Parallel Algorithms for Generating Distinguishing Sequences for
Observable Non-deterministic FSMs

Robert M. Hierons, Brunel University
Uraz Cengiz Turker, Brunel University

A distinguishing sequence (DS) for a finite state machine (FSM) is an input sequence that distinguishes
every pair of states of the FSM. There are techniques that generate a test sequence with guaranteed fault
detection power and it has been found that shorter test sequence can be produced if DSs are used. Despite
these benefits, however, until recently the only published DS generation algorithms have been for determin-
istic FSMs. This paper develops a massively parallel algorithm, which can be used in GPU Computing, to
generate DSs from partial observable non-deterministic FSMs. We also present the results of experiments
using randomly generated FSMs and some benchmark FSMs. The results are promising and indicate that
the proposed algorithm can derive DSs from partial observable non-deterministic FSMs with 32,000 states
in an acceptable amount of time.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; D.2.5
[Software Engineering]: Testing and Debugging

General Terms: Verification
Additional Key Words and Phrases: Finite state machine, distinguishing sequences

ACM Reference Format:

Robert M. Hierons and Uraz C. Tirker. Parallel Algorithms for Generating Distinguishing Sequences for
Observable Non-deterministic FSMs ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2015), 37
pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

It is widely recognised that software testing is an important part of the software de-
velopment process but it is typically manual, expensive, and error prone. For exam-
ple, reports suggest that testing can constitute around 40% of software development
costs [Jones 1986]. This has led to significant interest in approaches that automate
aspects of software testing. One of the most promising approaches to automation is
model based testing (MBT) in which automation is based on a model [Barnett et al.
2003; Cartaxo et al. 2011; Farchi et al. 2002; Garousi et al. 2008; Grieskamp et al.
2011; Pickin et al. 2007; Tretmans 1996, 2008]. Evidence from an industrial project
that involved hundreds of testers suggests that MBT can lead to significant benefits
[Grieskamp et al. 2011].

Many systems are state-based: they have an internal state that affects the behaviour
of operations and is also updated by operations. State-based languages are used to
model such systems and much of the corresponding MBT work has considered Finite
State Machines (FSMs) [Smetsers et al. 2015].

Author’s addresses: Robert M. Hierons & Uraz C. Tiirker, Department of Computer Science, Brunel Univer-
sity London, Uxbridge, Middlesex, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 1049-331X/2015/01-ART1 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:2 R. M. Hierons and U.C. Tirker

An FSM is defined by a finite set of states and a finite set of transitions, where a
transition can be represented by a tuple (s, z,y, s’) that says that if the FSM receives
input z while in state s then it can output y and move to state s’. FSM-based testing
takes as input an FSM but the tester might have produced a model in some more
expressive language, such as Specification and Description Language (SDL) [ITU-T
1999] or State-Charts [Harel and Politi 1998], whose semantics can be expressed using
FSMs. A tool then maps the model to an FSM and uses this FSM as the basis for
test automation. As a result, FSM-based testing has been used in several application
domains such as sequential circuits [Friedman and Menon 1971], lexical analysis [Aho
et al. 1986], software design [Chow 1978], communication protocols [Brinksma 1988;
Dahbura et al. Aug; Lee et al. 1996; Low 1993; Sabnani and Dahbura 1988; Sidhu and
Leung 1989], object-oriented systems [Binder 1999], and web services [Haydar et al.
2004; Utting et al. 2012].

In FSM-based testing, typically a test sequence (an input/output sequence) is con-
structed from the specification and the input portion of this test sequence is applied
to the implementation under test (IUT). The actual output sequence produced by the
IUT is compared to the output sequences allowed by the specification. If the IUT pro-
duces an output sequence allowed by the specification then the IUT is said to conform
to its specification (for that test run). The literature contains many techniques for gen-
erating test sequences from an FSM [Chow 1978; da Silva Simao and Petrenko 2010;
Gonenc 1970; Hierons and Ural 2006; Lee and Yannakakis 1996; Moore 1956; Petrenko
et al. 2012; Petrenko and Simao 2015; Ural et al. 1997]. Most of these approaches use
components that solve the following problems: initialisation, state identification, and
transition verification and this paper focuses on state identification.

There are several approaches that solve the state identification problem, such as
Distinguishing Sequences (DS), Unique Input Output (UIO) Sequences and Character-
ising Sets (W-Set). DSs distinguish every pair of states of the specification FSM and so,
when they exist, their use can lead to testing involving fewer test sequences [Hennie
1964; Lee and Yannakakis 1996]. There are two types of distinguishing sequences. A
Preset Distinguishing Sequence (PDS) is a single input sequence for which different
states of the FSM produce different output sequences. On the other hand, an Adaptive
Distinguishing Sequence (ADS) (also known as a Distinguishing Set [Boute 1974]) can
be thought of as a finite rooted decision tree. There are many automated test gener-
ation techniques that either use a known DS [Hierons et al. 2009; Hierons and Ural
2006; Siméo and Petrenko 2008; Ural et al. 1997], or use a DS and some alternatives
together [Kapus-Kolar 2014; Simao and Petrenko 2009; Yalcin and Yenigiin 2006] for
state identification.

There has been significant interest in algorithms for deriving distinguishing se-
quences from deterministic FSMs and there are many computational complexity re-
sults regarding ADSS and PDSS. It has been reported that checking the existence
of a PDS is PSPACE-complete [Lee and Yannakakis 1994]. Although earlier bounds
for ADSS are exponential in the number of states [Gill 1962], Sokolovskii proved that
if an FSM M with n states has an ADS, then it has an ADS with height at most
72n? /12 [Sokolovskii 1971]. Moreover, Kogan claimed that, for an FSM with n states
the length of an ADS is bounded above by n(n — 1)/2 [Kogan 1973]. Later Rystsov
proved this claim [Rystsov 1976]. However, all of these results are for determinis-
tic FSM specifications that are complete: for every state/input pair there is a corre-
sponding transition that specifies the resultant output and state reached. It has long
been known that sometimes FSM specifications are not complete: they are partial (par-
tial FSMs) [Drumea and Popescu 2004; Tsai et al. Aug; Xie et al. 2008; Zarrineh and
Upadhyaya 1999]. Recently, it was shown that for partial FSMs, it is possible to check
the existence of an ADS in polynomial time and checking the existence of a PDS is

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:3

PSPACE-complete [Hierons and Tiirker 2014]. Unfortunately, not all FSMs possess an
adaptive distinguishing sequence. For such cases, Hierons and Tiirker introduced the
notion of incomplete ADSs, which distinguish some, but not all, states of the specifi-
cation FSM [Hierons and Tiirker 2015]. They also showed that certain corresponding
approximation problems related to incomplete ADSs are PSPACE-complete. Note that
Kushik et al. [Kushik et al. 2016] considered a similar notion within the context of
distinguishing states of a non-initialised FSM; an FSM in which no single state is
identified as being the initial state.

A number of authors have devised algorithms for producing ADSS. Lee and Yan-
nakakis proposed an algorithm (LY algorithm) that constructs an ADS with height
at most n(n — 1)/2 in O(an?) time, where « is the number of inputs of the FSM [Lee
and Yannakakis 1994]. Turker and Yenigiin proposed two heuristics for the LY algo-
rithm [Tirker and Yenigiin 2014]. A greedy algorithm to construct incomplete ADSs
has also been given [Hierons and Tirker 2015]. Recently, Tiirker et al. presented a set
of ADS generation algorithms to construct compact ADSS [Tiirker et al. 2014, 2016].

The research discussed above concerned deterministic FSMs, with the main focus
being on complete deterministic FSMs. However, many systems are non-deterministic
and so there is a need to consider wider classes of FSMs. In this paper we consider
an important class of non-deterministic FSMs called observable non-deterministic
FSMs [Kohavi 1978; Starke 1972]. A non-deterministic FSM is observable if for each
input/output pair z/y and state s there exists at most one transition from s with input
x and output y. The main benefit of restricting attention to observable FSMs is that
the current state can be determined from the observed input/output sequence and the
identity of the initial state. Almost all work on testing from non-deterministic FSMs
has concentrated on observable FSMs.

There has been some work on distinguishing states of an observable non-
deterministic FSM, using either a fixed input sequence or an adaptive process that
chooses the next input based on the sequence of inputs and outputs that has been
observed!. Alur et al. showed that the length of a shortest adaptive process that dis-
tinguishes two states of an observable non-deterministic FSM with n states is at most
n(n — 1)/2 [Alur et al. 1995]; upper bounds become exponential if one instead uses
an input sequence to distinguish two states [Spitsyna et al. 2007]. There is also an
algorithm that constructs a weighted sequence that distinguishes two states of an
FSM [Zhang and Cheung 2003]. Kushik et al. presented an algorithm for construct-
ing ADSs for observable non-deterministic FSMs [Kushik et al. 2013]. However, the
algorithm presented by Kushik et al. (the BF-ADS algorithm) was only able to derive
ADSS from relatively small FSMs as it uses a powerset construction?. This will affect
the scalability of this algorithm, although there may be scope to reduce the impact of
this by using techniques developed by the verification community. In this paper ‘scal-
ability’ refers to the ability of an algorithm to process larger data as required. So a
scalable algorithm can process larger inputs (FSMs) than a less scalable algorithm.

All of these approaches assume that the FSM is complete. If an FSM is observ-
able but not complete then it is a partial observable non-deterministic FSM. Deter-
ministic FSMs and observable non-deterministic FSMs can be seen as being special
classes of partial observable non-deterministic FSMs and so partial observable non-
deterministic FSMs form a larger group. For simplicity, from now on we use the term
FSM to denote partial observable non-deterministic FSMs. It appears that there is only
one published algorithm for generating a PDS from such an FSM [Kushik et al. 2014]
and one published algorithm for generating an ADS from such an FSM [Kushik et al.

1Such an adaptive process is similar to a decision tree.
2Given set A, the powerset of A is the set of all subsets of A.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:4 R. M. Hierons and U.C. Tirker

2013]. This is slightly surprising since there is a move towards non-deterministic sys-
tems, as a result of concurrency (distributed systems and multi-threaded systems). It is
also reported that many models are partial [Sabnani et al. 1989] and this is reflected by
interest in testing from partial FSMs [Bonifacio and Moura 2014a,b,c; da Silva Siméao
and Petrenko 2008; Kushik et al. 2014; Luo et al. 1994a,b; Petrenko and Yevtushenko
2005, 2006; Petrenko et al. 1996]. These observations motivate the work reported in
this paper, which investigates the problem of devising practical algorithms for deriving
DSs from an FSM.

A major concerns of the work in this paper is the desire to develop algorithms that
scale well as the number of states of the FSM increases. To address this issue, we de-
vised massively parallel algorithms for Graphics Processing Units (GPUs), motivated
by the successful use of GPUs in a range of application domains [Busato and Bombieri
2015; Djidjev et al. 2015; Dimmler and Egerland 2015; Farid et al. 2015; Lai et al.
2015; Liu and Huang 2015; Luo et al. 2010; Merrill et al. 2012; Mytkowicz et al. 2014].
There has also been some recent work that used GPU computing on FSM-based testing
problems [Hierons and Tirker 2016a,b; Tirker 2015], although this was for determin-
istic FSMs. Moreover, there also exists a line of work in which the execution of an FSM
is simulated by GPUs [Mytkowicz et al. 2014; Mytkowicz and Schulte 2012]. Finally,
there is a line of work in which the massively parallel processing power of GPUs is
used to accelerate linear algebraic operations, like sparse matrix vector multiplica-
tion, in order to accelerate probabilistic model checking algorithms [Bosnacki et al.
2010, 2011; Wijs and Bosnacki 2012].

This paper makes several contributions. It provides algorithms, for constructing
PDSs and ADSS from FSMs, that are designed to be run on massively parallel GPUs.
This involved a number of challenges since, for example, GPU cores are relatively sim-
ple and have an instruction set that is much smaller than that of a standard CPU.
The paper also reports on the results of experiments that evaluated the proposed algo-
rithms, with the initial experiments using randomly generated FSMs. In these exper-
iments it was found that the proposed ADS generation algorithm was able to process
inputs of up to 2048 times larger than the existing ADS construction algorithm and
the proposed PDS generation algorithm was able to process inputs of up to 8 times
larger than the existing PDS generation algorithm. Interestingly, when we applied
the proposed ADS generation algorithm to the problem of generating an ADS from
randomly generated deterministic complete FSMs, we found that it outperformed the
existing ADS generation algorithm. This was an unexpected result, since the existing
ADS generation algorithm, for deterministic complete FSMs, has low order polynomial
time complexity. We also performed experiments using deterministic FSMs where the
height of the shortest ADS is close to the theoretical upper bound and found that the
existing polynomial-time ADS generation algorithm is faster for such FSMs.

This paper is organised as follows. Section 2 introduces the terminology and the
notation that we use throughout the paper. We summarise the parallel ADS and par-
allel PDS construction algorithms in Section 3. We present the results of the empirical
studies in Section 4 and Section 5 discusses threats to validity. Finally, in Section 6,
we provide conclusions and discuss possible lines of future work. The low-level design
is given in the Appendix.

2. PRELIMINARIES
2.1. Sequences

This paper concerns state-based systems and so observations will be sequences of in-
puts and outputs. We will use ¢ to denote the empty sequence and given sequences
7z and 7’ we will use 77’ to denote the concatenation of z and z’. Given input/output

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 15

pairs z1/y1,. .., zk/yr we will use z1/y1 ...z /yr and also x12o... 2k /y1y2 - .. yx to de-
note the corresponding input/output sequence (or trace) o: the sequence in which z; /y;
is followed by x2/y2, then ... and finally xj/yx. Further, we will let in(o) = ... 2%
and out(oc) = y1 ...y, denote the input portion and output portion respectively of o.
We write pre to denote a function that takes a sequence or a set of sequences and re-
turns the set of prefixes of these sequences. For example, pre(zixs) = {¢, 21,122} and
pre(z1/y1 22/y2) = {,21/y1, x1/y1 x2/y2}. Finally we use |.| to denote the cardinality of
a set or the length of a sequence and so, for example, |z1/y; 22/y2| = 2 (since the se-
quence contains two input/output pairs) and |{z1/y1 z2/y2}| = 1 (since the set contains
one sequence).

2.2. Finite State Machines
Definition 2.1. An FSM is defined by a tuple M = (5, so, X, Y, h) where:

— S ={s1,89,...,8,} is a finite set of states.

— 50 € S is the initial state.

— X ={z1,29,...,2} is the finite set of inputs.

—Y = {vy1,y2,...,ys} is the finite set of outputs. We assume that X is disjoint from Y.
—h C S xX xY x Sisthe set of transitions.

Throughout this paper M = (5, sg, X, Y, h) will denote an FSM. At any given time, M
is in one of its states. If an input = € X is applied when M is in state s and (s, z,y,s’) €
h then M can change its state to s € S and produce output y € Y. We say that
T = (s,2,y,s') is a transition of M with source state s, destination state s', and label
z/y. The label z/y has input portion x and output portion y and we say that x is defined
at state s.

If for all s € S and = € X, there exists a transition (s, z,y,s’) € h then M is said to
be a complete FSM, otherwise it is a partial FSM. FSM M is said to be a deterministic
FSM if for all s € S and 2 € X there exists at most one transition with source state s
and input z; otherwise M is a non-deterministic FSM. A non-deterministic FSM M is
observable if for all s € S, z € X, and y € Y there is at most one state s’ € S such that
(s,z,y,s") € h.In this paper we consider partial observable non-deterministic FSMs
and will use the term FSM to denote such machines.

An FSM can be represented by a directed graph. Figure 1 represents an FSM M,
with state set {s1, 2, 83, 54}, inputs {x1, 22}, and outputs {y1, 2, y3}. A node represents
a state and a transition 7 = (s, z,y, s') is represented by a directed edge with label z/y
that goes from a node with label s to a node with label s'.

The behaviour of an FSM M is defined in terms of the labels of walks that leave
the initial state of M. A walk of M is a sequence p = (s1,%1,y1,52)(82, T2,Y2,83) - ..
(Sm), Tm, Ym, Sm+1) of consecutive transitions. The walk p has source state s1, destination
state sp,y1, and label x1/y1 x2/ya ... Tm/Ym. Here x1/y1 x2/ya ... Tm/Ym 18 a trace of M.

We use s = s’ (or s % s') to denote there being a walk with source state s, destination

state s’, and label o = Z/j. Furthermore, we use S’ 219, §7 to denote S” being the set
of states that are destination states of walks whose source state is in S’ and have label
Z/y. Thus, state s is in S” if and only if M has a walk p = (s1,x1,y1, $2)(82, T2, Y2, 83) - . -
(Sms Ty Yms Sm+1) such that sy € S, s = $11, T =21 ... T, and § = Y1 ... Y. If we

consider the FSM M, from Figure 1, s4 M so denotes there being a walk that
has source state s4, destination state s,, and label z5/ys x2/y2 x1/y1. This label/trace
can also be written 222221 /y2y2y1 and has input portion z,zex; and output portion

Y2Y2Y1.-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1.6 R. M. Hierons and U.C. Tirker

xl/yl
[ﬁj/Zgj

Lol
Fig. 1: FSM M; with four states, two inputs and three outputs.

An FSM M defines the language L(M) of labels of walks with source state sq and
we will use Ly,(s) to denote the language defined by making s the initial state of M.
More formally, Lp(s) = {21 ... Zm/y1-. - Ym € X*/Y*|Ts1,...,8ms1.51 = sAV]1 < i <
m.(Si, Ti, Yi, Siv1) € h}. For example, Ly, (s1) contains traces such as zo2/y3 x2/ys and
x1/y1 T2/y1 x2/y2. Clearly, L(M) = Lps(so). Given S’ C S we let Ly/(S’) denote the
set of traces that can be produced if the initial state of M is in S’ and so Ly, (S’) =
Uses Lar(s). Given state s and input sequence T we will use M (s, Z) to denote the set
of traces in Lj/(s) that have input portion z. We therefore have that M(s,z) = {0 €
Ly (s)lin(c) = Z}. States s,s" of M are equivalent if Ly(s) = Ly(s’) and FSMs M
and N are equivalent if L(M) = L(N). FSM M is minimal if there is no equivalent
FSM that has fewer states. Note that since an (observable) FSM can be represented
by a deterministic finite automaton, if we use the set of input/output pairs as the
alphabet of the automaton, it is possible to minimise an FSM in polynomial time; one
can just apply an algorithm for minimising a deterministic finite automaton. FSM M
is initially connected if for every state s of M there is a walk that has source state s
and destination state s. Note that an initially connected FSM M is minimal if and only
if Lys(s) # Lpy(s') for all s,s" € S with s # s'. As usual, in this work we consider only
minimal FSMs.

Since FSMs can be partial, the result of applying an input sequence z = x; ... x in
state s may not be defined. This is the case if there is some i < k such that z; ... z; can
take M from s to a state s’ such that x; 1 is not defined in s'.

Definition 2.2. Input sequence Z is said to be a defined input sequence for state s if

(1) T =-¢;0r
(2) £ = z @ for an input = and input sequence 7’ such that z is defined in s and Z’ is
defined in every state s’ for which there exists an output y such that (s, z,y, s’) € h.
Similarly, input sequence T is a defined input sequence for set S’ of states if T is a

defined input sequence for all s € S’.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:7

2.3. Distinguishing states

In this paper we are interested in sequences that are guaranteed to distinguish states
of M. If we start with an input sequence T from states s and s’ and there is a common
trace z/y € M(s,z) N M(s',Z) then Z is not guaranteed to distinguish states s and s’
(if we observe 7 in response to Z then the state might have been s or s’). Further, if
the walks from states s and s’ with label Z/7 have the same destination state then no
extension to T can distinguish s and s’. We will want to identify such situations, when
searching for input sequences to distinguish states, and so introduce the following
terminology.

Definition 2.3. Input sequence Z is said to be a converging input sequence for states

s and ¢ if there exists /5 € M(s,z) N M(s',%) and state s’ such that s 219, 1 and

z/7
s’ == s". Otherwise I is non-converging. Further, Z is a converging input sequence for

state set S’ if it is converging for two states s,s’ € S’ with s # s’ and otherwise 7 is
non-converging for S’.

We now describe conditions under which an input sequence = distinguishes states of
M ; this requires that there is no common trace with input portion z.

Definition 2.4. Aninput sequence T is a separating sequence for s, s’ if T is a defined
input sequence for s and s’ and M (s,z) N M(s',z) = 0.

This paper will introduce iterative algorithms for finding a DS. In each iteration
the algorithms will search for input sequences that distinguish two or more states of
S’ C S and also that have the potential to be extended to form a DS for S. The latter
condition requires that Z is non-converging.

Definition 2.5. An input sequence Z is a splitting sequence for S’ if T is a separating
sequence for at least two states of S’ and z is non-converging for S’.

We now define the two types of DSs.

Definition 2.6. An input sequence Z is a preset distinguishing sequence (PDS) for
M if 7 is a defined input sequence for S and for any pair of distinct states s, s’ of set .5,
T is a separating sequence for s and s'.

Below we define the notion of an ADS. An ADS can be seen as being a decision tree
that determines the next input to apply on the basis of the observations made. An ADS
is applied as follows. The first step is to apply the input (say =), that labels the root of
the ADS, to the FSM M and record the output y produced. The process then moves to
the node of the ADS reached by the unique edge, from the root node, that has label .
If this node is labelled by an input then this input is applied and we repeat the above
procedure. Otherwise, a leaf has been reached and this node is labelled by an ordered
pair (s, s’) of states. The experiment has then ended and it is known that the state of
the FSM, before the experiment started, was s (and it is now s’).

Definition 2.7. Let us suppose that M is an FSM with set of states S. An adaptive
distinguishing sequence (ADS) for S is a rooted tree 7. Each node N is associated with
a set ¢(N) of ordered pairs of states and a node that is not a leaf is also associated with
an input ¢(V). The root node is associated with the set {(s, s)|s € S} of pairs of states.
Each edge has an output as label. The tree satisfies the following properties.

(1) The output labels of edges emanating from a node N are different.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:8 R. M. Hierons and U.C. Tirker

(2) For every node N of T, if Z, § are the input and output sequences respectively formed
by the node-edge labels on the path from the root node to N, then we have (s,s’) €
§(N) if and only if s = s’, where 0 = 7/%.

(3) Let us suppose that N is a node that is not a leaf and x = (V). For each output y
in the set {y|3(s,s’) € <«(N).x/y € Lp(s')} there is one edge from node N to a fresh

node N’ labelled with y such that ¢(N') = {(s,s”)|3(s,s’) € ¢(N).s' SN s}

(4) For every leaf of T, if Z, y are the input and output sequences respectively formed
by the node-edge labels on the path from the root node to the leaf and if the leaf is
labelled by a single pair (s, s’) of states, then o € Ly (s) and o & Ugneg (53 Las(s”)
where o = Z/j.

In other words, if 7 is an input sequence, 7 is an output sequence and there is a
walk with label Z/§ from the root node to a leaf node whose label is the pair (s, s’) then
Z/y € Lps(s) and there is no other state s” in S that is the source of a walk with label
z/7.
This paper explores the problem of automatically generating DSs from an FSM.
The main focus will be on the development of parallel algorithms that can be run on
Graphics Processing Units.

2.4. Graphics Processing Units

There has been significant recent interest in the use of Graphics Processing Units
(GPUs) in general computing and GPUs have been used in many areas [Harish and
Narayanan 2007; Luo et al. 2010; Merrill et al. 2012; Satish et al. 2009; Sengupta et al.
2007]. A GPU has a collection of multiprocessors (SMX) and each of these has a number
of processors. Each multiprocessor has several types of storage: shared memory, which
can be accessed by all of its processors; registers; texture memory (read only memory
for the GPU); and constant (read only memory for the GPU, which has the lowest ac-
cess latency) memory caches. A multiprocessor is referred to as a single instruction
maultiple data (SIMD) processor since each of its processors executes the same instruc-
tion (on different data) in a cycle. The individual multiprocessors communicate with
one another through the global device memory and this memory is available to all of
the processors in all of the multiprocessors.

When a GPU program executes, a number of threads are run in parallel, the pro-
grammer deciding on the number of threads to be launched. The threads that run
simultaneously on a multiprocessor are called a warp and if the number of threads
chosen by the programmer exceeds the warp size then the threads are time-shared. At
a given time, a block of threads runs on a multiprocessor, with the maximum number
of threads in a block being at most the warp size and varying between GPUs. More-
over, multiple blocks can be assigned to a single multiprocessor and their execution is
again time-shared.

The threads executing on a multiprocessor share resources equally amongst them-
selves and each thread executes a piece of code called a kernel. During its execution, a
thread ¢; is given a unique ID and ¢; can use its ID to access data residing in the GPU.
Since the GPU memory is available to all threads, a thread can access any memory lo-
cation. As a result of the global device memory, a GPU can be seen as being a Parallel
Random Access Machine (PRAM) architecture. However, shared memory (which can
only be accessed by threads within a block) can be accessed faster than global device
memory and so performance is improved if shared memory is used. During GPU com-
putation, the CPU can continue to operate and so the GPU programming model is a
hybrid model, with a GPU being a co-processor (device) for the CPU (host).

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:9

3. PARALLEL ADS AND PDS GENERATION ALGORITHMS

This section describes the high-level ADS and PDS algorithms; implementation de-
tails are given in Appendix A. We start in Section 3.1 by discussing the design choices
employed. In Section 3.2 we give an initial algorithm that is used in the PDS genera-
tion algorithm (described in Section 3.3) and the ADS generation algorithm (described
in Section 3.4).

3.1. Design Choices

There are two main strategies that one might use in designing an algorithm for GPU
computing. One approach, called the fat thread strategy, places a large amount of data
in shared memory, and this minimises data access latency [Klingbeil et al. 2012]. How-
ever, a consequence of this is that there will be limits on shared memory and so the
fat thread strategy may restrict the number of threads per block and so the degree of
parallelism.

An alternative approach, called the thin thread strategy, is to use global device mem-
ory and so maximise the number of threads. When using this strategy, relatively little
data is stored in shared memory and so there is the potential for performance to be
adversely affected by the relatively high global memory latency [Klingbeil et al. 2012].
In this work we used the thin thread strategy, in order to maximise parallelism, and
designed the algorithms to limit the effect of global memory latency.

3.2. Parallel state reduction algorithm

In this section we present an overview of a parallel algorithm, the parallel states re-
duction algorithm (PSR algorithm for short), that is used by the parallel ADS and
parallel PDS algorithms. The aim of an ADS or PDS is to distinguish the states of
the FSM M. The ADS and PDS generation algorithms both start with an initial ‘state
uncertainty’ represented by the set S: the state of the FSM, before a PDS or ADS has
been applied, could be any state in S. As inputs are applied and outputs are observed,
the state uncertainty is refined to form a set of sets of states (one set of states for each
input/output sequence that might have occurred). The aim of the PSR algorithm is to
find an input sequence that reduces the size of a state uncertainty set. To achieve this,
the PSR algorithm uses what we call an output vector (OV for short) and a splitting
vector (SV for short).

Because the FSM M is observable, for a given set of states S’ where |S’| = ¢, input
sequence T and output sequence iy € Y*, M has at most ¢/ walks from states in S’ that
have label z/5. We will use an output vector to store information about what states can
be reached, from states in S’, using a walk with label /3. An output vector (OV) O is
a vector of pairs of states. We will be interested in a particular output vector.

Definition 3.1. Given state set S’, defined input sequence z, and output sequence
7, the resultant output vector OV (S5’, z,7) is a vector with |S’| components such that
for all s € S’, we have a corresponding ordered pair (s, s’) in OV (S’,Z,y) where s is
defined by:

(1) If there is no walk that has source state s and label Z/g then s’ = s*, where s* is a
‘null’ value.

(2) If there is a walk p that has source state s and label z /7 then s’ is the destination
state of p.

We will use delimiters (and) for vectors and so, for example, ((s1, $2), (s2, $*), (4, $1))
is O‘/({Sl7 S2, 54}, X1, yl) for Ml.

There may be more than one possible output sequence that can be produced if input
sequence Z is applied in states in S’; there can be at most /7! such output sequences

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:10 R. M. Hierons and U.C. Tirker

where [is the number of outputs of the FSM. We require an OV for each such output
sequence and this leads to what we call a splitting vector, which is a vector of output
vectors. Similar to output vectors, we will be interested in a particular splitting vector.

Definition 3.2. Given state set S’ and defined input sequence Z of length j, the re-
sultant splitting vector SV (S’, Z) contains 37 output vectors. Specifically, for all § € Y7
we have that SV (S5’ z) contains OV (5, 7, 7).

Given S’, z, and §, the PSR algorithm will start with an initial SV in which
all state pairs are of the form (s,s*) (the output vectors are all of the form
((51,5),(52,8%),...,(85],5*))). The PSR algorithm then builds SV (5’, 7).

We now show how a splitting vector SV (S’, %) can be produced. Consider the FSM
M, given in Figure 1, let S’ = {s1, s3,54}, and let Z = z12,. The corresponding SV
starts with the plain SV that has 32 = 9 output vectors. Thus, we start with SV =
(Oy1u1> Ouryas Ouryss - - - Oyayn s Oayas Oysys) Where all of the output vectors are initially
equal to ((s1, s*), (s3,5%), (84, 8%))

Now consider the output sequences of length 2. For output sequence y;y;, we
have that there is only one walk whose source state is from S’ and whose label
has input portion x;z; and output portion y,y;. This walk has source state s, and
destination state sy and so OV (S, z121,y1y1) = {((s1,5), (83,5%), (84, 52)). Now let us
consider the output sequence ysy>. There are two walks that have source state in 5/,
input portion zix; and output portion ysy>: one has source state s; and destination
state s, and the other has source state s3; and destination state s;. As a result,
we have that OV (S, z121,y3y2) = ((s1, S2), (3, 1), (84,5*)). We similarly find that
OV (S, z1z1,y1y2) = ((s1,51), (83, 8*), (84, s3)). If we apply this to all output sequences
of length 2 we obtain the splitting vector SV (S',z121) = (OV(S',z121,y191),
OV (S',x121,y1%2), OV (S, 2121, y1y3), - . - OV (S, 2121, 9391), OV (S’ 21201, Y3Y2) s
OV (S, z1x1,ys3ys3)) in which:

OV(S x1x1,y1y1) = <(51v3*)7(83’5*)’(84752)>
OV(S lelaylyQ) = <(51a51)7(5375*)7(54353)>
OV(S $1$1,y1ys) = <(81,8*),(837S*),(84784»

(S $1w1,y2y1) = <(51v3*)7(83’5*)’(8475*>>
OV (S, x121,y2y2) = ((51,5%),(83,5%), (54, 51))
OV(S $1$17y2y3) = <(31752)7(S373*)7(5438*»
OV(S xlxlay?)yl) = <(51’51)7(5375*)7(5478*»
OV(S",z121,y3y2) = ((51,52), (s3,51), (5475*)i

OV(S $1$17ysy5) <(81,8*),(837S*),(847S*)

The PDS and ADS generation algorithms will start with the empty sequence and
extend this. We will want to avoid extending an input sequence Z if Z cannot possibly be
a prefix of a PDS or ADS for the set of states under consideration. We will therefore
look to avoid using converging and undefined input sequences: if zZ is converging or
undefined for S, then no PDS or ADS for M can have Z as a prefix.

During the search for a PDS or ADS, an SV will contain OVs that represent possible
state uncertainty; the set of possible current states of the FSM if a given input/output
sequence has been observed. We aim to eliminate the state uncertainty (all of these
sets are empty or singletons). As a result, we can see the reduction in the size of the
largest such set (representing state uncertainty) as being progress towards returning
a PDS or ADS. This motivates the following definition.

Definition 3.3. Input sequence 7 is a reduction sequence for state set S’ if 7 is de-
fined in S’ and is non-converging for S’ and also for every output sequence y with

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

S ® TS W AW N

-

12

13
14

Parallel Algorithms for Generating Distinguishing Sequences 1:11

|y| = |z| we have the following

{s' € §'3s € 8.5' L% s} < |9]

The following shows how we can determine whether an input sequence is a reduction
sequence for S’ by examining SV (5, Z) and is immediate from the definitions.

LEMMA 3.4. Let S’ be a set of states, T an input sequence that is defined for S’, and
SV(S',z) = (01,03,...,0k). Then T is a reduction sequence for S’ if and only if the
following properties hold.

(1) Thereisno 1 <i < kand states s,s’,s" with s # s’ such that O; contains pairs (s, s")
and (s',s").
(2) Every O;, 1 <i <k, has a pair of the form (s, s*).

The first of these conditions ensures that T is non-converging for S’ and the sec-
ond ensures that for each possible output sequence g, the corresponding set of state

uncertainty ({s € §'|3s’ € S.s SZEN §'}) is smaller than 5.

We now provide a brief overview of the PSR algorithm (see Algorithm 1). The PSR
algorithm takes as input a state set S’ and applies an iterative approach. In each
iteration the algorithm applies the following steps.

(1) Generates an input sequence Z: starting from length L = 1 to an upper-bound
L = B, the Generate(L) function generates all input sequences of length L. Each
time this function is called, it returns an input sequence not previously used in the
current iteration of the loop.

(2) Generates the SV(S’,7) in parallel: it writes the source/destination states of each
possible walk to corresponding OVs and checks if Z is a defined input sequence for
S’

(3) Decides if Z is a reduction sequence or not in parallel: the Red(SV,Z’) routine
checks if 7 is a reduction sequence for S’ by following a procedure as suggested
by Lemma 3.4 and returns True if Z is a reduction sequence.

(4) If Red(SV, ') returns true then the algorithm returns SV (S5’,) and otherwise the
algorithm continues.

ALGORITHM 1: Parallel state reduction algorithm.

Input: An FSM M = (S, s, X, Y, h), state set S’ C S, bound B
Output: Splitting vector for S’
begin
IsRed = False
L=0
while !IsRed A L < B do
L+ L+1
while !IsRed A X not completely used do
Initialise SV
T < Generate(L)
SV « SV (S, %)
if Red(SV,z) = True then
L IsRed = True

if InRed then
| Return SV

else
| Return {0}

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:12 R. M. Hierons and U.C. Tirker

The PSR algorithm can generate all of the input sequences of length B or less, there-
fore it is guaranteed that the PSR algorithm will return an SV for S’ if there exists a
reducing sequence for S’ of length at most B.

LEMMA 3.5. Let M = (S,X,Y,h) be an FSM, S’ C S be a set of states of M, and B
a natural number. The PSR algorithm returns an SV for S’ if and only if there exists a
reducing sequence for S’ of length at most B.

In Appendix A we explain how we implemented the PSR algorithm.

3.3. The PDS generation algorithm

Recall that if two states of an FSM can be distinguished then they can be distinguished
by an adaptive process® whose height* is at most n(n — 1)/2. Thus, one might use a set
of such adaptive process that, between them, distinguish all of the states of M. There
is a polynomial upper bound on the size of such a set and so one might expect there to
also be a polynomial upper bound on the size of any PDSS that are of interest®. This
motivates an interest in a bounded PDS generation algorithm.

The PDS generation algorithm is very similar to the PSR algorithm. First note that
an input sequence Z is a PDS for a given set of states S’ if every output vector in
SV (S’,z) has at most one pair of the form (s, s’) where s’ # s*.

LEMMA 3.6. Let T be a defined input sequence for S. If every output vector in
SV (S,Z) has at least |S| — 1 pairs of the form (s;, s*), then T is a PDS for M.

Consequently, in the PDS algorithm we include an additional step that checks
whether the above property holds. The condition in the ninth line becomes the fol-
lowing in which PDS(SV,Z) is a call to a method that checks whether = is a PDS,
using SV to check the conditions in Lemma 3.6.

9If PDS(SV,z) = True then

For example, considering FSM M; where S = {s1, $2, 83,54} and T = xozox2. We set
S’ as S and SV(S’, %) contains the following output vectors.

OV (S, xawawa, y131Y2) = ((51,5%), (52, 53), (53,5%), (54,5%))
OV (S, xaxaza, y1Y2y1) = ((s1,5%), (52, 5%), (83, 54), (54,5%))
OV (S, zazama, y1y2y2) = ((s1,5%), (s2,5%), (83, 51), (54, 8*))
OV(S x212x2ay1y2y3) = <(517 *)7 (327 1)a (337)v (S S*)>

(S $2$2x27y2y2y1) = <(81’ *)’ (827 4)5 (S *)7 (S S*)>
OV (S, xaxama, yoy2ya) = ((s1,5%), (52, 51), (83, %), (54, 8*))
OV (S, xox2m2,Y3y3ys) = ((51,51), (52, 8%), (83, 5%), (84, 5%))
OV(S $2$2$27y2y3y3) = <(Sla)a (827 *)7 (537)7 (847 S*)>
OV (S', maxom2, y211Y2) = ((51,5%), (52,8%), (83,5%), (54, 83))
OV(S x2$21’2ay2y2y3) = <(517)v (327)v (537)a (84, Sl))

Note that each output vector has only one pair whose second element is a state from
S (i.e. is not s*) and 2277 is defined in all of the states in S’. Therefore, z is a PDS
for S’.

3An adaptive process chooses the next input on the basis of the input/output sequence that has been ob-
served.

4The height of an adaptive process is the length of the longest input sequence that can result from the
application of this adaptive process.

5This is becuase there is a polynomial upper bound on the size of an alternative method, that of using a set
of adaptive processes.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

® O ® ;R W N

10

Parallel Algorithms for Generating Distinguishing Sequences 1:13

3.4. The ADS generation algorithm

The ADS generation algorithm iterates over a vector of output vectors called an ADS
vector.

Definition 3.7. An ADS vector O = (O, O1,...,0O)q)) is a vector of output vectors.

At each iteration, the algorithm receives an OV from O. Given an OV O, we let
C(0) and I(O) denote the corresponding ‘current states’ and ‘initial states’ respec-
tively. Thus C(O) = {s € S|3s’ € S.(s',s) € O} and I(0) = {s' € S|Is € S.(¢',s) € O},
where (', s) € O denotes that O contains the pair (s, s). Then the algorithm attempts
to find a reduction sequence for C(O) using the PSR algorithm (using a bound L). If
such a sequence 7’ is found, the algorithm generates the output vectors of the form
ov(C(0),z,y") for every §’ with |j’| = |Z'| and then it appends them to O and updates
0. The algorithm terminates when either (1) all unprocessed elements define single-
ton sets (an ADS has been found) or (2) an ADS cannot be found for the bound L. We
present the ADS algorithm in Algorithm 2.

ALGORITHM 2: Parallel ADS algorithm.

Input: An FSM M = (S, 50, X, Y, h), S’ C S with |S’| > 1, and a bound L
Output: ADS for S’
begin
Initialise an OV O vector with S” and €/¢
Initialise O with initial OV O
while There exists an unprocessed OV in O such that |C(OV)| > 1 do
Retrieve an unprocessed OV vector O from O such that |C(OV)| > 1
Mark O as being processed and let S’ = C(O)
SV « PSR(FSM, S’, L)
if SV # 0 then
L Append(SV, Q)

else
| Return “No ADS”

| ReturnO

We now demonstrate the execution of Algorithm 2 on the FSM M; given in Figure 1.
After initialisation (Line 1) we have O = (OV (S, ¢,¢)) where

OV(S, 6,8) = <(817 51), (82, 82), (33, 83), (84, S4)>

The algorithm then enters the while loop and chooses OV (S, ¢, ¢). Let us assume that
PSR(M, S) returns SV (S, z2) in which we have

OV(Sv x2, yl) = <(517 S*)? (827 53)5 ($3a 34)7 (545 S*)> -=* S” = {533 54}
OV(Sv x2, y2) = <(817 S*)v (827 S4)a (837 81)7 (S4a 83)> -2 SI‘// = {S4a S1, 83}
OV(Sv €2, y3) = <(817 81)7 (527 8*)a (837 S*)a (847 S*)> --» S% = {81}
where --» denotes current states extracted from corresponding OV. Upon receiving
the SV from the PSR algorithm, the parallel ADS algorithm executes the append oper-
ation (Line 9) in which the above output vectors are added to the ADS vector Q. After
this operation the ADS vector becomes

0= (0OV (8", 29,51),0V (5", 29,92), OV (S8, 25, y3))

As O contains elements that do not define singletons, the algorithm selects another
OV and enters the second iteration of the while loop. Now assume that the algorithm
selects OV (S”, z2,y1). Let us assume that PSR(M, S”) returns SV (S”, z1) which con-
tains

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:14 R. M. Hierons and U.C. Tirker

OV (8", xz1,y1) = ((s2,5%), (s3,51)) --* S = {s1}
OV(S",x1,y2) = ((52,5%), (83,52)) --» S = {s2}
OV (8", x1,y3) = ((s2,52), (83,5%)) ——» S = {s2}

Therefore, after the append operation the ADS vector becomes

0= <OV(S/H7 x2, y2)7 OV(Sivv T2, yS)v OV(va T2, ?/13/1)» OV(Svlv T2, y1y2)7 OV(Sviia T2, y1y3)>

The algorithm might now select OV(S”,x2,y2), which defines the set S
{s3,84,51} of states to process. Let us assume that during the third iteration,
PSR(M, S") returns SV (S”', xo) which is given as

OV (8", x9,y1) = ((s2,5%), (s3,5%), (54, 83)) -=> S = {s3}
OV (8", x2,y2) = ((52,53), (53,5%), (84,51)) --+ S = {s3,51}
OV (8", xa,y3) = ((s2,5"), (83,51), (54,58%)) ——» S* = {s1}

Consequently, after the append the ADS vector becomes

0 = (OV (8™, 22,y3), OV (8", xox1,y191), OV (S, 221, y1%2),
OV (8Y", xaz1,y1y3), OV (SU™, 2ax2, Y2y1), OV (S, 2272, Y2y2), OV (5%, 2272, Y213))

Note that as the other output vectors define singleton sets, the algorithm will select
OV (5", x22,y2y2) and the set of states to be processed becomes S** = {s3, 51}. Assume
PSR(M, S™) returns SV (S, z2), which contains the following OVs

OV(S?@%yl) = <(827S4)a (54?3*» - Sml: {54}
OV(S%z7x27y2) = <(82751)1 (54?3*» - Smu: {81}
OV (5", w2,y3) = ((s2,8%), (84, 81)) -=» 5" = {s1}

This is then followed by the append operation, which produces the following ADS
vector.

0= <OV(S“)a Z2, yd)» OV(S’U.?;E?rEh ylyl)v OV(S’Wa T2, yly?)v
OV (8", a1, y1y3), OV (5™, o2, Y2y), OV (5, 2222, y2y3)
OV (57, xaxaa, yayayr), OV (ST, xoxaa, Yoyay2), OV (ST, xaxaa, Y2y2ys))

As all elements of the ADS vector have current sets of states that are singletons, the
algorithm terminates and returns Q. The ADS defined by O is given in Figure 2.

Similar to PDSS, our algorithm contains a bound. The parallel-ADS algorithm uses
the PSR algorithm to generate a reduction sequence for an OV O of length at most
L. Thus, if the value of L used is too small then the algorithm will fail to find ADSS.
However, as we observed earlier, there is likely to be a bound on the size of an ADS
that will be of interest and this bound might, for example, be based on the bound on
the size of a set of adaptive processes that distinguish the states of M.

The algorithm generates what we called L-ADSS. The following, in which the out-
degree of a node is the number of outgoing edges of that node, defines L-ADSS.

Definition 3.8. An ADS T is an L-adaptive distinguishing sequence (L-ADS) if for
every path p in T of length L, from a node N to a node N’, we have that N’ has fewer
current states than V.

The essential idea is that within an L-ADS ‘progress’ must be made within L steps.
The following is clear.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:15

Fig. 2: An ADS for FSM M in Figure 1. We have not added the sets of states associated with
nodes to reduce the visual complexity.

LEMMA 3.9. If FSM M possesses an L-ADS and M and L are supplied to Algo-
rithm 2, then Algorithm 2 returns a set of blocks O for M.

From the definition of an ADS (or L-ADS), if Algorithm 2 returns an ADS vector
then this defines an ADS (or L-ADS).

LEMMA 3.10. If Algorithm 2 returns an ADS vector then the input sequences asso-
ciated with this ADS vector define an ADS (or L-ADS) for M.

4. EXPERIMENTS

In this section we present the results of our experiments. In these experiments we
used an Intel Core I5 CPU (3550S) with 4GBs of RAM on a machine that had 64 bit
Windows 7 Professional. The parallel algorithms were executed on an Nvidia TESLA
K40 GPU card.

In the experiments, we evaluated four algorithms: the proposed parallel ADS
(Parallel-ADS) algorithm, the proposed parallel PDS (Parallel-PDS) algorithm, the
brute force ADS generation algorithm presented in [Kushik et al. 2013] (BF-ADS),
and the brute force PDS (BF-PDS) generation algorithm [Kushik et al. 2014]. We now
provide a brief overview of BF-ADS and BF-PDS algorithms.

4.1. Existing algorithms to construct ADSs/PDSs for FSMs

4.1.1. Constructing ADSs. Kushik et al. [Kushik et al. 2013] described an exponential
algorithm (BF-ADS) to derive adaptive distinguishing sequences from FSMs. The BF-
ADS algorithm has two phases. In the first phase the algorithm finds splitting se-
quences for subsets of S, and in the second phase the algorithm constructs an ADS by
using these splitting sequences.

The algorithm first generates the power-set of S; we will denote this P. All the sin-
gleton sets are then extracted from P to form F' = {{s1},{s2},...,{sn}}. The algorithm
then enters an iterative process in which it tries to add set {s1, s2,...,s,} to F. At ev-
ery iteration the algorithm considers all (z, 5") for € X and S’ € P\ F and determines
whether it is the case that x is defined in 57, = is non-converging in S/, and for all y € Y
we have that either y cannot be produced from a state in S’ with input z or there is

some S” in F such that S’ /% S”. If this condition holds then the algorithm adds S’ to
F. If the set {s1, s2,...,5,} is added to F' then the algorithm jumps to a second phase.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:16 R. M. Hierons and U.C. Tirker

Otherwise, if at a given iteration, no addition is made to set F', the algorithm exits
with a “No ADS” message.

In the second phase, the algorithm constructs an ADS. First, the algorithm forms
T = {{s1,82,...,5,} and then enters an iterative process. At every iteration the algo-
rithm picks a set ¢ € T, that has not been picked before, and removes ¢ from 7. It then
generates new sets by splitting ¢ through using the splitting sequences found in the
first phase. When all sets with cardinal larger than one are processed the algorithm
terminates. We direct the reader to the literature [Kushik et al. 2013] for details of the
algorithm.

4.1.2. Constructing PDSs. The algorithm provided in [Kushik et al. 2014] can construct
one of the shortest PDSs for a given FSM. The algorithm uses the notion of a successor:
given an ordered pair (s, s,) of states, input z, and output y, we say that (s}, s;) is an
x/y-successor of (s, sq) if (sp, 7,9, 5,), (54, 7,9,5;) € h. The algorithm (BF-PDS) relies
on the construction of a tree data structure called the successor tree. The root of the
tree contains a single set: the set of ordered pairs of states (s, s;) of M such that p < ¢.
A node u of the successor tree holds a set NC(u) that contains sets of pairs of states.
Each edge of the tree is labeled by an input z € X. Let us suppose that « is a node,
A € NC(u), input z is defined in all states in pairs in A, and y is an output. If there
is an ordered pair (s, s’) € A that has an 2 /y successor and v is the node reached from
u via input x then one of the sets in NC(v) is the set of z/y-successors of pairs in A.
Thus, if A is a set in NC(u) then A contains a set of pairs reached, from pairs in the
root node, via a common input/output sequence.

If there exists an edge, with input «, from node u to node v such that NC(v) contains
a set that contains a singleton (a pair (s, s) for some state s), then = merges at least one
pair in a set in NC(u) and so the corresponding input sequence Z cannot be a prefix
of a PDS: z maps a pair of states to s with some common output sequence. If there
exists an edge from node u to node v such that v is the empty set then concatenation
of the inputs on the path from the root to that node defines a PDS for M. The tree is
truncated when i) the node is empty, ii) the node has already been introduced to the
successor tree, iii) the node is a singleton. The tree is constructed in the usual way, for
a given node the algorithm applies defined inputs and depending on the outputs and
the next states, introduce new nodes. Therefore, the tree requires exponential space.
For further description of the algorithm we direct the reader to the reference [Kushik
et al. 2014].

4.2. Aims of the experiments

The experiments explored two aspects of the proposed algorithms that are of practical
importance: the time required to construct ADSS and PDSS and the cost (height for
ADSS and length for PDSS) of these. Naturally, the lower the cost and the time of
derivation, the better the approach.

4.3. FSMs used in the experiments

4.3.1. Randomly generated FSMs.

FSM SET I: The FSMs in this suite were designed to investigate the performance
of the methods under varying FSM specifications (varying number of states and vary-
ing number of inputs and outputs). For a given n € {8,16,...,32768} and number
of inputs/outputs /8 € {2/2,2/5,2/8,5/2,5/5,5/8,8/2,8/5,8/8}, we constructed 100
FSMs®. So this test suite contained a total of 11700 FSMs.

6Note that we were unable to construct larger FSMs in an acceptable amount of time.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:17

The FSMs were constructed as follows: first, for each input = and state s we ran-
domly assigned the values of destination state (s’) and output (y) of a transition, we
repeated this operation « * n times (« transitions from each state) to obtain an F'SM
M. Afterwards, we randomly selected a transition saturation ratio (7). For the FSMs
in FSM SET I we randomly generated 7 from the range 0.10 to 0.30. We now explain
how this value was used.

For a given FSM M, we marked 7 # (a * n) transitions and we modified these transi-
tions: we first removed a marked transition, say with input z, from M, and we either
did nothing” or we added at least 2 and at most 5 additional transitions labelled with
the same input (input z) but different outputs. These transitions were added randomly
and the use of different outputs ensured that the FSM was observable. Note that as
the value on 7 might affect the performance of the algorithms, in FSM SET II we used
higher 7 values (see below).

After an FSM M was generated we ran the parallel ADS generation algorithm on M.
If the algorithm returned an ADS within 1500 seconds then we kept this FSM and oth-
erwise we discarded it and continued with the process. Consequently, all constructed
FSMs had ADSSs.

FSM SET I1: These FSMs were used to explore the effect of the transition saturation
ratio (7). We constructed the same number of FSMs as in FSM Set I with the same
properties (with the exception of the value of 7) and so FSM SET II also contained
11700 FSMs. However, the transition saturation ratio was higher: it was randomly
chosen from the range 0.30 to 0.70.

FSM SET III: There is a polynomial time algorithm for constructing ADSS for de-
terministic complete FSMs [Lee and Yannakakis 1994] (LY algorithm). This paper ex-
plored a more general class of FSMs and so the algorithms devised can also be applied
to deterministic complete FSMs. We therefore performed experiments on deterministic
complete FSMs to see how the proposed parallel ADS algorithm compares with the LY
algorithm on such FSMs.

The FSMs in this class were generated as follows. First, for each input x and state s
we randomly assigned a next state and an output. Once an FSM M had been generated
we tested whether M has an ADS using the LY algorithm. We discarded FSMs with
no ADS.

By following this procedure we constructed FSMs with the same properties (number
of states etc.) as in FSM SET I and so again used 11700 FSMs.

4.3.2. FSMs with long ADSs: FSM SET IV. Randomly generated FSMs will tend to have
shorter separating/reducing sequences, hence ADSS and PDSS are much shorter than
the upper bound. Sokolovskii introduced a special class of (complete and deterministic)
FSMs that we called s-FSMs [Sokolovskii 1971]. The length of the shortest separat-
ing/reducing sequence for states s; and ss of an s-FSM is exactly n — 1, and the lower
bound on the height of the ADS is n?/4 — 1, where n is the number of states of the
FSM. We performed additional experiments with a set of s-FSMs to explore how the
algorithms perform when the separating/reducing sequences are relatively long. The
next states and the outputs of an s-FSM are given as follows in which n’ = n/2 and
n > 2.

"Note that if we do not add a transition then the underlying transition will be deleted which allowed us to
generate partial FSMs.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:18 R. M. Hierons and U.C. Tirker

Table I: Properties of specifications used in the experiments, where post|h| refers to
number of transitions after non-deterministic transitions are added.

Property | bbse cse ex2 | exd | exb | ex7 | keyb | kirkman | lion | markl | planet sand sse styr traind | trainll
[S] 16 16 19 10 9 10 19 17 4 16 48 32 16 30 4 11
[X] 128 | 128 4 4 4 4 128 4096 4 42 128 2048 128 512 4 4
[Y] 22 17 4 4 4 4 4 64 2 5132 9292 129 22 211 2 2
[A] 512 | 416 | 13 6 14 | 13 0 1536 14 0 1664 51072 | 512 7024 11 19

[post(R)] | 5264 | 6528 | 249 | 126 | 86 | 105 | 10266 | 228864 16 | 254656 | 321648 | 323712 | 5264 | 398256 17 31

Si+1, 1f]:1/\17én’/\z7én
51, ifj=1Ai=n'
Snit1, fj=1Ni=n

Next state if x; is received from state s; = s, i —0Al<i<n —1 (D
Sn/41, ifj:()/\i:n/
Si—p, fj=0AN"+1<i<n
Output if z; is received from state s; = { 7’ ifj = Oni=mn (2)
J v y1, otherwise

We generated 6 s-FSMs with n states, n € {10,20,...,60}.

4.3.3. Benchmark FSMs. 1t is possible that FSM specifications of real life systems are
unlike these randomly generated FSMs. We therefore complemented the experiments
with some case studies: FSM specifications retrieved from the ACM/SIGDA bench-
marks, a set of FSMs used in workshops in 1989-91-93 [Brglez 1996].

The specifications are given in the kiss2 format where state names are provided
with alphanumeric symbols (0,1,...,9, A, a, B,b, ..., Z, z) and each input/output is rep-
resented by a symbol in {0,1,—}. Note that a transition with outputs that con-
tain — defines a number of transitions. For example, if the FSM has a transition
(st1,01,0—, st2) then this transition actually encapsulates transitions (st1,01,00, st2)
and (st1,01,01, st2). Therefore, such FSMs are in essence observable and non-
deterministic. We observed that 32% of the FSM specifications were observable and
non-deterministic. In order to use these FSMs we applied a process that produces the
transitions that result from ‘completing’ a transition with a — symbol. We present a
number of properties of these FSMs in Table I in which || is the number of transi-
tions before the process was applied and |post(h)| is the number of transitions once
this process has completed.

4.4. Results

4.4.1. Effect of the number of states. We first investigate the effect of the number of states
on the performance of the algorithms and we present the results for the FSMs in FSM
SET I where o/ = {2/2}.

Figures 3a and 3b show that the time required to construct ADSS and PDSS in-
creases with the number of states. In addition, as the number of states increases,
so does the height of ADSs and length of PDSs returned. The experiments also re-
vealed that the time required to construct PDSS grows faster than the time to con-
struct ADSS. The parallel PDS algorithm could only produce PDSS (in 1500 seconds)
when n < 512, while the parallel ADS algorithm could produce ADSS when n < 213,
The BF-ADS generation algorithm could only generate ADSS when n < 16. Hence our
ADS derivation algorithm was able to process inputs of up to 2048 times larger than
the existing ADS generation algorithm. The BF-PDS generation algorithm could only
generate PDSS when n < 64. Thus, the parallel PDS derivation algorithm was able to
process inputs of up to 8 times larger than the BF-PDS generation algorithm.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:19

<4-Parallel-ADS #Parallel-PDS «-BF-PDS ==BF-ADS M Parallel-ADS o BF-ADS i Parallel-PDS s BF-PDS
225 wZS.UD
20 £
3
17.5 220.00
z 15 5
3 £ 15.00
212.5 %ﬂ
§ 10 2
2 s £ 10.00 N
g / ‘
F 5 A £
-5 5.00
2.5 @
4 x
i i wll
25 L < 0.00 | ! ! |
Number of states Number of states
(a) Average time required to construct (b) Average Height/Length of constructed ADSs/PDSs

ADSs
Fig. 3: Results of experiments with FSM SET I where /5 = 2/2.

The height/length of the ADSS and PDSS appears to grow roughly linearly with
the log of the number of states. Similarly, earlier work using FSMs with up to 10 states
found that randomly generated FSMs have relatively short separating sequences when
we are distinguishing a pair of states [Spitsyna et al. 2007]. Moreover, we observe that

Parallel-PDS and BF-PDS algorithms found PDSS with same length.

4.4.2. Effect of number of inputs. The results of the experiments on varying number of
inputs are given in Figure 4. We present the results for the FSMs in FSM SET I. The
results indicated that the number of inputs has a limited effect on the time and the
heights of ADSS (Figures 4a, 4b).

In order to investigate this further we applied the Kruskal-Wallis test [Kruskal and
Wallis 1952], using the R tool [Stowell 2012]. We used the results generated by the
Parallel-ADS/Parallel-PDS construction algorithms as these methods provide larger
populations.

For a given n and number of outputs 8 € {2,5,8}, we picked two different « values
(number of inputs), o, o’ € {2,5,8}, where a # o’. Then for n and «/8 we grouped (G,,)
the lengths of ADSS and time required to derive the ADSS from FSMs with n states,
« inputs, and S outputs. We also formed a group G of the lengths of ADSS and time
required to derive the ADSS for FSMs with n states, o’ inputs, and 3 outputs.

Afterwards we applied the Kruskal-Wallis test on G, and G, . To evaluate the effect
of the number of inputs on the time required to derive ADSS we performed 234 tests
(for each different n, 38 values and different o, o’ pairings). This was then followed by
reapplying the tests, for the heights of the ADSS. So in total we performed 468 test. We
observed that at each test the null-hypothesis was accepted where the null-hypothesis
is that ‘the samples are from the same population’. As a result, we cannot reject the
possibility of the different groups belonging to the same population.

However, we observe that the number of inputs can have an impact when con-
sidering PDSs. Although the length of PDSS reduces as the number of inputs in-
creases, the time required to compute PDSS increases. When n = 128 and « € {5, 8},
the Parallel-PDS generation algorithm failed to terminate within 1500 seconds. The
Kruskal-Wallis test rejected the null hypothesis in all different 8 values and different
a, o’ pairs when 32 < n < 128.

Similarly, we also found that the size of the input alphabet had almost no effect
on the performance of the BF-ADS algorithm. However, we observed that the number
of inputs has a significant effected on the performance of the BF-PDS algorithm. As

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:20 R. M. Hierons and U.C. Tirker

«-Parallel-ADS 2/24@#Parallel-ADS 5/24-Parallel-ADS 8/2=Parallel-ADS 8/2 Parallel-ADS 2/2 H Parallel-ADS 5/2 i Parallel-ADS 8/2 M Parallel-ADS 8/2
—BF-ADS2/2 @BF-ADS5/2 BF-ADS 8/2 EBF-ADS2/2 WBF-ADS5/2 W BF-ADS8/2
16 25.00

I
5

20.00

secs.)
B o
5 R

ight

< 15.00

10.00
<

Time log2(
o N & O ®
DS Hei

w

o

8

0.00

8
16
2
4

o <
m ® N 1 o9 N
= o

1

2048
4096
8192

¢ N T o <
S 8 3 8 & = 3
- S

16384
32768
2048
4096
8192
16384
32768

Number of states Number of states

(a) Average time required to construct ADSs (b) Average height of constructed ADSs
-Parallel-PDS 2/24Parallel-PDS 5/24-Parallel-PDS 8/2 Parallel-PDS 2/2 W Parallel-PDS 5/2 i Parallel-PDS 8/2 Parallel-PDS 8/2
=~BF-PDS2/2 @BF-PDS5/2 BF-PDS 8/2 WBF-PDS2/2 WBF-PDS5/2 i BF-PDS8/2

25 18.00
16.00
20
14.00

g i s 12.00

2 F1000

310 2 8.00

o a

s 6.00

g5 4.00

2.00
0
= & 8§ 3% 8§ g o 0.00 - ‘ o
5 - ~ w 8 16 32 64 128 256 512
Number of states Number of states
(c) Average time required to construct PDSs (d) Average length of constructed PDSs

Fig. 4: Effect of number of inputs in FSM SET I where «a € {2,5,8}/08 = 2.

the number of inputs increases, the time necessary to compute PDSS increases. When
a =8 and n > 32 the BF-PDS algorithm could not compute PDSS.

It is interesting to see that the number of inputs has a much more noticeable effect
on the time taken to produce PDSS than to produce ADSS. One possible explanation
relates to the fact that, when generating an ADSS, at each point in the algorithm there
is a set of sets of current states and one can apply different inputs in these states.
One might expect these sets of current states to be smaller than the corresponding
set of current states produced when generating PDSS (for the same depth) and so the
problem of finding a suitable next input will be more difficult for PDSS than for ADSS.
If this is the case then this difference, in the impact that the number of inputs has, may
result from the need to search through more inputs (when generating a PDS) in order
to find a next input that can be applied.

4.4.3. Effect of number of outputs. We present the results of experiments conducted, us-
ing the FSMs from FSM SET I, to explore the effect of the number of outputs in Fig-
ure 5. Interestingly, the results obtained from the proposed approaches indicate that
the time required to construct ADSS/PDSS increased with the number of outputs.
This is not the expected result, since an increase in the number of outputs will tend
to provide greater opportunity to separate states. In contrast, experimental results for
deterministic complete FSMs [Tiirker et al. 2014, 2016; Tiirker and Yenigiin 2014],
indicate that there is an inverse relationship between the time required to construct
ADSS and the number of outputs.

In order to further investigate this unexpected result we explored how many sets of
states (OVs) were processed during the construction of ADSS. We present the results in

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences

«+-Parallel-ADS 2/2#Parallel-ADS 2/5--Parallel-ADS 2/8

—BF-ADS2/2 ==BF-ADS2/5 @-BF-ADS2/8
18.00
16.00
—14.00
A
@ 12.00
2
E 10.00 »
1
2 8.00
o
g 600
= 4.00
2.00
0.00 o —
© o o <] o o~ <] o o < «Q
S8 I IR I gy I8
S8 383828 K
- ~N < 0 3 m

Number of states
(a) Average time required to construct ADSs
«<-Parallel-PDS 2/2#Parallel-PDS 2/5-=4-Parallel-PDS 2/8

==BF-PDS 2/2 ==BF-PDS 2/5 ©-BF-PDS 2/8
25.00

20.00

)
[=
14 bl
1= =)
1= =]

Time log2(msecs.

o
o
S

)
- o © N
-

256
512

-5.00
Number of states

(c) Average time required to construct PDSs

M Parallel-ADS 2/2 u Parallel-ADS 2/5 u Parallel-ADS 2/8
M BF-ADS 2/2 W BF-ADS 2/5 Wl BF-ADS 2/8
25.00
20.00
o
% 15.00
‘T
<
8 10.00 -
<
5.00
0.00
o -3 o < - o o~ < =) o o < 0
- & & & 1 49 & 2 a @ 2 8
~ & 5 & & & 2 & =&
- ~N < 0 o o
s &
Number of states
(b) Average height of constructed ADSs
M Parallel-PDS 2/2 u Parallel-PDS 2/5 ui Parallel-PDS 2/8
M BF-PDS 2/2 i BF-PDS 2/5 i BF-PDS 2/8
18.00
16.00
14.00
12.00
<
10.00
c
2
2 8.00
a
6.00
4.00
2.00
0.00 T

<
©

32

o«
N
-

256
512

Number of states

(d) Average length of constructed PDSs

Fig. 5: Effect of number of outputs in FSM SET I where o« = 2/3 € {2,5,8}.

=22 «iie2[5 =i=2[8
1000000
-]
gg 900000 /A
g < 800000 y 4
o 2 700000 7
2§ 600000 v
3 £ 500000
5 § o0 > e
5 O 300000
£ 2 200000
3 § 100000
o B8 8B 8 8 8
8 16 32 64 128 256 512 1024 2048 4096 8192 | 16384 | 32768
=m2/2 9.92 2803 65.86 | 159.88 35533 @ 775.11 1645.01 3620.98 | 7473.59 16128.8 34063.9 71610.2 | 153410
=§=2/5 37.98 | 59.17 11448 | 27672 608.37 | 1500.32 2839.01 6212.25 | 14920.5 348287 81800 186474 | 414648
—i2/8 21 73.26 | 178.07 | 385.64 964.34 2284.15 5250.48 12533.2 | 30842.2 70416.1 176004 377436 | 946875
Number of states

Fig. 6: Number of set of states (output vectors) processed while constructing the ADSS.

Figure 6. The results show that the number of sets of states processed increased with
the number of outputs. In contrast, for deterministic FSMs, the number of ‘current

states’ is always at most n.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:22 R. M. Hierons and U.C. Tirker

Similarly, as we increase the number of outputs, the BF-ADS algorithm gets slower.
However, the rate at which it slowed down was not as high as with the parallel ADS
algorithm. In the BF-ADS much of the time was spent on the first phase of the algo-
rithm. In other words, constructing the power set constitutes a large portion of the
execution time of these methods and hence the effect of the sizes of the sets of in-
puts/outputs was limited. On the other hand, in the BF-PDS algorithm we observe a
considerable improvement; the BF-PDS algorithm successfully computed all the PDSs
when n < 64.

4.4.4. Effect of transition saturation ratio. The transition saturation ratio determines what
percentage of the state/input pairs are (1) unspecified or (2) have multiple (non-
deterministic) transitions. One would therefore expect the value of the transition sat-
uration ratio to affect the performance of the proposed algorithms.

The results of the experiments indicate that the time required to construct ADSS
and PDSs was almost twice as high (for o/ = 2/2) when using the higher set of val-
ues for 7 (Figure 7). Moreover, we observe that the transition saturation ratio affects
the length/height of PDSS/ADSS: as we increase the transition saturation ratio, the
PDS/ADS cost increases.

What is more, we also observe that this is a consistent pattern; regardless of the
other FSM properties (number of states and inputs/outputs) the time required to de-
rive ADSS and PDSS and the cost of input sequences (height for ADSS and length for
PDSS) increase as 7 increases.

To investigate the cause of this, we compared (Figure 8) the number of sets of states
processed while constructing ADSS. We found that the number of sets of states almost
doubled when the transition saturation ratio was increased from the interval 10%—30%
to the interval 30% — 70%.

A similar pattern occurred with the BF-ADS and BF-PDS algorithms. As expected,
the rate at which the BF-ADS algorithm slowed was not as high as in the parallel ADS
algorithm. However, the rate at which the BF-PDS algorithm slowed was as high as
in the parallel PDS algorithm.

4.4.5. Experiments with deterministic complete FSMs. The results on deterministic com-
plete FSMs are promising. Figure 9 shows the time taken by the parallel ADS algo-
rithm divided by the time taken by the LY algorithm. We observe that regardless of
the properties of FSMs, the parallel ADS algorithm was faster than the sequential LY
algorithm. Moreover, the difference in the speeds of algorithms appears to increase
with the number of states. What is more, we also observe that the height of the ADSS
were comparable (Figure 9).

Recall that the parallel ADS algorithm tries to find reducing sequences for a given
set of states (OVs) by searching all input sequences in a breadth-first manner. We
conjectured that one reason for the parallel ADS algorithm performing better than the
LY algorithm was that the FSMs in FSM SET IV were generated through a random
process and thus input sequences that split/reduce a given set of states are expected
to be relatively short.

In order to check this, we present the average length of reducing sequences found by
the parallel ADS algorithm for deterministic FSMs in Figure 10. The results indicate
that the average length of reducing sequences were less than 3.

Moreover, our conjecture was also supported with experiments performed in s-FSMs
(Table II). Note that for an s-FSM with n states, the longest reducing sequence has
length n—1. We observe that the parallel ADS generation algorithm could not generate
ADSS in 1500 seconds for s-FSMs with n > 20. On the other hand, the LY algorithm
was able to construct ADSS for all s-FSMs.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:23

4-10% - 30% #30% - 70% 4-10% - 30% 4#30% - 70%
18 50
16 45
14 40
812 L35
wn = 30
E 10 3
® g il <25
- 9(20 -
g 6 15 |
=g 10 -
i 4 : ¥
0 T T 1 0 T
0 O N T O ONT R ONT R 0 O N T O WONTRONT R
M O NN AN OO0 0 O N O AN LN 4N O O 0 O
I N 1N O © O = M I~ - N 1IN O O O = ™ N
AN F o 0N AN g o0
- o - o
Number of states Number of states
(a) Average time required to construct ADSs (b) Average height of constructed ADSs
##10% - 30% 4-30% - 70% 4-10% - 30% w#30% - 70%
25.00 18.00

16.00 /
20.00 14.00 /
12.00 ’
<
7
& 10.00 ///,
K
2 8.00 / /
a
6.00 /
5.00 4.00

'
n
=]
S

=
o
=]
o

Time log2(msecs.)

0.00 - . T 2.00
0.00
o] o o~ < -] o o~ -] o o~ <] o o~
- [a2] o o~ wn - - (3] o ~N un el
- ~N wn - o~ wn
Number of states Number of states
(c) Average time required to construct PDSs (d) Average length of constructed PDSs

Fig. 7: Effect of 7. Comparison of results of experiments performed on FSM SET I and
FSM SET II where /8 = 2/2.

10 20 30 40 50 60
LY | 0.00 | 0.01 | 0.02 | 0.04 | 0.05 | 0.07
ADS | 0.01

Table II: Time required to construct ADSS for s-FSMs with the LY and the parallel
ADS algorithms.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:24 R. M. Hierons and U.C. Tirker

+10% - 30% <#30% - 70%
300000
© & 250000 y
2 8 l
8(
O 200000
S 5
5 [,
%5 €
8 L
= © 100000
o 2
g.:
> 2 50000
0 _
CO O N T 00 W MN T 0O O N < 00
M O AN N AN S O O W
A NINOOOdMmmM
- N T 00 W N
= ™M
Number of states

Fig. 8: Comparison of set of states (output vectors) processed while constructing the
ADSs.

4.4.6. Experiments on benchmark FSMs. We applied the parallel ADS algorithm and the
parallel PDS algorithm on each of the benchmark FSMs. The algorithms revealed that
the specification sand has an ADS but no PDS and the other specifications have no
ADSS or PDSs. The parallel ADS algorithm used 5.98 seconds and processed 285
blocks. The height of the ADS was 2. The BF-ADS algorithm was unable to respond in
1500 seconds. Although the other specifications did not have ADSS (or PDSS), as noted
above, it may be possible to find DSs for some sets of states (incomplete ADSS/PDSS).
However, as the scope of this paper is constructing ADSS (or PDSS) for all the states
of the FSMs, this is a topic for future work.

4.5. Discussion

Despite the importance of DSs in constructing test sequences, there were no published
algorithms that use GPUs for generating DSs. In this paper we proposed massively
parallel algorithms that can be executed on GPUs. The experimental results, with ran-
domly generated and real-life FSMs, indicate that the proposed parallel algorithms are
able to construct DSs from large FSMs. The proposed algorithm requires 2'° millisec-
onds to derive ADSS from FSMs with 32,000 states on average. This is important: the
results indicate that GPUs can effectively generate ADSS and PDSS from FSM specifi-
cations and this may lead to a line of research in which GPU-based parallel algorithms
for FSM-based testing are investigated. Moreover, the proposed algorithm mostly uses
GPU global memory and requires relatively little thread synchronisation. Therefore,
the proposed algorithm can derive ADSS and PDSS from larger FSMs when multiple
GPUs are used.

The proposed algorithm has one drawback: it is a brute-force algorithm. As the
length of a shortest ADS for an FSM can be 2" — 1 — n [Kushik et al. 2013], we cannot
expect there to be a polynomial time algorithm for deriving DSs from FSMs. Conse-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:25

«~2/2 =2/5 =2/8 ~+5/2 =5/5 -«5/8
0.8 0.9
0.75 088 L.
0.7 -) .
2050 T N g% LN .
E0 55 k{\l 50'84 \\‘:ﬁ\;\ 2
wn Y wn A
[a 0.82
g Lo N < R W
= 0.45 - = 038
0.4 \\A
TR S 0.78
0.35 ~—
0-3 T T T T T T T T T T T T 1 0-76 T T T T T T T T T T T T 1
0 O N S 0O NT 0 WN T 0 0 W AN SO WNT OO N T R
- O N N = N O O 0 O - N O NN = N OO 0 O
- NN O OO = MmN - NN O O O =« M N~
I N < 0 O N I N < 00 © N
- ™ - 0
Number of states Number of states

(a) Comparison of timings for LY and parallel (b) Comparison of timings for LY and parallel

ADS algorithms. ADS algorithms.
~8/2 =8/5 «8/8 ~2/2 =2[5 =2/8
1.2 1.1
11 1.05

[y
=Y

T(ADS)/T(LY)
o
(-]

°
o
4
o
|

H(ADS)/H(LY)
o
&

0.7 N 0.85

0.6 T T T T T T T T T T T T 1 0.8 T T T T T T T T T T T T 1
00 O AN T 0 O N < 0 O N < 00 O N S 00 W N T 0 O N <
AMONINAdANT O O 0 O A M OANNSNT DD DO
I N 1IN O O O = ™M N - NN O O O = MmN
- N < 00 W N - N < 0 O N
- m - ™M

Number of states Number of states

(c) Comparison of timings for LY and parallel ADS (d) Height comparison for LY and parallel ADS

algorithms. algorithms.
~+5/2 =5/5 -«5/8 ~+8/2 =8/5 «8/8
1.25 1.15
1.20 a 1.10 °
& 1.15 £ —1.05
<Dt 1.10 = K

T 105 et Z 100 e
100 A Qo905 w2
<

8
il - r
< 0.95 _—r < 0.90 =

®
To.90
085 £ 0.85
0-80 1T 1T T T T T T T T T 1 0-80 T T 1T T T T T T T T T 1
0 W NTOONTONON T 0 0 W AN O WANT 0O N T 0
MO ANNT NS RN DO AN ONINANST DO DO
ANINOOOdAMmN A NIOO O dMmMMN
SN T o 0OAN AN T 00N
=g ™) =)
Number of states Number of states

(e) Height comparison for LY and parallel ADS (f) Height comparison for LY and parallel ADS
algorithms. algorithms.

Fig. 9: Comparison of the parallel ADS and LY algorithms, where T' stands for ‘time’
and H stands for ‘height’

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:26 R. M. Hierons and U.C. Tirker

~+2/2 =2[5 «2/8 +5/2 =5/5 +5/8

w
[=}
(=]
w
[=}
o

N
ul
o

@ o
c e
] o 250
E a >
5] % o
« 2.00 » 2.00
2 - #
g 1.50 - sk g 1.50
ki =" ®
=100 — < 1.00
s s
£ 0.50 < 0.50
g &
%00 +——F—F—FF—F—F— T %000 +—++—F+—+ 71—
0 O N T 0OWONTWOON T D 0 O N T 0 WANT OO N T D
A MO ANNASNT DO DO MO NNANT OO RO
- & In S d MmN - &N In O d MmN
AN T 0 0N AN T 00N
- ™ - oM
Number of states Number of states
(a) FSMs with a = 2 (b) FSMs with a = 5

~8/2 =8/5 ~8/8

w
o
=)

N N

o v

o o
K\
1

Length of reducing sequence

1.50 - -
= o
1.00 .
0.50
000 —+—+ 7T
0 O N O WWNTOONT X
"M O NWBLdANTF AN RO
A NINO OO MmN
AN T 0 0N
— o

Number of states

(c) FSMs with oo = 8
Fig. 10: Average length of reducing sequences constructed for FSMs in FSM SET IV

quently, we can only investigate heuristic algorithms for this problem and we consider
this as a problem for future work.

5. THREATS TO VALIDITY

The threats to internal validity relate to the tools used in the experiments and the pos-
sibility that these are faulty. We carefully checked and tested the implementations of
the algorithms. We also used a further procedure to check that an ADS/PDS returned
was actually an ADS/PDS for the given FSM. The randomly generated FSMs were
produced using a tool that has been successfully used in previous experiments.

Threats to construct validity refer to the possibility that we did not measure the
properties that are of interest in practice. We were primarily interested in the time
taken to generate DSs and the size of the largest FSMs that could be processed. The
first factor is relevant since it is important that DSs can be produced in a reasonable
amount of time; otherwise practitioners will not use tools that incorporate such algo-
rithms. It is also important that techniques scale to large FSMs if FSM-based testing
is to be used with larger systems. The size of a DS is also relevant since it affects the
size of a test suite produced using the DS.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:27

Threats to external validity concern our ability to generalise from the results. Unfor-
tunately, there is no way of avoiding this threat since there is no know way of uniformly
sampling from the set of all ‘real’ FSMs and this population is not known. We tried to
reduce this threat by generating FSMs with varying properties and using some FSMs
taken from a benchmark.

6. CONCLUSION

In this paper we addressed the scalability issue encountered while constructing adap-
tive and preset distinguishing sequences (ADSS/PDSS) from partial observable non-
deterministic finite state machines (FSMs). We did this by utilising the parallelism
available in GPU Computing. We outlined an initial algorithm that finds an input se-
quence to ‘reduce’ a set of states. We then presented the parallel ADS and parallel PDS
algorithms. We provided high-level descriptions of the algorithms; to assist the reader
we also present low-level descriptions of the algorithms in the Appendix.

The paper reported the results of an experimental study that used randomly gen-
erated FSMs and FSMs from a benchmark. In the experiments, we observed that the
proposed parallel-PDS generation algorithm could derive PDSS from FSMs with 512
states and the proposed parallel-ADS generation algorithm could derive ADSS from
FSMs with 32,000 states. Moreover, the experimental results produced when using
randomly generated complete deterministic FSMs suggest that the parallel-ADS gen-
eration algorithm is faster than the fastest known ADS generation algorithm (the LY
algorithm) for complete deterministic FSMs. However, we also observed that unlike the
LY algorithm, the paralle]-ADS generation algorithm gets slower as the ADS height
increases.

During the experiments we compared the results of the proposed algorithms with
the results of existing algorithms and found that the proposed algorithms were much
more scalable: the parallel-ADS generation algorithm was able to process inputs of
up to 2048 times larger than the existing ADS generation algorithm and the parallel-
PDS generation algorithm was able to process inputs of up to 8 times larger than the
existing PDS generation algorithm.

As part of future work, we plan to investigate heuristics for deriving ADSS and
PDSS from FSMs and aim to derive shorter ADSS and PDSS from FSMs. There is also
the problem of generating ‘incomplete’ ADSS and PDSS that distinguish only some of
the states of the FSM. It may be possible to further improve the performance of the
parallel or brute-force algorithms by applying techniques developed by the verification
community. Finally, there may be scope to extend this work to generate ADSS/PDSs
to distinguish states of FSMs when testing is distributed.

Acknowledgments

This work is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant #1059B191400424 and by the NVIDIA corporation.

REFERENCES

A. V. Aho, , R. Sethi, and J. D. Ullman. 1986. Compilers, principles, techniques, and
tools. Addison-Wesley Pub. Co.

R. Alur, C. Courcoubetis, and M. Yannakakis. 1995. Distinguishing tests for nondeter-
ministic and probabilistic machines. In 27th ACM Symposium on Theory of Comput-
ing. 363-372.

M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M. Veanes.
2003. Towards a Tool Environment for Model-Based Testing with AsmL. In Formal

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:28 R. M. Hierons and U.C. Tirker

Approaches to Testing (LNCS), Vol. 2931. Springer-Verlag, Montreal, Canada, 252—
266.

R. V. Binder. 1999. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley.

Adilson Luiz Boniféacio and Arnaldo Vieira Moura. 2014a. On the completeness of test
suites. In Symposium on Applied Computing (SAC 2014). ACM, 1287-1292.

Adilson Luiz Bonifacio and Arnaldo Vieira Moura. 2014b. Partial Models and Weak
Equivalence. In 11th International Colloquium on Theoretical Aspects of Computing
ICTAC 2014) (LNCS), Vol. 8687. Springer, 80—96.

Adilson Luiz Bonifacio and Arnaldo Vieira Moura. 2014c. Test Suite Completeness
and Partial Models. In 12th International Conference on Software Engineering and
Formal Methods (SEFM 2014) (LNCS), Vol. 8702. Springer, 96-110.

Dragan Bosnacki, Stefan Edelkamp, Damian Sulewski, and Anton Wijs. 2010. GPU-
PRISM: An Extension of PRISM for General Purpose Graphics Processing Units.
In Parallel and Distributed Methods in Verification, 2010 Ninth International Work-
shop on, and High Performance Computational Systems Biology, Second Interna-
tional Workshop on. 17-19.

Dragan Bosnacki, Stefan Edelkamp, Damian Sulewski, and Anton Wijs. 2011. Parallel
probabilistic model checking on general purpose graphics processors. International
Journal on Software Tools for Technology Transfer 13, 1 (2011), 21-35.

R. T. Boute. 1974. Distinguishing Sets for Optimal State Identification in Checking
Experiments. IEEE Transactions on Computers 23 (1974), 874-877.

Franc Brglez. 1996. ACM/SIGMOD benchmark dataset. Available online at http:
/Iwww.cbl.ncsu.edu/benchmarks/Benchmarks-upto-1996.html. (1996). Accessed:
2014-02-13.

E. Brinksma. 1988. A Theory For The Derivation of Tests. In Proceedings of Protocol
Specification, Testing, and Verification VIII. North-Holland, Atlantic City, 63—74.

F. Busato and N. Bombieri. 2015. An efficient implementation of the
Bellman-Ford algorithm for Kepler GPU architectures. IEEE Trans-
actions on Parallel and Distributed Systems 27, 8 (2015), 2222-2233.
DOI:http://dx.doi.org/10.1109/TPDS.2015.2485994

Emanuela G. Cartaxo, Patricia D. L. Machado, and Francisco G. Oliveira Neto. 2011.
On the use of a similarity function for test case selection in the context of model-
based testing. Software Testing, Verification and Reliability 21, 2 (2011), 75-100.
DOI:http://dx.doi.org/10.1002/stvr.413

T. S. Chow. 1978. Testing Software Design Modelled by Finite State Machines. IEEE
Transactions on Software Engineering 4 (1978), 178-187.

Adenilso da Silva Simiao and Alexandre Petrenko. 2008. Generating Checking Se-
quences for Partial Reduced Finite State Machines. In 20th IFIP TC 6/ WG 6.1 In-
ternational Conference Testing of Software and Communicating Systems, 8th Inter-
national Workshop on Formal Approaches to Testing of Software TestCom |FATES
(LNCS), Vol. 5047. Springer, 153—-168.

Adenilso da Silva Siméao and Alexandre Petrenko. 2010. Checking Completeness of
Tests for Finite State Machines. IEEE Transactions on Computers 59, 8 (2010),
1023-1032.

A.T. Dahbura, K.K. Sabnani, and M.U. Uyar. Aug. Formal methods for generating
protocol conformance test sequences. Proceedings of the IEEE 78, 8 (Aug), 1317—
1326. DOI:http:/dx.doi.org/10.1109/5.58319

Hristo Djidjev, Guillaume Chapuis, Rumen Andonov, Sunil Thulasidasan, and Do-
minique Lavenier. 2015. All-Pairs Shortest Path algorithms for planar graph for
GPU-accelerated clusters. Journal of Parallel and Distributed Computing 85 (2015),
91-103. DOI:http:/dx.doi.org/10.1016/j.jpdc.2015.06.008 {IPDPS} 2014 Selected Pa-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:29

pers on Numerical and Combinatorial Algorithms.

A. Drumea and C. Popescu. 2004. Finite state machines and their applications in
software for industrial control. In 27th Int. Spring Seminar on Electronics Tech-
nology: Meeting the Challenges of Electronics Technology Progress, Vol. 1. 25-29.
DOI:http://dx.doi.org/10.1109/ISSE.2004.1490370

Jorg Dimmler and Sebastian Egerland. 2015. Interval-based performance modeling
for the all-pairs-shortest-path problem on GPUs. The Journal of Supercomputing
71, 11 (2015), 4192-4214. DOI:http:/dx.doi.org/10.1007/s11227-015-1514-9

E. Farchi, A. Hartman, and S. Pinter. 2002. Using a model-based test generator to test
for standard conformance. IBM systems journal 41, 1 (2002), 89-110.

F. Al Farid, M. S. Uddin, B. Barman, A. Ghods, S. Das, and M. M. Hasan.
2015. A novel approach toward parallel implementation of BFS algo-
rithm using graphic processor unit. In International Conference on Electri-
cal Engineering and Information Communication Technology (ICEEICT). 1-4.
DOI:http://dx.doi.org/10.1109/ICEEICT.2015.7307536

A. D. Friedman and P. R Menon. 1971. Fault detection in digital circuits. Prentice-
Hall.

Vahid Garousi, Lionel C. Briand, and Yvan Labiche. 2008. Traffic-aware stress
testing of distributed real-time systems based on UML models using ge-
netic algorithms. Journal of Systems and Software 81, 2 (2008), 161-185.
DOI:http://dx.doi.org/10.1016/].jss.2007.05.037

A. Gill. 1962. Introduction to The Theory of Finite State Machines. McGraw-Hill, New
York.

G. Gonenc. 1970. A method for the design of fault detection experiments. IEEE Trans-
action on Computers 19 (1970), 551-558.

Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Victor A. Braberman.
2011. Model-based quality assurance of protocol documentation: tools and
methodology. Software Testing, Verification and Reliability 21, 1 (2011), 55-71.
DOI:http://dx.doi.org/10.1002/stvr.427

D. Harel and M. Politi. 1998. Modeling reactive systems with statecharts: the STATE-
MATE approach. McGraw-Hill, New York.

Pawan Harish and P. J. Narayanan. 2007. Accelerating large graph algorithms on the
GPU using CUDA. In High performance computing—-HiPC 2007. Springer, 197—208.

M. Haydar, A. Petrenko, and H. Sahraoui. 2004. Formal Verification of Web Applica-
tions Modeled by Communicating Automata. In Formal Techniques for Networked
and Distributed Systems FORTE (LNCS), Vol. 3235. Springer-Verlag, Madrid, 115—
132.

F. C. Hennie. 1964. Fault-detecting experiments for sequential circuits. In Proceed-
ings of Fifth Annual Symposium on Switching Circuit Theory and Logical Design.
Princeton, New Jersey, 95-110.

Robert M. Hierons, Guy-Vincent Jourdan, Hasan Ural, and Husnu Yenigun. 2009.
Checking Sequence Construction Using Adaptive and Preset Distinguishing Se-
quences. In Seventh IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2009). IEEE Computer Society, 157-166.

Robert M. Hierons and Uraz C. Turker. 2014. Distinguishing Sequences for Par-
tially Specified FSMs. In NASA Formal Methods, Julia M. Badger and KristiYvonne
Rozier (Eds.). Lecture Notes in Computer Science, Vol. 8430. Springer International
Publishing, 62—76. DOI:http://dx.doi.org/10.1007/978-3-319-06200-6_5

Robert M. Hierons and Uraz C. Tirker. 2015. Incomplete Distinguishing Sequences
for Finite State Machines. The Computer Journal 58, 11 (2015), 3089-3113.
DOI:http://dx.doi.org/10.1093/comjnl/bxv041

Robert M. Hierons and Uraz C. Tiirker. 2016a. Parallel Algorithms for Testing Fi-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:30 R. M. Hierons and U.C. Tirker

nite State Machines: Generating UIO sequences. IEEE Transactions on Software
Engineering (Accepted) (2016).

Robert M. Hierons and Uraz C. Tiirker. 2016b. Parallel Algorithms for Testing Fi-
nite State Machines: Harmonised State Identifiers and Characterising Sets. IEEE
Transactions on Computers, (Accepted) (2016).

Robert M. Hierons and Hasan Ural. 2006. Optimizing the Length of Checking Se-
quences. IEEE Transactions on Computers 55 (May 2006), 618—629. Issue 5.

Jared Hoberock and Nathan Bell. 2010. Thrust: A Parallel Template Library. (2010).
http://thrust.github.io/ Version 1.7.0.

ITU-T. 1999. Recommendation Z.100 Specification and Description Language (SDL).
International Telecommunications Union, Geneva, Switzerland.

Capers Jones. 1986. Programming Productivity (I1st. ed.). McGraw-Hill, New York,
NY.

M. Kapus-Kolar. 2014. On the Global Optimization of Checking Sequences for Finite
State Machine Implementations. Microprocessors and Microsystems 38, 3 (2014),
208-215. DOI:http://dx.doi.org/10.1016/j.micpro.2014.01.007

David B. Kirk and Wen-mei W. Hwu. 2012. Programming massively parallel proces-
sors: a hands-on approach. Morgan Kaufmann.

G. Klingbeil, R. Erban, M. Giles, and P. K. Maini. 2012. Fat versus Thin Threading
Approach on GPUs : Application to Stochastic Simulation of Chemical Reactions.
IEEE Transactions on Parallel and Distributed Systems 23, 2 (Feb 2012), 280-287.

I.V. Kogan. 1973. A Bound on the Length of the Minimal Simple Conditional Diagnos-
tic Experiment. Avtomat. i Telemekh. 2 (1973).

Z. Kohavi. 1978. Switching and Finite State Automata Theory. McGraw-Hill, New
York.

William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion Variance
Analysis. Journal of the American Statistical Association 47, 260 (1952), pp. 583—
621.

N. Kushik, K. El-Fakih, and N. Yevtushenko. 2013. Adaptive Homing and Distinguish-
ing Experiments for Nondeterministic Finite State Machines. In Testing Software
and Systems (Lecture Notes in Computer Science), H. Yenigiin, C. Yilmaz, and A. Ul-
rich (Eds.), Vol. 8254. Springer Berlin Heidelberg, 33—48.

Natalia Kushik, Khaled El-Fakih, Nina Yevtushenko, and Ana R. Cavalli. 2016. On
adaptive experiments for nondeterministic finite state machines. International Jour-
nal on Software Tools for Technology Transfer 18, 3 (2016), 251-264.

Natalia Kushik, Nina Yevtushenko, and Ana R. Cavalli. 2014. On Testing against
Partial Non-observable Specifications. In 9th International Conference on the Quality
of Information and Communications Technology (QUATIC 2014). IEEE, 230-233.

Siyan Lai, Guangda Lai, Guojun Shen, Jing Jin, and Xiaola Lin. 2015. GPregel: A
GPU-Based Parallel Graph Processing Model. In High Performance Computing and
Commaunications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security (CSS), 2015 IEEE 12th International Conference on Embedded
Software and Systems (ICESS), 2015 IEEE 17th International Conference on. 254—
259. DOI:http:/dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.184

D. Lee, K. K. Sabnani, D. M. Kristol, and S. Paul. 1996. Conformance testing of
protocols specified as communicating finite state machines-a guided random walk
based approach. IEEE Transactions on Communications 44, 5 (1996), 631-640.
DOI:http://dx.doi.org/10.1109/26.494307

D. Lee and M. Yannakakis. 1994. Testing Finite-State Machines: State Identification
and Verification. IEEE Transactions on Computers 43, 3 (1994), 306—320.

D. Lee and M. Yannakakis. 1996. Principles and Methods of Testing Finite-State Ma-
chines - A Survey. Proceedings of the IEEE 84, 8 (1996), 1089-1123.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:31

Hang Liu and H. Howie Huang. 2015. Enterprise: Breadth-first Graph Traversal on
GPUs. In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC ’15). ACM, New York, NY, USA, Article
68, 12 pages. DOI:http://dx.doi.org/10.1145/2807591.2807594

S. H. Low. 1993. Probabilistic conformance testing of protocols with unobserv-
able transitions. In 1993 International Conference on Network Protocols. 368-375.
DOI:http://dx.doi.org/10.1109/ICNP.1993.340890

G. Luo, A. Petrenko, and G. v. Bochmann. 1994a. Selecting Test Sequences for
Partially-Specified Nondeterministic Finite State Machines. In The 7th IFIP Work-
shop on Protocol Test Systems. Chapman and Hall, Tokyo, Japan, 95-110.

G. L. Luo, G. v. Bochmann, and A. Petrenko. 1994b. Test Selection Based on Commu-
nicating Nondeterministic Finite-State machines Using a Generalized Wp-Method.
IEEE Transactions on Software Engineering 20, 2 (1994), 149-161.

Lijuan Luo, Martin Wong, and Wen mei Hwu. 2010. An effective GPU implementa-
tion of breadth-first search. In Proceedings of the 47th design automation conference.
ACM, 52-55.

Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU graph
traversal. In ACM SIGPLAN Notices, Vol. 47. ACM, 117-128.

E. P. Moore. 1956. Gedanken-Experiments. In Automata Studies, C. Shannon and
dJ. McCarthy (Eds.). Princeton University Press.

Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. 2014. Data-parallel
finite-state machines. ACM SIGPLAN Notices 49, 4 (2014), 529-542.

Todd Mytkowicz and Wolfram Schulte. 2012. Maine: A Library for Data Parallel Finite
Automata. Technical Report MSR-TR-2012-62. http://research.microsoft.com/apps/
pubs/default.aspx?id=168379

Alexandre Petrenko, Adenilso da Silva Sim&o, and Nina Yevtushenko. 2012. Generat-
ing Checking Sequences for Nondeterministic Finite State Machines. In Fifth IEEE
International Conference on Software Testing, Verification and Validation (ICST).
310-319. DOI:http://dx.doi.org/10.1109/ICST.2012.111

Alexandre Petrenko and Adenilso Simao. 2015. Generalizing the DS-Methods for
Testing Non-Deterministic FSMs. The Computer Journal 58, 7 (2015), 1656—1672.
DOI:http://dx.doi.org/10.1093/comjnl/bxull3

Alexandre Petrenko and Nina Yevtushenko. 2005. Testing from Partial Deterministic
FSM Specifications. IEEE Transactions on Computers 54, 9 (2005), 1154-1165.

Alexandre Petrenko and Nina Yevtushenko. 2006. Conformance Tests as Checking
Experiments for Partial Nondeterministic FSM. In 5tk Int. Workshop on Formal Ap-
proaches to Software Testing (LNCS), Vol. 3997. Springer, 118-133.

A. Petrenko, N. Yevtushenko, and G. v. Bochmann. 1996. Testing deterministic imple-
mentations from nondeterministic FSM specifications. In Testing of Communicating
Systems, IFIP TC6 9th International Workshop on Testing of Communicating Sys-
tems. Chapman and Hall, Darmstadt, Germany, 125-141.

Simon Pickin, Claude Jard, Thierry Jeron, Jean-Marc Jezequel, and Yves Le Traon.
2007. Test Synthesis from UML Models of Distributed Software. IEEE Transactions
on Software Engineering 33, 4 (2007), 252—-269.

LK. Rystsov. 1976. Proof of an Achievable Bound on the Length of a Conditional Diag-
nostic Experiment for a Finite Automaton. Cybernetics 12, 3 (1976), 354-356.

K. Sabnani and A. Dahbura. 1988. A Protocol Test Generation Procedure. Computer
Networks 15, 4 (1988), 285-297.

K.K. Sabnani, A.M. Lapone, and M.U. Uyar. 1989. An algorithmic procedure for check-
ing safety properties of protocols. IEEE Transactions on Communications 37, 9 (Sep
1989), 940-948. DOI:http://dx.doi.org/10.1109/26.35374

Nadathur Satish, Mark Harris, and Michael Garland. 2009. Designing efficient sorting

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:32 R. M. Hierons and U.C. Tirker

algorithms for manycore GPUs. In IEEE International Symposium on Parallel &
Distributed Processing IPDPS 2009. IEEE, 1-10.

Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. 2007.
Scan Primitives for GPU Computing. In Proceedings of the 22nd ACM SIG-
GRAPH /EUROGRAPHICS Symposium on Graphics Hardware (GH ’07). Euro-
graphics Association, 97-106.

D. P. Sidhu and T.-K. Leung. 1989. Formal Methods for protocol testing: A detailed
Study. IEEE Transactions on Software Engineering 15, 4 (1989), 413-426.

A.S. Simao and A. Petrenko. 2008. Generating Checking Sequences for Partial Re-
duced Finite State Machines. In TestCom /FATES. 153-168.

A.S. Simao and A. Petrenko. 2009. Checking Sequence Generation Using
State Distinguishing Subsequences. In Software Testing, Verification and Val-
idation Workshops, 2009. ICSTW °09. International Conference on. 48-56.
DOI:http://dx.doi.org/10.1109/ICSTW.2009.25

Rick Smetsers, Joshua Moerman, and David N Jansen. 2015. Minimal Separating
Sequences for All Pairs of States. Unpublished Manuscript, available at http:/ /cs.
ru. nl/rick/files/sm2015. pdf (2015).

M.N. Sokolovskii. 1971. Diagnostic Experiments with Automata. Cybernetics and Sys-
tems Analysis 7 (1971), 988-994. Issue 6. DOI: http://dx.doi.org/10.1007/BF01068822

Natalia Spitsyna, Khaled El-Fakih, and Nina Yevtushenko. 2007. Studying the sep-
arability relation between finite state machines. Software Testing, Verification and
Reliability 17, 4 (2007), 227-241.

P. H. Starke. 1972. Abstract Automata. Elsevier, North-Holland, Amsterdam.

Sarah Stowell. 2012. Instant R: An Introduction to R for Statistical Analysis. Jotun-
heim Publishing. http:/www.instantr.com/book

dJ. Tretmans. 1996. Conformance testing with labelled transitions systems: Implemen-
tation relations and test generation. Computer Networks and ISDN Systems 29, 1
(1996), 49-79.

Jan Tretmans. 2008. Model Based Testing with Labelled Transition Systems. In For-
mal Methods and Testing, An Outcome of the FORTEST Network, Revised Selected
Papers (LNCS), Robert M. Hierons, Jonathan P. Bowen, and Mark Harman (Eds.),
Vol. 4949. Springer, 1-38. DOI:http:/dx.doi.org/10.1007/978-3-540-78917-8_1

Po-Chang Tsai, Sying-Jyan Wang, and Feng-Ming Chang. Aug. FSM-based pro-
grammable memory BIST with macro command. In 2005 IEEE International
Workshop on Memory Technology, Design, and Testing, 2005. (MTDT). 72-T17.
DOI:http://dx.doi.org/10.1109/MTDT.2005.24

Uraz.C. Tirker, T. Unliiyurt, and H. Yenigiin. 2014. Lookahead-Based Approaches
for Minimizing Adaptive Distinguishing Sequences. In 26th IFIP WG 6.1 In-
ternational Conference on Testing Software and Systems (ICTSS 2014). 32-417.
DOI:http://dx.doi.org/10.1007/978-3-662-44857-1_3

Uraz.C. Tiirker, T. Unliiyurt, and H. Yenigiin. 2016. Effective Algorithms for Con-
structing Minimum Cost Adaptive Distinguishing Sequences. Information & Soft-
ware Technology 74 (2016), 69-85.

Uraz.C. Tirker and H. Yenigiin. 2014. Hardness and Inapproximability of Minimizing
Adaptive Distinguishing Sequences. Formal Methods in System Design 44, 3 (2014),
264-294. DOI:http://dx.doi.org/10.1007/s10703-014-0205-0

Uraz C. Turker. 2015. Parallel Algorithm for Deriving Reset Sequences from Deter-
ministic Finite Automata. — (2015).

H. Ural, X. Wu, and F. Zhang. 1997. On Minimizing the Lengths of Checking Se-
quences. IEEE Transactions on Computers 46, 1 (1997), 93-99.

Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of model-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:33

based testing approaches. Software Testing, Verification and Reliability 22, 5 (2012),
297-312.

Anton Wijs and Dragan Bosnacki. 2012. Improving GPU Sparse Matrix-Vector Multi-
plication for Probabilistic Model Checking. In Model Checking Software: 19th Inter-
national Workshop, SPIN 2012, Oxford, UK, July 23-24, 2012. Proceedings, Alastair
Donaldson and David Parker (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
98-116. DOI:http://dx.doi.org/10.1007/978-3-642-31759-0_9

Lei Xie, dJiaolong Wei, and Guangxi Zhu. 2008. An improved FSM-
based method for BGP protocol conformance testing. In Interna-
tional Conference on Communications, Circuits and Systems. 557-561.
DOI:http://dx.doi.org/10.1109/ICCCAS.2008.4657835

M.C. Yalcin and H. Yenigiin. 2006. Using Distinguishing and UIO Sequences To-
gether in a Checking Sequence. In Testing of Communicating Systems, M. U. Uyar,
A.Y. Duale, and M. A. Fecko. (Eds.). Lecture Notes in Computer Science, Vol. 3964.
Springer Berlin Heidelberg, 259-273. DOI:http:/dx.doi.org/10.1007/11754008_17

K. Zarrineh and S. J. Upadhyaya. 1999. Programmable memory BIST
and a new synthesis framework. In Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing, 1999. Digest of Papers. 352—355.
DOI:http://dx.doi.org/10.1109/FTCS.1999.781072

Fan Zhang and To-Yat Cheung. 2003. Optimal transfer trees and dis-
tinguishing trees for testing observable nondeterministic finite-state ma-
chines. IEEE Transactions on Software Engineering 29, 1 (Jan 2003), 1-14.
DOI:http://dx.doi.org/10.1109/TSE.2003.1166585

A. LOW-LEVEL DESIGN
A.1. Overview

The algorithms proposed in this paper are designed for many core architectures. There-
fore some of the parts of the proposed algorithms need to be executed by the GPU (De-
vice) and some portions are executed by the CPU (Host). In order to assist the reader
we now explain how we refined the high-level design, given earlier, to produce an al-
gorithm for GPU computing.

A.1.1. Performance considerations. It is important to reduce the effect of global memory
access latency, especially since we apply the thin thread strategy in which relatively
little data is stored locally. It is sometimes possible to combine several accesses, by
a GPU, into one memory transaction, this being called a coalesced memory transac-
tion [Kirk and Hwu 2012]. The basic idea is that when an item of global memory is
accessed an entire line is retrieved and placed in cache. If another thread requests
an adjacent item then this may be in the cache and so there is no need for an addi-
tional (slow) global memory access. We therefore used a storage layout that facilitates
coalesced memory access.

All multiprocessors in a warp execute the same code and so there is a need to avoid
thread divergence [Kirk and Hwu 2012]. Thread divergence occurs if a conditional
statement leads to different branching on different threads, the problem being that
the GPU will then serialise execution.

A.1.2. Data Structures. The GPU kernels called by the PSR, parallel PDS and parallel
ADS algorithms use the following three data structures:

(1) FSM vector: the F'SM vector stores the transition structure of the FSM. For state
s and input z, for each output y € Y U {e} the FSM vector returns next state
s’ € SU{-1}. Here —1 denotes there not being a transition from s with label z/y.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

1:34 R. M. Hierons and U.C. Tirker

The size of the F'SM vector is therefore n|X||Y'|. Note that for a thread ¢, and input
sequence T of length greater than 1, it might not be possible to coalesce reads on the
F'SM vector. For example, let us assume that we want to apply z = z1x2 to s;. For
x1, thread ¢; will retrieve the next state (S" = {sq, s1, ..., sy|}) information from the
ith location of the F'SM vector and it will then apply input xs to the states in S’.
This causes thread ¢; to access different locations of the F'SM vector.

(2) Working vector (W): A working vector W : (wq, w1, ...) is a vector of any type and is
used as temporary storage.

(3) Output Node (/V): An output node (ON) is a group of (four) working vectors to sim-
ulate an output vector. A single output vector can be simulated by working vectors
(N(I), N(C), N(i) and N(o0)) where N(I) holds the initial states, N(C) holds the
current states, N (i) holds the input sequence, and N (o) holds the output sequence
associated with N. Please see Figure 11.

N(I)[3,4,5
N(C)[3,5,6
)

OV(S/, T1x1, y0y1>

1

An output vector | (3,3),(4,5), (5,6) N(i

N (o) | Yoy1

Fig. 11: How an output vector can be represented by a group of working vectors.

A.2. The parallel state reducing (PSR) algorithm

The PSR algorithm calls GPU code (1) while constructing the splitting vector (SV pro-
cedure) and (2) to test if the SV corresponds to a reduction sequence for S’ (Red proce-
dure). We first describe the SV procedure and then describe the Red procedure.

A.2.1. The SV procedure. When the SV procedure is called with an input sequence z
and a set of states S’, two vectors of output nodes (Source and Target) are initialised in
GPU memory. The algorithm then enters a loop that iterates over the inputs of z.

At each iteration, a single input is applied to the current states in the Source vector
and the next states reached from these current states are written to the Target vector.
Therefore, an invariant of the SV procedure is that | Target| = |Source| * 8. After the
last input is applied the SV procedure ends.

We will be using brackets for elements of vectors. For example, Target[i].N(C)[j]
denotes the jth element of current state vector of the ith ON of the Target vector.
Moreover we will be using bold fonts to denote functions executed in GPU (kernels).
The low-level design is given in Algorithm 9.

The Source vector is initialised with a single ON Source = (INy) that contains the set
of states and empty sequences Ny = ((s1,51), (82, 52), (Sm, Sm), €, €). The initialisation of
Ny is done by a copy kernel called Copyp. g that copies the set of states from host to
device memory (i.e. copy S’ to Ny(I) and Ny(C)). The SV procedure then generates a
copy (V) of Ny (Line 1-2).

The Target vector is initialised by the CopyMultiple kernel (Line 3). As discussed
above, the Target vector has 3 elements for each element in the Source vector and so
the CopyMultiple kernel copies Ny to the Target vector 5 times. To achieve this, the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:35

CopyMultiple kernel receives the Ny and Target vectors, integer 3, and is launched
with m x § threads where |S’| = m. Thread ¢, computes the source element index (1)
which gives the index of the element to be read from Source. It also computes the ON
index (k), which gives the index of the element of ON in Target to be written to.

= (i/m)

T=1—K*m

Note that Ny has four working vectors, but Ny(i) and Ny(o) are empty. In order
to copy values from Ny(I) and Ny(C) to Target, thread t; reads the rth element of a
working vector associated with Ny and writes it to the ith element of a working vector
of the xth ON of the Target vector. Thread ¢; thus performs the following operations.

Target[k].N(I)[r] + N(I)[7]
Target[k].N(C)[r] + N(C)[7]

After the Source and Target vectors have been initialised, the SV procedure enters a
while loop (host loop) (Line 4). The host loop iterates over the inputs from z and so the
number of iterations is equal to the length of the input sequence. In each iteration, the
Apply kernel is called (Line 5) with |Source| * m threads. In the Apply kernel a thread
t; first computes « and 7 values, declares a variable sum = 0 and then enters a while
loop (kernel loop).

The kernel loop iterates over the outputs of the FSM and so iterates 8 times. In the
jth iteration, thread ¢; retrieves the current state s from Source|[x]. N(C)[r]. If s < 0,
the thread ¢; exits since the input sequence is not defined. Otherwise, given s and the
label z;/y;, t; finds the next state s’ from the F'SM vector. Thread ¢, then adds the

state number® of s’ to sum and t; writes s’ and z;/y; to the Target vector.

Target[k * B].N(C)[1] =
Target|r * B].N (i) = Target[l@ * B].N (1)x;
Target[s * B].N(0) = Target[s * B].N(0)y;

After the kernel loop, ¢; checks if sum = —1 % m. If so, z; is not defined for s and so ¢;
writes —2 to Target|s * 3].N(C)[7].

This is followed by copying the contents of the Turget vector to the Source vector.
In order to achieve this, the SV procedure needs to resize the Source vector. This is
simply done by reallocation of | Target| elements to the Source vector. Afterwards, the
Copy kernel is called with |Target| * m threads (Line 6). During the execution of the
Copy kernel, thread ¢; computes x and 7 values and copies all elements from the Target
to Source vector. Thus, thread t; performs the following operations.

Source[rk].N(I)[r] < Target[x].N(I)[T
Source|k].N(C)[r] + Target[s].N(C)
Source[k].N(i)[1] « Target[k].N(i)[r
Source[k].N(o)[r] < Target|[r].N(0)[T]

Note that a single thread can read and write the input and output sequences of an
ON, but we allow threads to write the same data to the same place to prevent thread

divergence. This is followed by the expansion of the Taurget vector from size | Target| to
size |Source| x . Then the CopyMultiple kernel is called (Line 7) with N{.

8All states other than —1 have positive state numbers and state —1 has state number —1.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

© A DGR W N e

1:36 R. M. Hierons and U.C. Tirker

ALGORITHM 3: Procedure SV.

Input: A state set S’ C S, an input sequence z = {z1,z2,...,zL}
Output: Splitting vector for S’
begin
Copyp« u(No,S"), Nj < No
Source = (Ny)
CopyMultiplep . p(Target, No,3),4 <+ 1
while : < L do
Apply(Source, Target, z;)
Set size of Source vector to | Target|, Copy p« p (Source, Target)
CopyMultiplep . p(Target, Ny, |Source| * 3)
P41+ 1

Return Source

A.2.2. The Red procedure. After the SV procedure returns, the PSR algorithm invokes
the Red procedure (Line 9 of Algorithm 1) with variables Source vector and z. In the
Red procedure, the algorithm first checks if the input sequence z is converging or not.
To achieve this the algorithm applies the Parallel Unique procedure [Hoberock and
Bell 2010] to each of the OVs of Source vector. If for a given OV O parallel unique
returns an OV vector O’ such that |O| # |O’|, the algorithm writes -2 to an element of
the Source vector.

Afterwards, the algorithm calls a kernel called ReduceCheck.

The ReduceCheck kernel uses a Cardinality vector, which is a working vector of
integers and its size is |Source|. The ReduceCheck kernel receives the Source vec-
tor, a Cardinality vector, integer m and a boolean variable isSplit (which is initially set
to be True). For each ON of the Source vector, there is one associated element in the
Cardinality vector that is initially set to 0. The ReduceCheck kernel is launched with
|Source| x m threads where each thread ¢; first computes « and 7 values and incre-
ments Cardinality[x] by one if Target[x].N(C)[r] € S using the GPU’s atomicIncrement()
operator. If Target[k].N(C)[r] = —2 or Cardinality[x] = m, isRed is set to False.

A.3. The PDS Algorithm

Recall that the parallel PDS algorithm only differs from the PSR algorithm on line 9.
Instead of calling ReduceCheck, the PDS algorithm calls the DistinguishedCheck
kernel. The DistinguishedCheck kernel is similar to the ReduceCheck kernel:
the only difference is that after incrementing Cardinality[x], thread ¢; checks whether
Cardinality[k] > 1 or Cardinality[k] = —2 and if so isRed is set to False.

A.4. The ADS Algorithm

As in the case of the PSR algorithm, while implementing the ADS algorithm we used
output nodes ON that are formed of four working sets (N(I), N(C), N(i), and N(0)).
The ADS algorithm iterates over an output node’s vector called an ADS vector (0).
The ADS algorithm receives M and S’ and it constructs an output node (/Vy) with S’
using the Copy kernel. Afterwards, the ADS algorithm enters a loop (the host loop).
In the host loop, the ADS algorithm receives one ON (V) from O and drops this item
from O if |N(I)| > 1. The algorithm then calls the PSR algorithm for N (C). If the PSR
algorithm returns an SV, the Append procedure takes place. Otherwise, the algorithm
returns “No ADS”.

A.4.1. The Append procedure. The Append procedure is used to add SV to O, however,
this is not as straightforward as a classical append operation performed in CPU mem-
ory. This is because, in the GPU we are not allowed to extend the size of a vector.
Instead, we have to allocate space in global memory with size |[SV| + |O] and we then
need to copy the ADS vector O and SV to this memory location. In order to achieve

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

Parallel Algorithms for Generating Distinguishing Sequences 1:37

this, we first take a copy of O (called Q') and expand the size of O to |SV| + |0|. We
then invoke the Copy kernel with O and O’. Note that the Copy kernel will fill the
first |O’| elements of O with values retrieved from Q'. Afterwards, the Append kernel
is invoked. Append receives vectors SV and O and integer ¢, where |Q| = ¢, as its
parameters and launches |SV| x m threads. Thread ¢; first computes « and 7 values
and then appends the contends of SV to O by performing the following steps.

Olk + £].N(I)[r] + SV[&].N(I)[7]

Ok + £].N(C)[7] + SV[k].N(C)[7]
(0)[7] < SV[K].N(i)[]
(0)[7] = SV[x].N(0)[7]

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2015.

