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Abstract 

Emotions are a vital component of social communication, carried across a range of modalities and via 

different perceptual signals such as specific muscle contractions in the face and in the upper 

respiratory system. Previous studies have found that emotion recognition impairments after brain 

damage depend on the modality of presentation: recognition from faces may be impaired whilst 

recognition from voices remains preserved, and vice versa. On the other hand, there is also evidence 

for shared neural activation during emotion processing in both modalities. In a behavioural study, we 

investigated whether there are shared representations in the recognition of emotions from faces and 

voices. We used a within-subjects design in which participants rated the intensity of facial expressions 

and non-verbal vocalisations for each of the six basic emotion labels. For each participant and each 

modality, we then computed a representation matrix with the intensity ratings of each emotion. These 

matrices allowed us to examine the patterns of confusions between emotions and to characterise the 

representations of emotions within each modality. We then compared the representations across 

modalities by computing the correlations of the representation matrices across faces and voices. We 

found highly correlated matrices across modalities, which suggest similar representations of emotions 

across faces and voices. We also showed that these results could not be explained by commonalities 

between low-level visual and acoustic properties of the stimuli. We thus propose that there are similar 

or shared coding mechanisms for emotions which may act independently of modality, despite their 

distinct perceptual inputs.  
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Non-verbal expression of emotions has important evolutionary implications for survival as 

well as for communication (Darwin, 1965/1872; Hampson, Anders, & Mullin, 2006). We need to 

rapidly classify emotions in order to recognise threat, assess social situations, and behave accordingly 

— for example, by protecting our offspring from enemies. Previous studies have shown that, although 

emotions are highly complex, we can perceive and reliably classify basic emotions via different cues 

and in different modalities, such as faces (Ekman & Friesen, 1971; Smith, Cottrell, Gosselin, & 

Schyns, 2005), bodies (De Gelder, 2006), and voices (Belin, Fillion-Bilodeau, & Gosselin, 2008; 

Sauter, Eisner, Calder, & Scott, 2010).  

Yovel and Belin (2013) have proposed that, despite their different sensory inputs, faces and 

voices might be processed using similar coding mechanisms during identity recognition. They 

reviewed cognitive, developmental, and neural evidence to show that there are many similarities 

between the representations of person identity from faces and voices, suggesting that there might be 

unified coding principles across the visual and auditory modalities. These unified coding principles 

could, for example, explain how ratings of characteristics such as information about height, or 

masculinity and femininity, can correlate and be matched across independent face and voice stimuli 

(Smith, Dunn, Baguley, & Stacey, 2016). Behavioural studies of individual differences have also 

found significant (though not high) correlations between adults’ visual and vocal emotion recognition 

abilities (Borod et al., 2000; Palermo, O’Connor, Davis, Irons, & McKone, 2013). There is little 

knowledge, however, about whether emotions from faces and emotions from voices are also 

represented using similar coding mechanisms.   

 

Processing Similarities 

Similarities in emotion recognition between faces and voices could occur because there are 

similar neural coding mechanisms across modalities, even if they are implemented in different regions 

of the brain (comparable to what happens in person identity recognition, as suggested by Yovel & 

Belin, 2013). Alternatively, it is possible that emotional stimuli from different modalities are, at least 

in part, processed in the same brain regions and share the same neural mechanisms, irrespective of 

whether these regions process all emotions or just one emotion (Calder & Young, 2005).  
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There is some consistent evidence from past studies pointing towards the latter possibility of 

modality-independent brain areas that show similar processing for both faces and voices. For example, 

the amygdala is commonly associated with the recognition of a range of emotions in both faces 

(Adolphs, Tranel, Damasio, & Damasio, 1995; Adolphs, Tranel, & Damasio, 2001; Fitzgerald, 

Angstadt, Jelsone, Nathan, & Phan, 2006) and voices (Fecteau, Belin, Joanette, & Armony, 2007; 

Phillips et al., 1998; Scott, Young, Calder, Hellawell, Aggleton, & Johnson, 1997). Furthermore, the 

right somatosensory cortex has been implicated both in the discrimination of facial emotions 

(Adolphs, Damasio, Tranel, Cooper, & Damasio, 2000; Pitcher, Garrido, Walsh, & Duchaine, 2008) 

and vocal emotions (Adolphs, Damasio, & Tranel, 2002; Banissy, Sauter, Ward, Warren, Walsh, & 

Scott, 2010). The superior temporal sulcus is not only involved in processing facial expressions of 

emotion (Engell & Haxby, 2007) but also in processing emotional vocalizations (Fecteau et al., 2007). 

In addition, the medial prefrontal cortex and the left superior temporal sulcus shows highly correlated 

activity patterns during emotion recognition from faces, voices and bodies in healthy adults (Peelen, 

Atkinson, & Vuilleumier, 2010). 

 Studies that tested the same patients in both modalities also support the idea that facial and 

vocal emotion recognition share the same neural mechanisms. For example, patients with medial 

temporal lobe epilepsy have impaired recognition of facial as well as vocal expressions of emotion 

(Bonora et al., 2011). Similarly, patients with ventral frontal lobe damage show impairment in emotion 

identification across facial and vocal expressions – although not all patients exhibit this association 

(Hornak, Rolls, & Wade, 1996). Interestingly, a meta-analysis suggested that patients with Parkinson’s 

Disease have difficulties recognising emotions from both voices and faces (Gray & Tickle-Degnen, 

2010). Finally, emotion recognition is often impaired for faces and voices in autism (Philip et al., 

2010), schizophrenia (Simpson, Pinkham, Kelsven, & Sasson, 2013), and in recently detoxified 

alcoholics (Kornreich et al., 2012), suggesting the existence of a core emotion network rather than 

separate modality-specific processes. 

There are several reasons why modality-independent mechanisms of emotion recognition 

would occur. One possibility is that these support the rapid detection of negative emotions or, more 

generally, all emotional signals, which may aid survival. Indeed, ERP studies have reported fast 
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responses to emotional faces (Eimer & Holmes, 2007; Kiss & Eimer, 2008; Liddell, Williams, 

Rathjen, Shevrin, & Gordon, 2004) as well as emotional voices (Sauter & Eimer, 2009), at around 150 

to 200 ms post stimulus onset. Alternatively, modality-independent mechanisms could also be related 

to abstract or higher-level conceptual representations of emotion categories (Scherer, 2009). For 

example, Skerry and Saxe (2014) have recently suggested that such representations, related to the 

appreciation of the causes of events, are implemented in the medial prefrontal cortex.  

Finally, similarities in emotion recognition across modalities may also originate from 

perceptual similarities and interdependence of physical features during emotion production. For 

example, Ohala (1980) suggested that smiling in the animal and human face may have originated as a 

way of modulating the resonant properties of vocalisations in order to sound more infantile or 

submissive, and thus avoid attack. Thus, the upward retraction of the lip corners and the 

accompanying changes in vocal tract resonance may have a common origin.  

 

Processing Dissimilarities 

Emotion recognition involves several processes, from perceptual analysis of individual 

features to the global categorisation of an emotion (Calder & Young, 2005; Haxby, Hoffman, & 

Gobbini, 2002; Scherer, 2009). It is possible that some of these processes are shared or have similar 

coding mechanisms across modalities, while others do not. At the sensory level, signals from the voice 

and from the face are indeed quite different. Within voices, each of the basic emotions has a unique 

acoustic profile of pitch, amplitude, and spectral cues (Sauter et al., 2010). These properties result 

from the interaction of laryngeal activity and configurations of the vocal tract. In contrast, facial 

emotion recognition is based on configural changes within the face initiated by movements of face 

muscles (Ekman & Friesen, 1976). Different combinations of contracted face muscles presented in 

specific temporal orders, such as the early wrinkled nose followed by raised upper lip during disgust 

expressions, allow for an emotion-specific profile which can be reliably discriminated from other 

emotional facial expressions (Jack, Garrod, & Schyns, 2014). Further, emotions like happiness 

produce large scale cues in the face, such as an open mouth showing teeth, which aid rapid recognition 

within the visual domain. The striking perceptual feature of teeth may guide visual search and lead to 
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fast detection of happiness (Horstmann, Lipp, & Becker, 2012). For expressions of laughter, it has 

recently been reported that information from auditory cues guided perception of audio-visual stimuli 

(Lavan & McGettigan, 2016). Therefore, perceptual features in one modality may be more salient than 

in another modality and hence, emotion processing could be modality-specific. 

Supporting the idea of modality-specific emotion recognition, and in contrast to the results 

reviewed above, some patient studies have shown that the faces and voices can be independently 

affected. For example, while the amygdala is often involved in the processing of fear in faces (e.g. 

Adolphs et al., 1995), it has been shown that an intact amygdala is not necessary for the processing of 

fearful prosody (Bach, Hurlemann, & Dolan, 2013; but see Scott et al. [1997] who also used non-

speech emotional vocalisations). Similarly, while Huntington’s disease can impair recognition of 

disgust in both faces and voices (Sprengelmeyer et al., 1996), a study of pre-clinical carriers of 

Huntington’s disease found impairments in recognising disgust in faces but not in voices 

(Sprengelmeyer, Schroeder, Young, & Epplen, 2006).  

Despite providing support for independent neural systems underlying recognition of facial 

and vocal expressions of emotion, these results do not provide direct evidence regarding whether there 

are similar coding principles or mechanisms across modalities. Furthermore, the degree of cross-

modality similarity may differ across emotions. For example, whereas perceived fear may activate the 

amygdala irrespective of modality, perceived disgust may activate the insula only with faces, and not 

with voices (Phillips et al., 1998). 

 

The Present Study 

This brief review shows that, despite extensive research on recognition of emotions from 

faces and voices, it remains unclear whether these processes rely on modality-specific computations or 

shared, modality-independent mechanisms. A major limitation of previous research is that emotion 

recognition has mostly been studied separately across faces and voices, in different groups of 

participants. Consequently, in the present study, we examined whether facial and vocal emotion 

recognition have similar coding mechanisms using a within-subjects design. This allowed us to 

directly compare the behavioural emotion recognition profiles across modalities. Participants were 
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presented with emotional faces and non-verbal affect vocalisations and rated the intensity of each 

stimulus for each of the six basic emotions (happiness, sadness, anger, fear, surprise, and disgust; 

Ekman & Keltner, 1970; Ekman & Friesen, 1975). Our analyses then characterised how emotions are 

represented within each modality, and examined how similar these representations are across 

modalities.  

As has been done before, we characterised the content of representations within each 

modality using matrices constructed from behavioural rating profiles for all six emotions (e.g. Adolphs 

et al. 1995; 1999; Belin et al., 2008; Juslin & Laukka, 2001; Sauter et al., 2010). We call these 

matrices representation matrices — they allow us to look at the confusions between all pairs of 

emotions, and we assume that two emotions which are often confused have more similar 

representations than two emotions that are never confused. Next, we compared the representations 

across modalities by correlating the representation matrices for faces with the representation matrices 

for voices. A high correlation would indicate that the representations have similar structure or content 

across modalities. In other words, if there are similar coding mechanisms for faces and voices, we 

expect to see that those emotions that are confused in faces are also confused in voices, in line with the 

idea of a general, modality-independent processor. 

Our approach is based on recent analyses of cognitive and perceptual representations in the 

brain using Representational Similarity Analyses (RSA) (Kriegeskorte, Mur, & Bandettini, 2008a, 

Kriegeskorte et al., 2008b, Kriegeskorte & Kievit, 2013). Here, we applied similar methods to our 

behavioural data in order to be able to compare representations across modalities. This approach has 

the major advantage of allowing us to compare visual and auditory representations without requiring 

one-to-one correspondence between specific stimuli or emotions in the two modalities (Kriegeskorte et 

al., 2008a).  

 

Methods 

Participants 

Participants were 54 British adults recruited through the participant pool at Brunel 

University, and through social networks. All participants were tested on the paper-based 60-item 
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Raven’s Standard Progressive Matrices (Raven, Raven, & Court, 1998). We excluded nine participants 

whose scores were below the 10th percentile on this test, according to age specific norms (Raven, 

Raven, & Court, 2000). On inspection, the low performance seemed to be due to a lack of attention 

paid to the task, and therefore we decided to exclude all data from these participants before any 

analyses. The final sample consisted of 45 participants (15 male, 30 female), aged between 18 and 61, 

(M = 30.8, SD = 16.81) with an average Raven’s score of 48.78 (SD = 4.41) out of 60 possible correct 

answers. Participants presented different educational backgrounds: secondary education and below (N 

= 15), undergraduate (N = 24) and postgraduate level (N = 6). All participants reported normal or 

corrected-to-normal vision and hearing. The study was approved by the Ethics Committee of the 

Department of Psychology, Brunel University, and all participants gave informed consent to 

participate. 

 

Materials 

The Emotion Judgment Task was programmed on the PsychoPy software in Python (Peirce, 

2007) running on an Acer ASPIRE 5735 laptop (15.6 inches; resolution 1366 x 768 pixels; refresh rate 

60 Hz) and voices were presented via closed-back, on-ear headphones (Sennheiser HD 202). The task 

contained both face and voice stimuli exhibiting the six basic emotions of happiness, sadness, anger, 

fear, surprise, and disgust (Ekman & Keltner, 1970).  

Faces were displayed by two male (identity JJ and EM) and two female (identity C and SW) 

white Caucasian actors from the Ekman Pictures of Facial Affect series (Ekman & Friesen, 1975), 

making a total of 24 pictures (one stimulus per emotion, per actor). The size of the pictures on the 

screen was 6 x 8 cm. Viewing distance was not formally controlled but was approximately set to 50 

cm. From a viewing distance of 50 cm, pictures thus subtended 6.87° x 9.15° of visual angle. The 

voice stimuli consisted of non-verbal affect bursts and were selected from the Montreal Affective 

Voices (Belin et al., 2008). Stimuli were produced by two male (identity 42 and 55) and two female 

(identity 45 and 53) white Caucasian French-Canadian actors, making a total of 24 sounds (one 

stimulus per emotion, per actor). Sounds consisted of vocal, non-verbal, affect expressions such as 

laughter or moans based on the vowel /ɑ/ and were presented for the full duration of the stimulus. The 
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mean durations of the vocal stimuli used in the present study were 1267 ms for happiness, 2039 ms for 

sadness, 971 ms for anger, 621 ms for fear, 378 ms for surprise, and 1010 ms for disgust. The face and 

voice stimuli have previously been validated and show high emotion recognition rates (Belin et al., 

2008; Ekman & Friesen, 1975). 

 

Design and Procedure 

We used a within-subjects design, in which each participant was tested on emotion 

judgements for both faces and voices. There were four blocks in the Emotion Judgment Task, two with 

face stimuli and two with voice stimuli. Each block contained stimuli from one male and one female 

actor portraying each of the six emotions1. Blocks were presented in the following order: voices (V1), 

faces (F1), voices (V2), faces (F2). Faces were presented in the centre of the display and remained 

until the participant made their response. For each trial, participants had to rate the intensity of the 

displayed emotion on a 7-point Likert-scale ranging from ‘not happy/sad/… at all = 1’, to ‘extremely 

happy/sad/… = 7’. Each stimulus was rated with respect to each of the six basic emotions. Thus, 

within a block, each stimulus was repeated six times, each time with a different label. Overall, there 

were 72 trials in each block (6 emotions x 2 sex x 6 labels). The 72 trials were presented in random 

order and no trial was repeated across different blocks. A similar design of rating tasks was used by 

Adolphs et al. (1995; 2000) to assess emotion recognition in faces.  

Participants completed a short practice session, followed by the Emotion Judgment Task and 

the Raven’s Matrices. Each task lasted less than 25 minutes and the order of tasks was 

counterbalanced. No definitions of emotions were provided. Finally, all participants were debriefed; 

psychology undergraduate students received credits as part of their course requirement.  

 

Data Analysis 

Our first analysis compared the participants’ overall task performance for rating faces and 

voices. Previous research has suggested comparable task-difficulty for non-verbal affect vocalisations 

                                                           
1 Different actors were presented in all the different blocks in order to make them independent. This was crucial 

to be able to perform the split-half analysis that we describe below.  
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and facial expressions (Hawk, van Kleef, Fischer, & van der Schalk, 2009), whilst emotions 

recognised from speech prosody showed higher error rates (see also Sauter, Panattoni, & Happe, 

2013). For the present sample and stimuli, we computed means and standard deviations for three 

dependent measures, separately for faces and voices: (1) mean reaction times for target emotions (i.e. 

trials in which the emotion label matched the emotion shown in the stimulus), (2) mean perceived 

intensity ratings of target emotions, and (3) mean accuracy (we considered a response as ‘correct’ 

when the label corresponding to the target emotion received the highest intensity rating compared to 

all the other labels. For more details on this procedure, see Kornreich et al., 2012). We then used 

paired t-tests to compare overall performance across modalities for each dependent variable.  

Our main analysis, however, aimed to compare the structure of representations of emotional 

faces and emotional voices. In order to characterise the representations of emotions for faces and 

voices separately, we computed representation matrices separately for each modality. These matrices 

of behavioural ratings and other confusion matrices are widely used in research in emotion recognition 

(e.g. Adolphs et al. 1995; 1999; Banse & Scherer, 1996; Belin et al., 2008; Calder, Burton, Miller, 

Young, & Akamatsu, 2001; Juslin & Laukka, 2001; Sauter et al., 2010). Our matrices included the 

responses using all emotion labels for each type of stimulus. Specifically, we analysed the mean 

intensity ratings for each of six labels given to each type of emotional stimulus, resulting in 36 

conditions. In each matrix, each cell shows the mean intensity rating for one emotion label given to 

one emotion stimulus. We computed these representation matrices for each participant and also the 

mean across participants.  

We then compared the representations across modalities by correlating the representation 

matrices for faces with the representation matrices for voices. We thus transformed each matrix into a 

single vector (or rating profile) and investigated the correlations of these using methods commonly 

applied in the analysis of fMRI neural response patterns (Haxby, Gobbini, Furey, Ishai, Schouten, & 

Pietrini, 2001; Kriegeskorte et al., 2008a; Kriegeskorte et al., 2008b). In addition to comparing 

representations across modalities, we also wanted to test the reliability of the responses within each 

modality. This provided us with a measure of the stability of the representations within each modality, 

and also allowed us to estimate the maximum correlation that we could expect between the rating 
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profiles. We thus computed correlations of rating profiles within- and across-modalities, to 

respectively examine the reliability of the responses within the same modality, and investigate the 

information shared across modalities. To be able to conduct these comparisons, we did a split-half 

analysis of the data. In other words, we divided the data for each participant and each modality in two 

separate and independent datasets: the first two presentation blocks formed the first half, whilst the 

third and fourth presentation block formed the second half. Hence, each half contained the same 

number of stimuli per emotion label and emotion category. This split-half analysis provided us with 

four datasets for each participant: two datasets with average intensity ratings for each label and each 

emotion for faces (F1 and F2), and two datasets with average intensity ratings for each label and each 

emotion for voices (V1 and V2). To examine the similarity of emotional response profiles, we then 

computed the correlations between the rating profiles within same modality (F1 versus F2 and V1 

versus V2) and across modalities (F1 versus V1). 

 

 

 

Results 

1. Overall task difficulty 

Our first analysis compared overall task difficulty for recognizing emotional faces and 

voices, examining three dependent measures: (1) mean reaction times for target emotions (although it 

would be difficult to interpret differences in reaction times between the modalities, given the very 

different nature of the stimuli), (2) mean perceived intensity ratings of target emotions, and (3) mean 

accuracy. For reaction times, the means were similar across faces (M = 3.94, SD = .97) and voices (M 

= 4.08, SD = 1.04), and a paired t-test showed no significant difference across modalities (t(44) = -.79, 

p = .434). For mean intensity ratings of target emotions, the mean was slightly higher for faces (M = 

5.80, SD = .56) than for voices (M = 5.52, SD = .64), and a paired t-test showed that this difference 

was significant (t(44) = 3.34, p = .002). For accuracy, emotional faces (M = .74, SD = .10) were 

perceived more accurately than emotional voices (M = .67, SD = .12), and this difference was 
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significant (t(44) = 4.35, p <.001). Therefore, these results showed that emotional faces received 

significantly higher intensity ratings than emotional voices, and were also perceived more accurately. 

 

2. Comparing the structure of representations of emotional faces and emotional voices 

For our main analysis, looking at the structure of representations of emotional faces and 

emotional voices, we first computed representation matrices separately for faces and voices in order to 

characterise how emotions are represented within each modality. These representation matrices were 

based on the mean intensity ratings for each type of emotion label given to each of the six emotions. 

Figure 1 shows the mean representation matrices (averaged across participants) for faces and voices 

separately. These matrices reveal interesting similarities between modalities. For example, for both 

faces and voices, happiness is not usually confused with other emotions, whereas fear and surprise are 

often confused. More generally, the response profiles for each emotion stimulus are very similar 

across modalities. In other words, the relationships between emotions recognised from facial 

expressions appear to be very similar to the relationships between emotions recognised from vocal 

expressions. Figure 2 shows these similarities more clearly, in which each graph presents one emotion, 

and the mean rating profile across all six labels for that emotion, separately for faces and voices.  

 

----- insert Figure 1 here ----- 

 

----- insert Figure 2 here ----- 

 

We next quantified these similarities across modalities by computing the correlations between 

the representation matrix (or rating profile) for facial stimuli and the representation matrix for vocal 

stimuli, separately for each participant. Note that this analysis does not depend on the magnitude of the 

ratings, but on the relationship between the ratings given to all emotion labels. Similar methods have 

been used previously to analyse behavioural responses to emotional stimuli (Adolphs et al., 2000; 

2002; Nummenmaa, Glerean, Hari, & Hietanen, 2014) and to analyse fMRI neural response patterns 

(Haxby et al., 2001; Kriegeskorte et al, 2008a; Kriegeskorte et al., 2008b). For this analysis, and in 
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order to perform within-modality and across-modalities comparisons, we divided the data for each 

participant in four independent datasets: two datasets with average intensity ratings for each label and 

each emotion for faces (F1 and F2), and two datasets with average intensity ratings for each label and 

each emotion for voices (V1 and V2). We then computed the correlations between representation 

matrices (or rating profiles) within same modality (F1 versus F2 and V1 versus V2) and across 

modalities (F1 versus V1)2.  

We first computed the mean correlations across participants. Since correlations are usually 

not normally distributed, correlation scores were first Fisher z-transformed. After computing the mean 

of the z-transformed scores, we computed the inverse transformation of the mean value to obtain more 

interpretable values between -1 and 1 (for the same procedure, please see Adolphs et al., 1995; 1999). 

We applied this same procedure to all instances in which we computed the mean of correlation values. 

The mean correlation across participants of the representation matrices for face stimuli (F1 versus F2) 

was r = .82 (SD = 0.23), which shows that about 67% of the variance in the representation matrices of 

one half of the face stimuli can be predicted by the representation matrices of the other half of the 

stimuli (individual and mean correlations are shown in Figure 3). We then aimed to determine whether 

these correlations were significantly different from zero. For this, we used the non-parametric 

Wilcoxon signed ranks test, which tests whether the vector of correlations comes from a distribution of 

values in which the median is zero. Crucially, all rank tests were computed with raw, non-transformed 

correlations. The signed ranks test showed that the F1 versus F2 correlations were significantly 

different from zero (z = 5.84, p < .001). For voices, the average correlation of the representation 

matrices (V1 versus V2) was r = .74 (SD = 0.26) (i.e. about 55% of variance), which was also 

significantly different from zero (z = 5.84, p < .0013). These results show high test-retest reliability of 

the representations of emotions within each modality. Critically, the representation matrices were also 

highly correlated across modalities. The mean correlation between the matrices of face and voice 

                                                           
2 We also correlated other data-split possibilities, i.e. F2 vs V2, F1 vs V2, and F2 vs V1, and we obtained similar 

results to the ones presented here (see Appendix 1). 
3 Please note that the results of most of the Wilcoxon signed ranks tests were the same (i.e. z = 5.84). This is 

because this is a test based on the sum of all positive ranks. Therefore, if all 45 participants had correlation 

scores above zero, the sum of all possible positive ranks is the same (T+ = 1035), independently of the exact 

correlation values, and then z = 5.84 (for more details, please see Siegel & Castellan, 1988). We additionally 

note that all the same comparisons were significant when we used one-sample t-tests. 
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stimuli (F1 versus V1) was r = .71 (SD = 0.24), which shows that about 50% of the variance in the 

representation matrices of faces can be predicted by the representation matrices of voices (and vice-

versa)4. Again these correlations were significantly different from zero (z = 5.84, p < .001). Hence, the 

results suggest that the perception of confusions or distinctions between emotions largely overlaps 

across the visual and auditory modalities.  

In order to compare the within- and across-modalities correlations, we conducted a repeated-

measures ANOVA with contrasts (3 levels: F1 versus F2, V1 versus V2, F1 versus V1) as the within-

subject variable. We used the z-transformed correlations in the ANOVA. The repeated-measures 

ANOVA revealed a significant main effect for contrast, F(2, 88) = 38.45, p < .001,  = .47. Pairwise 

comparisons revealed that the correlations of the representation matrices of faces (F1 versus F2) were 

significantly higher than the correlations of the representation matrices of voices (V1 versus V2) and 

higher than the correlations of the matrices across modalities (F1 versus V1), both p < .001. 

Interestingly, correlations of the representation matrices across the two modalities were not 

significantly different from the correlations of the representation matrices of voices (p = .182). These 

results show that the representations of emotions from faces are more reliable across different stimuli 

than the representations of emotions from vocal expressions. Overall, the representations of faces seem 

to have some unique information that is not shared with voices, given that there are higher correlations 

for within-modality rather than across-modalities comparisons. However, the structure of 

representations of vocal expressions of emotion largely overlaps with the representations of facial 

expressions of emotion because these across-modality correlations are not significantly higher than the 

within-modality correlations.  

 

----- insert Figure 3 here ----- 

 

To demonstrate that the high correlations of representation matrices within-modalities (F1 

versus F2, V1 versus V2) and across-modalities (F1 versus V1) were not solely driven by the presence 

                                                           
4 We also used Spearman correlations, and the mean correlations were: F1 vs F2 = .77, V1 vs V2 = .70, and F1 vs 

V1 = .65. Wilcoxon signed ranks tests showed that all correlations are significantly higher than zero (all p < 

.001). 
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of matching target-emotions (i.e. the diagonals in these matrices), we ran the same correlation analyses 

again, but this time we excluded the diagonals of all matrices. Again, to compute means across 

participants, we used z-transformed correlations and here we report the mean values after they had 

been transformed back to values between -1 and 1. The mean correlation across participants of the 

representation matrices (without diagonal) for face stimuli (F1 versus F2) was r = .68 (SD = 0.28; the 

Wilcoxon signed ranks test comparing the raw, non-transformed, correlations to zero was z = 5.84, p < 

.001) and for voice stimuli (V1 versus V2) was r = .59 (SD = 0.27; z = 5.84, p < .001). Finally, the 

mean correlation of the representation matrices across modalities (F1 versus V1) was r = .51 (SD = 

0.25; z = 5.83, p < .001). This correlation is lower than in the previous analysis, but still suggests that 

the structure of representations of emotions largely overlaps across the visual and auditory modalities. 

Individual and mean correlations are shown in Figure 4. 

Further, we repeated the repeated-measures ANOVA with contrasts (3 levels: F1 versus F2, 

V1 versus V2, F1 versus V1) as the within-subject variable, this time without the diagonal target 

emotions. As before, we used the z-transformed correlations in the ANOVA. The repeated-measures 

ANOVA revealed a significant main effect for contrast, F(2, 88) = 17.74, p < .001,  =  .29.  Pairwise 

comparisons revealed that the correlations of the representation matrices of faces (F1 versus F2, 

without diagonal) were significantly higher than the correlations of the representation matrices of 

voices (V1 versus V2, without diagonal) (p = .01) and higher than the correlations of the 

representation matrices across modalities (F1 versus V1, without diagonal) (p < .001). Again, 

correlations of the representation matrices across the two modalities were not significantly different 

from the correlations of the representation matrices of voices (p = .086). By removing the target 

emotions, we found that there was more overlap of emotion rating profiles in the within-modality 

conditions compared to the between-modalities condition (though this difference was not significant 

for voices), which suggests that some of the representational content is modality-specific. Yet, the 

emotion rating profiles across modalities are still moderately to highly correlated, suggesting that a 

large proportion of the information is shared across faces and voices, even after removing the 

diagonals in the representation matrices.  
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----- insert Figure 4 here ----- 

 

3. Comparing individual representations to mean representations across individuals 

Finally, we compared individual representations of emotions with the average 

representations from the rest of the participants. This allowed us to determine whether the high 

correlations we observed within and across modalities were related to idiosyncrasies of each 

participant’s representations (or even related to specific ways in which they responded during our 

task), or whether they were related to representations of emotions that had similar structure across 

individuals. We therefore correlated each individual’s representation matrices to matrices averaged 

across all the other participants. Here, we report results for the same comparisons as the ones shown in 

Figure 4, and thus after removing the diagonals from all matrices. The mean correlation (as before, we 

computed the mean based on z-transformed correlations, and here we report the mean values after 

being transformed back to values between -1 and 1) of each participant’s representation matrix for 

faces (F1, with half of the stimuli) with the mean matrix for faces across all the other participants 

(MF2, with the other half of the stimuli) was r = .69 (SD = 0.25; the Wilcoxon signed ranks test 

comparing non-transformed correlations to zero was z = 5.83, p < .001). Similarly, the mean 

correlation of each participant’s representation matrix for voices (V1) with the mean matrix for voices 

across all the other participants (MV2) was r = .64 (SD = 0.23; z = 5.84, p < .001). Finally, the mean 

correlation of each participant’s representation matrix for faces (F1) with the mean matrix for voices 

across all the other participants (MV1) was r = .55 (SD = 0.20; z = 5.83, p < .001), and the mean 

correlation of each participant’s representation matrix for voices (V1) with the mean matrix for faces 

across all the other participants (MF1) was r = .54 (SD = 0.20; z = 5.84, p < .001). These results show 

that representations of emotions for facial and vocal expressions have a similar structure across 

individuals (Figure 5). These similarities explained a substantial portion of the variance in individual 

profiles (on average, between 30% and 48% of the variance). However, in all the comparisons, there 

were still large amounts of unexplained variance. This unexplained variance could be related to 

individual differences in emotion representation. In the future, it will be very interesting to explore 

potential factors that may contribute to these individual differences.  
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----- insert Figure 5 here ----- 

 

4. Comparing behavioural representations to representations of low-level properties of the stimuli 

 Confusions between different emotions are often attributed to similar perceptual features 

within one modality, such as image-based properties in faces (Calder et al., 2001), muscle 

configurations in faces (Jack et al., 2014), or acoustic properties in voices (Banse & Scherer, 1996; 

Juslin & Laukka, 2001; Sauter et al., 2010). In a similar view, Juslin and Laukka (2003) found several 

similarities between the patterns of emotion perception across voices and music, and suggested that 

those could be largely explained by similarities of acoustic cues. It is therefore important to examine 

whether the high correlations that we observe between the rating profiles across modalities could be 

explained by the visual and acoustic properties of the stimuli.  

It is possible that the visual and acoustic properties of the stimuli are themselves correlated 

across modalities, as a result of interdependence between the activation of face and vocal tract 

musculature during emotion expression (e.g. Ohala, 1980). On the other hand, if the behavioural 

correlations are not due to the acoustic or visual properties of the stimuli, it could be that they result 

from modality-independent processes, such as abstract representations of emotions (e.g. Scherer, 

2009; Skerry & Saxe, 2014). To distinguish between these two possibilities, we carried out analyses of 

the low-level (visual and acoustic) properties of the emotional stimuli and obtained representation 

matrices for each visual and acoustic cue. We then computed partial correlations between the 

behavioural matrices, while removing the variance due to each visual and acoustic cue. We next 

describe these analyses in detail. 

 

4.1. Visual analysis of faces 

First, we carried out an analysis of the visual properties of the faces. For this, we based our 

methods on Calder et al. (2001), who examined whether principal component analyses (PCA) of 

images of emotional faces supported facial expression recognition. The authors found that it was 

possible to categorise the different emotions based on the outputs of the PCA. Critically, the pattern of 
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miscategorisations was similar to that of human observers. These results showed that linear analysis of 

the visual information present in images of facial expressions allows the categorisation of emotions in 

a manner that is consistent to human performance.  

Here, we based our analysis on the same visual properties that were used by Calder et al. 

(2001). Specifically, Calder et al. (2001) included three datasets in which they conducted the PCAs: 

(1) full images, corresponding to the greyscale pixel values of full face images that had been modified 

to have the eyes aligned to the same position ; (2) shape-free images, corresponding to the greyscale 

pixel values of face images that had been modified to have the same average-shape, and (3) shape-

only, which corresponded to the x and y coordinates of 35 anatomical feature points on the face. The 

best results, in terms of accurate categorisation of emotions, were obtained by combining the visual 

information from shape-free images and shape-only coordinates.  

Like Calder et al. (2001), our analyses of visual information considered three separate 

datasets, each related to a different visual property. The first dataset consisted of pixel values of the 

face images, after we had aligned the position of the eyes. The second dataset consisted of pixel values 

of the face images, after we had aligned all images to have all anatomical features in the same 

position. The third dataset consisted of vectors of the x and y coordinates of 49 features in the face 

(Calder et al. [2001] did not specify the 35 features that they used, and here we used 49 features that 

could be clearly identified). We then created several representation matrices, each based on one 

specific visual property. 

In order to prepare all the face stimuli for each dataset, we used Psychomorph (Tiddeman, 

Stirrat, & Perrett, 2005). As a first step, we removed external features of the faces, such as hair and 

ears. Then, all stimuli were aligned to have the eyes in the same position (the coordinates of the eyes 

were based on the average of all the face images). There was no further processing for the images in 

the first dataset. For the images in the second dataset, we started with the images from the first dataset 

and created an average of all the images. We then transformed each image to have the same shape (i.e. 

the same shape coordinates) as the average image. The third dataset consisted of the x and y 

coordinates of 49 points in the face (using the same images from the first dataset); each point 

corresponded to a clear anatomical landmark. 
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We next computed representation matrices based on each of these three datasets. For this, we 

needed to compute the similarity across pairs of faces within each dataset. Therefore, separately for 

each dataset, we computed Euclidean distances5 between each pair of faces. Specifically, for the first 

two datasets, we computed the Euclidean distances between vectors consisting of the pixel values 

corresponding to each image. We used the same oval to mask for each face (in order to avoid 

including the contours of the face), and the vectors only included the greyscale values inside the oval. 

The similarity between two faces thus consisted of the Euclidean distance between two such vectors. 

For the third dataset, Euclidean distances were computed using the coordinates of the positions of the 

49 features in the face as vectors. We transformed the x and y coordinates for each image in a single 

vector by concatenating the y coordinates after the x coordinates (Calder et al., 2001), and then 

computed the Euclidean distance between each pair of vectors corresponding to each pair of faces. 

In addition to using Euclidean distances to examine the similarity of the positions of face 

features (third dataset), we also conducted Procrustes analysis, which specifically allows the 

comparisons of the shapes of two objects (Bookstein, 1991; Rohlf & Slice, 1990). Procrustes analysis 

consists of the linear transformation (translation, scaling, and rotation) of the shape of one object to 

best match the shape of another object. As a measure of similarity, we then used the sum of the 

squared errors between the transformed (superimposed) shapes. This approach has previously been 

used to compare the shapes of body parts, such as hands (Longo & Haggard, 2010) and faces (e.g. 

Fink et al., 2005; Pound, Penton-Voak, & Brown, 2007; Pound et al., 2014). We used Matlab version 

8.2.0.701 (Mathworks, Natick, MA, USA) to carry out the Procrustes analysis. The data for each face 

consisted of the x and y coordinates of the same 49 features that we used in the previous analysis. 

Then, for each pair of faces, we transformed the shape (i.e. positions of features) of the first face to 

match the shape of the second face, and computed the Procrustes dissimilarity between the resulting 

transformed shapes6.  

                                                           
5 Given that we compute Euclidean distances, it would be more natural to describe the dissimilarity between 

faces. However, in order to be consistent with the previous sections, we have used the term similarity 

throughout.  
6 As for Euclidean distances, zero means that the two shapes are the same, and higher values indicate more 

dissimilar shapes. For consistency, we will again use the term ‘similarity’ instead of ‘dissimilarity’.  
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We computed the similarity of each pair of images by using all four methods described above. 

We only compared the images of faces with the same identity (i.e. identity of the person shown on the 

image), and then averaged all the matrices across different identities. We therefore created four 

representation matrices of visual properties of the stimuli: (1) Full images: representation matrix based 

on the Euclidean distances between vectors consisting of pixel values of the full images which had all 

eyes aligned, (2) Shape-Free images: representation matrix based on the Euclidean distances between 

vectors consisting of pixel values of shape free images, (3) Shape-49: representation matrix based on 

Euclidean distances between vectors consisting of the coordinates of 49 facial features, (4) Shape-49-

Procrustes: representation matrix based on Procrustes analysis. These four representation matrices are 

shown in Appendix 2. 

 

4.2. Acoustic analysis of voices 

The analysis of the acoustic properties of the voices was based on methods used by Sauter et 

al. (2010), who showed that the linear analysis of acoustic properties of non-verbal emotional 

expressions of emotion could support categorisation of emotions in a psychologically plausible 

manner. In other words, it is possible to categorise emotions purely based on the analysis of acoustic 

properties of the stimuli, and the pattern of miscategorisations is consistent with errors made by human 

observers. 

For the present study, we aimed to examine the similarity between vocal expressions of 

individual emotions based on their acoustic properties alone. For each stimulus, we therefore extracted 

the same ten acoustic properties used by Sauter et al. (2010), including measures of fundamental 

frequency (F0), spectral properties, amplitude, and periodicity: (1) total duration (seconds), (2) 

amplitude: standard deviation (dB), (3) mean intensity (dB), (4) number of amplitude onsets, (5) F0 

minimum (Hz), (6) F0 maximum (Hz), (7) F0 mean (Hz), (8) F0 standard deviation (Hz), (9) spectral 

centre of gravity (Hz), and (10) standard deviation of the spectrum (Hz). We additionally extracted 

four other acoustic properties to further describe the periodicity of these vocalisations: (11) mean 

harmonics-to-noise-ratio (dB), (12) jitter, (13), percentage of unvoiced segments, and (14) shimmer. 
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These acoustic properties are described in more detail in Appendix 3. For each vocal stimulus, we 

extracted these acoustic properties using PRAAT (Boersma & Weenink, 2015).  

We then created representation matrices based on each of these acoustic properties by 

computing the similarity across pairs of vocal stimuli. For each acoustic property, and for each pair of 

stimuli, we computed the Euclidean distance between the single values for that property7. Similar to 

the analysis of face stimuli, we only compared pairs of stimuli belonging to the same person identity, 

and then averaged all the matrices across different identities. We therefore created fourteen 

representation matrices, each corresponding to an acoustic property. These fourteen representation 

matrices are shown in Appendix 3. 

 

4.3. Behavioural matrices 

In order to be able to compare the visual and acoustic representation matrices with the 

behavioural representation matrices, all matrices needed to be symmetric. Furthermore, there should 

be a one-to-one correspondence between the entries in all the matrices. However, whilst the 

representation matrices of acoustic and visual properties are symmetric (Appendices 2 and 3), the 

behavioural matrices that we used above (sections 2 and 3) were not symmetric across the diagonal. 

We therefore needed to change the format of the behavioural representation matrices by computing 

them in a new manner, comparable to the way in which the representation matrices for the low-level 

properties were constructed. Briefly, we computed the similarity of each pair of emotional stimuli 

using the six emotion labels as features. This procedure is also comparable to the way in which 

representational matrices are computed in fMRI studies (e.g. Kriegeskorte et al., 2008a; 2008b), in 

which voxels are the features; see also Skerry and Saxe (2015) who recently used a comparable 

method to compute similarities of behavioural ratings of emotions. More specifically, we computed a 

representation matrix for each participant, each modality, and each person identity. Each identity was 

represented by six separate stimuli, each corresponding to one emotion. Each stimulus was rated for 

six different emotion labels. Therefore, within each modality and for each pair of stimuli of the same 

                                                           
7 We also built a representation matrix using all the acoustic properties at the same time. In other words, each 

stimulus was represented by a vector composed of all the values for all acoustic properties. This representation 

matrix, however, was not correlated with behavior, and therefore we do not show this analysis here.  
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identity, we computed the Euclidean distance between the two vectors consisting of the ratings for the 

six emotion labels (i.e. vectors consisting of six rating values)8. This analysis resulted in four 

representation matrices for faces and four representation matrices for voices for each participant. We 

then averaged all representation matrices within the same modality, which resulted in one 

representation matrix for emotional faces and one representation matrix for emotional voices for each 

participant (Appendix 5 also shows results of all the same analyses as described below but using non-

averaged matrices for each modality). Crucially, computing the matrices in this manner does not 

change the previous conclusions, as can be seen in Appendix 4. Appendix 4 shows the mean 

representation matrices for judgments from faces and voices and also includes the same analyses that 

had been done for Figures 3 and 4 but now using the new behavioural matrices. These analyses 

demonstrate that the results are similar using the new matrices. Correlations between the matrix for 

faces and the matrix for voices (only the lower triangular part of each matrix) for each individual can 

be seen in Figure 6A (last column). The mean correlation for all participants was r = .60 (SD = 0.34; 

the result of the Wilcoxon signed ranks test comparing non-transformed correlations to zero was z = 

5.81, p < .001). 

 

4.4. Accounting for low-level properties 

For each participant, we first correlated the four representation matrices for visual properties 

with the behavioural representation matrices for emotional faces. Figure 6A shows the individual 

correlations, as well as the means across all participants. The results showed that none of the visual 

properties strongly predicted participants’ behavioural responses. Only the two representation matrices 

with shape information correlated with the behavioural matrices for faces significantly above zero. 

The mean correlation of the representation matrix using Euclidean distances between shape vectors 

(Shape-49) and the behavioural matrices was r = .11 (SD = 0.18), which was significantly above zero 

(z = 3.43, p < .001). The mean correlation of the representation matrix using Procrustes distances 

between shape vectors (Shape-49-Procrustes) and the behavioural matrices was r = .25 (SD = 0.19) 

                                                           
8 Please note that it is also possible to use correlations in order to compute similarities between the two vectors, 

but we used Euclidean distances to keep it consistent with the analyses of the acoustic properties, in which it 

would not be possible to compute correlations because there was one single value for each stimulus. 
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and again, these correlations were significantly above zero (z = 5.37, p <.001). This latter 

representation matrix seemed to be the best predictor of the behavioural ratings of emotional faces. 

 

----- Insert Figure 6 here ----- 

 

In a second step, we computed partial correlations between the individual representations 

matrices for faces and voices, while controlling for the representation matrices for each visual 

property. Figure 6B shows that these partial correlations were still very high (all mean r > 0.61; 

Wilcoxon signed ranks tests comparing correlations to zero: all z > 5.80, all p <.001), and therefore the 

visual properties that we considered here do not seem to account for the crossmodal behavioural 

correlations. 

We also conducted similar analyses for the acoustic properties, by computing the correlations 

between each of the fourteen representation matrices for acoustic properties and the behavioural 

representation matrices for emotional voices for each participant. Figure 7A shows the individual 

correlations as well as the means across participants. The results showed that several of the acoustic 

properties describing amplitude, periodicity, and spectral properties of the vocalisations (acoustic cues 

1 to 4, and 10 to 14, see Appendix 3) were good predictors of participants’ behaviour (all mean r > 

0.22; Wilcoxon signed ranks tests comparing correlations to zero: all z > 4.79, all p < .001). However, 

the correlations between the representation matrices for acoustic cues 5 to 9 and the behavioural 

matrices for voices were not significantly above zero. 

 

----- Insert Figure 7 here ----- 

 

Finally, we computed partial correlations between the individual behavioural representations 

matrices for faces and voices, while controlling for the representation matrices for each acoustic cue. 

Figure 7B shows that these partial correlations were still quite high (all mean r > 0.44; Wilcoxon 

signed ranks tests comparing correlations to zero: all z > 5.41, all p < .001), and therefore the acoustic 

properties that we considered here did not account for most of the crossmodal behavioural 

correlations. In other words, while the acoustic properties account for significant amounts of variance 
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of the behavioural representation matrices of emotional voices, they do not seem to account for most 

of the shared variance between emotional faces and emotional voices.  

It is possible, however, that our averaging of the representation matrices of low-level 

properties across different stimuli may have distorted the results. In particular, the matrices could be 

quite different for distinct identities and, therefore, the mean matrices that we used (in which we 

averaged representation matrices of different identities of the stimuli) would be non-interpretable and 

distort the results. Therefore, we performed separate analyses without averaging the representation 

matrices across different identities. In these analyses, each entry to a representation matrix was a 

stimulus, resulting in a 24-by-24 matrix. These analyses are shown in Appendix 5. Appendix 5 shows 

that the results using these non-averaged matrices were comparable to the results described above, and 

therefore the averaging procedure did not seem to distort the results. 

To this point, our analyses suggested that single low-level visual or acoustic properties do not 

account for the majority of the shared variance between the representation matrices of emotional faces 

and emotional voices. However, it is possible that a combination of the low-level properties would be 

able to better account for this shared variance. We therefore carried out multiple regressions to remove 

the variance accounted for by multiple low level properties from the behavioural representation 

matrices. There are, however, a couple of important caveats when conducting these analyses. First, 

several of the predictors were highly correlated (Appendix 6 has a correlation matrix of all the low-

level properties used here). Second, there were many predictors and very few data points per 

regression. In fact, because of this, it was impossible to conduct multiple regression with all the 

acoustic predictors using the average representation matrices. Therefore, we conducted multiple 

regressions using the 24-by-24 non-averaged representation matrices. The results of these analyses are 

described in Appendix 7 and show that, even when accounting for multiple visual properties of the 

faces or acoustic properties of the voices, the correlations across faces and voices did not substantially 

decrease.  

We conclude that the visual and acoustic properties of the stimuli do not seem to account for 

most of the shared variance between the representations of emotional faces and emotional voices. We 

note, however, that some of the partial correlations decreased when controlling for the low-level 
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properties, especially when controlling for acoustic properties (see Figure 7 and Appendix 7). This 

suggests that some of the acoustic properties of the voices may account for some of the shared 

variance in the ratings of emotions, and it will be interesting to systematically examine the role of 

these acoustic properties in future studies. Furthermore, the correlation matrix in Appendix 6 also 

suggests that the representation matrices for some of the visual and acoustic properties are correlated, 

even if those correlations are low. This could be due to the interdependence between vocal production 

and change in facial muscles (Ohala, 1980), or could be more generally related to the idea that faces 

and voices may carry redundant signals, leading to more accurate judgments (Smith et al., 2016). It 

will be interesting to explore this in future studies, using a greater diversity of stimuli, and an even 

wider selection of acoustic and visual properties — it would be particularly interesting to conduct 

these analyses of low-level properties using voices and faces of the same actors, as this would control 

for extra variability that was introduced by having different people posing the vocal and facial 

emotions.   

 

 

 

Discussion 

In this study we aimed to compare the representations of emotions across faces and voices. 

We used an approach based on Representational Similarity Analysis (Kriegeskorte et al., 2008a, 

2008b; Kriegeskorte & Kievit, 2013). Briefly, we examined the structure or geometry of the 

representations within each modality by computing representation matrices for faces and voices 

separately, and then we compared the representations across modalities by correlating these matrices. 

Our results showed high correlations between the representation matrices for faces and the 

representation matrices for voices, which suggest similar representations of the six basic emotions 

across modalities. In other words, participants associated specific emotion-stimuli with specific 

emotion-labels, and this pattern was consistent within, as well as across modalities. We also found that 

the structure of these representations is quite similar across individuals, though there was also unique 
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variance for each individual. In the future, it will be very interesting to determine variables that may 

contribute to individual differences in emotion representation profiles. 

We also examined whether the shared variance between representations of facial and vocal 

expressions of emotion could be explained by the physical properties of the stimuli. Specifically, we 

computed representation matrices for the faces and the voices based on their physical properties. For 

faces, we used texture and shape information, based on the analysis of facial expressions by Calder et 

al. (2001). For the voices, we used acoustic properties related to fundamental frequency, spectral 

properties, amplitude, and periodicity of the vocalisations, based on the analysis of vocal expressions 

by Sauter et al. (2010). Correlations of the representation matrices based on physical properties of the 

stimuli with the behavioural representation matrices showed that they could account for some of the 

variance within each modality. However, when we removed the variance explained by these low-level 

properties, there were still moderate (and significant) correlations between behavioural representations 

of emotional faces and emotional voices.     

Our results extend previous studies showing that individual differences in vocal emotion 

recognition are correlated with individual differences in facial emotion recognition (Borod et al., 2000; 

Palermo et al., 2013). These past studies, however, had only focused on the overall ability to recognise 

emotions in each modality. Conversely, here we focused on the full representations of the six basic 

emotions to demonstrate that their representational structure or geometry is similar across faces and 

voices, suggesting similar or shared mechanisms across modalities. 

Despite these similarities across modalities, we also found some differences between face 

and voice emotion recognition. These can be seen in the higher correlations of the representation 

matrices within modalities than the correlations across modalities (though this was only significant for 

face matrices). The higher within-modality correlations show that there is modality-specific 

information in these representation matrices that is not shared across modalities. The modality-specific 

representational content could be related to the physical properties of the stimuli themselves.  

Based on the present findings, and in line with previous behavioural studies (Borod et al., 

2000; Palermo et al., 2013), we suggest that emotions may be largely categorised by modality-

independent mechanisms. Confusions between different emotions are often attributed to similar 
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perceptual features within one modality, such as image-based properties in faces (Calder et al., 2001), 

muscle configurations in faces (Jack et al., 2014), or acoustic properties in voices (Banse & Scherer, 

1996; Juslin & Laukka, 2001; Sauter et al., 2010). In a similar view, Juslin and Laukka (2003) found 

several similarities between the patterns of emotion perception across voices and music, and suggested 

that these could largely be explained by similarities of acoustic cues. However, our findings suggest 

that explanations based on low-level visual or auditory perceptual features may be incomplete. Instead, 

emotion recognition may also depend on modality-independent processes. 

These modality-independent processes could be rooted in top-down mechanisms.  For 

example, rapid responses to emotional compared to neutral stimuli are seen for both faces (e.g Eimer 

& Holmes, 2007) and voices (Sauter & Eimer, 2009). There could also be modality-independent 

representations consisting of abstract representations of emotions, for example linked to the appraisal 

of situations or events that cause the various emotions (Scherer, 2009; Skerry & Saxe, 2014; 2015). In 

a similar view, the same semantic representation of emotion categories may be activated across 

different types of stimulus presentation formats, as has previously been shown for objects depicted in 

pictures or as written words (Shinkareva, Malave, Mason, Mitchell, & Just, 2011). This explanation 

could also be related to the specific task we used, which may have relied on the semantic use of 

emotion categories or labels. Future studies could test whether similarities across modalities still hold 

up when using tasks that do not rely on labels or categorical contexts, such as perceptual matching 

tasks.  

Our findings are also compatible with studies suggesting that modality-independent 

mechanisms could be implemented in multimodal brain regions. For example, it seems reasonable that 

specific subcortical structures such as the amygdala process emotions independently of modality 

(Phillips et al., 1998). It is also possible that a wider network of structures is active during emotion 

recognition (Peelen et al., 2010; Skerry & Saxe, 2014) despite the great perceptual differences in 

sensory inputs from faces and voices. Again, this may be irrespective of whether individual brain 

regions are emotion-specific or not. However, it is also possible that the two modalities are processed 

in separate regions that are modality specific, but which have similar coding mechanisms. In either 

case, we suggest that Yovel and Belin’s (2013) proposal of common underlying coding mechanisms 
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for recognising person-identity from faces and voices may also apply to recognising emotions from 

faces and voices. 

What could be the benefit of modality processing similarities during emotion recognition? In 

everyday life, emotions in faces or voices may not always be expressed in isolation. In other words, it 

is very common that emotions are expressed simultaneously across modalities. For the integration of 

signals across modalities, Hagan, Woods, Johnson, Calder, Green, and Young (2009) found increased 

activity in posterior regions of the superior temporal sulcus (STS) during the combined processing of 

fearful static facial expressions and non-verbal emotion vocalizations, compared with unimodal 

presentations. Further, Kreifelts, Ethofer, Shiozawa, Grodd, and Wildgruber (2009) reported a 

functional segregation of emotion processing in the STS, with specific parts of the STS being either 

sensitive to faces or to voices. Interestingly, parts of the STS that spatially overlapped between face 

and voice-selective regions were active during audio-visual emotion recognition. This shared use of 

neural structures, such as the STS, as well as the current behavioural processing similarities during 

emotion recognition across faces and voices may be purposefully linked to facilitate the integration of 

information from several modalities.  

Alternatively, everyday exposure to multimodal emotion expressions may have strengthened 

our associations of emotion representations from individual modalities so that the recognition from 

one modality is associated with the recognition from another modality. In line with this, there may be 

physical interdependence between the activation of face and vocal tract musculature during emotion 

expression. As Ohala (1980) suggested, the retraction of the corners of the mouth – which typically 

accompanies a smile – causes an increase in the frequency range of sounds, which typically makes 

them resemble infantile vocalisations. Similarly, muscular activation of the mouth and tongue, which 

reflect functionally adaptive behaviours such as vomiting, not only creates the typical face expression 

of disgust but also modifies configural properties in the upper vocal tract, creating typical vocal 

expressions of disgust (Scherer, 1994). However, according to this view, we would have expected that 

the low-level properties of the stimuli would have accounted for a larger proportion of the shared 

variance across faces and voices. This was not the case here, but future studies using facial and vocal 

expressions posed by the same actors, and additional visual (for example, looking at muscle activity of 
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the face over time) and acoustic properties (for example, considering the time-course of the sound, and 

not just taking a mean value) could further probe this hypothesis. Finally, it could be that confusions 

between emotions emerge because of shared physiological responses across specific pairs of emotion, 

and the associated perception of those responses (James, 1884; Nummenmaa et al., 2014). In this 

view, the modality in which the stimuli are presented does not affect the physiological responses.   

In our study, to characterise the structure of representations of emotional stimuli, we initially 

used the intensity ratings of different emotion labels for each emotional stimulus, as done in previous 

studies (e.g. Adolphs et al., 1995; 1999; 2000; Calder et al, 2001; Sauter et al., 2010). Furthermore, in 

our analyses comparing the behavioural representations to representations of low-level properties of 

the stimuli, we additionally used Euclidean distances between the vectors of intensity ratings (on the 

six emotion labels) for each stimulus. However, a more standard method of characterising the structure 

of representations is to use pairwise similarity judgments (i.e. where participants rate the similarity 

between two stimuli). Kriegeskorte and Mur (2012) have also recently proposed the multiple 

arrangement method, in which participants arrange multiple stimuli in two-dimensional space 

according to their perceived similarities. In this latter approach, the similarities are inferred from the 

distances between stimuli. For visual stimuli, the multiple arrangement method is substantially faster 

than acquiring pairwise similarity judgments, but may incur additional working memory demands for 

auditory stimuli. Nonetheless, we think that it would be very interesting in future work to compare our 

current approach with the outcomes of pairwise similarity judgments and the multiple arrangement 

method.   

 

Conclusions and Future Studies 

Overall, the present behavioural study demonstrates interesting parallel representations for 

recognising emotions displayed in static faces and vocal affect bursts. Possible (and non-mutually 

exclusive) explanations for this include modality-independent higher level representations, underlying 

shared neural networks, or the interdependence of facial and vocal musculature during emotion 

production. In our study, for the static faces as well as for non-verbal affect bursts, emotions were 

portrayed in iconic and prototypical ways, which are relatively easy to recognise across both 
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modalities. For future studies, it would be interesting to compare iconic emotion expressions portrayed 

by actors in a prototypical manner with more spontaneous and authentic expressions of emotion. 

Further, it may be interesting to extend this approach to include dynamic face or body expressions 

from a larger variety of actors in order to investigate whether the present claims of modality-

independent emotion processing hold up to a wider range of stimuli. In order to control for sources of 

variability related to the identity of the people posing the emotions, it would also be informative to 

compare the representations of emotions from facial and vocal stimuli generated by the same actor. 

Finally, future studies investigating the origin, development, and neural correlates of these similarities 

could provide a deeper insight into the common mechanisms between facial and vocal emotion 

processing.  
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Figure 1. 

 

 

 
 

Figure 1. Representation matrices for faces and voices with mean intensity ratings across participants. 

Each cell shows the mean intensity rating for one emotion label (x-axis) given to one type of emotion stimulus 

(y-axis). Ha = happiness, Su = surprise, Fe = fear, Sa = sadness, Di = disgust, An = anger. 
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Figure 2. 

 

 

Figure 2. Mean emotion rating judgements and standard errors (SE) for each of the six emotions 

presented, split by modality. The word at the top of each plot shows the emotion of the stimulus presented, and 

the x-axis shows the six emotion labels. Ha = happiness, Su = surprise, Fe = fear, Sa = sadness, Di = disgust, An 

= anger. 
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Figure 3. 

 

 

 
 

Figure 3. Correlations of the representation matrices (or rating profiles) of emotional stimuli either within 

the same modality (F1 vs F2 and V1 vs V2) or across different modalities (F1 vs V1). Each black empty 

circle represents one participant, and the red filled circles with a line indicate the mean correlations across 

participants. 
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Figure 4. 

 

 

Figure 4. Correlations of the representation matrices (or rating profiles) of emotional stimuli either within 

the same modality (F1 vs F2 and V1 vs V2, both without diagonal) or across different modalities (F1 vs V1, 

without diagonal). Each black empty circle represents a participant, and the red filled circles with a line indicate 

the mean correlations across participants. 
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Figure 5. 

 

 
 

Figure 5. Correlations of the representation matrices (or rating profiles) of emotional stimuli either within 

the same modality (F1 vs MF2 and V1 vs MV2, both without diagonal) or across different modalities (F1 

vs MV1 and V1 vs MF1, both without diagonal). These correlations were computed between an individual 

representation matrix and the mean representation matrix of all other participants. M indicates mean across 

participants. Each black empty circle represents a participant, and the red filled circles with a line indicate the 

mean correlations across participants. 
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Figure 6. 

 

 
 

Figure 6. Analysis of low-level visual properties. Panel A shows correlations of representation matrices using 

visual properties of the images (1: Full images, 2: Shape-Free images, 3: Shape-49, 4: Shape-49-Procrustes) and 

the behavioural matrices for faces. Each circle shows the corrrelation for one participant, and the red full circle 

shows the mean across participants. The matrices using shape information seem to be the best predictors of 

behaviour. The last column in Panel A shows the correlations of the representation matrices for emotional faces 

and emotional voices. Panel B shows the partial correlations between the representation matrices for faces and 

the representation matrices for voices, while controlling for each of the visual properties. Each circle shows the 

partial corrrelation for one participant, and the red full circle shows the mean across participants. All partial 

correlations are still high, even after controlling for the variance of the visual properties of the images.  
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Figure 7. 

 

 
 

Figure 7. Analysis of low-level acoustic properties. Panel A shows correlations of representation matrices 

using acoustic properties of the images (A1: Total duration, A2: Amplitude SD, A3: Mean intensity, A4: Numbe 

of amplitude onsets, A5: F0 minimum, A6: F0 maximum, A7: F0 mean, A8: F0 SD, A9: Spectral centre of 

gravity, A10: Spectral SD, A11: Mean HNR, A12: Jitter, A13: Percentage of unvoiced segments, A14: Shimmer 

— see Appendix 2 for description of each of these properties) and the behavioural matrices for voices. Each 

circle shows the corrrelation for one participant, and the red full circle shows the mean across participants. The 

last column in Panel A shows the correlations of the representation matrices for emotional faces and emotional 

voices. Panel B shows the partial correlations between the representation matrices for voices and the 

representation matrices for faces, while controlling for each of the acoustic properties. Each circle shows the 

partial corrrelation for one participant, and the red full circle shows the mean across participants. All partial 

correlations are still high, even after controlling for the variance of the acoustic properties of the sounds.  
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APPENDIX 1: Correlations of response profiles across modalities 

In the main text, we presented results for the correlation of F1 versus V1. The mean 

correlation between ratings of F1 versus V1 was r =.82 (SD = 0.24). Correlations of the other splits of 

the data led to very similar results. The mean correlation between ratings of F1 versus V2 was r = .67 

(SD = 0.23), the mean correlation between ratings of F2 versus V1 was r = .76 (SD = 0.31), and the 

mean correlation between ratings of F2 versus V2 was r = .73 (SD = 0.27). All these correlations were 

significantly different from zero (all p < .001). 

Similar results were observed when we removed the diagonal. The mean correlation between 

ratings of F1 versus V1, without diagonal, was r = .51 (SD = 0.25), and correlations of the other splits 

of the data led to very similar results. The mean correlation between ratings of F1 versus V2 was r = 

.45 (SD = 0.24), the mean correlation between ratings of F2 versus V1 was r = .61 (SD = 0.34), and 

the mean correlation between ratings of F2 versus V2 was r = .54 (SD = 0.28). All these correlations 

were significantly different from zero (all p < .001). 

We also performed analyses in which we did not do any averaging of ratings per block. We 

did this by splitting all the emotion ratings by identity of the stimulus. There were four identities for 

the faces and four identities for the voices, so we obtained a representation matrix or rating profile for 

each of these identities (four for faces and four for voices). We then performed correlations across all 

possible splits of the data, both for within-modality correlations, and across-modality correlations. For 

the within-modality correlations, there were six possible combinations of splits of the data. For the 

across-modalities correlations, there were 16 possible combinations of splits of the data. Figures A1-1 

and A1-2 show the results of these analyses. 
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Figure A1-1: Correlations of representation matrices for faces and voices, using separate 

matrices for each identity. There were four face matrices and four voice matrices for each 

participant. Each circle shows the mean correlation across all participants for one combination of two 

of those matrices. There were six possible combinations of splits of the data for the within-modality 

correlations (FF are the within-modality correlations for faces and VV are the within-modality 

correlations for voices) and there were 16 possible combinations for the across-modalities correlations 

(FV). FF correlations ranged between .68 and .72 (all z = 5.84, all p < .001). VV correlations ranged 

between .52 and .71 (all z > 5.78, all p < .001). FV correlations ranged between .52 and .67 (all z > 

5.78, all p < .001). As expected, these correlations are lower that the ones presented in the main text 

and above, as we do not perform any averaging across trials, and therefore the representation matrices 

are more stimuli-specific. Nevertheless, all mean correlations were of medium size (and showing 

substantial amount of shared variance) and all significanly different from zero. 

 

 

 

Figure A1-2: Correlations of representation matrices for faces and voices (without using 

the diagonals of the matrices), using separate matrices for each identity. This is the same analysis 

as done for Figure A1-1, but here the diagonals were removed. FF correlations ranged between .51 and 

.55 (all z > 5.76, all p < .001). VV correlations ranged between .39 and .52 (all z > 5.69, all p < .001). 

FV correlations ranged between .27 and .52 (all z > 5.32, all p < .001). As expected, these correlations 

are lower that the ones presented in the main text and above, as we do not perform any averaging 

across trials, and therefore the representation matrices are more stimuli-specific. Nevertheless, all 

mean correlations were of small to medium size (and showing substantial amount of shared variance) 

and all significanly different from zero. 



3 
APPENDICES: Similar representations of emotions across faces and voices 
 

 

APPENDIX 2: Representation matrices for visual properties of the emotional faces 

 

Figure A2-1: Mean representation matrices for each of the visual properties. 1: Full 

images, 2: Shape-Free images, 3: Shape-49, and 4: Shape-49-Procrustes. See main text for more 

details about how these matrices were computed. Ha = happiness, Su = surprise, Fe = fear, Sa = 

sadness, Di = disgust, An = anger. 
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APPENDIX 3: Acoustic properties of the emotional voices 

We analysed 14 acoustic properties and here we provide a brief description of each: (1) total duration 

(in seconds, defined as the interval between the first zero-crossing of the onset to the final zero 

crossing after the offset of the vocalisation), (2) amplitude: standard deviation (in pascal, defined as 

the variability in the amplitude profile over the duration of the sound), (3) mean intensity (in dB, 

defined as the average intensity of the vocalisation relative to the auditory threshold), (4) number of 

amplitude onsets (the amplitude onsets were manually labelled to describe the structure of the sounds’ 

threshold (e.g. laughter has multiple onsets whereas a scream typically only has one amplitude onset)), 

(5) F0 minimum (in Hz, defined as the lowest F0 measurement within a vocalisation, which was 

manually labelled to reduce the impact of doubling/halving error on these measures), (6) F0 maximum 

(in Hz, defined as the highest F0 measurement within a vocalisation, which was manually labelled to 

reduce the impact of doubling/halving error on these measures), (7) F0 mean (in Hz, computed using 

the auto-correlation method in PRAAT. F0 floor was set at 75 Hz and the F0 ceiling at 1000 Hz to 

include potentially high-pitched vocalisations such as screams and laughter), (8) F0 standard deviation 

(in Hz, defined as the standard deviation of the F0 mean), (9) spectral centre of gravity (in Hz, 

measure for the mean height of the frequencies for each vocalisation, which captures the weighting of 

energy in the sound across the frequency range), (10) standard deviation of the spectrum (in Hz, 

measure describing the dispersion of spectral energy across the frequency range), (11) mean 

harmonics-to-noise-ratio (in dB, defined as the mean ratio of quasi periodic to non-period signals 

across time segments), (12) jitter (in dB, defined as the average absolute difference between 

consecutive periods, divided by the average period, i.e., microfluctuations in the duration of each 

period), (13), percentage of unvoiced segments (percentage of frames lacking harmonic structure), and 

(14) shimmer (in dB, defined as the average absolute difference between the amplitudes of consecutive 

periods, divided by the average amplitude).  
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Figure A3-1: Mean representation matrices for each of the acoustic properties. See main 

text for more details about how these matrices were computed. Ha = happiness, Su = surprise, Fe = 

fear, Sa = sadness, Di = disgust, An = anger. 
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APPENDIX 4: New behavioural representation matrices 

 

Figure A4-1: Mean representation matrices for the behavioural ratings of emotional 

faces and voices. For each pair of stimuli, we computed the Euclidean distance between the ratings on 

the six emotion labels that were given to each stimulus (i.e., we computed the Euclidean distance of 

two vectors, each with ratings on six emotion labels). For each participant, we averaged the matrices 

of different identities of the stimuli, separately for faces and voices. For this figure only, we averaged 

the matrices across all the participants. Ha = happiness, Su = surprise, Fe = fear, Sa = sadness, Di = 

disgust, An = anger. 

 

 

 



7 
APPENDICES: Similar representations of emotions across faces and voices 
 

 

 

Figure A4-2: Individual correlations of representation matrices within- (F1 versus F2, V1 

versus V2) and across-modalities (F1 versus V1) for the new behavioural matrices. For this 

analysis, which was conducted in the same manner as the main analysis in the manuscript (section 2 of 

the Results) we averaged matrices within each block of stimuli, resulting in four representation 

matrices per individual: F1, F2, V1, and V2. This is the same analysis as the ones shown in Figures 3 

and 4 of the main text, but using the new matrices. All correlations were only computed with the lower 

triangular part of the matrices. Means across participants are shown in red (to compute these means, 

we first z-trasnformed all individual correlations, then averaged the trasnformed values, and finally 

reverse trasnsformed the mean to a value between -1 and 1). The mean correlation of the 

representation matrices for face stimuli (F1 versus F2) was r = .65 (SD = .27; the result of the 

Wilcoxon signed ranks test comparing non-transformed correlations to zero was z = 5.84, p < .001). 

The mean correlation of the representation matrices for voice stimuli (V1 versus V2) was r = .56 (SD 

= .34; z = 5.65, p < .001). The mean correlation of the representation matrices across modalities (F1 

versus V1) was r = .48 (SD = .32; z = 5.68, p < .001). These results are comparable to the ones shown 

in Figure 4, and suggest that this new method of computing similarities across behavioural responses 

yields very similar results to the previous method. In the main text, Figures 6 and 7 also present 

correlations of representation matrices across modalities, but those matrices were averaged across all 

stimuli for each modality. Appendix 5 shows correlations across modalities without any averaging. 
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APPENDIX 5: Analysis of low-level properties using non-averaged matrices 

For each of the visual properties that we considered, and each pair of stimuli, we computed the 

Euclidean distance between the respective feature vectors (described in section 4.1 of the main text), 

resulting in four 24-by-24 representation matrices. We then computed the behavioural representation 

matrices for faces in the same manner: for each participant, and each pair of stimuli, we computed the 

Euclidean distance between the respective feature vectors (each vector consisting of ratings on six 

emotion labels), resulting in a 24-by-24 matrix per participant. We note that each entry in the visual 

representation matrices corresponds to one stimulus, which matches exactly the same stimulus on the 

face behavioural representation matrix. Figure A5-1 shows correlations and partial correlations using 

these large, non-averaged matrices. Briefly, these results show that not averaging across representation 

matrices of faces produced results largely comparable to the ones that we described in the main text, 

using averaged matrices (compare Figure A5-1 with Figure 6).  

Similarly, for each of the 14 acoustic properties that we considered, and each pair of stimuli, 

we computed the Euclidean distance between the respective feature vectors (described in section 4.2 of 

the main text and Appendix 3, and each corresponding to a single value on an acoustic property), 

resulting in fourteen 24-by-24 representation matrices. We then computed behavioural representation 

matrices for voices, again comparing each pair of stimuli (using the same procedure as above for 

faces). Figure A5-2 shows correlations and partial correlations using these large, non-averaged 

matrices. In a similar manner as it was found for faces, the results show that not averaging across 

representation matrices of voices produced results largely comparable to the ones we described before, 

using averaged matrices (compare Figure A5-2 with Figure 7). 
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Figure A5-1: Analysis of low-level visual properties using 24-by-24, non-averaged 

matrices. Panel A shows correlations of representation matrices using visual properties of the images 

(1: Full images, 2: Shape-Free images, 3: Shape-49, 4: Shape-49-Procrustes — see main text for 

description of each of these properties) and the behavioural matrices for faces. Each circle shows the 

corrrelation for one participant, and the red full circle shows the mean across participants. Each 

representation matrix consisted of a 24-by-24 matrix in which each entry was a stimulus. Three of the 

matrices describing low-level visual properties correlated with the behavioural matrices for faces 

significantly above zero: Shape-Free (mean r = .03; z = 2.92, p < .0035), Shape-49 (mean r = .21; z = 

5.84, p < .001) and Shape-49-Procrustes (mean r = .24; z = 5.84, p < .001). Despite the significant 

correlation between the Shape-Free images and the behavioural matrices for faces, the effect size was 

very small. Conversely, like for the analysis presented in Figure 6, the matrices using shape 

information seem to be better predictors of behaviour. The last column in grey shows the correlation 

of the behavioural matrix for faces and the behavioural matrix for voices for each participant. The 

mean correlation across participants was r = .48 (z = 5.84, p < .001). Please note that these correlations 

were computed still using 24-by-24 matrices, but in the case of these correlation across modalities, 

there is not a perfect correspondence between the entries on face and voice matrices, given that the 

identity of the faces are not the same as the identities of the voices. Therefore, we arbitrarily matched 

the identities of faces with the identities of voices. Nevertheless, we presented these correlations here 

for completeness, and because it is important to compare these correlations to the partial correlations 

in panel B. 

Panel B shows the partial correlations between the representation matrices for faces and the 

representation matrices for voices, while controlling for each of the visual properties. Each circle 

shows the partial corrrelation for one participant, and the red full circle shows the mean across 

participants. All partial correlations were still high, even after controlling for the variance of the visual 

properties of the images (all mean r > .47; all z = 5.84, all p < .001). Please note again that, in this 
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case, we were using partial correlations of two 24-by-24 behavioural matrices in which the entries did 

not match entirely, i.e., they matched on the emotion of the stimulus but not on their identity.  

 

 

Figure A5-2: Analysis of low-level acoustic properties using 24-by-24, non-averaged 

matrices. Panel A shows correlations of representation matrices using acoustic properties of the 

sounds (A1: Total duration, A2: Amplitude SD, A3: Mean intensity, A4: Number of amplitude onsets, 

A5: F0 minimum, A6: F0 maximum, A7: F0 mean, A8: F0 SD, A9: Spectral centre of gravity, A10: 

Spectral SD, A11: Mean HNR, A12: Jitter, A13: Percentage of unvoiced segments, A14: Shimmer — 

see Appendix 2 for description of each of these properties) and the behavioural matrices for voices. 

Each circle shows the corrrelation for one participant, and the red full circle shows the mean across 

participants. Each representation matrix consisted of a 24-by-24 matrix in which each entry was a 

stimulus. Matrices describing low-level acoustic properties A1, A2, A3, A4, A10, A11, A12, A13, and 

A14 correlated with the behavioural matrices for voices significantly above zero (all mean r > .10; all 

z > 5.37, all p < .001). The last column in grey shows the correlation of the behavioural matrix for 

faces and the behavioural matrix for voices for each participant. The mean correlation across 

participants was r = .48 (z = 5.84, p < .001). Please note that these correlations were computed still 

using 24-by-24 matrices, but in the case of these correlation across modalities, there is not a perfect 

correspondence between the entries on face and voice matrices, given that the identity of the faces are 

not the same as the identities of the voices. Therefore, we arbitrarily matched the identities of faces 

with the identities of voices. Nevertheless, we presented these correlations here for completeness, and 

because it is important to compare these correlations to the partial correlations in panel B. 

Panel B shows the partial correlations between the representation matrices for faces and the 

representation matrices for voices, while controlling for each of the acoustic properties. Each circle 

shows the partial corrrelation for one participant, and the red full circle shows the mean across 

participants. All partial correlations were still high, even after controlling for the variance of the 
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acoustic properties of the images (all mean r > .39; all z = 5.84, all p < .001). Please note again that, in 

this case, we were using partial correlations of two 24-by-24 behavioural matrices in which the entries 

did not match entirely, i.e., they matched on the emotion of the stimulus but not on their identity. 
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APPENDIX 6: Correlation of all low-level representation matrices 

 

Figure A6-1: Correlations between representation matrices of low-level properties. Each 

entry to this matrix is a representation matrix of an acoustic (A) property of  the emotional voices, or 

of a visual (V) property of the emotional faces. All representation matrices for each property are the 

mean of the representation matrices for all identities of the stimuli. A1: Total duration, A2: Amplitude 

SD, A3: Mean intensity, A4: Number of amplitude onsets, A5: F0 minimum, A6: F0 maximum, A7: 

F0 mean, A8: F0 SD, A9: Spectral centre of gravity, A10: Spectral SD, A11: Mean HNR, A12: Jitter, 

A13: Percentage of unvoiced segments, A14: Shimmer, V1: Full images, V2: Shape-Free images, V3: 

Shape-49, V4: Shape-49-Procrustes. See main text for details of how these representation matrices 

were computed. 
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APPENDIX 7: Controlling for multiple low-level properties of the stimuli 

For the emotional faces, we conducted multiple regression for each participant, in which the 

outcome was the behavioural representation matrix for faces, and the predictors were the four 

representation matrices of visual properties of the faces (we also conducted separate analyses 

combining just some of the predictors). After removing the variance from the visual properties, we 

correlated the remaining residuals with the behavioural representation matrix for voices. The results of 

these analyses are in Figure A7-1, which shows that even when accounting for multiple visual 

properties of the stimuli, the correlations across faces and voices did not substantially decrease. 

Similarly, for emotional voices, we conducted multiple regression for each participant, in 

which the outcome was the behavioural representation matrix for voices, and the predictors were the 

14 representation matrices of acoustic properties of the faces (we also conducted separate analyses 

combining just some of the predictors). After removing the variance from the acoustic properties, we 

correlated the remaining residuals with the behavioural representation matrix for faces. The results of 

these analyses are in Figure A7-2, which shows that even when accounting for multiple acoustic 

properties of the stimuli, the correlations across faces and voices did not substantially decrease. 
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Figure A7-1: Controlling for multiple low-level visual properties of the faces using 

multiple regression. The multiple regressions were done for each participant, and we conducted three 

separate analyses: the first analysis (All visual) regressed out all four representation matrices of visual 

properties, the second analysis (V2 and V3) regressed out the representation matrix based on shape-

free information (Shape-Free images) and the one based on vectors with coordinates (Shape-49), and 

the third analysis (V2 and V4) regressed out the representation matrix based on shape-free information 

(Shape-Free images) and the one based on Procrustes distances (Shape-49-Procrustes). All these 

analyses were performed on non-averaged 24-by-24 matrices. After removing the variance accounted 

for by these visual properties, we correlated the residuals with the behavioural matrices for voices. 

Each circle shows the individual correlations, and the red filled circles show the mean correlations 

across participants. It is clear that even after removing the variance of multiple visual properties, there 

was not a substantial decrease of the correlations between representation matrices for emotional faces 

and emotional voices (all mean r > .47; all z = 5.84, all p < .001). For comparison, the mean 

correlation between the matrices for faces and the matrices for voices (without any regressions) was r 

= .48 (z = 5.84, p < .001). Please note that in this case we correlated two 24-by-24 behavioural 

matrices (Faces-residuals versus Voices) in which the entries did not match entirely, i.e., they matched 

on the emotion of the stimulus but not on their identity. 
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Figure A7-2: Controlling for multiple low-level acoustic properties of the voices using 

multiple regression. The multiple regressions were done for each participant, and we conducted three 

separate analyses: the first analysis (All acoustic) regressed out all 14 representation matrices of 

acoustic properties, the second analysis (9 predictive) regressed out the representation matrices that 

had been shown to significantly predict behaviour (A1, A2, A3, A4, A10, A11, A12, A13), and the 

third analysis (5 other) regressed out the representation matrices that had been shown to not predict 

behaviour (A5, A6, A7, A8, A9). All these analyses were performed on non-averaged 24-by-24 

matrices. After removing the variance accounted for by these acoustic properties, we correlated the 

residuals with the behavioural matrices for faces. Each circle shows the individual correlations, and 

the red filled circles show the mean correlations across participants. After regressing out all 14 

acoustic cues (All acoustic), the mean correlation between the residuals of the voice matrices and the 

face matrices was r = .35; z = 5.84, p < .001. For the second analysis (9 predictive), the mean 

correlation was r = .36; z = 5.84, p < .001. For the third analysis (5 other), the mean correlation was r 

= .46; z = 5.84, p < .001. For comparison, the mean correlation between the matrices for faces and the 

matrices for voices (without any regressions) was r = .48 (z = 5.84, p < .001). These results show that 

the correlations for the first two analyses decreased slightly after removing the variance of multiple 

acoustic properties. However, most of the variance shared between the representation matrices for 

emotional faces and emotional voices was not accounted for by these acoustic properties. Please note 

that in this case we correlated two 24-by-24 behavioural matrices (Voices-residuals versus Faces) in 

which the entries did not match entirely, i.e., they matched on the emotion of the stimulus but not on 

their identity. 

 

 

 


