardboard might do if

dropped.

It may be possible to calculate the exact path of a single component

computationally, but it would almost certainly require: an accurate digital



model of the part; an enormous amount of computational fluid dynamics; and
a precise model of the wind. Even given those data, it his highly likely that the
calculations would be extremely sensitive to initial conditions and any
perturbations such as collisions with other parts, disturbed airflow etc.

would cast considerable doubt on any results.

For this reason, it is appropriate to consider a large number of parts when
modelling trajectories in the hope that some sort of ‘averaging’ will occur
between components and behaviours. It may also be useful to consider
different categories of components, such as differentiating between those
that are little affected by the wind and those that are strongly affected - for
example. If predictions of the former are accurate whilst predictions of the

latter are not, then it may be prudent to reexamine the wind data being used.

Having defined the fundamentals of the modelling problem, this chapter will
briefly discuss the TRAJAN model and then propose and detail an alternative

approach to solving the problem.

3.2 TRAJAN

The TRAJAN model was born out of work done and reported as MSc theses by
Khan [21], Hull [22] and most significantly, Steele [23]. This work was later
reviewed and developed by Anker and Taylor and formed the basis of the

model used for analysing the Lockerbie accident in 1988.

The original version of TRAJAN was written in FORTRAN running under the
VAX/VMS operating system on VAX hardware. It was originally thought that
the only surviving instance of the TRAJAN source code was paper printouts of
this VAX version. However, for this research project, source code was
‘unearthed’ written in the more modern Fortran 95 language. However, like
many legacy programs, there were numerous sets of code in various states of
development with no discernible version control or commenting. Therefore,

it was necessary to step through, interpret and comment the code. It was



then recompiled with all subroutines and calls renamed to ensure the full
dependencies were established. Figure 3.1 shows a typical output screen

from the recompiled version of the TRAJAN program.

HEIGHT NORTH EAST TIME Y VWERT VGRND R value
61 2125.63 686.29 ]3] .68
1569.64 485.39 .84 .64
NS 307.20 91 .68
226 217.47 e .68
.47 154.12 .83 .61
22D 98.12 20 .82
.98 70.12 .64 .65
3.25 5@.62 .44 .a9
ke 33.91 .24 m/s
79.95 kil . . .69 m/s
ilE] .69
.86 34.32
.84 .68 m/s
B.4a .53 m/s 160008 .

Figure 3.1 - Example output of Fortran 95 version of TRAJAN
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In Figure 3.1, each row represents a different ‘R’ value (the ballistic
coefficient - see Section 3.5) with large R values representing heavy / low
drag items. For each R value, results are given for: final height (the timestep
closest to the defined ground level), North and East location, time taken, final

velocity, final vertical velocity and ground velocity.

In addition to this screen output, the TRAJAN code also produces a number of
text output files. An example of output taken from one of these files is shown
in Figure 3.3. This Figure details the trajectory for the final R value given in
the last column in Figure 3.1. As the time column suggests, TRAJAN is a time-
stepping code using a constant timestep and assuming linear behaviour

across the timestep. This will be discussed in greater detail in Section 3.6.

Whilst the TRAJAN model is not especially sophisticated, it does benefit from
some interesting subtleties. It includes, for example, variation of density with
altitude, albeit through the use of lookup tables for altitude bands rather than
a value calculation at each timestep point. It also uses the concept of
uncertainties to allow the user to incorporate what they know about the level
of uncertainty in their data. For example, if it is clear that the wind data

available is little more than a ‘best guess’ then considerable uncertainty may
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then be attached to it, specified in o

percentage terms. The model will then run, (i g s o

taking data from the extremes of the -

uncertainty range in order to give a ‘zone’

of possible results. -

The program provides no graphical output

which is most likely a result of the era in “l
which it was produced; in 1978 graphical 5 g0 5 ’

output was extremely hard to produce
with the first Graphical User Interface (GUI) Figure 3.2 - Trajectories of falling pieces

not appearing until 1981. However, the

study of trajectories is one that is often most ’ R - 100000.0
Height North East Time
. . . . 1524.000 0.000 0.000 0.000
easily understood through visualisation. 1523679 59250 0.000  0.256
1522.714 118.483 0.001 0.512
1521.108 177.698 0.001 0.768
Therefore, the TRAJAN output was often used to 18859 236.895 0.0 1024
1512.435 355.238 0.005 1.536
1508.260 414,383 0.007 1.792
produce graphs and curves such as those show 1503444 4735 0.0  2.048
1497.986 532.620 0.012 2.304
) i 1491.887 591.713 0.015 2.560
in Figure 3.2. Wr7er s oen  sem
1469.746 768.884 0.025 3.328
1461.085 827.906 0.028 3.584
1451.783 886.910 0.033 3.840
1441.842 945.896 0.037 4.09%
- . 1431.261 1004 .865 0.042 4,352
In addition, ground maps were sometimes 140,040  1063.816  0.047  4.608
1408.180 1122.748 0.052 4.864
1395.681 1181.663 0.058 §.120
produced, to scale, on acetate for overlay on ARt oo GO Gl
1354.351 1358.299 0.077 5.888
. . . 1339.298 1417.142 0.083 6.144
Ordnance Survey maps. Again, this is 1323.607  1475.966  0.091  5.400
1307.278 1534.772 0.098 6.656
1290.311 1593.559 0.106 6.912
representative of the time of development. et imvers  eaz 7.
1235.588 1769.809 0.130 7.680
. . . 1216.074  1828.522 0.139 7.936
Computing technology and the availability of 195.923  1887.216  0.148  8.1%
1175.136 1945.891 0.157 8.448
1153.713 2004.547 0.167 8.704
digital mapping mean that this aspect should be Hosoer sl oas o
1085.632 2180.399 0.197 9.472
. . 1061.668 2238.978 0.208 9.728
easy to improve on in a modern prorppediir s A~ S
985.971 2414.595 0.241 10.4%6
implementation. 2233 s ozes 1100
904.569 2590.032 0.278 11.264
876.169 2648.471 0.290 11.520
847.137 2706.889 0.303 11.776
817.472 2765.286 0.316 12.032
. . 787.175 2823.662 0.329 12.288
Whilst the TRAJAN model provides useful 27 ol 035 1254
692.496 2998.664 0.371 13.056
information from a valid approach, there are a Geos s ode 1568

number of factors which require improvement.

When this is coupled with a desire to produce  Figure 3.3 - Example output
taken from TRAJAN text file
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an application using a more modern programming language, it is clear that a
‘fresh start’ is the most appropriate route, rather than trying to modify or

update the existing code.

3.3 Model formulation

When ignoring wind and air resistance, the theory behind ballistic (i.e.
unpowered under the influence of gravity) trajectories of idealised
projectiles is simple and well-understood. This is complicated slightly when
including the effects of air resistance, although in some cases this is still

easily solved.

However, an opportunity exists to develop a model which incorporates many
of the more subtle effects necessary for it to be widely applicable. These
include: full three-dimensional effects of wind; effects of atmospheric density
changes; and the variation of gravity with height. These effects are
particularly important if high altitude accidents, such as the Columbia
(STS-107) or Challenger (STS-51-L) space shuttle accidents are to be

analysed. At present, the rotation of the earth is not considered.

Any trajectory model must be dependent upon some estimation of the drag
coefficient of the part, which is often difficult to achieve. This is compounded
by the fact that many objects will ‘tumble’ whilst falling, effectively offering a
variable drag coefficient. Given the unavoidable inaccuracies inherent in drag
coefficient estimation, it is arguable whether a more advanced calculation
technique is necessary. However, there is no reason not to minimize as many
errors as possible, as long as the other inaccuracies and limitations are

understood.

Most existing computational solutions use time-stepping to calculate the
particle trajectory, with some using a linear approximation between steps.
This approach relies on the time step being small enough to accurately

‘follow’ the curved path. However, if a fixed time step is used this can result

12



in either unnecessary computation or lack of fidelity. Alternatively, an
adaptive (variable) time step can be adopted but this also carries a
computational overhead. Since one of the desired outcomes is to allow
investigators to see results of ‘modifications’ in real-time, a quick, accurate,
computationally efficient solver engine is crucial. Therefore, the approach
outlined below is aimed at finding an analytical solution to the governing
equations. If successful, this will provide an exact solution in an explicit form

which will greatly reduce the computational overhead.

3.4 Analytical approach - one dimension

Before incorporating the more complex aspects of the model, such as variable
density and variable gravity, it was considered useful to derive the analytical
expressions for the one-dimensional behaviour of a ballistic particle subject
to gravity and a drag force proportional to velocity squared. This is shown in
Appendix 1 for reference. It is worth noting that the expressions accurately

reflect the asymptotic approach to terminal velocity that would be expected.

At its most simple, assuming one-dimensional (x) vertical motion, drag
proportional to velocity squared (v*) and assuming constant mass (m ) and
gravity (g) and ignoring wind effects, gives the governing differential
equation of

_dx

1
m—=mg—EpCDSv2 (Eqn 3.1) where V(t)_E'

dt
S is frontal area, C,, is drag coefficient and p is density, which can be solved
for v(¢) and x(¢) as given in Appendix 1. This is Newton’s Second Law, with
the forces acting on the body on the right hand side of the equation and the

resulting acceleration on the left hand side.

In order to expand this simple model to incorporate the more complex
aspects, it is necessary to quantify and model the effects and variations of
each of the components. Once this has been done, they will be inserted into

the one-dimensional equation and an analytical solution attempted.
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Variation of acceleration due to gravity

The ICAO standard atmosphere [29] facilitates the calculation of atmospheric
parameters based on ‘a perfect gas free from moisture and dust and based on
conventional initial values of temperature, pressure and density of the air for
mean sea level. It also provides guidance for the calculation of acceleration
due to gravity. Acceleration due to gravity is a function of both altitude and
also latitude. The variation of acceleration due to gravity with latitude is

given by [29] as:
g, =9.80616(1-0.0026373cos2¢ +0.0000059 cos’ )

Taking a latitude of ¢ = 45°32’33” gives a value of g, =9.80665m/s’ . In the
subsequent analysis, this value will be used and change in latitude during

descent is not considered.

The ICAO standard uses the concept of the geopotential altitude ( H) with
units of geopotential metres. H is defined as the ratio of the gravity potential

or geopotential of a point (®) to the standard acceleration due to gravity

(8)-

A simple expression for the relationship between acceleration g and
geometric altitude (%) can be obtained by ‘neglecting centrifugal acceleration
and using only Newton’s gravitation law’, giving:

2
_ r
e=a )

where r, is the nominal radius of the earth, taken as 6,356,766 m. At an
altitude of 60,000 m (c. 197,000 ft) this simplification gives a difference of

less than 0.001% from a more accurate expression. This allows a relationship

between geopotential and geometric altitude to be written explicitly:

_ r,h and h r.H
r,+h r,—H

e

(Eqn 3.2 aand b)
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Therefore, the variation of gravity with respect to altitude in equation (3.1)

can be written as:

Variation of air density

An assumption of constant air density is one of the more inaccurate
assumptions that can be made when calculating trajectories, particularly for
high altitudes. This is because the pressure, density and temperature of the
air all vary significantly with altitude and will hence have a significantly

varying effect on particle behaviour.

The earth’s atmosphere is divided into a number of layers with differing
properties, the first few of which are (moving from the earth upwards): the
troposphere, the stratosphere and the mesosphere. At the top of the
troposphere is the tropopause and similarly at the top of the stratosphere is
the stratopause. These two transitional zones are the areas which define the
change in layer since the temperature gradient (the rate of change of
temperature with height) changes sign within these zones, as shown in Table

3.1.

Figure 3.4 shows some of these zones in an image taken from the
International Space Station. The orange coloured layer is the troposphere,
with the tropopause being the sharp-edged boundary between the orange

troposphere and the blue stratosphere.
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Geopotential Temperature (K) Temperature Atmospheric
altitude (km) T gradient (K/km) Zone
H p
0 288.15
-6.50 Troposphere
11 216.65
0.00 Tropopause
20 216.65
+1.00
32 228.65 Stratosphere
+2.80
47 270.65
0.00 Stratopause
51 270.65
-2.80
71 214.65 Mesosphere
-2.00
80 196.65

Table 3.1 - Properties of atmospheric layers (adapted from ICAO [29])

Figure 3.4 - Photograph of the earth’s atmosphere from the International Space
Station [from NASA]
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Because of the variation in temperature gradients between zero and non-
zero in the different layers, it is necessary to define two separate expressions
for calculating the atmospheric properties. The ICAO standard atmosphere,

gives an expression for the pressure variation with geopotential altitude as

ﬁ -8 /BR
p=p{l+F(H—Hb):| for B#0

b

and
8
p:pbexp[—ﬁ(H—Hb)} for B=0

where p is the atmospheric pressure, 3 is the temperature gradient, 7 is
the temperature, and R is the specific gas constant. The subscript b
indicates the given value evaluated at the lower limit of the layer of concern.
From these expressions for pressure, an expression for density can be

calculated by using the perfect gas relation.

P=RT

As with the expressions for gravity, the geopotential altitude can be
converted using Equation 3.2. This gives governing expressions for the
variation of air density with geometric altitude for the two temperature

gradient regimes as

ﬁ ~(1+80/BR)
p:&[H—( £ —Hbﬂ for B=0

I \r+x

and

Py 8o | X
=—-exp|—-——-| ——-H, || for =0
PRt p{ RT[re+x bﬂ P
It is worth noting that the ICAO standard atmosphere is valid up to ‘only’
262,500 ft (80km). Whilst this is many times the normal cruising altitude of
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commercial aircraft it does not encompass the full range of altitudes that may
be seen by spacecraft operating in the atmosphere. For example Virgin
Galactic plan to take SpaceShipTwo to 360,000 ft (110 km) [32]. This is not a
significant limitation and can be easily adapted, but it should be noted before

making high altitude predictions.

Aerodynamic drag

As described previously, drag is being assumed in the form of 0.5pC, SV .
This is a well established approach [e.g. 33], however it is important to note
that the velocity described is the square of the component’s airspeed not its
groundspeed. This is because the drag is created by the relative airflow; a
particle travelling at precisely the windspeed in theory experiences no drag.
The difference which results from using airspeed rather than groundspeed
may be small if the particle velocity greatly exceeds the windspeed, but it

should not be ignored.

The assumption of constant drag is a significant aerodynamic assumption. As
shown generically in Figure 3.5, drag is a function of Mach number and also

of Reynolds number.

Airplane drag coefficient Cp

Increasing
lift coefficient

Mach numbe'r

Figure 3.5 - Generic plot showing variation of drag coefficient with Mach number

(from [34])

18



Whilst it may be possible to ignore the effects of compressibility at lower
speeds, they will significantly alter the drag coefficient at higher speeds and
greatly differing Reynolds numbers. However, in this situation an assumption
of constant drag coefficient is warranted since it is contained within the
ballistic coefficient (see Section 3.5). By calculating results for a range of
ballistic coefficient, errors in drag coefficient can be compensated for,
although the variation in drag coefficient with time cannot be accounted for

in this way.

Wind profile

In order to provide a full one-dimensional analytical solution to the trajectory
problem which incorporates wind data, it is necessary to provide some
function which accurately describes the variation of wind speed (in this 1D
case, acting vertically) with altitude. This subject will be returned to, but for
now it is sufficient to assume that such a function exists, which shall for these

purposes be denoted W, (x).

The wind appears in the drag calculation, and it is this effect that causes the
particle to adopt the surrounding windspeed. Whilst aftercasts are often
available, their accuracy can depend on many factors, including local
meteorological resources and the global meteorological model. In some

cases, predictions may be based on coarse grid sizes s large as 10km’.

Governing equation
Combining all of these effects - variable gravity, variable density, and the

expression to describe wind - allows Equation 3.1 to be modified from

1 see e.g. ruc.noaa.gov

19



dv 1
—= —-—pC,S
mdt mg 2p Y

to

AVenp

1
dr =mg(x)—5p(X)CDSV§AS
where v,,; is the true airspeed in the x direction and v,,,, is the vertical
speed relative to the ground. Incorporating the previously derived

expressions, gives

d 2 | C.S ﬂ ~(1+80/BR)
m vGNDngO( £ ) I A {1+_( X _th} Vs for B#0

dt r,+x 2 RT, T \r+x

dVenp

2
. 1p,C,S & | rx 2 _
- e | 2 Bppd ol S0 Tt or B=0
dt mgo(re+xj 2 RT *P RT\r,+x b )|V

and

Vo = Vs T W,
which are the differential equations governing the one-dimensional motion
of a particle falling through the atmosphere.

In an attempt to solve these expressions analytically, first rewrite the f#0

case as

d 1 C S ﬂ _(1+80/ﬁR) 2
R e A LA A 7S (vg—W.) —gy| ——| =0
dt 2 mRT, T \r+x r,+Xx

e

Expressing in terms of displacement gives,
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—(1+80/BR) 2 2
: 1
Cx 1pCS|y Bl nx (d_x_wx) e L] —w =0
dt® 2 mRT, T \r+x dt r,+Xx
which is an example of an autonomous equation of the form

o
dt?

dx

JrJ”(?C)[Ehg(X)}2 +h(x)=0

2
Substituting v= dx and since d—f d
dt d

_d B dv(x) dx @
t dt

v(x) dx E vdx

gives

v%+f(x)[v+g(x)]2 +h(x) =0

Expanding gives
Wt F(0) +2£(x)g(x)v+ £ ()8 (x) +h(x)=0
and rearranging
w' = p(x)v* +q(x)v+r(x)

which is an Abel differential equation of the second kind. This is an equation
type for which only some specific solutions are available. Use the substitution

[30],
v=E(x)w where E(x)=eXP(.[p(X)dx)

leading to

ww! = F(x)w+ F,(x) (Eqn 3.3)

where
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Taking

gives

ww/—w=¢(z). (Eqn3.4)

This is an Abel equation of the second kind written in canonical form, which
until recently, would be regarded as almost insoluble; a general solution of
this type of equation was not available, with only certain cases being open to
solution. However, in 2006 Panayotounakos and Kravvaritis [31] proposed

an explicit solution for this type of equation.

Considerable effort was expended in this project attempting to apply this
general solution to Equation 3.4. If achievable, it would have offered an
analytical solution for the one-dimensional trajectory (velocity and
displacement) of a particle given variable gravity and density. However,
unfortunately, the analytical calculations became intractable, preventing the

general solution from being applied.

[t was reasonable to expect that the analytical solution shown in Appendix 1
could be extended to the include variable gravity, variable density and wind.
However, it appears that the approach adopted does not yield a usable
answer. That is not to say that an alternative approach or a more skilled
attack using the existing approach will not yield an analytical solution, and

the goal of an analytical solution to the problem is still a valid one.
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Clearly, since the simple case is soluble and the more involved case appears
not to be (using this approach), it is likely that there is a point at which the
increased complexity prevents the problem from being solved analytically.
Whilst it might be possible to discover this point, this was considered to be a
futile endeavour; the required complexity should define the problem to be

solved rather than the available solution dictating the level of complexity.

However, whilst an analytical solution was the ideal, an alternative solution
will still allow calculation and analysis. Therefore, the remainder of this
chapter will describe attempts to produce a numerical solution of the

governing equations.

3.5 Numerical approach - three dimensional governing equations
Moving to a three-dimensional formulation, the following conventions will be

adopted:

The position of a piece of wreckage is given by r=

N o=

x,y and z are defined relative to the final aircraft track, with x directly
along the aircraft track, y orthogonal to the aircraft track (when viewed from

above ,y increases to the left) and z being positive upwards.

G

d § b

Velocity relative to the ground, is given by v, = d_r =f=| y |=| W}
4 .

Z v

z
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Aerodynamic drag

As in the previous approach, aerodynamic drag is assumed to be of the form
0.5pC,Sv’. At this point, the concept of the ballistic coefficient will be
introduced. The ballistic coefficient is a concept used in the analysis of

ballistic trajectories, and is defined as:

m
Cp=—"—
B DS

In earlier publications connected with TRAJAN, this coefficient was labelled
as ‘R’ and given the slightly self-aggrandising name of the ‘Cranfield Loading
Coefficient’. There have also been differing definitions of the ballistic
coefficient with some using mass and others using weight (i.e. differing by a

factor of ‘g’). In this work, the mass definition given above will be used.

The ballistic coefficient governs the aerodynamic drag behaviour of an object
and offers a single parameter for classifying objects. An object with a high
ballistic coefficient will have a high mass, low product of drag coefficient and

frontal area, or both.

Therefore, it is possible to express the aerodynamic drag experienced by a

component as

. ﬁ ~(1+80/BR)
p T
a:—ER—i[l+_( _Hbj:| |VTAS|VTAS ﬁ¢0

T \r+z
and
1 p g r.x
F=——"2\v |v. . expl -2 <——H =0
a 2C, RTbl TAS| TAS p|: RT(I’6+X b]:| B

This expression is equivalent to a drag vector in the opposite direction to the

three-dimensional airspeed vector, scaled in magnitude by the coefficients.
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For simplicity, from this point only the 8#0 solution will be used which
restricts the use to the troposphere (11,000m). However, the approach
outlined is equally applicable to both scenarios and the full atmosphere is

available through this solution.

Three-dimensional wind profile

As shown in Equation 3.1, the drag force acting on the particle is dependent
on the relative windspeed, and hence the particle velocity and wind speed
and direction. In order to incorporate this into the model, it will be assumed
that either wind measurement data or ‘aftercast’ data are available. An
aftercast is an estimation of the weather conditions at a certain time in a
particular location after that time has passed; it is a forecast, made after the
event, hence the name. In order to incorporate the wind data, which will be
supplied at discrete altitudes, it is necessary to choose an interpolation
method in order to allow data to be obtained at altitudes other than those

supplied.

One option for representing the wind data is to assume constant windspeed
in each band (which is equivalent to the ‘zero order hold’ technique of signal
processing). This brings mathematical simplicity, but introduces problems at
the transitions such as speed discontinuities which bring differentiation
problems. This approach is also unlikely to accurately represent the true

physical situation, unless the data points are closely spaced.

An alternative approach is to adopt linear interpolation between data points.
This removes the discontinuity problem, although there may still be
significant gradient transitions at data points. It also provides, by definition, a
precise fit to the supplied data points. However, linear interpolation offers no
attempt to smoothly transition through data points - intuitively wind speeds
are more likely to vary smoothly with altitude than with step changes in
gradient. As with the constant assumption, linear interpolation is of more

benefit where the data points are closely spaced.
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Ideally it would be possible to accurately fit a curve to all of the data points
which can be simply described mathematically, such as a polynomial curve.
However, whether this is possible depends on the data to which the curve is

to be fitted.

Figure 3.6 shows measured data for an arbitrary location and time, taken
from the NOAA website [33]. The complete data set is given in Appendix 2.
The data presented is wind speed (ignoring direction at present) at a range of
altitudes. This data is presented simply as a random sample of a wind profile
to see what might be expected in terms of data, gradients etc. It is not

intended to be representative of anything other than possible values.

Examining Figure 3.6, it is apparent that neither the third-order nor the

sixth-order polynomial curve accurately represent the measured data.
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Figure 3.6 - Third order and sixth order polynomial fit to measured wind data

Because of the poor fit provided by the simple polynomials, an alternative

approach is required. In this situation, a spline curve will be used.
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Spline curves use the supplied data points as control points for fitting a
polynomial of some degree. The difference between fitting a polynomial, such
as in Figure 3.6, and using a spline is that in the latter, the curve is
constructed from many polynomial curves which are pieced together (so-
called piecewise polynomial curves). This means that each polynomial curve
is only attempting to fit to a small number of data points, rather than the

entire data set, thereby allowing a much more precise fit.

It is common to use a cubic polynomial as the basis for the spline since a
cubic curve is the lowest degree of polynomial that can support an inflection.

The typical form for the one-dimensional case is given as:

%74 (x) =w, +wx+ v1/2)c2 + w_g)c3

Cubic curves are also very well behaved numerically; their roots can always
be found algebraically, and they are continuous to second differential.
Therefore, in order to fit to the data, a cubic spline will be adopted which
takes the measured data points as the reference points. In addition, the cubic
spline can always be reverted to the linear interpolation or constant band

assumptions described earlier, by setting constants in the expansion to zero.

Clearly, wind data is three-dimensional, although it is often assumed to be
two-dimensional with any vertical component being neglected. This two-
dimensional data is normally supplied as a direction (conventionally
described as the ‘from’ direction rather than the ‘to’ direction) and a strength
or magnitude. However, it is a matter of simple trigonometry to convert these

so-called 7, 8 values into x, y components if required.

[t is moot whether it is more appropriate to fit a spline through the x and y
wind components or rather perform a fit through the wind speed and
direction. The decision rests on which physical parameter is more likely to
vary smoothly. Intuitively, because of the mechanisms involved in wind

generation and modification such as centripetal acceleration and Coriolis
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force, it is tempting to imagine that the speed and direction (7, ) description
is more appropriate. Figures 3.7 and 3.8 show the cubic spline fit for both the

x and y components and the » and 6 component for the random wind sample.

knots

4
Altitude (ft) *

Figure 3.7 - Cubic spline fit for x and y data

knots (r)
wind direction -180 (theta)

4
Altitude (feet)

Figure 3.8 - Cubic spline fit for r and 0 data



Both graphs show some difficulty in the cubic spline accurately representing
smooth transitions from point to point without introducing data outside the
shortest path. In reality the most suitable approach will be decided by the
specific data. Therefore, it is sufficient to ensure that the curve fit does not
deviate from the measured data by an amount more than is ‘acceptable’. In

this case, the curve fit will be conducted on the x and y components of the

wind, since that provides the greatest mathematical convenience.

Because it is the windspeed vector that is of interest at each altitude, it is
possible to fit a cubic spline through each orthogonal coordinate. If the
assumption is made that the wind does not vary with x and y location, then

the following expression, which is a function only of z can be defined.

2 3
v a +bz+cz +dz
_ w _ 2 3 _ 2 3
Vwinp (Z)_ v 1| % +bzt+cz +dz |=a+bz+ez +dz
w 2 3
v, a,+bz+cz +dz

In situations where the wreckage travels significant distances, or where the
wind profile changes rapidly, the assumption of a constant wind profile will
cease to be valid. Whilst it is not difficult to incorporate values from a new
profile for components which move outside the zone of validity for the initial
profile, some attention should be given to the smooth variation from one
zone to the next; this is merely an extension of the earlier argument about
constant assumption, linear interpolation etc. but oriented in a horizontal
plane. Along with the mathematical complexity this three-dimensional
interpolation would add, there would also be an increased need for wind
data. Arguably at least one adjacent profile should be established for all

directions. For these reasons, a single profile is assumed in this case.
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In order to incorporate the wind model into the three-dimensional governing
equations, it is first necessary to define its relationship to airspeed. The

groundspeed, airspeed and wind vector are related as
V1as = Veno — Vwin (Eqn 3.5)

This simply expresses the fact that total speed relative to the ground is the
sum of the true three-dimensional airspeed and the three-dimensional

windspeed.

Finally, the gravitational force acting on each component, which acts only

downwards, can be expressed as

Fg = . 2
—mg, -
r,+z

The governing equation is given by,

av gyp

=F +F,
dt #

and therefore, inserting all of the three-dimensional expressions gives,

2 0 —(1+g/BR)
Bow [ || o | L) Bl _y 1v,]v, (EQn 3.6).
dt r+z 2C, RT,| T,\r+z ° st s

—60

3.6 Implementation of numerical solution
Equation 3.6 represents the governing, equation which when coupled with

Equation 3.5 gives the governing equations for the trajectory problem. As
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discussed, in order to solve these equations, it is necessary to implement a

numerical scheme.

Incorporating Equation 3.5 into the Equation 3.6 gives,

d 2 0 1 ﬁ _(1+go/ﬁR)

VGND rc ph reZ

— = 0 |- 1+ -H Vo=V Vo—V
dt (re+zJ _ 2C, RT,[ Tb[re+z bﬂ (Yo = Vamo Ve = Vo

Expanding this vector equation into three scalar first-order ordinary

differential equations (ODEs) gives,

dV)»G L p, B rZ (o G _.w G w)? G w)? G w)?
WZ_ER—Tb 1+Fb ———-H, (vx -V, )\/(VX -V, ) +(Vy -V, ) +(vZ -V, )

r,+z
dVG 1 ] 7(l+g(./ﬂR) > >
oy e Cemtd | I R R KR
d f; , 2 l ‘(HX«»/ﬁR) 5
%=—go[#] _T%%[1+%(%_HbJ} (vf_vy)J(vf_vy)z (v ) (v )

In addition to these equations, the spatial coordinates must be related to

velocities through

@=vf , Q=v(,} ,and %=V,G. (Eqn 3.7)
dt dr °

These six equations form the coupled state equations which are to be solved

numerically.

There are myriad integration schemes [see e.g. 36], with popular examples
including , Euler, Runge-Kutta, Richardson extrapolation (an implementation

of which is Bulirsch-Stoer) and predictor-corrector or multistep methods.

The linear, time-stepping approach adopted by TRAJAN is an example of the
Euler method. It is an explicit (or forward), first-order scheme meaning that

the solution at a point depends only on the points prior to that and that the
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truncation error is of the order of the timestep. It is summarised with the

expression:
Y = Yo T Y,

which suggests that the value of a function at the next point in time is equal
to the current value plus the gradient at that point multiplied by the
timestep; this is a simple linear assumption. It is possible to increase the
accuracy by decreasing the timestep, but with a corresponding increase in
computational effort. In addition, the Euler method can be unstable
particularly with stiff equations (see below). Press et al. suggest that Euler’s

method is “not recommended for any practical use” [36].

Stiffness

The possibility of a system becoming ‘stiff’ arises as soon as more than one
first-order ODE is involved. A stiff system of ODEs is one in which the ratio of
the greatest eigenvalue to the smallest is much greater than one [37].
Eigenvalues are representative of the solutions to the ODEs, with a large
eigenvalue representing a contribution to the solution which dies away

quickly. It is this property that presents the difficulty of stiffness.

Stiff systems give two connected problems - stability and accuracy. In order
for some methods to remain stable, the corresponding steplength is required
to be extremely small. If an inherently stable system is used, stability is no
longer an issue, but for reasonable steplength, the component corresponding
to largest eigenvalue will be approximated very inaccurately [37]. The
rapidly decaying part of the solution requires a very small time step, and

leaves behind integration instability even after it has diminished to zero.

Furthermore, inherently stable systems present the most serious stability

problems for widely separated eigenvalues i.e. stiff systems [37].
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Press et al. [36] suggest that the “simplest cure” to the “generic disease of stiff
equations” is to employ implicit differencing. In implicit schemes, the value at
a point depends not only on prior points but also on the current point.
Implicit schemes can provide stability to stiff system whereas an explicit

scheme does not.

In order to detect whether a system is stiff or not, requires the eigenvalues to
be calculated. Lapidus [37] notes that for a nonlinear system of ODEs, the
eigenvalues of the ODEs are also those of the Jacobian matrix. Therefore, by
constructing the Jacobian, it will be possible to derive the eigenvalues and
hence deduce the stiffness of the system. This would normally be done using
the six coupled system equations given above. However, since the solution is
not directly dependent upon x and y the first two equations in 3.7 can be

ignored in the Jacobian, since the derivatives produced will be equal to zero.

The Jacobian of the coupled, 4-state system is defined as

Ve e W e
20T AT ww° o
RS U: R U S U e
of 0rdvy  dtdvy AtV 0drdz
dy ) o R A RS V. i e
HNT ant uan’ oraz

’z dz 9z Iz
0rdvy  dtdvy AtV drdz

and each of these derivatives must be calculated by hand which is shown in
Appendix 3. The eigenvalues are then computed by calculating |J— AI| =0.
This can be done algebraically, but since a repeated numerical solution is
required corresponding to multiple sets of numerical parameters, this was

achieved using the eig function within MATLAB.

The results produced 4 negative eigenvalues, indicating a stable system, but
with a stiffness ratio, SR (largest eigenvalue / smallest eigenvalue) of 5 x 107

for a typical value set. Hall and Watt [40] suggest that a system is stiff if
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SR>>0, that if SR is of the order of 10 it may be considered to be marginally
stiff, and that orders of 10° are not uncommon. Clearly, the trajectory
problem derived here needs to be recognised as a stiff system and treated

appropriately.

3.7 Schema selection

The problem in hand is an initial-value problem; the values of the parameters
are known at the start, and it is desired to find them at some given time point
later. In addition, because a real-time implementation is of no practical
interest this case, it is appropriate to use a variable or adaptive stepsize

rather than a fixed timestep schema.

Press et al. [36] suggest that most problems will benefit from a higher-order
scheme and therefore suggest three types of higher-order implicit methods

for use with stiff systems, namely:

. Generalizations of the Runge-Kutta method such as the Kaps-

Rentrop methods,
o Generalizations of Bulirsch-Stoer method, and

o Predictor-corrector methods.

They cite one example of a stiff problem in which a Kaps-Rentrop scheme is
able to solve the problem in 29 steps, whilst a Runge-Kutta scheme would
require 51,012! The Kaps-Renstrop scheme is simple to implement and
competitive with more advanced schemes “for moderate accuracies
(tolerances of 10 =107 ) and moderate sized-systems ( N < 10)”. The Semi-
Implicit Extrapolation Method (a generalization of the Bulirsch-Stoer
method) provides good accuracy but is slightly more complex to implement.
For this reason the Semi-Implicit Extrapolation (SIE) method will be adopted
in the first instance, with the option of reverting to the Kaps-Renstrop

scheme if necessary.
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Press et al. provide a C++ implementation of the SIE approach [38] which will
be used ‘as is’ for this implementation. Functions for the Jacobian and the
derivatives need to be provided to this scheme, along with appropriate

controlling code.

Semi-Implicit Euler

The SIE scheme is based on the semi-explicit Euler method of solution. As
discussed previously, the explicit Euler method uses a simple linear
assumption to calculate the function value at the next point in time, based on

the gradient at that point, written as

Yo =Y, Thy,, .
The most simple approach to solving stiff equations would be to modify this
scheme to become explicit, such that

yn+l :yn +hy:1+l

which gives better stability. Applying implicit differencing to a generalized

set of equations given by

’

y = f(y) gives Yn+l = yn + hf(ynH)'

This generalized case is often extremely complex to solve (as in this case) and
needs to be done iteratively at each step. Linearizing this solution, as in

Newton’s method gives

(Ypu - yn)] :

of
Yn+l = Yn +h|:f(yn)+$

Yn

which uses the Jacobian previously utilised for the eigenvalues (although
employing all six equations in this case). It is this linearisation that gives the

method the name of semi-implicit rather than implicit. Rearranging this gives
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-1
y

which defines the semi-implicit Euler method. This method doesn’t
guarantee stability but it usually is since the local behaviour is nominally

linear.

Semi-implicit Extrapolation (SIE) Method

Rewriting Equation 3.8 as
1 of
i -y, )=f
|:h ay:| (yn+l yn) (yn)

gives the fundamental equation of the method. However, as with Bulirsch-
Stoer methods an extrapolation method is used. The method employs
Richardson’s deferred approach to the limit which considers the final solution
to be an analytical function of the time step. Fitting the polynomial function is
achieved by first taking a deliberately large time step (H), and then seeing
how the function changes as successively smaller time steps are taken. Once
this function is fitted then it can be evaluated at the limit of infinitely small

time steps (see Figure 3.9).

A full description of this technique and all of the numerical techniques used
to obtain good performance is beyond the scope of this thesis, but the details
are supplied [36]. Similarly, the complete listing for this numerical solution
contains around 2,000 lines of code which are not reproduced here. The code
was developed using the C++ language and developed and compiled using the

Apple software Xcode.
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Figure 3.9 - Richardson Extrapolation (from [36])

However, a complete numerical solution to the problem employing the SIE
method was successfully implemented which delivers as its output, the 6
variables defined in the governing equations, namely three-dimensional
velocity and three-dimensional displacement for a particle falling through an
atmosphere with altitude-dependent density and acted upon by altitude-

dependent wind and gravity.

The next Chapter will detail attempts to verify the coded solution and also

present results obtained from the model.
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Chapter 4 - Results and Discussion

4.1 Introduction
This Chapter will discuss the results obtained from running the numerical

model in different conditions.

Initially, some comparisons will be conducted with the analytical solution for
the simplified case solved in Appendix 1 (see Section 3.4) in order to provide
verification and confidence in the numerical solution. Further to that, some
simple cases incorporating wind will be examined to provide an initial check.
It is not easily possible to validate the model, due to a lack of real-world

breakup data.

A practical form of sensitivity analysis will then be conducted in order to
identify the magnitude of changes that can be expected in a problem as
different parameters change. This will allow an investigator to focus effort on
improving the accuracy of relevant parameters rather than wasting time on

aspects which may become inconsequential.

4.2 Verification

In order to provide some simple verification and confidence in the numerical
model, it will first be compared to the simple analytical solution given in
Appendix 1. The analytical model incorporates mass, constant gravity and a
drag force proportional to the square of velocity (taken as 0.5pC,Sv’ )
assuming a nominal constant density (taken as 1.17 kg/m’ ). Three conditions
will be assessed, corresponding to low (30m), medium (300m) and high
altitude (10,000m). All conditions assume the same mass (m =100kg ), frontal
area (S=1m") and drag coefficient (C,=1), giving a constant ballistic
coefficient (C, =100kg /m*). There is no initial particle velocity and no wind
velocity. All particle velocities are vertical, since the analytical model is one-

dimensional.
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Comparison with analytical model - Low altitude

Figure 4.1 shows the vertical particle velocity against time for the analytical
solution of Appendix 1 and the numerical integration routine discussed in
Chapter 3, for a drop of 30m. It also shows the difference between the two
values as a function of time in the form of 100 times the magnitude of the
difference (100*|difference|) to make it visible on the same axes. Figure 4.2

shows the altitude versus time for the same condition.

This condition has been chosen since it provides a negligible difference in
atmospheric density. The two methods should show agreement and thus

provides an initial verification condition.

The velocity graph in Figure 4.1 shows excellent agreement, with both
velocities increasing nearly linearly for the duration of the drop. At the
ground impact point there is a final velocity of approximately 22.2 m/s with a
difference in velocities of 0.1 m/s (0.45%). The altitude plot in Figure 4.2 also
shows excellent agreement with the two curves being almost

indistinguishable. The final difference in altitude is 0.07m (0.23%).

These two plots provide good confidence that in this condition the numerical
solution is working as it should be since agreement with the analytical
solution is very good. The small differences may be due to slight differences
in chosen density value, value of gravitational acceleration or slight

numerical inaccuracies during the calculation.
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Figure 4.1 - Comparison of simple analytical solution to numerical approach for
velocity versus time, (v, =[0,0,0], z, =30m =100 ft , v,,5, =[0,0,0])
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Figure 4.2 - Comparison of simple analytical solution to numerical approach for
altitude versus time, (v, =[0,0,0], z, = 30m =100 f , v,,n, =[0,0,0])
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Comparison with analytical model - Medium altitude

Figure 4.3 shows the particle velocity against time for the analytical solution
of Appendix 1 and the numerical integration routine discussed in Chapter 3,
for a particle dropped from 300m. It also shows the difference between the
two values as a function of time in the form of ten times (not the 100 times of
the previous case) the magnitude of the difference (10*|difference|) to make
it visible on the same axes. Figure 4.4 shows the altitude versus time for the

same particle.

This condition has been chosen since it provides a reasonable amount of time
for the differences to build, whilst keeping the particle within a relatively
small range of atmospheric density. The two methods should show quite

good agreement and hence this provides a useful verification condition.

The velocity plots using the two methods show extremely good agreement
until around two seconds elapsed, at which point they start to diverge.
However, this divergence is relatively small with a maximum difference of
0.7 m/s (1.8 %) at ground impact with a final velocity of 39.6 m/s. The
altitude plot also shows little deviation until around two seconds which is as
would be expected, since the displacement is simply the integral of the
velocity. The altitudes diverge reaching a maximum difference of 28.7 m
(2.87 %) at ground impact during a fall of 1,000 m. The reason for the
increased error seen with the altitude is that any velocity error during the fall

leads to an increasing displacement error, due to the integration.
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Figure 4.3 - Comparison of simple analytical solution to numerical approach for
velocity versus time, (v, =[0,0,0], z, = 300m = 1000 f¢ , v,,,,, =[0,0,0])
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Figure 4.4 - Comparison of simple analytical solution to numerical approach for
altitude versus time, (v, =[0,0,0], z, = 300m = 1000 f , v, =[0,0,0])
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Comparison with analytical model - High Altitude

Figures 4.5 and 4.6 show the velocity and altitude plots for a 10,000m drop
with zero initial velocity and zero wind. The difference plot on both Figures is

no longer scaled, reflecting the increased error.

The velocity plot in Figure 4.5 shows good agreement for the first few
seconds between the analytical and numerical solutions. However, the
velocities quickly diverge. This is because the analytical solution does not
allow for variable density or variable gravitational acceleration and hence the
terminal velocity which is reached is constant through the fall. The numerical
solution incorporates both of these effects, and shows the reducing terminal
velocity as altitude decreases. Since the analytical solution is constant, the
velocity difference reflects the shape of the numerical curve. The increase in
error at the end of the fall is due to taking the magnitude of the difference,

which would otherwise have changed sign at this point.

The divergence of the the altitudes shows the numerical model predicting a
faster loss of altitude (due to the higher terminal velocity) resulting in an
increasing difference peaking at approximately 2,000m. This altitude
difference corresponds to a difference in impact time of approximately 47
seconds. The rate of increase of the difference reduces with time due to the
numerically-calculated velocity converging with the constant analytical

terminal velocity.
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Figure 4.5 - Comparison of simple analytical solution to numerical approach for
velocity versus time, (v, =[0,0,0], z, =10,000m = 33,000 ft , v,,,,,, =[0,0,0])
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Figure 4.6 - Comparison of simple analytical solution to numerical approach for
altitude versus time, (v, = [0,0,0] , 2o =10,000m = 33,000 ft, viywp = [0,0,0])
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Initial velocity
Figures 4.7, 4.8 and 4.9 show the effect of introducing forward speed into the

initial conditions. In these examples, an initial x-direction (aircraft track)

velocity of 250 m/s (485 kts) is introduced.

Figure 4.7 shows the z-direction (vertical) velocity and displacement versus
time which is similar to that obtained in Figures 4.5 and 4.6 as would be
expected. Figure 4.8 shows the x-direction velocity and displacement. The
velocity starts at 250 m/s, as imposed by the initial conditions, and then
decreases exponentially towards zero, since the windspeed is zero. The x-
displacement increases exponentially towards a final value of 700 m which is
reached by around 40 s. Since the z-direction fall continues for another 70 s,
it follows that the majority of the fall will continue purely vertically and this
is represented in Figure 4.9. Here the two velocity components are almost
independent; the x-velocity starts very large and decays very rapidly whilst
the z-velocity begins at zero and then grows to a terminal velocity much
smaller than the initial x-velocity. This relationship would change with a

change in ballistic coefficient.
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Figure 4.7 - Vertical velocity and displacement against time
Vo = [250,0,0] , 2o =3,000m = 16,400 ft , vyp = [0,0,0]
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Figure 4.8 - X-direction velocity and displacement against time
Vo = [250,0,0] , 2 =5,000m =16,400 ft , viynp = [0,0,0]
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Figure 4.9 - Altitude against x-direction displacement
Vo = [250,0,0] , 2 =5,000m =16,400 ft , vynp = [0,0,0]
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Initial velocity and wind

In this condition, a headwind (i.e. negative x-direction) is introduced. Figures
4.10, 4.11 and 4.12 replicate those of the previous section but with a
headwind of 25 m/s (50 knots) being introduced. Figure 4.10 is identical to
Figure 4.7 which is as it should be, since the introduction of an x-direction

wind component should have no effect on the z-direction behaviour.

Figure 4.11 shows the x-direction velocity and displacement. The velocity
starts at 250 m/s, as imposed by the initial conditions, and then decreases
exponentially towards a constant speed of -25 m/s, i.e. the windspeed, which
is as it should be. The x-displacement increases initially to a value of around
390m before reducing at a constant rate, given by the constant negative
velocity, for the remainder of the fall. The variation in x-direction
displacement with altitude is shown in Figure 4.12. When compared with
Figure 4.9, the effect of a constant windspeed can be seen, providing a

constant rate of displacement (in this case negative since it is a headwind).
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Figure 4.10 - Vertical velocity and displacement against time

v, =[250.,0.0], z, = 5.000m =~ 16,400 ft , vy, = [~25.0,0]
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Figure 4.11 - X-direction velocity and displacement against time
Vo = [250,0,0] , 2 =5,000m = 16,400 ft , vynp = [—25,0,0]
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Figure 4.12 - Altitude against x-direction displacement
Vo = [250,0,0] , 2 =5,000m =16,400 ft , vynp = [—25,0,0]
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These simple verification and comparison tests have provided confidence in
the numerical solution as it has been implemented. Therefore, in the
following analyses, the model will be assumed to be correct and focus will

instead switch to results obtained from the model.

4.3 Practical Sensitivity Analysis

Having verified the model, the numerical solution now provides the ability to
calculate the trajectory of a particle given a set of initial conditions and wind
data. Therefore, the model allows investigators to calculate potential
trajectories based on the information they have available. However, whilst
the model provides answers for the situation it is given, it provides no
information about which factors are important in the behaviour of a given
particle. Put differently, there is no ‘sensitivity’ information available - it is
not clear whether changing, say, the initial velocity will induce a massive
change in final ground impact position, or whether it will be almost
inconsequential. For this reason, a form of sensitivity analysis will be

conducted.

When constructing this sensitivity analysis approach, it is important to be
conscious of the desired final application, i.e. the study of aircraft breakups.
Whilst it might be academically interesting to study, say, the variation in time
of a trajectory with changes in particle mass, this may be of little relevance to
the problem of accident investigation, where normally the key information is
at the point of ground impact. (An exception to this may be in trying to match
radar traces to a breakup sequence). However, such analysis can always be

achieved by an individual investigator running a range of specific scenarios.

This analysis will instead focus on uncertainty levels. Faced with a given
scenario, there is likely to be uncertainty around a number of different
variables used in the analysis including: wind speed and direction, initial
position, initial velocity, drag coefficient etc. In trying to understand a

particular set of events, an investigator may wish to vary certain variables
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through a range of values or improve the accuracy of certain parameters.
However, establishing which parameters are likely to produce the greatest

difference in ultimate wreckage location will be a process of trial and error.

Therefore, the following analysis will take two example initial conditions
about which parameters will be varied by some given percentage. This will

allow a greater understanding of the key variables which may be required.

It is worth noting that the problem in hand is highly nonlinear. This means
that in practice, any results obtained for a specific problem set are valid for
only that problem, and hence are not generalizable to all problems. However,
many of the parameters in this problem vary smoothly and hence rapid
deviations in behaviour from one problem set to another are unlikely to be

encountered.

The approach adopted is not a rigorous sensitivity analysis, which has
specific statistical meaning, but rather a practical approach aimed at offering

general guidance. The two problem sets will be:

A simulated large aircraft breakup - a breakup at 10,000 m (c. 33,000 ft),
with an initial forward velocity of 250 m/s (c. 485 kts) and a cross/tail wind

of 45 m/s, decreasing with reducing altitude).

A simulated small aircraft breakup - a breakup at 1,000 m (c. 3,250 ft),
with an initial forward velocity of 60 m/s (c. 120 kts) and a light cross/tail

wind of around 12 m/s (decreasing with reducing altitude).
The parameters which will be varied are:

¢ Breakup altitude,
e Initial x-direction (aircraft track) velocity,
¢ Wind direction, and

¢ Wind magnitude.
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Drag coefficient will not be studied explicitly. However, the scenarios will be
calculated for a range of ballistic coefficients and hence changes in drag
coefficient can be inferred by moving from one ballistic coefficient value

towards the next.

The wind profile adopted is defined as:

Wind Speed Altitude ‘To’ heading
(m/s) (metres) (degrees)
45 10,000 45
19 6,000 45
14 3,000 45
1 0 45

A cubic polynomial is then fitted to this data which is equivalent to using one
‘span’ of the cubic spline. As described previously, the model is designed to
use a cubic spline to describe the entire wind profile. The full implementation
would simply calculate the velocities and displacements for the initial span
and use those as the starting point for the next span. Clearly, in a real
situation a more accurate, complex wind profile would be adopted. However,
this has the potential to confuse the following analysis and hence a more

easily visualised wind profile is included.

The results for each change will be presented individually, and then the

differences for each parameter will be compared.
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4.4 Large Aircraft Breakup

Breakup altitude variation
Figure 4.13a shows the effect of altering breakup height on the final location

of wreckage. The plot shows the x and y location (with the breakup occurring
at 0,0 and the aircraft travelling in the positive x-direction i.e. up the page)
for the speed and wind conditions described above. Five values of ballistic
coefficient are indicated (10,000, 1,000, 100, 10 and 1 kg/m?), and for each
case the effect of increasing or reducing the breakup altitude by 10%

(=1,000 m) are shown.
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Figure 4.13a - The effect on final wreckage location of changing breakup altitude for a
simulated large aircraft accident.

Cp=10,000; Cp=1,000, ; Cp=10; Cp=1
O =reference, O =+10%, % =-10%
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Figure 4.13b - The effect on time to fall to ground of changing breakup altitude for a
simulated large aircraft accident.

Cp=10,000; Cp=1,000, ; Cp=10; Cp=1
—=reference, --- =+10%, " =-10%
Figure 4.13b shows the time taken for objects with different ballistic

coefficients to fall to ground under the reference condition, as shown in

Figure 4.13a.

The first point of note from Figure 4.13a is the scale of the wreckage
distribution. Wreckage is spread over an area of 30km x 30km, with the
furthest pieces having ‘flown’ for in excess of 30 minutes as shown in Figure
4.13b. Clearly in the case of strong winds, these timescales and distances will

increase.

The general shape of the wreckage distribution is a ‘hockey stick’ which has
been highlighted in previous studies. This is governed by the two pairs of
factors involved which are forward track and velocity, and wind speed and

direction.

Figure 4.13a shows that for high Cp items (high mass / low drag) the effect of

altitude increase or decrease is to slightly increase or decrease the ‘throw’ of
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the item. However, as Cz decreases, so the difference in ground position from
the reference is increased, with a 10% increase in breakup altitude giving
rise to around 6km of increased displacement. The reason for this is that the
increased flight time of the low Cz particle, allows proportionally more time
under the wind influence due to its low terminal velocity (*6 m/s) compared

to the high Cz particle with a high terminal velocity (>340 m/s).

As would be expected Figure 4.13b shows that the difference in time taken to
fall to ground is greater for lower ballistic coefficients since those objects

have a lower terminal velocity.
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Initial velocity variations

Figure 4.14a shows the effect of varying initial velocity on the final location of
particles. For each value of ballistic coefficient, the initial velocity is varied by

10% (=25 m/s) above and below the reference speed of 250 m/s.

25

20 R S T _

(km)

x-displacement
O
(@)
vy}
I
—
o
o
o
)

H*

_Ce=1,000 ¢ 5
¥ Ce=10

5+

Voret=250 m/s A

Tw=45mis i | |
5 10 15 20 25
y-displacement (km)

Figure 4.14a - The effect on final wreckage location of changing breakup forward
velocity for a simulated large aircraft accident.
Cp=10,000; Cp=1,000, ; Cp=10; Cp=1

O =reference, 0 =+10%, % =-10%
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Figure 4.14b - The effect on time to fall to ground of changing breakup forward
velocity for a simulated large aircraft accident.

Cp=10,000; Cp=1,000, ; Cp=10; Cp=1
—=reference, --- =+10%, " =-10%
It is clear that the lower ballistic coefficient particles (Cz <= 100) are almost
entirely unaffected by the change in initial velocity, with all showing near
identical positions for all three cases. The reason for this is that low mass,
high drag components decelerate extremely rapidly after release and
therefore the ‘modified’ initial velocity has a very short period over which to
influence the behaviour of the particle; it quickly adopts the surrounding

windspeed.

The high ballistic coefficient particle, with high mass and low drag, are able to
sustain the modified velocity for longer before finally adopting terminal
velocity (if at all) and hence a larger difference is visible. A maximum

difference of around 1km is noted for the case of C3=10,000.

Figure 4.14b shows that forward velocity has no almost effect on the time
taken to fall to ground; the lines for the three conditions are
indistinguishable. The reason for this is that the vertical component of the fall

is identical in each case i.e. the same initial vertical velocity from the same
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initial altitude. In an idealised situation, the equations are separable and
changes to the two-dimensional, horizontal plane initial conditions or wind
conditions in flight, do not affect the fall time. This can be seen for the next
two cases of wind variation (Figure 4.15b and 4.16b). They are included for

completeness but will not be commented upon further.

Wind magnitude variation
Figures 4.15a and 4.15b show the effect of variation in wind magnitude (but

retaining a ‘to’ direction of 45°).
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Figure 4.15a - The effect on final wreckage location of changing wind magnitude for a
simulated large aircraft accident.
Cp=10,000; Cp=1,000, ; Cp=10; Cp=1

O =reference, 0 =+10%, % =-10%
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As would be expected, the lower Cz value items are more affected by the
change in wind velocity than the higher value items. The effect on all items
tends to extend or reduce the displacement along the ‘windline’, although the

magnitude is clearly much greater for the lower Cp items.
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Figure 4.15b - The effect on time taken to fall to ground of changing wind magnitude
for a simulated large aircraft accident..

C3=10,000; Cp=1,000, ; Cp=10; Cp=1
—=reference, --- =+10%, * =-10%

Wind angle variation
Figures 4.16a and 4.16b show the effect of varying the wind angle, where a

positive change shifts the wind direction clockwise. Varying an angle by a
percentage is more difficult than varying, say, a speed. Whilst 250 m/s is
clearly more than 60 m/s, 250° is no ‘larger’ in physical terms than 60° and

hence a variation of #25° versus *6° is not appropriate.

In this situation, a variation of +9° was used since that represents 10% of a
quadrant, and intuitively is the sort of error that might be expected. However,

it is an arbitrary figure.
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The pattern of variation with ballistic coefficient is matched to that in Figure
4.15a. However, rather than moving towards or away from the breakup
point, the wreckage follows the change in windline angle. For this reason, the
magnitude of movement from the reference point is related to the distance

from the breakup point.
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Figure 4.16a - The effect on final wreckage location of changing wind angle for a
simulated large aircraft accident.

Cp=10,000; Cp=1,000, ; Cp=10; Cp=1
=reference, O =+10%, % =-10%
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Figure 4.16b - The effect on time taken to fall to ground of changing wind angle for a
simulated large aircraft accident..

Cp=10,000; Cp=1,000, Cs=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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4.5 Small Aircraft Breakup

It is tempting to assume that since the same model is providing output for
particles of identical Cs, that the plots for the small aircraft breakup will be
very similar to those of the large aircraft breakup. Whilst it is certainly true
that the effect on particles will be similar (e.g. high Cs prone to be affected by
wind) the relationship from breakup-to-ground is nonlinear and hence the

scaling of effects will vary considerably.

Altitude variation

Figure 4.17a shows the predicted wreckage ground impact for ballistic
coefficients for a reference breakup altitude and #10% (=100m). Comparison
with Figure 4.13 shows the difference in scale that can be expected for such

an accident (c. 1km x 1km rather than 30km x 30km for a large aircraft).
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Figure 4.17a - The effect on final wreckage location of changing breakup altitude for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, ; Cp=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 4.17b - The effect on time to fall to ground of changing breakup altitude for a
simulated small aircraft accident

Cs=10,000 ; C5=1,000, ; Cp=10; Cp=1
—=reference, --- =+10%, ** =-10%

Initial Velocity Variation

Figure 4.18a shows the effect on the small aircraft breakup simulation of

modifying initial forward velocity.

As with the large aircraft scenario, the high Cp items are virtually unchanged
whereas the low Cp items are more greatly affected with all differences

occurring along the line of aircraft track.
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Figure 4.18a - The effect on final wreckage location of changing initial forward
velocity for a simulated small aircraft accident.
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Figure 4.18b - The effect on time to fall to ground of changing initial forward velocity
for a simulated small aircraft accident.
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Wind magnitude variation

Figure 4.19a shows the effect of changing wind magnitude for the simulated

small aircraft breakup.
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Figure 4.19a - The effect on final wreckage location of changing wind magnitude for a
simulated small aircraft accident.
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Figure 4.19b - The effect on time to fall to ground of changing wind magnitude for a
simulated small aircraft accident.
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As with the large aircraft breakup, the low Cp items are more greatly affected

than the high Cp items which are almost unchanged.

[t is interesting to compare this plot to that for altitude variation. The pattern
for low Cp items is similar to that seen in Figure 4.17a. However, the high Cs
items are differently distributed. Therefore, for an investigator who is
attempting to modify a modelled solution which has disagreement between
the low Cpitems and the model along the windline, it would be instructive to
examine the accuracy of the high Czitems. If the fit is good, error in wind
magnitude is more likely to be the cause whereas if the fit is poor, altitude

inaccuracy may be responsible.
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Wind angle variation

Figure 4.20a shows the effect of varying the wind angle by +9° as discussed

with respect to the large aircraft breakup.
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Figure 4.20a - The effect on final wreckage location of changing wind angle for a
simulated small aircraft accident.
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Figure 4.20b - The effect on time to fall to ground of changing wind angle for a
simulated small aircraft accident.
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As with earlier examples, the effect is very similar to that seen for the large

aircraft simulation.

Appendices 9 and 10 show identical Figures to those given in 4.13 to 4.20 but
with a wind angle of +30° (60° from aircraft heading) in Appendix 9 and -30°
(120° from aircraft heading) in Appendix 10.
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4.6 Difference

Large Aircraft

Figure 4.21 shows the magnitude of the ground location difference for a
parameter reduction of 10% for the 5 different values of Cs and Figure 4.22

shows the same for a 10% increase.
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Figure 4.21 - Variation in magnitude of distance from position in reference case for
reduction of various parameters and Cp
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Figure 4.22 - Variation in magnitude of distance from position in reference case for
increase of various parameters and Cg
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Figure 4.23 shows the results of Figures 4.21 and 4.22 combined onto one

graph. The Figures can be interpreted in a number of ways.

One option is to see which values of Cz are subject to large variation with a
certain parameter. For example, in Figure 4.21, both altitude and wind angle
have a significant effect on low Cp items with a 10% or 9° reduction
producing a difference of around 5,000m compared to less than 1,000m for a
high Cp item. This implies that to reduce errors for low C; items, particular

attention should be paid to breakup altitude and wind angle.

Alternatively, the Figure could be examined to establish which level of Cs is
least affected by a particular parameter. For example, Figure 4.21 shows that
low Cp items are almost independent of initial velocity changes. This implies
that any low Cp discrepancies in the model fit cannot be corrected by
adjusting initial velocity. Conversely, if using low Cz items to inform the
modelling process, initial velocity inaccuracies will be almost completely
removed and hence the other three parameters can be studied. Similarly

large C» items will tend to be independent of wind parameters.

Finally, by examining the Figure, the most appropriate ‘general’ parameter
can be assessed. In the case of Figure 4.21 those items with a Cs between 107

and 103 will be least sensitive to errors in the parameters investigated.

Therefore, it may be most appropriate to base initial modelling estimates on
‘medium‘ Cp values, before using the high and low values for isolating and
tuning specific parameters. It is in this process that the ‘interactive’ approach
described earlier may be most powerful. Alternatively, it may be possible to

automatically optimise a parameter set through software.

Figure 4.22 showing the variation with increase, displays a very similar

shape to that of Figure 4.21 albeit with slightly different amplitudes.
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Examining Figure 4.23 shows that for high altitude, high initial velocity
breakups, deviations in altitude and wind angle will produce the greatest
effect on the ground impact location with a possible errors of more than
6,000m arising from a 10% deviation. It is components with low ballistic

coefficients that will be most susceptible to these errors.

Small Aircraft

Figure 4.24 shows the magnitude of the ground location difference for a
parameter reduction of 10% for the 5 different values of Cp and Figure 4.25

shows the same for a 10% increase.
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Figure 4.24 - Variation in magnitude of distance from position in reference case for
reduction of various parameters and Cp
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Figure 4.25 - Variation in magnitude of distance from position in reference case for
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The shape of Figures 4.24 and 4.25 are very similar to those of the large
aircraft breakup in Figures 4.21 and 4.22. However, as with the ground
location plots the magnitudes differ greatly. Maximum difference from
reference are now just over 160m in comparison with 6,000m previously.

This is indicative of the lower breakup altitude and shorter time of flight.

As with the large aircraft breakup, the greatest error still arises from
deviations in breakup altitude and wind angle for low Cs items. However
whereas for the large aircraft breakup a 10% deviation in velocity produced
an error of one-sixth (1,000m) of the maximum for a high Cs item, for the
small aircraft breakup this value is increased to approximately one-half of the

maximum error.

Whereas for the large aircraft breakup two Cz values were appropriate as
‘general’ items, for the small aircraft breakup, a ballistic coefficient of 100 is

least sensitive to deviations in the four parameters studied.
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Chapter 5 - Additional Aspects and Further
Work

This section outlines some of the issues and possibilities that have arisen
through the course of conducting this research. It serves both as a starting
point for future research but also a primer for a piece of software which

could be developed using the models and techniques outlined in the thesis.

5.1 Drag Estimation

The preceding analysis has relied on the use of ballistic coefficients to
analyse possible drag behaviour. This is an excellent approach when dealing
with large breakups since there will be a continuous spread of ballistic
coefficients marking the entire trail. However, when dealing with small
numbers of components, or when trying to locate a component that has
departed the aircraft (as was the case with the Sioux City accident) it will be
necessary to estimate the drag of a single component. Therefore, this section
will examine the feasibility of improved drag estimation techniques for

improving the accuracy of trajectory models.

Methods of drag estimation

There are a number of ways of ascertaining the drag coefficient for a specific

particle, each with strengths and weaknesses.

One of the greatest difficulties in drag estimation is in predicting the likely
orientation of an object when falling. This is affected by factors including the

centre of pressure and centre of gravity.

As discussed previously, the possibility of ‘tumbling’ of a component presents
real problems in trajectory analysis. Some possible approaches to this issue
will be outlined later, but a detailed analysis of this problem is beyond the
scope of this thesis. Therefore, it will be assumed that the behaviour of a

specific component is governed by a single drag coefficient which is given by
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the component falling in one specific attitude; the possibility of tumbling will

be ignored.

Direct measurement

The most direct way of measuring drag coefficient would be to mount a
specific piece of wreckage in a wind tunnel and take measurements to infer
the drag coefficient. This would need to be done for a wide range of attitudes
in order to estimate the most likely attitude of the component whilst falling.
Alternatively, it may be possible to ‘gimbal’ the part, thereby allowing it to
adopt its ‘preferred’ attitude. However, this process is expensive and time-

consuming.

A less direct way to measure drag coefficient is to measure the properties
(either in a wind tunnel as above or possibly by drop testing) of a number of
representative pieces of wreckage and then use them as reference points for
estimating the drag coefficient, usually ‘by eye’. However, this is extremely

subjective and open to error.

One difficulty that affects every method of drag estimation is that of damage
on landing. Even if it is assumed that a component retains the same form
from the initial breakup to the final impact, the likelihood of it impacting the
ground without any further damage or change in form is extremely small,
unless the terminal velocity of the component is extremely small. With the
‘direct’ measurement techniques outlined above, the only way to find the
drag coefficient of the component before impact, is to try to ‘repair’ the
damage caused by impact and then test the component. Clearly this is almost
impossible to achieve, even if the damage were fully understood. It would
also be extremely time consuming since a large number of possible repairs
would have to be tested to determine the sensitivity of the drag coefficient on

areas of uncertain damage.
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For these reasons, direct measurement may not represent the best way to
evaluate drag coefficient and hence an alternative approach is outlined

below.

Indirect or virtual measurement
A method of drag estimation is proposed which involves testing the
component in a virtual way, rather than performing experiments directly on

it. There are two overarching stages to this process:

- digitisation of the component which involves measuring the three-
dimensional form of the component and also measuring its weight

distribution to establish its centre of gravity, and

- analysis of the digital model which will allow the most likely attitude of
descent to be established, and thereby ascertain the most likely drag

coefficient and frontal area of the component.

Digitisation of the component

There are two methods which are commonly used for digitising / measuring

from components, namely contact and laser measurement.

One of the most common types of measuring system is known as the
coordinate measuring machine (CMM). This often consists of an articulated
arm or stages which allow the location of a contact probe to be tracked (see
Figures 5.1 and 5.2). By touching the probe at various points on the object
and recording the location, the three-dimensional coordinates of each point

are registered and a model is built up.

CMM systems come in a range of sizes, but a typical articulated arm might

have a measuring range of up to 4m with an accuracy of around 50 microns.

76



Figure 5.1 - Articulated arm type CMM Figure 5.2 - Stage type CMM

A laser-based CMM works in a similar way, but rather than using a contact

probe at the end of the articulated arm, a laser head is used instead. The laser

head sends out a line of laser light consisting of a number of individual beams

forming ‘spots’ on the surface to be measured. This line of beams is then

swept over the surface of the component. By measuring the distance each

beam travels to the surface, and knowing the location of the end of the arm

and the angle of the head, the surface can be digitised.

An alternative process, often used in digitising
larger components, is the use of rotating laser
scanners. These scanners, often used for site
capture, tend to sit on tripods and send out a
single laser beam at a known elevation, and
rotational angle (see Figure 5.3). By measuring
the distance from the scanner to the component
by using the reflected beam, a three-dimensional
point can be measured, and by doing this
repeatedly at different angles a full three-
dimensional set of points can built-up around the

scanner.
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Typical scan data sets captured as part of this research are shown in Figures

5.4 and 5.5.

Figure 5.4 - Blade scan Figure 5.5 - Aircraft scan

Once a set of three-dimensional points is produce (known as a point cloud), it
can be edited and manipulated for the required data set. Usually, a number of
point clouds will have to be combined since it is necessary either to move the

scanner or rotate the part to get access to all sides of the component.

Once a single point cloud describing the component has been produced, it is
necessary to join the data points together using polygons to form a surface or
mesh. For large smooth surfaces this is a relatively straightforward process,
but difficulties arise when dealing with sharp edges and unusual surfaces.

Unfortunately these are often present on damaged components.

Some of the skill in surfacing lies in selecting the correct parameters for the
surfacing tool. The surfacing program ‘knows’ nothing about the actual
component, all decisions about which points to join are based on the
proximity and form of the surrounding points. Therefore, the settings
regarding what size of gap to bridge are crucial to creating a successful

surface.

78



In order to establish the centre of gravity it may be possible to estimate the
weight distribution of the panels involved. Alternatively, it may be necessary
to measure the location of the centre of gravity directly- this can be done
through the use of specialised equipment, or more approximately by
measuring the ‘balance planes’ using a knife edge and calculating the

intersection.

Challenges
Both of the laser techniques described above rely on the laser beam being

reflected from the surface to measure the distance to the object. It follows
that objects that do not effectively reflect the laser cannot be measured. In
general, the types of surfaces that do not reflect are surfaces which are dark
in colour. This may be through material (e.g. black rubber), through paint
(e.g. dark blue livery) or by dint of the accident sequence (e.g. sooting). It is
possible to spray powder onto surfaces to ensure that the laser is reflected,

but covering large areas can be difficult, time-consuming and expensive.

Digital Analysis
Once the digital model is developed, it is straightforward, but time-

consuming, task to enter the model into a CFD package, such as ANSYS
Fluent, and to derive a graph of drag coefficient against flow angle. By
examining the minimum drag condition in parallel with stability
considerations, it should be possible to establish a likely drag coefficient, and

also estimate the likelihood of the object to tumble (see next section).

5.2 Additional Considerations

Tumbling
It might be possible to modify the drag coefficient of a component by some

amount to incorporate the possibility of tumbling. This modification could be
scaled by the likelihood of a component to be subject to this type of

behaviour which could be extracted from the scan models, or included ‘by
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hand’. However, this approach will still only modify the behaviour of the
component in terms of acceleration on a set trajectory; it will take no account
of falling such as a stereotypical leaf moving from side to side. Incorporating
this type of behaviour will require lift to be included and a form of CFD
calculation to be conducted. The potential for errors to be introduced
through this process is large, and so it may be more prudent to identify those
components which are predisposed to tumbling and simply discount them
from the calculation. At the very least, they should be identified to the user so

that they can be discounted if necessary.

Mappin

In April 2010, the Ordnance Survey made some of their mapping data freely
available as part of the OpenData initiative. This would provide a superb,
free, starting point for the implementation of any graphical trajectory
application. In addition, the use of a digital terrain map (DTM) would allow
the ‘flat earth’ assumption to be improved upon to incorporate particles
striking areas of high ground, rather than continuing ‘through’ them to the

flat earth assumption.

GIS

Since a large portion of any advanced trajectory application would be the
accurate graphical representation of data, either with or without mapping
data, it might be sensible to incorporate the model as a ‘layer’ in a GIS system
such as esri ArcGIS or erdas IMAGINE. This would remove much of the
programming overhead of creating interfaces, displays, and accurately
incorporating mapping. Whilst this might limit the interface flexibility and
customisation options, it would be a sensible staring point; if total freedom
were required it could be introduced once a successful implementation was

established.
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Uncertainties

As discussed previously, one useful feature of TRAJAN was the inclusion of
uncertainties. Whilst this was achieved in a relatively simple way, it is a
feature that is well worth retaining. Graphically this could be achieved by
using differently-coloured areas to display ‘exact’ solutions, and then

uncertain solutions.

As an extension of this, it would be very useful to be able to display,
preferably in real-time, the effect of changing any parameter on the resulting
wreckage distribution. This would allow users not only to modify parameters
in an attempt to best fit the data, based on their understanding of the
situation, but also an insight into the importance of given parameters in a
specific situation. This will allow investigators to focus effort on those
parameters which may be more important to the outcome, for example, the
wind profile may only alter final locations by tens of metres whereas breakup
point may modify them by kilometres (see Chapter 4). Clearly in this case,
effort spent on the exactly locating the breakup point will yield better results

than attempting to obtain a more accurate wind profile.

Validation

A key aspect of the problem will be the thorough validation of the model.
Whilst trivial cases (zero wind, straight fall to ground etc.) have confirmed
the general operation of the model, in order to prove its utility to the
investigation community and to provide confidence to potential users, it will
be necessary to validate the model. Clearly, real accident data is the ultimate
test for the model, but in addition to these real-world accidents, it may be
possible to use published ballistic data (e.g. missile tests) to validate the
model. A significant advantage of this form of data would be the lack of
tumbling, and accurately known drag coefficients that should be available.
For this reason, validation through this route should be adopted before

moving on to real-world breakup data.
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Appendix 4 gives a list of accidents which may prove suitable for validation.
The suitability of a particular accident will depend on a wide range of factors
including: data reported, breakup type, privileged access to data, altitude etc.
At this stage, all possible candidates are included - later detailed analysis will

reveal whether they are suitable.

Inverse calculation
One aspect of trajectory analysis that has received little attention in this

thesis is that of inverse or back calculation.

In many accident investigations, investigators are presented with only a
wreckage trail and hence only the final location information is available. It is
therefore of interest to consider whether the model can provide useful

information in such a situation.

This is an example of a boundary value problem where values are specified at
more than one point in time. These represent a more complex class of

problem than that already presented but one that should still be solvable.

It is tempting to think that final velocity, if it were available either directly or
indirectly, might assist the investigator. However, this will only be the case if
the object has not hit terminal velocity. If it has reached terminal velocity,
there is no way of knowing, without timings, whether it has been falling at

that rate for 1 second or 100 seconds.

[t is clear that the path of a single particle with a given final position is not
unique; it might have been travelling, say, quickly at low altitude or slowly at
high altitude. The situation is improved when multiple particles and locations
are available. However, some authors (e.g. 6, 7) have suggested that by
tracing the trajectory of a number of particles backwards, you can find the
common starting point, but this approach assumes exact knowledge of the
initial velocities which is unlikely, something acknowledged in 1949 by Owen

and Grinstead [8] and in 1956 by Braun [10].
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Whilst the solution through a boundary value approach should yield a
solution, it may be possible to also achieve a solution through the use of the
Monte Carlo technique. This would involve defining a possible set of inputs
(e.g. altitudes, speeds etc.) and then running the predictive model for random
combinations of those inputs. By seeing where the modelled projectiles land,
more can be understood about the system. This technique is particularly
useful when considerable uncertainty is present in the system, as may be the

case for the investigator.
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Chapter 6 - Conclusions

This thesis has described the process of producing a working numerical

solver for the problem of ballistic trajectory analysis.

Ballistic trajectory analysis has been key to many large investigations and
much of the science is well understood. However, there has been no package
that has incorporated variable gravity, variable density and variable wind
profiles into a set of differential equations and then solved them in a robust
way. The techniques presented in this thesis provide the calculation basis for

such a package.

The work has recognised the importance of stiffness in the governing
equations and has invoked a suitable solution technique that should remain
robust, accurate and efficient for the full range of appropriate inputs. Whilst
this result is simple to describe, the process of arriving at it was far more
complex. The time taken to achieve the numerical solution, and the space
occupied in the thesis, reduced the amount of time and space available to

exploit the software. However, useful results were obtained.

The numerical solution was verified against a simplified analytical case and
the results for two simulated breakup cases. provide investigators with
information regarding the effect on ground location for variations in four

significant parameters.

The results indicate that for simulated large aircraft breakups, low ballistic
coefficient items are most heavily affected by breakup altitude, wind
magnitude and wind angle whereas large ballistic coefficient items are most
heavily affected by breakup velocity, although to a much lesser extent
(around 15% of the distance of low ballistic coefficient).

For small aircraft breakups, wind angle and breakup altitude have the largest
effect on low ballistic coefficient items, with velocity and altitude affecting
high ballistic coefficient items to a larger extent (around 50% of low ballistic

coefficient items).
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Finally, a number of issues and possible solutions emerged during this

research which are documented in Chapter 5.

To be useful to investigators, the technique needs to be cheap, both
financially and, possibly more importantly, computationally. The engine
developed through this research provides that cheap computation, albeit
with an ‘unfriendly’ interface at present. The model should be thoroughly
validated, and then it is hoped that this work can form the basis of a
trajectory analysis tool which is able to exploit the advances of the last 20

years.
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Appendices

Appendix 1

Dealing with one-dimensional motion, with drag proportional to v> and

assuming constant mass and gravity gives the governing differential equation
of

% 2
m—=mg—kv-.
ar

Separation of variables gives,

[Py i &
mg — kv’ m’

To solve, use the definition

N
J i _tanh (\/E]
a-bx* Jab

Therefore, the lhs of (1) becomes,

tanh_l[\/zvj

J- dv _ \/m—g

gk el
B tanh™ (v/vTERM )
- ngk

where

- |8
TERM k

and (1) becomes
tanh™ (V/ Ve ) = Mgk (L +¢, )
m

where ¢, is a constant of integration. Therefore, the general solution of (1) is,
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V= Vpeu tanh[«/mgk (é+clﬂ. (2)

which is asymptotic towards , the terminal velocity. To solve the initial value
problem,

m dv_ mg — kv’ where W
dt

=0

using (2) gives,

Vo = Vrerm tanh[cl \/m—gk i|

¢, = ! tanh™| —0—
1 \mgk Vreru

To solve for displacement, note that
x(1)= Iv(t)dt = Vogpur J.tanh[ g—kt + cm/mgk}dt. (3)
m

Using the definition

In(cosh(ax + b)
a

J.tanh(ax +b)=

gives,

x(t)z%ln{cosh[ g—nlft+cl\/mgkﬂ+c2 (4)

where ¢, is a constant of integration. Again, solving for the initial value,

(4) gives

and hence,
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VTERM ln

C, =Xy — W [cosh(cl\/m—gk)} .

Therefore, the governing equations for velocity and displacement for this
type of motion are

/ k
V= Vrgrm tanh{ %t + tanh™ (VLH
TERM

and

x(t)=—ZE_ In| cosh ,fg—kt+tanh’l LT )

\ gk/m m Vrerm ’
where
VTERM -1 VO
¢, = X, — ————==1In| cosh| tanh
’ ’ ng/m |: [ [VTERM Jj:|

where
m is the object mass

g is gravity
k is the drag proportionality constant

t is time
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Appendix 2

200

Bok40 sounding for New York/La Guardia, NY/US
15 UTC, 12—Dec—-2011
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(Paints > 100 nm from the ground paint are caded in gray) ALTMUCE (ft)
Sounding from the Bak40 analysis
data is for nearest Bak40 grid point, 9.1 nm / 308 deg from LGA
Sounding for: -3 h | -2 h | previous hour | next hour | +2h 1 +3 h
FAA 604 format for SHARP <- ?
(DD = 'A' means analysis)
Pressure_Alt DD Dir Spd ---Temp--- DewPt
(ft) (mb) (kts) (F) (C) (C)
124 1031.0 A 234 1 34.9 1.6 -5.4
193 1028.0 A 252 1 34.2 1.2 -5.7
328 1023.0 A 263 1 33.6 0.9 -6.0
534 1015.0 A 289 2 32.5 0.3 -7.5
810 1004.0 A 253 6 34.7 1.5 -15.4
935 1000.0 A 252 6 34.2 1.2 -15.3
1233 988.0 A 251 7 33.1 0.6 -15.2
1660 972.0 A 247 8 32.5 0.3 -15.9
2093 956.0 A 248 9 33.8 1.0 -20.8
2536 941.0 A 235 11 37.6 3.1 -29.1
2992 925.0 A 226 12 39.0 3.9 -32.2
2992 925.0 A 226 12 39.0 3.9 -32.2
3451 909.0 A 215 11 39.4 4.1 -32.1
3923 893.0 A 215 10 39.2 4.0 -29.4
4402 877.0 A 217 9 37.9 3.3 -25.3
4888 861.0 A 217 10 36.5 2.5 -24.6
5239 850.0 A 220 10 36.5 2.5 -24.9
5403 844.0 A 222 10 36.5 2.5 -25.1
6276 817.0 A 227 11 34.7 1.5 -25.7
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7417 782.0 229 12 33.6 .9 -25.
8372 754.0 226 12 32.0 .0 -25.
9452 724.0

10334 700.0
11381 672.0
13116 628.0
14954 584.0
17785 520.0
18772 500.0
19317 488.0
20439 466.0
21811 440.0
23740 405.0
24071 400.0
25830 370.0
28385 331.0
30524 300.0
32388 275.0
34402 250.0
35790 233.0
37057 219.0
37562 214.0
38231 207.0
39005 199.0
39494 194.0
39852 191.0
40219 188.0
40662 184.0
41207 179.0
41781 174.0
42342 169.0
43038 163.0
44061 155.0
44862 150.0
45383 146.0
48195 127.0
51778 107.0
53152 100.0
56122 86.0
60318 70.0
61673 65.0
66837 50.0
73103 36.0

-25.
-28.
228 15 16.3 -8.7 -32.
230 17 9.7 -12.4 -34.
231 17 -2.4 -19.1 -47.
226 17 -5.8 -21.0 -49.
224 17 -7.6 -22.0 -50.
226 19 -10.7 -23.7 -50.
222 23 -15.2 -26.2 -44.
222 27 -22.7 -30.4 -39.
223 27 -24.0 -31.1 -40.
226 30 -31.2 -35.1 -40.
239 36 -42.2 -41.2 -44.
243 40 -52.2 -46.8 -49.
247 43 -61.1 -51.7 -54.
246 43 -70.4 -56.9 -59.
245 43 -76.9 -60.5 -63.
243 42 -80.1 -62.3 -65.
-79.2 -61.8 -66.
250 37 -79.4 -61.9 -67.
251 38 -80.1 -62.3 -69.
247 42 -79.4 -61.9 -71.
242 44 -77.8 -61.0 -73.
239 45 -76.5 -60.3 -74.
241 46 -75.5 -59.7 -74.
243 47 -75.1 -59.5 -74.
247 49 -74.9 -59.4 -73.
248 50 -74.6 -59.2 -72.
250 49 -74.0 -58.9 -72.
251 49 -73.1 -58.4 -72.
252 51 -72.9 -58.3 -72.
252 53 -72.9 -58.3 -72.
255 55 -74.7 -59.3 -73.
263 53 -79.2 -61.8 -81.
264 52 -80.1 -62.3 -81.
267 51 -82.3 -63.5 -82.
269 53 -86.4 -65.8 -84.
269 53 -87.9 -66.6 -85.
263 46 -98.3 -72.4 -89.
255 37 ***x*x%* -79.5 -94.

0.9
0.0
220 13 29.5 -1.4 -23.
3.2
5.3
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Sounding for: -3 h | -2 h | previous hour | next hour | +2 h | +3

Please send questions about this page to one or more of the following people.

. Susan Sahm for technical questions about the java display (such as a blank screen)
. Brian Jamison for q ions about dings and the SkewT display in general, and about RAOB soundings
. John Brown for questions about model dings (types of models, available forecasts, latency, etc.)

Last modified: Mon Apr 4 21:13:00 GMT 2011
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Appendix 3

Although only the 4-state system is required to calculate the eigenvalues
(since the x and y displacements do not feature in the governing equations),
the full 6-state system Jacobian will be solved here, since it will be required

for the numerical integration scheme. The coupled equations for the 6-state

system are:

ﬂ—_l pb ]+£
dt ~ 2C,RT,| T

Tz Y —(1+g0/BR) (VG v )\/(VG v )2 +(VG W )2 +(vG v )z
r,+z b x x x x y y z z
dve 1 , (teolBR) . v :
@, If_T[lTﬁ(—H]] R R R R R}

b
~(1+g0/BR) 3 5 5
[rer_HbH (v(’—vw)\/(vf’—va) +(v)(.j—v)v_v) +(VZG—VZW)

G 2
dL:—go L — 1 ﬁ 1+£
dt r+z) 2C,RT,| T,

dx
E‘ x
dy_ g
d
dz ¢
a

which gives the Jacobian as:
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I e RV RV S . R VAN: RV L ]
0tovy 0rdv, drdv. dtdx drdy 0toz
9’ vf," 9’ vf’ 9’ vf 9’ v_f 9’ vyG 9’ vf‘
0tovy 0rdvy drdv. dtdx drdy 0t0z
e R RRUC: RRVANNT RTINS RAUC: RV
of | drovy ordv] drdv drox drdy 9droz
dy 9’ x 9’ x 9’ x ’x ’x Ix
0tovy drdv, drdv. dtdx drdy 0toz
o’y o’y o’y 9’y 9y 9%y
0tovy 0rdvy drdv. dtdx drdy 0toz
9’z 9’z dz dz Iz Iz
0tovy 0rdvy drdv. drdx drdy 0t0z

Due to the lack of coupling mentioned above, some of these expressions are
trivial and can be evaluated by inspection, specifically (with some repetition
to allow rows and columns to be followed):

9°v¢ _azvf _azvf 3 9*x 3 %y B 9’z —0
0tdx Ordx 0tdx Otdx 0fdx OJtox

¢ vy 9vY Px 'y 9z _0
0tdy dJtdy 0rdy dtdy dJtdy 0rdy

dx  dy 9z —1
v dq’ wn’

*x B *x 3 *x 3 *x 3 *x _0
atavf dtdv?  dtdx dtdy 0Jrdz

9%y B 9%y 3 9%y _ o’y 3 o’y -0
0rve  dtov®  0rdx  drdy 0rdz

9z B 9’z 3 9’z 3 0’z 3 9’z _0
drve v’ 0rdx drdy dtdz

which reduces the Jacobian to,
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[ 82 VG 82 VG 82 VG az VG 1
X X X 0 O X
otovy ordvy dtovy dtoz
R U U 0 0 o’V
9 otovy drdvy dtovy dt0z
i 2.G 2.G 2.G 2.G
dy d vZG d vzc 0 vZG 0 0 v,
9 dHNT oy, 919z
1 0 0 00 O
0 1 0 00 O
o0 0 100 o0 |

The remaining 12 expressions must be calculated by hand. This is detailed

below. Indices are [row,column].

PO 1 p r B( r -(1+20/BR) P > >
= o . AT ¥} v —v \/vG—vW (=) (=Y
atov?  2C, RT, Tb(re+z ”]_ avf(‘ ONCT = (=) )
r -(1+80/BR)
L nfy Bl e -H, _AB
2C, RT,| T,\r+z | N
r 7-(1+80/BR)
L n 1+£ "X _m g Aa—B+Ba—A
2C, RT,| T,\r+z b ] vy vy
U [ B e T =)= Y (o =) [ P2 o)+
= D 14 =2 e _H Y
2C, RT,|  T\r+z '

r T(eo/BR)| (G w?
ST )
I,
’ 't bl - \/(VG—V:V)Z-F(VS—V;V) +(vG—v )2
Similarly,
il
Y 1 p [, B ] (= P (= ) (P () |+
atav9‘:_2cBR_T,,[l+7b[rg+z_H”ﬂ — T o wo ~(22]
) JOE = P (o 4 (56—
and
il
9*ve 1 p, B( rz {+a0/8%) (vf—vfl)z[(vf—vf’)2+(vf—v}v-v)2+(vf—vzw)] T+
atavf=_2CBR_Tb[1+Fb(re+z_Hb]:| =[3,3]

JOE =Y (Y (o)
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pe Vf 1 ~(1+80/BR) 3
o < LT < et | B O o N ) R e e

x

1 B ~(1+20/BR) 1
e AL P | I ) ) [ R ) R CE ] e

~(1+80/BR)
9*v¢ 1 : )
e[| e T

r+z
Loy Bl g 7(l+g0/ﬁR)(vG—vW)(VG—vw)[("c—vw)2+(v6—vw)2+(v5—vw)]%_[3 1]
2C, RT, T \r+z b < 4 x x x x y y 2 p =19

az Ve 1 ﬁ rz ~(1+20/BR) > 5 >
Bta\i)‘f :_ZCBR_£[1+?,,(V(,:-Z_H}J]:| (VG_V;”)W\/(V‘ —v! ) +(vf—v:") +(vf—v;”)
U [ B re ) v ‘ ‘ B
:_ER_i[l F,,(rg:z_H”H (49 w2 )55 = Y (0 =2 ) o =) 0 =) [P =132

A _ I p B rz B 6wy 0 \/ G w)? G w)? G w)?
3[3‘;5' __fR—Tb 1+Fb reTZ—Hb (VX -V )a\,‘f (Vx -V, ) "'(Vy _Vy ) ‘|’(Vz —Vz )

¥

~(1+0/BR) 1
— 1+£( 1L —Hbﬂ (v;’—va)(vf’ —V:V)[(vf—vtv)2+(vf —V;V )2 +(vf —VW):| ? =[1,2]
b e

PENG 1 ~(1+80/BR) P
T [”f[ Hﬂ P L R R

B b b re 4
1 B rz ~(1+20/BR) s s 1
=—2C5Rp—£|:l+?b(n;z—HbH (vf—va)(v"—vw)[(v?—v)w) +(Vf—v:v) +(vf—v:v)} 2 =[1,3]

azvf _ I p, B( rz () 6w\ 9 G . w)? G w)? G w)?
Btavf __ZRT,, 1+E(E_Hbj (v.v Y )37\/(Vv —V ) +(v.v e ) +(Vz e )
1 ﬂ , —(1+g0 /BR) . , N
LR 7| RN (CORC) N[O Y ) RS R
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~(1+80/BR)
A _lpba[l +ﬁ[};z_ H,,H (ve - vY)J(vf e R Gt IR (g §

dtdz 2C, RT, oz T,\r+z

1 p, |:T ﬂH ﬂr z :|—(l+gu/l3R) (vf ~ v}‘("’ )\/(Vf ~ v)‘:v )2 N (vf; ~ V;V )2 +(V§; B v:‘, )2

TTaC, R | T, T,z

_ 1 p, a
20, R, %2

_ 1o, (BXCBA 3B, Xacj e
2C, RT, 9 az d

where

~(1+0/BR)
: :|

A= Tb_ﬁHb.'_&
T, T, r+z

-(2+80/BR)
- T, — BH
(14, pr)| TP P 2 a[1,-pH, B -
9z T, T, r,+z 0z T, T, r,+z
" _BH, PBr z ~(2+80/BR) Br. (I‘L,+Z).1—Z.1
=—(1+8/BR) + Eele 00 =
T, T, r,+z T, (re+z)
J0B. 9
- v.—a —-bz—-cz —dz
0z az( )
= —bx — 2CXZ - 3dx22
1
2
(v -a,-bz-c-dz") +|
%_S: (vf;—a,—b,z—c,zz—d,z3)2+
G

(V —a.-bz-cz —a’z ’
(v -a,~bz-c-d ) +
1
=l{(vf—viv)2+(vf—v:’)2 v - 2 zai (Vf—a bz~ cz—dz)2
G _ _ _ 2
( a.-bz-cz’ dz)

W (-b,—2¢c,2-3d,2%)+

1 2(vf v,
=l{(v0_vzv)2+(vf—v:‘/)2 v —v }7 2(1/? r/)(—b 201 3dz )
( G _

2(vS b ~2c.z- 3dz)
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1 p [ Bz e ’ 2 2
) Y ;W ;W 5w
I N I TN ey e ey

:_1[Jba|:Tb—ﬁHb+ﬁreZ:|(l+gu//3R)( . w)\/( -

oB
__L»n (Bvca—A+Ac “'+AB‘8—C)=[2,6]
4

0A oC o ) 5
with A, C, a_z and a_z as above, B, = (Vy —a,—bz—cz —dz ) and

0B

y

0
- a_z( —a,~bz-c2’ —dz)
2
= —by — ZCyZ — 3dyz

P r : 1 B (v /P . 2 . 2 ‘ 2
MZ%L;]xmw{TLHHM Y e Ry

——g? (e +r) e BZ{T L ‘;’ riz} (I+AO/BR)(V,G—VZW)\/(V§-V;V)2+(vf-v;v)2+(vf-v§v)2
TR
=2g,7 (z+1)" Zég 15; (Bc%/:wxcaa% AB‘%—C)—D 6]
. 0A oC o , X
with A, C, % and PR above, B, = (VZ —a,-bz—-cz —dz ) and
aaiz zi( C—a,-bz-cz’-dz )

=-b_—2cz~— 3dzz2
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Appendix 4

Flight Year Notes
Comets G-ALYP and G-ALYY | 1954 [In-flight breakup
L-188 Lockheed Electra 1959 |Wing separation
Continental 707 1967 [Xplosive decompression, tail and
TWA 800 1996 [Explosion at 15,000 ft
Adam Air KI574 2007 |Loss of control - difficulty in location
Air India AI182 1985 |Bomb explosion at 31,000 ft
UA811 1989 |Cargo door and structural failure
E:elilslt Air Bandeirante, 1995 |Spiral dive, mid-air breakup
China Airline CI611 2002 Mid-air breakup at FL350
Aer. [tavia DC-9, Ustica 1980 |In-flight explosion
BEA Vanguard, Belgium 1971 |Rupture at FL190
Nimrod XV230 Afghanistan | 2006 [Mid-air explosion
Convair 580, NZ 2003 (Spiral dive, in-fligh breakup
L-188 OB-R-941 1971 [Structural failure after lightning strike
BAC 167 Strikemaster 2006 [Wing separation
Partnairs, CV-580 1989 [Structural failure at FL220
New York Air Disaster 1960 [Mid-air collision
Woomera missile trials Kepert
HS-125 N40PC 1977 |Structural failure
Columbia, STS-107 2003 [Disintegration during reentry
Turkish Airlines Flight 981 | 1984 Sﬁﬁgﬁaiié’;;fiipiﬁﬁ ddoor' seats
UA232 Sioux City 1989 [Uncontained fan disk failure
Ezsrfbooﬁ‘r’r‘?emander' 1984 [In-flight breakup 19,000 ft
YB-49 Flying wing 1948 (Structural failure
Challenger, STS-51-L 1983 [Disintegration after launch

Potential accidents for future model validation
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Appendix 5

Reproduction of http://www.proairshow.com/aircraft _debris.htm accessed 29th
March 2013.

Proairshow, LL.C
Air Show Narration & Sound Services
307 West Fredericks Street
Anderson, South Carolina 29625
864-226-3489

ugh@proairshow.com

Main Menu h

AIRCRAFT DEBRIS
TRAJECTORY ANALYSIS

A Report on the Ballistic Trajectory Characteristics and Relative Scatter Patterns of In-flight Airframe
Separations Debris Specific to The Airshow Environment.
21 August 1990

prepared by:

Hugh E. Oldham jr.
304-EyonswoodDrive
Anderson;Seuth-Carolina 29624
803-224-5386

as of 10/31/1999
307 W. Fredericks Street
Anderson, South Caroling 29625
864-226-3489

PURPOSE

The introduction, approval and use of airshow maneuvers which direct aircraft energy toward the spectator area has intensified the
ongoing debate within the airshow industry relating to the safety aspects of these maneuvers.

The Federal Aviation Administration has predicated its approval of certain maneuvers packages, which direct aircraft energy toward the
spectator area, upon data and mathematical formulae published in both its Inspector's Handbook and in Advisory Circular AC 91-45C,
plus other unpublished information.

The purpose of this report is to present information and data gained during an analytical study of in-flight airframe disintegration debris
scatter patterns as they specifically relate to the airshow environment.

SUMMARY CONCLUSION

It is not possible to rely on the FAA Handbook Formula to provide a safe separation distance and prevent possible injury to airshow
spectators.

INTRODUCTION

The relative scatter pattern of aircraft parts from an airplane that is involved in an in-flight separation and the ballistic trajectory of
individual parts can be predicted using standard mathematical analytical techniques. The trajectory of each part can be predicted by using
its weight, assuming its drag characteristics, correcting for the wind, and inputting its initial separation velocity and angle.

This report is based on factual information obtained from various sources (see References) and on certain assumptions that are based on
standard aeronautical engineering practices as noted. The results of the trajectory calculations are dependent upon the estimates used for
the separation conditions, component drag coefficients, and winds aloft.

For the purpose of this report, it is assumed that an in-flight aircraft component separation will take place due to unknown causes. No
allowance is made in the presented data for energy imparted to the separated component due to in-flight collision, explosion, generated

lift, or on-board thrust. The scenario leading up to the component separation from controlled flight will not be addressed.

It is recognized that evaluations of this type are not precise. The results presented should only be used as a guide in evaluating and
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analyzing theoretical possibilities. The author, contributors, nor referenced individuals or organizations assume no responsibility for the
accuracy of the formulas and/or the coding provided.

THE FAA FORMULA

"Virtually, all of the "head-on" maneuvers approved, thus far, (by the FAA) have been based on a formula to compute the trajectory of a
projectile in space. The formula is considered to be conservative since no consideration is given to the atmosphere." Ed Fell, AFS-20,
FAA Memorandum dated August 24, 1988.

A Scatter Distance Formula is present in the FAA's publication AC 91-45C, INTRODUCING WAIVERS: AVIATION EVENTS, Chapter 4.
"AIR RACE COURSE DESIGN", Section 54., "RACE COURSE SHOWLINE.", page 32, and graphical depicted in Appendix 1, Figure
21 of the same publication. This formula states that the Scatter Distance is equal to the Aircraft's Speed times the Square Root of 2 times
the Aircraft's Altitude (AGL) divided by the Acceleration of Gravity (32.2 ft/sec/sec).

Scatter Distance (in feet) equals Aircraft Speed (in MPH) times the Square Root of Two Times the Aircraft Altitude (in feet) divided by
322

Although this formula may provide adequate spectator separation distances for an Air Race type of events, where it may be assumed that
the aircraft are in level flight, it fails to address all the variables involved in the airshow environment.

The FAA Formula limits its variable inputs to those of Aircraft Speed and Altitude, while neglecting the Projectile's Weight, Frontal
Area, Drag Characteristics, and Angle of Separation. Further, no allowance is made for Wind Effects nor Density Altitude. These
additional variables will dramatically influence the projectile's down range capabilities.

The relationship between a projectile's Size and Weight (Mass Density) in conjunction with its Drag Characteristics (Coefficient of Drag

times Frontal Area = CdS) and the Atmospheric Density will determine the projectile's Terminal Velocity. For a given shape, the smaller
the size and higher the weight, the higher the Terminal Velocity. The higher the Terminal Velocity and higher the Weight, the higher the
potential destructive capability of the projectile.

An example of this relationship between mass density and terminal velocity would be a comparison of the flight
characteristics of a Table Tennis Ball vs. that of a Golf Ball. Both balls are of similar size and shape and exhibit
approximately similar CdS. The mass density of the golf ball is many times that of the table tennis ball, therefore the golf
ball has a much higher terminal velocity. If both balls are launched at the same initial velocity and angle of departure, the
table tennis ball will rapidly slow due to its high drag to weight ratio, a product of its low terminal velocity. Its flight path
will be relatively short and its destructive capability low. Conversely, the golf ball will maintain a higher velocity due to its
lower drag to weight ratio and resulting higher terminal velocity. It will fly much farther than the table tennis ball and will
pack a much higher destructive capability.

It can be assumed that within the airshow environment, aircraft do not maintain straight and level flight patterns. An airshow aircraft is
experiencing dynamic acceleration in all three axis. Therefore, one can not expect the angle of departure of a separating item to be on the
horizontal plane. Angles of Departure below the horizon will decrease the potential debris scatter distance while angles above the
horizon will impart a parabolic flight segment to the item's flight path and increase the debris scatter distance. And finally, the Wind
Conditions will affect the lighter, but still dangerous, parts.

The above information indicates that while the FAA Handbook Formula is adequate in predicting pure ballistic flight, the limited variable
data neglects to consider important information necessary for an objective, analytical evaluation of potential debris scatter patterns
resulting from in-flight airframe disintegration within the airshow environment. The omitted factors will affect the potential debris
scatter distances. Specificity, the drag characteristics of low mass density projectiles will tend to decelerate the projectile and reduce the
scatter distance. Conversely, a positive angle of departure could increase the scatter distances, and an increased mass density coupled
with a positive angle of departure could significantly increase the scatter distance.

Due to the lack of published empirical data, relative to the potential debris scatter patterns relating specifically to the airshow

environment, a research project was undertaken to establish a mathematical formula that would encompass all germane variables
necessary to realistically predict the impact point of such debris.

THE ESTABLISHMENT OF A MATHEMATICAL MODEL

Very early in this research project, it became apparent that the establishment of a mathematical model that would be capable of accurately
predicting the debris scatter distance of an in-flight airframe separation, would require that all germane variables be addressed in
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nonlinear, second order equations. Such equations do not lend themselves to explicit solution, but are readily solved using interactive
procedures. For this reason, computer simulation would be necessary. The first attempts to redefine the FAA Formula were attempted
using Lotus 123 spreadsheets. As the formulas evolved and additional research was digested, the 123 spreadsheets became cumbersome.

The evolved formulae were then programmed in the BASIC language for solution on an IBM compatible computer. The interactive
integration was performed with time increments of 0.05 seconds, displayed at one second intervals in order to achieve economy of
computation. More refined methods are available. The BASIC language and MS-DOS were chosen due to their universal availability
and understanding. (Copies of the program disk (5 1/4" & 3 1/2") are available at cost.)

THE COMPUTER PROGRAM

A program originally developed by the National Transportation Safety Board (NTSB) was used as a starting point. The NTSB program
(Clark 1985) lacked the flexibility to incorporate the possible variables encountered in the airshow environment. It was necessary to
subject the NTSB program to a process of refinement and expansion, evolving into a new program specifically tailored to the airshow
environment. This new program was named "TAP" for Trajectory Analysis Program.

Further input was gained from The International Society of Air Safety Investigators and informal conversations with many aviation safety
experts and aerospace engineers.

The initial TAP Input requirements were as follows:

Initial altitude of disintegration.

Initial density altitude.

Altitude of impact at Ground Level.
Wind velocity and direction.

Horizontal true airspeed at disintegration.
Rate of climb or sink at disintegration.
Weight of projectile.

Projectile Drag Coefficient.

Projectile frontal area.
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The TAP design goal Output were as follows:

Horizontal distance from disintegration at impact.

Horizontal, vertical, and total velocities.

Terminal velocity.

Time to fall.

Flight-path angle at impact.

Ground speed of projectile at impact and x and z components of that velocity.

SaRi et e

These initial requirements were refined as the process of developing the formulae progressed as follows:
INPUTS

Wind and Density Altitude.

The wind conditions and atmospheric variables are limited in the airshow environment by the localized nature of the event and the
limited altitude envelope. The possible wind/altitude shift is limited within the airshow altitude envelope, therefore lateral
corrections for wind shift are not made. The vertical component is equal to zero. A model of the wind at various altitudes at the
show site was taken from "Dynamic and Physical Meteorology," Haltiner and Martin, McGraw-Hill Book Co., NY,NY, 1957.
The following equation for the wind at altitude was derived:

Wind = Surface Wind (SW) + SW * (altitude/30)2
The density altitude at disintegration altitude can be inputted as an additional variable or will default to the disintegration altitude.
The atmospheric density at sea level is assumed, a standard day; with a density of .002378 1b sec?/ftt (Slugs). The program adjusts
the atmospheric density to the actual altitude as the projectile falls (ICAO Standard Atmosphere, NACA 1955).
Horizontal True Airspeed at Disintegration.
At the instant of disintegration, the aircraft is assumed to be in steady, unyawed, and unaccelerated flight and suddenly

disintegrates into a number of parts. (Multiple or progressive disintegrations can be synthesized by superimposition of a series of
sudden disintegrations using multiple computer runs.)
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Rate of Climb or Sink at Disintegration.
(Flight Path Angle)

Although, from an overall statistical viewpoint, disintegrations caused by flutter, fatigue, or explosions, a level or shallow
descending flight path angle is likely (Matterson, 1984). These studies limited the climb angle to +2.9° to -5.7° and vertical speeds
of +15 fps to -30 fps. This was considered to limited for the dynamic nature of an airshow presentation. Due to the high rate of
pitch change and g loadings during such a presentation, this parameter was changed to "Flight Path Angle". It is important to
remember that during high g loading, the Nose Pitch Angle leads the Flight Path Angle by several degrees.

Projectile Drag Coefficient.

It is assumed the projectiles experience aerodynamic forces as drag in the both the horizontal and vertical. The drag coefficient
(Cd) is constant. This assumption of constant Cd may be realistic for stable items, for rapidly spinning or auto-rotating items with
Cd varying about a mean value, and for items whose drag does not change with angle (a sphere). For slowly rotating items, the
assumption may be less realistic.

Inputting the required drag coefficient (Cd) will require a drag estimate based on the size and shape of the projected object. For
most debris, a modified flat plate drag coefficient of 1.0 is acceptable. The accepted flat plate Cd of 1.2 is based on plates with
sharp edges. That value was not considered appropriate due to studies which indicate most debris will have rounded edges.
Data from the McDonald Douglas Corporation's Weapons Systems Division, indicates that debris Cd's can range from 0.007, for
airfoil shapes with high Reynolds Numbers, to 2.0, for very complex, high drag producing, debris shapes (Souders, 1966).

Generally accepted Drag Coefficients, at Reynolds' Numbers ranging between 10° to 3 X 107 are:

Sphere 044 Cd
Disk (flat side to flow) 1.12Cd
Flat Plate (flat side to flow) Length/Breadth = 1 1.16 Cd
Length/Breadth = 20 1.50 Cd
Circular Cylinder (flat side to flow) Length/diameter. = 1 091 Cd
Length/Diameter. = 2 0.85Cd
Length/Diameter. = 7 0.99 Cd
Airfoil 0.04 Cd
Circular Cylinder (flat side parallel to flow)
Length/Diameter. = 1 0.63 Cd
Length/Diameter. = 20 0.90 Cd
Length/Diameter. = infinity 1.20 Cd
Late Model Automobile as low as 0.34 Cd

Projectile Frontal Area.
The Projectile Frontal Area is the measurement of the area presented to the airflow in square feet. When dealing with a unstable or
tumbling object it is assumed best to add the planform and frontal areas together then multiply by a correction factor of 0.632 to
establish a mean frontal area (Clark, 1985).
Example: A Circular Cylinder, 14 inches in diameter by 6 inches wide. The frontal area of the flat side is 153.9 square
inches; the frontal area of the rounded side is 84.0 square inches. If the cylinder is unstable and tumbling, it would

present different frontal areas during its rotation. Integrating the various frontal areas follows:

153.9 Sq. Inch + 84.0 Sq. Inch X .632 = 150.4 Sq. Inch.
150.4 Sq. inch = 1.044 Sq. Ft

1 Square Foot would be the assumed Frontal Area.

OUTPUTS
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The Outputs of the program are fairly straightforward:

Horizontal distance from disintegration to impact.
Self-explanatory

Horizontal, vertical and total velocities.

The program outputs only the total velocity which is computed from the
horizontal and vertical velocities.

Terminal velocity.

The program displays a terminal velocity at both disintegration altitude and ground level. The program continually computes a
terminal velocity for the current altitude as the object falls.

Time To Fall.
Self-explanatory.

Flight Path Angle at Impact.
The angle of impact is displayed as a negative number indicating the number of degrees below the horizontal (-90.000 = straight
down). Note that under some wind conditions, the angle of impact will indicate that the projectile is moving backwards relative to
its original line of flight. The angle of impact has considerable influence on the destructive potential of the projectile.

Ground Speed of Projectile at Impact and the x and z Components of that Velocity.

This information is not displayed. It was considered redundant to the speed at impact information. However the x and z
component information is used to compute the flight path and is available within the program.

COMPARISON OF THE FAA FORMULA VS. THE TAP PROGRAM

Repeated computer runs were conducted to establish the validity of the Trajectory Analysis Program (TAP). These runs were compared
to the data presented by the FAA Handbook Formula. The results of these comparisons follow.

Due to the FAA Handbook Formula's limited input and pure trajectory output, the TAP inputs were also limited. For purposes of the
comparison the TAP inputs associated with drag calculations were locked a levels that would force TAP to compute almost pure
trajectory. The TAP inputs locked were:

"INITIAL DENSITY ALTITUDE" Default to Flight Path Altitude.
"INITIAL FLIGHT PATH ANGLE" Locked at Horizontal or 0.0 Degrees
"GROUND LEVEL" Default to 0.00 Feet

"FLIGHT PATH COURSE" Locked at 1 degree.

"FRONTAL AREA" Locked at 0.0001 sq. ft.”

"DRAG COEFFICIENT OF DEBRIS" Locked at 0.0001 Cd.”

"WEIGHT OF DEBRIS" Locked at 600 Lb."

"SURFACE WIND" Locked at 0 Kts.

"SURFACE WIND DIRECTION" Locked at 1 degree.

* Data effecting drag calculations; resultant CdS = 178

The resulting output comparison:

IAS Altitude FAA Distance TAP Distance
50 Kts 25 Ft AGL 105 Feet 101 Feet

100 Kts 100 Ft AGL 421 Feet 414 Feet

150 Kts 200 Ft AGL 892 Feet 887 Feet

200 Kts 300 Ft AGL 1457 Feet 1453 Feet
225 Kts 500 Ft AGL 2116 Feet 2110 Feet
275 Kts 500 Ft AGL 2587 Feet 2579 Feet

50 Kts 500 Ft AGL 470 Feet 469 Feet
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PROJECTED DEBRIS FLIGHT PATH
BALLISTIC FLIGHT
GRAPH 1 PAGE 8

DEBRIS FRONTAL AREA .0001 SQ FT, DRAG COEFFICENT .0001 Cd, WEIGHT 600 LBS
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The above data indicates that it can be assumed that the FAA and TAP formulas will yield similar results when compared in the
calculation of pure trajectory.

Yet, in the real world, aircraft debris will not travel in a vacuum. The debris will be subject to drag from the atmosphere and it cannot be
assumed that the debris will depart on a horizontal plane.

A further comparison varies from the FAA data. The following variables were unlocked and set to simulate a projectile of moderate mass
density with different Cd's and Angles of Departure.

Initial Indicated Airspeed 150 Knots.
Initial Flight Path Altitude 200 Feet AGL

Frontal Area 2 Sq. Ft

Weight of Debris 25 Lbs.
Cd CdS Flight TAP Terminal Time To Speed at

Angle Distance Velocity Impact Impact

044 0.88 00.00 624 Ft 91.5 Kts 3.99 Sec 80 Kts
044 0.88 15.00 783 Ft 91.5 Kts 5.95 Sec 74 Kts
044 0.88 30.00 848 Ft 91.5 Kts 7.90 Sec 75 Kts
044 0.88 4500 801 Ft 91.5 Kts 9.60 Sec 78 Kts
044 0.88 60.00 643 Ft 91.5 Kts 11.00 Sec 81 Kts
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See Graph 3

PROJECTED DEBRIS FLIGHT PATH

GRAPH 2 PAGE 8
DEBRIS WEIGHT 25 LBS
FRONTAL AREA 2 SQFT

DRAGE COEFFICENT .044 Cd
SPEED 150 KTS

A=

00 DEGREE FLIGHT ANGLE

B=

15 DEGREE FLIGHT ANGLE

30 DEGREE FLIGHT ANFLE

= 45 DEGREE FLIGHT ANGLE

60 DEGREE FLIGHT ANG

5LE

Flight TAP Terminal Time To Speed at
Angle Distance Velocity Impact Impact

00.00 455 Ft 60.7 Kts 4.35 Sec 54 Kts
15.00 515 Ft 60.7 Kts 5.85 Sec 54 Kts
30.00 525 Ft 60.7 Kts 7.35 Sec 56 Kts
45.00 479 Ft 60.7 Kts 8.65 Sec 57 Kts
60.00 377 Ft 60.7 Kts 9.75 Sec 59 Kts
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PROJECTED DEBRIS FLIGHT PATH

GRAPH 3 PAGE 8
DEBRIS WEIGHT 25 LBS
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See Graph 4
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PROJECTED DEBRIS FLIGHT PATH
GRAPH 4 PAGE 9

DEBRIS WEIGHT 25 LBS DRAG COEFFICENT 2.00 Cd

FRONTAL AREA 2 SQFT SPEED 150 KTS
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The relationship between weight, frontal area, and Cd results in a relative slow terminal velocity. The scatter range is well below the 892
feet predicted by the FAA formula. In this case, the FAA formula proves more than adequate.

NOTE: The higher the "CdS", for a given weight, the lower the "Flight Path Angle" for maximum throw distance. This is due to
the relationship between "Terminal Velocity" and "Time to Impact".

During an in-flight airframe disintegration, it can be assumed that the debris projectile mass density will vary over a broad range. The
average Terminal Velocity of light plane parts has been reported to be approximately 35 fps (Logan, 1968). Parts with Terminal
Velocities in this range would not pose a threat to the spectator area when using the FAA Scatter Distance Formula. It can also be
assumed that many parts (castings, forgings, landing gear assemblies, wheels and brakes, engines and accessories, propeller blades and
hubs, etc.) will have much greater mass densities and associated higher Terminal Velocities. These high mass density parts, like the golf
ball used in the example on page 3, will have both a higher scatter distance potential and pack the greatest destructive capability. The
trajectory of these parts will more closely follow the pure ballistic flight path used by the FAA Scatter Distance Formula. When a Flight
Path Angle of Departure above the horizontal is computed, the Scatter Distance of such debris can exceed the FAA Scatter Distance.

It is recognized that there is a low probability of an airshow aircraft disintegration scenario-taking place while the aircraft is directing
energy toward the show's spectators. It must also be recognized that the possibility exists. The results of an disintegration incident which
displaces aircraft debris into the designated spectator area would be disastrous. Such a high potential for catastrophic results exists that
worst case scenarios must be addressed during an objective, analytical evaluation of any airshow maneuver.

One part of a disintegrating aircraft that has a high mass density and a great chance of intact survivability is the aircraft engine.
Reprogramming the variables to simulate worst case scenario involving such an object, will result in a high terminal velocity and a long
scatter range.

Initial Indicated Airspeed 150 Knots.
Initial Flight Path Altitude 200 Feet AGL
Frontal Area 2 Sq.Ft

Weight of Debris 400 Lbs
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PROJECTED DEBRIS FLIGHT PATH

DEBRIS WEIGHT 400 LBS
FRONTAL AREA 2 SQ FT

GRAPH 5 PAGE 10
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PROJECTED DEBRIS FLIGHT PATH

GRAPH 6
COMBINED DATA FROM GRAPH 2-5
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The above data indicates that even with the flight path horizontal, the heavier projectile would fly to within 54 feet of the predicted
impact point of the FAA formula. At impact, the projectile would be flying only 26 degrees below the horizon at 142 Knots. This low
impact angle and high speed could allow the projectile to bounce, crossing the 892 foot mark.

With the Flight Path Angle only 3° above the horizon, the projectile would cross the 892 foot mark while still airborne.

The maximum throw distance would occur with the projectile at a Flight Path Angle of Departure of +40°. It would cross the FAA
Scatter Distance point of 892 feet from the point of disintegration with an airborne altitude of over 500 feet, and impact the ground 1,710
feet from the point of disintegration at -53° flight angle at 130 Knots. Total in-flight time of the projectile, from disintegration to impact
would be 10.65 seconds.

CONCLUSIONS

The dynamic nature of airshow maneuvers does not allow for precise, analytical predictions of aircraft debris scatter patterns. The
parameters affecting the potential flight paths of objects, which may separate from controlled flight in any attitude, offer multiple
variables that interactively affect the trajectory of the separated part. The data presented in this report and supporting documentation,
confirms that the referenced FAA Handbook Formula is inadequate for use in an objective, analytical evaluation of airshow maneuvers
directed at the spectator area and the establishment of safe spectator separation distances for these maneuvers. It is not possible to relay
on the FAA Handbook Formula to provide safe separation distances and prevent possible injury to airshow spectators in the event of an
in-flight airframe disintegration.

Therefore, any airshow maneuver that directs aircraft energy toward the spectator area, approved under current FAA policy, is suspect.

Hugh E. Oldham
21 August 1990

TRAJECTORY ANALYSIS FOR AIRCRAFT DEBRIS
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COMPUTER PROGRAM

The TAP Basic Computer Program (On Screen Version) used to generate the projected debris
flight path data used in The Airshow Environment Aircraft Debris Trajectory Analysis Report.

10:REM FULL TRAJETORY ANALYSIS PROGRAM FOR SCREEN DISPLAY

20:REM PROGRAM 1.10 8/20/90

30:REM FILE NAME "TRAJSCRN"

40:CLS

50:PRINT "TRAJECTORY ANALYSIS"

60:PRINT "FOR"

70:PRINT "AIRCRAFT DEBRIS"

80:PRINT " "

90:INPUT "INTIAL INDICATED AIR SPEED (KTS)";VEL

100:INPUT "INTIAL FLIGHT PATH ANGLE (DEG +/-)";ANGA

110:INPUT INTIAL FLIGHT PATH ALTITUDE (FEET AGL)";ALT

120:INPUT "INTIAL FLIGHT PATH DENSITY ALTITUDE IF DIFFERENT FROM
INTIAL ALT ";DALT

130:IF DALT =0 THEN DALT=ALT

140:PRINT "INTIAL DENSITY ALTITUDE ";DALT

150: INPUT "GROUND LEVEL (MSL FEET) ";GROUNDLEVEL

160:INPUT FLIGHT PATH COURSE MAG (DEG 001-360)";COURSE

170:IF COURSE <1 GOTO 160

180:IF COURSE >360 GOTO 160

190:INPUT "FRONTAL AREA OF DEBRIS (SQ FEET) ';FAREA

200:INPUT "DRAG COEFFICIENT OF DEBRIS (Cd)';CD

210:CDS=CD*FAREA

220:INPUT "WEIGHT OF DERBIS (LBS)";WT

230:INPUT "SURFACE WIND SPEED (KTS)";SWIND

240:INPUT "SURFACE WIND DIRECTION (DEG mAG 01 - 360)";DWIND

250:IF DWIND < 1 GOTO 240

260:IF DWIND > 360 GOTO 240

270:IF COURSE > DWIND THEN WINDC=COS (COURSE-DWIND)*SWIND

280:IF COURSE > DWIND THE WINDC=COS(DWIND-COURSE)*SWIND

290:IF SWIND >0 THE AWIND=WINDC+(ALT/30)".26

300:IF SWIND=0 THE AWIND=SWIND

310:PRINT "HEAD WIND FACTOR AT FLIGHT PATH ALTITUDE ",AWIND

320:PRINT "HEAD WIND FACTOR AT SURFACE ",WINDC

330:PRINT "COMPUTE AIR MASS DENSITY AT ";DALT;" FEET MSL"

340:REM COMPUTE AIR MASS DENSITY IN SLUGS PER CUBIC FOOT

350:SLUGS=.002378% (1-(6.875%10"~6*ALT))"4.2561

360:GSLUGS=.002378% (1-(6.875%10"-6*GROUNDLEVEL) ) "4.2561

370:TVEL=(2*WT/ (CDS*SLUGS))".5

380:GLTEVL=(2*WT/ (CDS*GSLUGS) ) ".5

390:PRINT "INTIAL TERMINAL VELOCITY (FPS) = ";TVEL

400:TVELKTS-TVEL*.5921052

410:GLTVELKTS=GLTVEL*.5921052

420:PRINT "INTIAL TERMINAL VELOCITY ";TVELKTS;" KTS"

430:TVELKTS=TVEL*.5921052

440:PRINT "GROUND LEVEL TERMINIAL VELOCITY ";GLTVELKTS," KTS"

450:P1=3.1416

460:TP=1!

470:DT=.05

480 :WIND1=WINDC*6080/3600

490:T=0!

500:X=0!

510:Z=ALT

520:ANGCOR=PI/180!

530:DT2=DT*DT

540 : ANG=ANGA*ANGCOR

550:REM CALCULATE TRUE AIRSPEED (FPS)

560:U=1.69*VEL*COS (ANG)

570:V=1.69*VEL*SIN (ANG)
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580 : PRINT
590 :PRINT " "

600:PRINT " "

610:PRINT " TIME 7 Y FPANGLE KNOTS"
620:PRINT T,X,Z,ANGA,VEL

630:PRINT " "

640:W=WIND1*(Z1/30!)".26

650 : REM

660:REM CALULATE GROUND SPEED

670:U0=U-W

680:V0=V

690:REM CALCULATE DRAGE AND ACCELERATION

700 : VEL2=U*U+V*V

710:IF U=0! THEN U=.01

720 :FP=ATN(V/U)

730 : FPANG=FP/ANFCOR

740:K=1!

750:IF U<0! AND V<O! THEN K=-1!
760:SLUGS=.002378%(1-(6.875-10"-6))"4.2561

770 :DRAG= (SLUGS/2) *VEL2*CDS

780 : AX=DRAG*COS (FP)*32.2*K/WT
790:AZ=-DRAG*SIN(FP)*32.2%K/WT-32.2

800 :REM

810:REM CALCULATE VELOCITIES AND DISTANCES
820:UO=UO=AX=DT

830:V=V=AZ=DT

840:U-UO=W

850:V0=V

860 : FPE=ATN (V0/UO)

870 : FPANG=FPE/ANGCOR

880:IF UO<0! AND VO<O! THEN FPEANG=FPEANG-180!
890 : X=X=UO*DT+. 5*AX*DT2

900 :Z=Z=VO*DT+.5AZ*DT2

910:21=2

920:IF 2z1<1! THEN Zl=1!

930 :W=WIND1*(Z1/30!)".26

940 :T=T=DT

950: IF T<TP-.005 GOTO 980

960:PRINT CINT (T),X,Z%,FPEANG, ((UO*UO+VO*V0)"~.5)*%.592105
970:TP=TP=1

980 : IFZ>GROUNDLEVEL GOTO 690

990:PRINT T,X,Z,FPEANG, ( (UO*UO=VO*V0)".5)*.592105
1000:PRINT " "

1010:PRINT "DEBRIS TERMINAL VELOCITY ";GLVELKTS;" KTS"

1020:PRINT "TIME TO IMPACT ";T;" SECONDS"
1030:PRINT "DEBRIS THROW DISTANCE ";X;" FEET"
1040:PRINT "ANGLE OF IMPACT " ;FPEANG; " DEGREES"

1050 : IMPACTA= ( ( (UO*UO+VO*VO)".5)*.68182)

1060 : IMPACTB= ( ( (UO*UO+VO*VO)".5)*.592105)
1070:PRINT "SPEED AT IMPACT "; IMPACTA; " MPH"
1080 :BEEP

1090: INPUT "COMPUTE ANOTHER (Y/N) ";ANSS$

1100:IF ANS$="Y" GOTO 10

1110:END
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Appendix 6

Reproduction of http://eqworld.ipmnet.ru/en/solutions/ode/ode0126.pdf accessed
29th March 2013.

Exact Solutions > Ordinary Differential Equations > First-Order Ordinary Differential Equations >
Abel Differential Equation of the Second Kind

26. yy, = f(@)y’ +g(@)y + h(@).
Abel differential equation of the second kind.

1°. The substitution
y=FE(x)w, where E(x)=exp (/ f@) dx) s
brings this equation to the simpler form:
ww!, = Fi(z)w + Fy(z), (1)

where
Fi(@) = g@)/E@), Fo(x)=h(z)/E*(2).

2°. In turn, equation (1) can be reduced, by the introduction of the new independent variable

A= / Fi(z)dz,
to the canonical form:
ww, —w = O(2). @)
Here, the function ®(2) is defined parametrically ( is the parameter) by the relations
Fo(z)
= s = | Fi(x)dz.
@)’ - / (@) d

Remark. The transformation w = ad, z = a2+ b brings (2) to a similar equation, D@} —d =
a”'®(a2 + b). Therefore the function ®(2) in the right-hand side of the Abel equation (2) can be
identified with the two-parameter family of functions a™'®(az + b).

Remark 2. The books by Zaitsev & Polyanin (1994) and Polyanin & Zaitsev (2003) present a
large number of solutions to the Abel equations of the forms (1) and (2). Solvable Abel equations
of the form (2) see here .
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Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition , Chapman
& Hall/CRC, Boca Raton, 2003.

Abel Differential Equation of the Second Kind - 2
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Appendix 7

Reproduction of http://www.virgingalactic.com/assets/downloads/
Virgin_Galactic_Brochure.pdf accessed 29th March 2013.
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Appendix 8

Reproduction of http://www.nr.com/webnotes/nr3web24.pdf accessed 29th March
2013.

NUMERICAL RECIPES
Webnote No. 24, Rev. 1

StepperSie Implementation

template <class D> steppersie.h
struct StepperSie : StepperBase {
Semi-implicit extrapolation step for integrating stiff ODEs, with monitoring of local truncation
error to adjust stepsize.
typedef D Dtype;
static const Int KMAXX=12,IMAXX=KMAXX+1;
KMAXX is the maximum number of rows used in the extrapolation.

Int k_targ; Optimal row number for convergence.

VecInt nseq; Stepsize sequence.

VecDoub cost; Ak.

MatDoub table; Extrapolation tableau.

MatDoub dfdy; 4

VecDoub dfdx; 9f /dx (for compatibility with StepperRoss; not used.)
Doub jac_redo; Criterion for recomputing Jacobian.

bool calcjac; True if Jacobian is current.

Doub theta; Recompute Jacobian if theta > jac_redo.
MatDoub a;

Int kright; Used in dense output.

MatDoub coeff; Coefficients in extrapolation tableau.

MatDoub fsave; Stores right-hand sides for dense output.

VecDoub dens; Stores quantities for dense interpolating polynomial.
VecDoub factrl; Factorials.

StepperSie(VecDoub_I0 &yy, VecDoub_I0 &dydxx, Doub &xx, const Doub atol,
const Doub rtol, bool dens);
void step(const Doub htry,D &derivs);
bool dy(VecDoub_I &y, const Doub htot, const Int k, VecDoub_0 &yend,
Int &ipt,VecDoub_I &scale,D &derivs);
void polyextr(const Int k, MatDoub_IO &table, VecDoub_IO &last);
void prepare_dense(const Doub h,VecDoub_I &ysav,VecDoub_I &scale,
const Int k, Doub &error);
Doub dense_out(const Int i,const Doub x,const Doub h);
void dense_interp(const Int n, VecDoub_IO0 &y, const Int imit);
};
template <class D>
StepperSie<D>: :StepperSie(VecDoub_IO0 &yy, VecDoub_IO &dydxx, Doub &xx,
const Doub atoll,const Doub rtoll, bool dens)
StepperBase (yy,dydxx,xx,atoll,rtoll,dens) ,nseq(IMAXX),cost (IMAXX),
table (KMAXX,n) ,dfdy(n,n),dfdx(n),calcjac(false),
a(n,n) ,coeff (IMAXX, IMAXX),
fsave ((IMAXX-1)* (IMAXX+1) /2+2,n) ,dens ((IMAXX+2) #n) ,factrl (IMAXX) {
Input to the constructor are the dependent variable y[0..n-1] and its derivative dydx[0. .n-1]
at the starting value of the independent variable x. Also input are the absolute and relative
tolerances, atol and rtol, and the boolean dense, which is true if dense output is required.
static const Doub costfunc=1.0,costjac=5.0,costlu=1.0,costsolve=1.0;
The cost of a Jacobian is taken to be 5 function evaluations. Performance is not too
sensitive to the value used.
EPS=numeric_limits<Doub>::epsilon();
jac_redo=MIN(1.0e-4,rtol);

1
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2 StepperSie Implementation

theta=2.0*jac_redo; Make sure Jacobian is computed on first step.
nseq[0]=2; Sequence is different from StepperBS.
nseq[1]=3;

for (Int i=2;i<IMAXX;i++)
nseq[i]=2*nseq[i-2];
cost[0]=costjac+costlutnseq[0]*(costfunc+costsolve);
for (Int k=0;k<KMAXX;k++)
cost [k+1]=cost [k]+(nseq[k+1]-1)*(costfunc+costsolve)+costlu;
hnext=-1.0e99; Impossible value.
Doub logfact=-logl0(rtol+atol)*0.6+0.5;
k_targ=MAX(1,MIN(KMAXX-1,Int(logfact))); Initial estimate of optimal k.
for (Int k=0; k<IMAXX; k++) { Coefficients in equation (17.3.8), but ra-
for (Int 1=0; 1<k; 1++) { tio not squared.
Doub ratio=Doub(nseq[k])/nseq[1];
coeff [k] [1]=1.0/(ratio-1.0);

¥
factrl[0]=1.0;
for (Int k=0; k<IMAXX-1; k++)
factrl[k+1]=(k+1)*factrl[k];
}
template <class D>
void StepperSie<D>::step(const Doub htry,D &derivs) {
Attempts a step with stepsize htry. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
const Doub STEPFAC1=0.6,STEPFAC2=0.93,STEPFAC3=0.1,STEPFAC4=4.0,
STEPFAC5=0.5,KFAC1=0.7,KFAC2=0.9;
Stepsize and order control parameters are different from StepperBS.
static bool first_step=true,last_step=false;
static bool forward,reject=false,prev_reject=false;
static Doub errold;
Int i,k;
Doub fac,h,hnew,err;
bool firstk;
VecDoub hopt (IMAXX) ,work (IMAXX) ;
VecDoub ysav(n),yseq(n);
VecDoub ymid(n),scale(n);
work [0]=1.e30;

h=htry;

forward = h>0 ? true : false;

for (i=0;i<n;i++) ysav[il=y[il; Save the starting values.

if (h !'= hnext && !first_step) { h gets reset in Odeint for the last step.

last_step=true;

if (reject) { Previous step was rejected.
prev_reject=true;
last_step=false;
theta=2.0%jac_redo; Make sure Jacobian gets recomputed.
}
for (i=0;i<n;i++) Initial scaling.
scale[i]=atol+rtol*abs(y[il);
reject=false;
firstk=true;
hnew=abs (h) ;
compute_jac: Restart here if Jacobian error too big.
if (theta > jac_redo && 'calcjac) {  Evaluate Jacobian.
derivs.jacobian(x,y,dfdx,dfdy);
calcjac=true;
¥
while (firstk || reject) { Loop until step accepted.
h = forward ? hnew : -hnew;
firstk=false;
reject=false;
if (abs(h) <= abs(x)*EPS)
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StepperSie Implementation

for

throw("step size underflow in StepperSie");

ipt=-1; Initialize counter for saving stuff.
(k=0; k<=k_targ+l;k++) { The sequence of semi-implicit Euler steps.
bool success=dy(ysav,h,k,yseq,ipt,scale,derivs);
if (!success) { Stability problems, reduce stepsize.
reject=true;
hnew=abs (h) *STEPFAC5;
break;
}
if (k == 0)
y=yseq;
else Store result in tableau.

for (i=0;i<n;i++)
table[k-1] [il=yseq[i];
if (k !=0) {
polyextr(k,table,y); Perform extrapolation.
err=0.0; Compute normalized error estimate erry.
for (i=0;i<n;i++) {
scale[i]=atol+rtolxabs(ysav[il);
err+=SQR((y[i]-table[0] [i])/scale[il);

err=sqrt(err/n);

if (err > 1.0/EPS || (k > 1 && err >= errold)) {
reject=true; Stability problems, reduce stepsize.
hnew=abs (h) *STEPFAC5;
break;

errold=max(4.0*err,1.0);
Doub expo=1.0/(k+1);
Compute optimal stepsize for this order. Note k instead of 2k in exponent.
Doub facmin=pow(STEPFAC3,expo) ;
if (err == 0.0)
fac=1.0/facmin;
else {
fac=STEPFAC2/pow (err/STEPFAC1,expo) ;
fac=MAX(facmin/STEPFAC4,MIN(1.0/facmin,fac));

}

hopt [k]=abs (h*fac) ;

work [k]=cost [k] /hopt [k];  Work per unit step (17.3.13).
if ((first_step || last_step) && err <= 1.0)

break;
if (k == k_targ-1 && !prev_reject && !first_step && !last_step)
if (err <= 1.0) Converged within order window.
break;
else if (err>nseqlk_targl*nseqlk_targ+1]*4.0) {
reject=true; No convergence expected by k_targ+1.
k_targ=k;
if (k_targ>1 && work[k-1]<KFAC1l*work[k])
k_targ--;
hnew=hopt [k_targ] ;
break;
}
if (k == k_targ) {
if (err <= 1.0) Converged within order window.
break;
else if (err>nseq[k+1]%2.0) {
reject=true; No convergence expected by k_targ+1.
if (k_targ>1 && work[k-1]<KFAC1*work[k])
k_targ--;
hnew=hopt [k_targ] ;
break;
}
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4 StepperSie Implementation

if (k == k_targ+1) {
if (err > 1.0) {
reject=true;
if (k_targ>1 && work[k_targ-1]<KFACl*work[k_targl)
k_targ--;
hnew=hopt [k_targ] ;
s

break;

}
Go back and try next k.
if (reject) { Arrive here from any break in for loop.
prev_reject=true;
if (lcalcjac) {
theta=2.0*jac_redo;
goto compute_jac;

s
b Go back if step was rejected.
calcjac=false; Successful step. Allow Jacobian to be re-
if (dense) computed if theta too big.
prepare_dense(h,ysav,scale,k,err);
xo0ld=x; Used by dense output.

first_step=false;
Int kopt;
if (k =
kopt=2;
else if (k <= k_targ) {
kopt=k;
if (work[k-1] < KFAC1*work([k])
kopt=k-1;
else if (work[k] < KFAC2*work[k-1])
kopt=MIN(k+1,KMAXX-1);
} else {
kopt=k-1;
if (k > 2 && work[k-2] < KFACi*work[k-1])
kopt=k-2;
if (work([k] < KFAC2*work[kopt])
kopt=MIN(k,KMAXX-1) ;

Determine optimal order for next step.

if (prev_reject) { After a rejected step neither order nor step-
k_targ=MIN(kopt,k) ; size should increase.
hnew=MIN(abs (h) ,hopt [k_targ]);
prev_reject=false;

else { Stepsize control for next step.
if (kopt <= k)
hnew=hopt [kopt] ;
else {
if (k<k_targ && work[k]<KFAC2*work([k-1])
hnew=hopt [k] *cost [kopt+1]/cost [k] ;
else
hnew=hopt [k] *cost [kopt]/cost [k];
s
k_targ=kopt;

¥
if (forward)
hnext=hnew;
else
hnext=-hnew;
¥

template <class D>
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StepperSie Implementation 5

bool StepperSie<D>::dy(VecDoub_I &y,const Doub htot,const Int k,VecDoub_0 &yend,

Int &ipt,VecDoub_I &scale,D &derivs) {

Semi-implicit Euler step. Inputs are y, H, k and scale[0..n-1]. The output is returned
as yend[0..n-1]. The counter ipt keeps track of saving the right-hand sides in the correct
locations for dense output.

VecDoub del(n),ytemp(n),dytemp(n);

Int nstep=nseq[k];

Doub h=htot/nstep; Stepsize this trip.

for (Int i=0;i<n;i++) { Set up the matrix 1/h —f’.
for (Int j=0;j<n;j++) alil[j] = -dfdy[il[j];
a[i][i] += 1.0/h;

LUdcmp alu(a); LU decomposition of the matrix.
Doub xnew=x+h; Special step for nonautonomous system.
derivs(xnew,y,del);
for (Int i=0;i<n;i++)
ytemp[il=y[i];
alu.solve(del,del);
if (dense && nstep==k+1) {
ipt++;
for (Int i=0;i<n;i++)
fsave[ipt] [i]=del[i];
}
for (Int nn=1;nn<nstep;nn++) { General step.
for (Int i=0;i<n;i++)
ytemp[i] += dellil;
xnew += h;
derivs(xnew,ytemp,yend) ;
if (nn ==1 && k<=1) { Stability test and test for recomputing Jaco-
Doub dell=0.0; bian.
for (Int i=0;i<n;i++)
dell += SQR(del[il/scalelil);
deli=sqrt(dell);
derivs(x+h,ytemp,dytemp) ;
for (Int i=0;i<n;i++)
del[il=dytemp[il-del[il/h;
alu.solve(del,del);
Doub del2=0.0;
for (Int i=0;i<n;i++)
del2 += SQR(del[i]/scalel[il);
del2=sqrt(del2);
theta=del2/MAX(1.0,dell);
if (theta > 1.0)
return false;

}
alu.solve(yend,del);
if (dense && nn >= nstep-k-1) {
ipt++;
for (Int i=0;i<n;i++)
fsave[ipt] [i]=del[i];
}
}
for (Int i=0;i<n;i++) Last step.
yend[il=ytemp[i]l+del[il;
return true;

template <class D>

void StepperSie<D>::polyextr(const Int k,MatDoub_I0 &table,VecDoub_I0 &last) {
Use polynomial extrapolation to evaluate 1 functions at # = 0. This routine is identical to the
routine in StepperBS.

Int l=last.size();
for (Int j=k-1; j>0; j--)
for (Int 5 i<l; di++)
table[j-1]1[i]l=table[j] [i]+coeff [k] [jI1*(table[j][i]l-table[j-1]1[il);
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for (Int i=0; i<l; i++)
last[il=table[0] [i]+coeff [k] [0]*(table[0] [i]-last[i]);

template <class D>
void StepperSie<D>::prepare_dense(const Doub h,VecDoub_I &ysav,VecDoub_I &scale,

const Int k,Doub &error) {

Store coefficients of interpolating polynomial for dense output in dens array. Input stepsize h,
function at beginning of interval ysav[0..n-1], scale factor atol+|y|rtol in scale[0..n-1],
and column k in which convergence was achieved. Output interpolation error in error.

kright=k;
for (Int i=0; i<n; i++) {
dens[il=ysav[il;
dens[n+il=y[i];
}
for (Int klr=0; klr < kright; klr++) { Compute differences.
if (klr >= 1) {
for (Int kk=klr; kk<=k; kk++) {
Int lbeg=((kk+3)*kk)/2;
Int lend=1lbeg-kk+1;
for (Int l=lbeg; 1>=lend; 1--)
for (Int i=0; i<n; i++)
fsave[1] [i]=fsave[1] [i]-fsave[1-1] [i];
}
}
for (Int kk=klr; kk<=k; kk++) { Compute derivatives at right end.
Doub facnj=nseq[kk];
facnj=pow(facnj,klr+1)/factrl[klr+1];
Int ipt=((kk+3)*kk)/2;
Int krn=(kk+2)*n;
for (Int i=0; i<n; i++) {
dens [krn+il=fsave[ipt] [i]*facnj;

}
for (Int j=klr+1l; j<=k; j++) {
Doub dblenj=nseq[jl;
for (Int 1=j; 1>=klr+1l; 1--) {
Doub factor=dblenj/nseq[1-1]-1.0;
for (Int i=0; i<n; i++) {
Int krn=(1+2)*n+i;
dens [krn-n]=dens [krn] +(dens [krn] -dens [krn-n]) /factor;

}
}
}
for (Int in=0; in<n; in++) { Compute coefficients of the interpolation poly-
5 j<=kright+1; j++) { nomial.
*j+in;
dens[ii]=dens[ii]-dens[ii-n];
}

template <class D>
Doub StepperSie<D>::dense_out(const Int i,const Doub x,const Doub h) {
Evaluate interpolating polynomial for y[i] at location x, where x0ld < x < xold +h.

Doub theta=(x-xo0ld)/h;

Int k=kright;

Doub yinterp=dens[(k+1)*n+il;

for (Int j=1; j<=k; j++)
yinterp=dens[(k+1-j)*n+il+yinterp* (theta-1.0);

return dens[i]+yinterptheta;
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Appendix 9

This Appendix shows results for the same conditions as given in Chapter 4,
but with the wind changed to an angle of +30° from the horizontal (60°
measured clockwise from aircraft heading). This results in a similar cross/
tail wind, but with a larger crosswind component than the figures given in

Chapter 4.

Large Aircraft Accident - Altitude Variation
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Figure 9.1a - The effect on final wreckage location of changing breakup altitude for a
simulated large aircraft accident.
Cp=10,000; Cp=1,000, ; Cp=10; Cp=1
O =reference, O =+10%, % =-10%
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Figure 9.1b - The effect on time to fall to ground of changing breakup altitude for a
simulated large aircraft accident.

C3=10,000; Cp=1,000, Cs=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Initial velocity variation
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Figure 9.2a - The effect on final wreckage location of changing breakup forward
velocity for a simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cp=100; Cp=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 9.2b - The effect on time to fall to ground of changing breakup forward velocity
for a simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cx=100; Cp=10; Cp=1
—=reference, --- =+10%, ~ =-10%
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Wind magnitude variation
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Figure 9.3a - The effect on final wreckage location of changing wind magnitude for a
simulated large aircraft accident.

Cs=10,000; Cp=1,000, C5=100; Cg=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 9.3b - The effect on time taken to fall to ground of changing wind magnitude for
a simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%

129



Wind angle variation
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Figure 9.4a - The effect on final wreckage location of changing wind angle for a
simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
O =reference, O = +10%, % =-10%
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Figure 9.4b - The effect on time taken to fall to ground of changing wind angle for a
simulated large aircraft accident..

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Small Aircraft Accident - Altitude Variation

1500

1250

1000

y-displacement

500

250

vo=60 m/s

0 250 500 750 1000 1250 1500
x-displacement

Figure 9.5a - The effect on final wreckage location of changing breakup altitude for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
O =reference, O = +10%, % =-10%
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Figure 9.5b - The effect on time to fall to ground of changing breakup altitude for a
simulated small aircraft accident

Cp=10,000; Cp=1,000, Cx=100; Cp=10; Cp=1
—=reference, --- =+10%, ~ =-10%
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Initial velocity variation
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Figure 9.6a - The effect on final wreckage location of changing initial forward velocity
for a simulated small aircraft accident.
C=10,000; Cp=1,000, Cp=100; Cp=10; Cp=1

O =reference, 0 =+10%, % =-10%
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Figure 9.6b - The effect on time to fall to ground of changing breakup forward velocity
for a simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cx=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Wind magnitude variation
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Figure 9.7a - The effect on final wreckage location of changing wind magnitude for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cp=100; Cp=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 9.7b - The effect on time to fall to ground of changing wind magnitude for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Wind angle variation
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Figure 9.8a - The effect on final wreckage location of changing wind angle for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cz=100; Cp=10; Cp=1
O =reference, O =+10%, % =-10%
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Figure 9.8b - The effect on time to fall to ground of changing wind angle for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Appendix 10

This Appendix shows results for the same conditions as given in Chapter 4,
but with the wind changed to an angle of -30° from the horizontal (120°
measured clockwise from aircraft heading). This results in a cross/head

wind.

Large Aircraft Accident - Altitude Variation
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Figure 10.1a - The effect on final wreckage location of changing breakup altitude for a
simulated large aircraft accident.

Cp=10,000; Cp=1,000, : Cp=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 10.1b - The effect on time to fall to ground of changing breakup altitude for a
simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Figure 10.2a - The effect on final wreckage location of changing breakup forward
velocity for a simulated large aircraft accident.
Cp=10,000; Cp=1,000, Cs=100; Cp=10; Cp=1

O =reference, 0 =+10%, % =-10%
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Figure 10.2b - The effect on time to fall to ground of changing breakup forward
velocity for a simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cx=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Wind magnitude variation
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Figure 10.3a - The effect on final wreckage location of changing wind magnitude for a
simulated large aircraft accident.
C3=10,000; Cp=1,000, Cs=100; Cp=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 10.3b - The effect on time taken to fall to ground of changing wind magnitude
for a simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%

145



Wind angle variation
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Figure 10.4a - The effect on final wreckage location of changing wind angle for a
simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cz=100; Cp=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 10.4b - The effect on time taken to fall to ground of changing wind angle for a
simulated large aircraft accident..

Cp=10,000; Cp=1,000, Cx=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Small Aircraft Accident - Altitude Variation
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Figure 10.5a - The effect on final wreckage location of changing breakup altitude for a
simulated small aircraft accident.

Cs=10,000; Cp=1,000, C5=100; Cg=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 10.5b - The effect on time to fall to ground of changing breakup altitude for a
simulated small aircraft accident

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%
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Initial velocity variation
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Figure 10.6a - The effect on final wreckage location of changing initial forward
velocity for a simulated small aircraft accident.
Cp=10,000; Cp=1,000, Cp=100; Cp=10; Cp=1

O =reference, 0 =+10%, % =-10%
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Figure 10.6b - The effect on time to fall to ground of changing breakup forward
velocity for a simulated large aircraft accident.

Cp=10,000; Cp=1,000, Cs=100; Cp=10; Cp=1
—=reference, ---=+10%, " =-10%
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Wind magnitude variation
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Figure 10.7a - The effect on final wreckage location of changing wind magnitude for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cs=100; Cp=10; Cp=1
O =reference, O =+10%, % =-10%
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Figure 10.7b - The effect on time to fall to ground of changing wind magnitude for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%

153



Wind angle variation
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Figure 10.8a - The effect on final wreckage location of changing wind angle for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
O =reference, 0 =+10%, % =-10%
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Figure 10.8b - The effect on time to fall to ground of changing wind angle for a
simulated small aircraft accident.

Cp=10,000; Cp=1,000, Cy=100; Cp=10; Cp=1
—=reference, ---=+10%, ~ =-10%

155



