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Distributed Filtering for Switched Nonlinear
Positive Systems with Missing Measurements

over Sensor Networks
Dong Wang, Zidong Wang, Guoyang Li and Wei Wang

Abstract—In this paper, the distributed filtering problem is
investigated for a class of switched nonlinear positive systems
over sensor networks. The randomly varying nonlinearities and
missing measurements, which are governed by two mutually
independent Bernoulli distributed white sequences, are taken into
account. Based on the output measurements of the individual
sensor and its neighbors, the distributed filter with positivity
constraint is designed to ensure the prescribed average l∞
performance index of the estimation error dynamics. Special
attention is paid to preserve the positivity of the underlying
system as well as the sparseness of the addressed network
topology. Sufficient conditions are established on the existence
of the desired filters by using the linear programming approach
and the filter gains are subsequently characterized. A simulation
example is provided to illustrate the effectiveness of the proposed
filtering method.

Index Terms—Switched systems, Positive systems, Distributed
filtering, Stochastic nonlinearity, Missing measurements.

I. INTRODUCTION

It is widely known that many systems in the real world
contain nonnegative states (e.g. population of animals and
absolute temperature), and this gives rise to the so-called
positive systems [1]. Mathematically, a positive system is such
a system whose states and outputs are nonnegative as long as
the initial conditions and inputs are nonnegative. Furthermore,
a switched positive system is a dynamical system consisting
of several positive subsystems with a switching signal, where
the corresponding subsystem is activated during a certain
interval. Such kind of systems has extensive applications
in modelling practical systems such as networks employing
transmission control protocol (TCP) [2] and rival mutation
treatment dynamics [3].

Recently, there has been an increasing research interest in
the control problems of switched positive systems in virtue
of their significance in both theory and applications [4]–[10].
Several methods have been proposed to deal with the switching
characteristics and positivity preservation, which include the
average dwell time technique [5], the multiple Lyapunov
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function approach [4] as well as the switched Lyapunov
function approach [6], etc. It is worth noticing that, in almost
all relevant literature, the subsystems have been assumed to be
linear. Nevertheless, in practical engineering, the nonlinearity
is a ubiquitous yet complicated phenomenon that has been paid
persistent research efforts in the past few decades [11]–[14]. It
has been recently observed that the nonlinearities often occur
in a probabilistic way especially in a networked environment
where the network load is subject to random fluctuation. As
such, the so-called randomly varying nonlinearities (RVNs)
have drawn some initial research attention, see e.g. [15]–[20].

On the another research line, sensor networks have been
gaining considerable research interest because of their wide
application potentials in various areas such as environmental
monitoring, multi-agent systems control [21]–[24] and wire-
less networks [25]–[27]. In a typical sensor network, the nodes
are capable of sensing, computing and communicating. As one
of important topics for information processing over sensor net-
works, the distributed filtering problem has recently attracted
the attention from several research communities including
communication, signal processing and control. Different from
the traditional filtering applied to a single sensor only [28],
in a sensor network, each sensor can receive the information
from not only itself but also its neighbors according to the
underlying network topology, and this makes the distributed
nature of the filtering process. In this case, the key issue of
the distributed filtering problem is how to effectively fuse the
data from itself and its neighbors.

So far, several filtering algorithms have been proposed in the
literature with respect to the sensor networks, see e.g. [29]–
[37]. For example, in [31], the recovery problem of sparse
signal in sensor networks has been solved by designing a regu-
larized H∞ filter for each sensor node using the measurements
distributed over the whole network. On the other hand, with the
increasing scale of sensor networks, the crowd communication
channel inevitably results in network-induced performance
degradation of the designed distributed filters. One particular
issue stemming from the imperfect communication among
sensor nodes is the phenomenon of missing measurements
(also called packet dropouts) that have been stirring recurring
research interests during the past few years [38], [39]. A
common approach to modelling missing measurements is to
use a stochastic variable satisfying the Bernoulli distribution
that takes values on either 1 or 0, where 1 indicates the
successful delivery and 0 represents missing measurements
[16], [40]–[42].
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It should be pointed out that, up to now, very little re-
search effort has been made to investigate the distributed
filter design problem for switched positive systems over lossy
sensor networks in the presence of missing measurements,
not to mention the case when the RVNs are also involved
in the system. The main difficulties are threefold: 1) it is
unclear how to evaluate the influence of the probabilistic
missing measurements on the expected performance of the
distributed filters; 2) it is pretty hard to deal with the positivity
preservation and the sparseness of the network topology; and
3) it is fairly challenging to look into the impact from the RVNs
on the convergence of the overall dynamics of the estimation
errors. In order to overcome the difficulties identified above, in
this paper, we are motivated to study the distributed filtering
problem for a class of switched positive systems over lossy
sensor networks, where the corresponding subsystem is subject
to RVNs caused probably by environmental circumstances
as well as missing measurements resulting from the network
congestion among the communication nodes.

The main contributions of this paper are highlighted as
follows: i) a novel average l∞ performance index is proposed
to quantify the influences from both randomly occurring
nonlinearities and missing measurements on the distributed
filters, which is more appropriate than the conventional central
l∞ performance criterion in the context of sensor networks;
ii) special analysis techniques are developed to preserve both
the positivity for system states and sparseness for network
topology throughout the filtering process; iii) the impact of
the introduced RVNs is examined on the switching dynamics
among different subsystems in addition to the existing switch-
ing signals; and iv) a communication mechanism is adopted
to update the filter input by using the data received at the last
time-instant in case of the missing measurements.

This paper is organized as follows. In Section II, the
switched positive systems with stochastic nonlinearity and
the distributed filtering problem with missing measurements
over sensor networks are introduced. Analysis and design of
the distributed filter over sensor networks are carried out,
respectively, in Section III and Section IV by using a linear
programming technique. A simulation example is provided to
verify the effectiveness of the presented results in Section V.
Finally, conclusions are drawn in Section VI.

Notation. The notations used in this paper are fairly stan-
dard. The symbol ⊗ denotes the Kronecker product. A ≽ 0
(≼,≻,≺) means that all entries of matrix A are nonnegative
(nonpositive, positive, negative). diag{...} indicates a diagonal
matrix. 1n is

[
1 · · · 1

]T
1×n

. R+ means the set of the
nonnegative real numbers. l1[0, ∞) is the space of summable
infinite sequences with the norm ∥ω∥1 =

∑∞
k=0 |ωi|.

II. PROBLEM FORMULATION

In this section, we introduce some preliminaries related
to the distributed filtering problem and then introduce the
problem under consideration.

Consider the discrete-time switched positive system with
stochastic nonlinearities described as follows:

x(k + 1) = Aσ(k)x(k) +Gσ(k)ω(k)

+ Eσ(k)(β(k)f(x(k)) + (1− β(k))g(x(k))),

z (k) = Mσ(k)x (k) (1)

where x (k) ∈ Rnx is the state vector which cannot be
measured directly; z (k) ∈ Rnz represents the output to be
estimated; ω (k) ∈ Rnω denotes the disturbance belonging
to l1[0,∞). The switching signal σ(k), which denotes, for
simplicity, σ(k) : [0, ∞) → ∆ = {1, 2...N}, is an arbitrary
switching sequence with N being the number of subsystems.
Aσ(k), Eσ(k), Gσ(k) and Mσ(k) are system matrices with ap-
propriate dimensions. The nonlinear functions f (x) and g (x)
(denoting f (x(k)) and g (x(k)) without confusion) are vector-
valued functions.

Assumption 1: The nonlinear functions f (x) and g (x)
satisfy the following sector-bounded conditions

(f (x)− U1x) (f (x)− U2x) ≤ 0,

(g (x)− U3x) (g (x)− U4x) ≤ 0, ∀x ∈ R+
nx

(2)

where U1, U2, U3 and U4 ∈ R1×n are real vectors.
Without loss of generality, supposing that u1 = U1 − U2,

u2 = U3 − U4 are positive vectors, we can obtain

(f (x)− U1x) ≤ 0, (f (x)− U2x) ≥ 0,

(g (x)− U3x) ≤ 0, (g (x)− U4x) ≥ 0, ∀x ∈ R+
nx
. (3)

Remark 1: It is noted that the sector-bounded nonlinearity
in Assumption 1 is universal in real systems. For instance, the
amplifier has the phenomenon of saturation and the actuator
could be with the dead zone. These can be represented by the
sector-bounded nonlinearity.

Definition 1: [1] System (1) is said to be positive if, for the
nonnegative initial condition x(0), ω(k), g (x), f (x) and σ(k),
the corresponding state trajectory x(k) ≥ 0 and the estimated
output z(k) ≥ 0 hold for all k ≥ 0.

Lemma 1: [1] System (1) is positive if and only if Ai ≽ 0,
Ei ≽ 0, Gi ≽ 0 and Mi ≽ 0 , i ∈ ∆.

Remark 2: In this paper, the nonlinearities f (x) and g (x)
are assumed to occur in a probabilistic way with an individual
probability distribution that can be specified a prior through
statistical tests. The concept of such RVNs was first introduced
in [18] to reflect the random nature of the occurrence of the
nonlinearities induced by network-load fluctuations within a
networked environment.

The occurrence of the RVNs is governed by a stochastic
variable β (k) with

Prob {β (k) = 1} = β̄, Prob {β (k) = 0} = 1− β̄ (4)

where β̄ ∈ [0, 1] is a known constant.
The measurements of system (1) are implemented by a

sensor network. The communication topology of the sensor
network consisting of n sensor nodes is described by a fixed
directed graph G = (ν, ε, A) of order n with the set of nodes
ν = {1, 2, · · · , Ns}. ε ⊆ ν×ν is the set of edges and A = [aij ]
is the weighted adjacency matrix with nonnegative adjacency
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element aij . An edge of G is denoted by ordered pair (i, j).
A path from i to j is a sequence of the ordered edges of
the form (i, p), (p, q), ..., (r, j). If it is said that a directed
graph is strongly connected, then, there is a directed path in
the graph for any two distinct nodes i and j. The adjacency
elements associated with the edges of the graph are positive,
i.e. aij > 0 ⇔ (i, j) ∈ ε which means that sensor i can
obtain information from sensor j. Moreover, we assume that
aii = 1 for all i ∈ ν, and therefore (i, i) can be regarded as
an additional edge. The set of neighbors of node i ∈ ν plus
the node itself are denoted by Ni = {j ∈ ν : (i, j) ∈ ε}. The
conditions on the network topology are quite general that 1)
the graph is directed; and 2) the adjacency matrix is known.

The model for sensor i, i ∈ N̄ = {1, · · · , Ns} is

yi (k) = Ci (k)x (k) +Di (k)ω (k) (5)

where yi (k) ∈ Rny are the measurement output, Ci and Di

are known real matrices with appropriate dimensions.
In practice, the phenomena of missing measurements over

sensor networks is often inevitable due to a variety of rea-
sons such as resource constraints, intermittent sensor failures,
network congestion and so on. Such a phenomenon can be
described by a Bernoulli distributed sequence [16] as follows:

Prob {γi (k) = 1} = γ̄i, Prob {γi (k) = 0} = 1− γ̄i (6)

where γ̄i ∈ [0, 1] are known constants. If yi(k) are successfully
sent to the filters, then γi = 1, otherwise γi = 0 and the last
available measurement data is utilized. So, the received data
is described by

ȳi (k) = γi (k) [Ci (k)x (k) +Di (k)ω (k)]

+ (1− γi (k)) ȳi (k − 1) . (7)

Assumption 2: The stochastic variables β (k) and γi (k)
satisfy mutually independent Bernoulli distribution.

As is well known, an important point in designing dis-
tributed filters for a sensor network is how to fuse the
information available from the sensor itself and its neighbors.
Bearing this in mind, in this paper, we propose the following
filter for sensor node i:

x̂i (k + 1) =
∑
j∈Ni

aijKij x̂j (k) +
∑
j∈Ni

aijHij ȳj (k),

ẑi (k) = Mσ(k)x̂i (k) (8)

where x̂i ∈ Rnx and ẑi ∈ Rnz are the estimation of the filter
state and the estimation of the controlled output zi from the
filter on sensor node i, respectively. Here, Kij and Hij are
the filter gain matrices to be determined.

Let the filtering error be

z̃i (k) := z (k)− ẑi (k) , i = N̄ .

Then, we obtain the following augmented system:

x (k + 1) = Aσ(k)x(k) +Gσ(k)ω (k)

+ Eσ(k)

[
β̄ 1− β̄

] [ f (x (k))
g (x (k))

]
+

(
β (k)− β̄

)
Eσ(k)

[
1 −1

]
×

[
fT (x (k)) gT (x (k))

]T
,

x̂i(k + 1) =
∑
j∈Ni

aijKij x̂j(k)− yj(k − 1)

+
∑
j∈Ni

γ̄jaijHijCj(k)x(k)

+
∑
j∈Ni

γ̄jaijHijDj(k)ω(k)

+
∑
j∈Ni

(1− γ̄j) aijHij ȳj(k − 1)

+
∑
j∈Ni

(γj(k)− γ̄j) aijHijCj(k)x(k)

+
∑
j∈Ni

(γj(k)− γ̄j) aijHijDj(k)ω(k),

yi(k) = γ̄i (Ci(k)x(k) +Di(k)ω(k))

+ (1− γ̄i) ȳi(k − 1)

+ (γi(k)− γ̄i)Ci(k)x(k)

+ (γi(k)− γ̄i)Di(k)ω(k),

z̃i (k) = Mσ(k) (x (k)− x̂i(k)) . (9)

Definition 2: Given a disturbance attenuation level α > 0,
the filtering error z̃i (k) from (9) is said to satisfy the average
l∞ performance index if the following inequality holds:

1

Ns

Ns∑
i=1

∞∑
k=1

E {∥z̃i (k)∥1} < α

∞∑
k=1

∥ω (k)∥1. (10)

Remark 3: The average l∞ performance index (10) over
the n sensors in a network is derived from the classical l∞
theory [16], which implies that the average energy gains from
the disturbance to the average of all estimation errors should
be less than the given disturbance attenuation level α. Such
an average l∞ performance index is more appropriate than
the conventional central l∞ performance index in terms of
quantifying the overall performance of the distributed filters.

Our objective in this paper is to design the filter gain
matrices Kij and Hij such that the dynamics of the filtering
errors z̃i (k) in (9) is asymptotically stable and also satisfies
the average l∞ performance index (10) while preserving both
the positivity for system states and sparseness for network
topology throughout the filtering process.

III. DISTRIBUTED FILTERS ANALYSIS

In this section, the analysis results for the distributed
filtering are provided for the discrete-time switched positive
systems with stochastic nonlinearities over a sensor network
plant. For the convenience of analysis, we define

η (k) =
[
x̄T (k) x̂T (k) yT (k − 1)

]T
,

z̃ (k) = z̄ (k)− ẑ (k) , x̄ (k) = 1Ns ⊗ x (k) ,

x̂ (k) =
[
x̂T
1 (k) x̂T

2 (k) · · · x̂T
Ns

(k)
]T

,

y (k) =
[
yT1 (k) yT2 (k) · · · yTNs

(k)
]T

,

ẑ (k) =
[
ẑT1 (k) ẑT2 (k) · · · ẑTNs

(k)
]T

,

Γ (k) =
[
FT (x̄ (k)) GT (x̄ (k))

]T
,
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F (x̄ (k)) = 1Ns ⊗ f (x (k)) ,

G (x̄ (k)) = 1Ns ⊗ g (x (k)) ,

z̄ (k) = 1Ns ⊗ z (k) , ω̄ (k) = 1Ns ⊗ ω (k) .

Then, we obtain the following augmented system:

η (k + 1) =Ãσ(k)η (k) + Ẽσ(k)Γ (k) + G̃σ(k)ω̄ (k)

+Ãγσ(k)η (k) + Ẽβσ(k)Γ (k) + G̃γσ(k)ω̄ (k) ,

z̃ (k) =M̃σ(k)η (k) (11)

where

Ãσ(k) =

 Āσ(k) 0 0
H̄Λ̄γC̄ K̄ H̄

(
I − Λ̄γ

)
Λ̄γC̄ 0 I − Λ̄γ

 ,

Āσ(k) = INs ⊗Aσ(k), Λ̄γ = diag {γ̄1, γ̄2, ..., γ̄Ns} ,
K̄ =

[
K̄ij

]
Nsnx×Nsnx

, H̄ =
[
H̄ij

]
Nsnx×Nsny

,

H̄ij =

{
aijHij , i = 1, 2, ..., Ns, j ∈ Ni

0, i = 1, 2, ..., Ns, j /∈ Ni
,

K̄ij =

{
aijKij , i = 1, 2, ..., Ns, j ∈ Ni

0, i = 1, 2, ..., Ns, j /∈ Ni
,

C̄ = diag {C1, C2, ..., CNs} ,

Ẽσ(k) =

 Ēσ(k)Λ̄β Ēσ(k)

(
I − Λ̄β

)
0 0
0 0

 ,

Ēσ(k) = INs ⊗ Eσ(k), Λ̄β = INs ⊗ β̄, Ḡσ(k) = INs ⊗Gσ(k),

D̄ = diag {D1, D2, ..., DNs} ,

Ãγσ(k) =

 0 0 0
H̄

(
Λγ − Λ̄γ

)
C̄ 0 −H̄

(
Λγ − Λ̄γ

)(
Λγ − Λ̄γ

)
C̄ 0 −

(
Λγ − Λ̄γ

)
 ,

Λγ = diag {γ1 (k) , γ2 (k) , ..., γNs (k)} ,

Ẽβσ(k) =
(
β (k)− β̄

) Ēσ(k) −Ēσ(k)

0 0
0 0

 ,

G̃γσ(k) =

 0
H̄

(
Λγ − Λ̄γ

)
D̄(

Λγ − Λ̄γ

)
D̄

 , G̃σ(k) =

 Ḡσ(k)

H̄Λ̄γD̄
Λ̄γD̄

 ,

M̃σ(k) =
[
M̄σ(k) −M̄σ(k) 0

]
,

M̄σ(k) = INs
⊗Mσ(k).

Based on the transformation conducted above, the following
theorem is provided to ensure the stability of the augmented
system.

Theorem 1: Let the scalars α > 0, β̄ ∈ [0, 1] and γ̄i ∈ [0, 1]
(i ∈ {1, 2, · · · , Ns}) be given. System (11) is asymptotically
stable and satisfies the performance specification (10) if there
exist vectors Pi ≽ 0 (i, j ∈ ∆) such that

ÃT
i Pj − Pi + 2Ỹ T

1 1Ns(2nx+ny)

−Ỹ T
2 1Ns(2nx+ny) + M⃗T

i 1Ns(2nx+ny) ≼ 0,

ẼT
i Pj − 12Ns ≼ 0, G̃T

i Pj − α1Nsnω ≼ 0 (12)

where

Ỹ1 =
[
Ȳ T
1 0 0

]T
, Ỹ2 =

[
Ȳ T
2 0 0

]T
,

M⃗σ(k) = diag
{
M̄σ(k), M̄σ(k), 0

}
.

proof 1: Select the following co-positive Lyapunov function

V (k) = ηT (k)Pσ(k) (13)

where Pσ(k) are positive vectors. Then, the mathematical
expectation of Lyapunov function (13) is

E{V (k + 1)|V (k)}

=
(
Ãσ(k)η (k) + Ẽσ(k)Γ (k) + G̃σ(k)ω̄ (k)

) T

Pσ(k+1).

Using switched Lyapunov function method and calculating
the forward difference of (13) along the trajectories of system
(11) lead to

E (∆V (k)) = E{ηT (k + 1)Pσ(k+1) − ηT (k)Pσ(k)}
= (Āσ(k)η(k) + Ẽσ(k)Γ(k))

TPσ(k+1)

+
(
G̃σ(k)ω̄(k)

)T

Pσ(k+1) − ηT (k)Pσ(k)

= ηT (k)(ĀT
σ(k)Pσ(k+1) − Pσ(k)) + ΓT (k)

× ẼT
σ(k)Pσ(k+1) + ω̄T (k)G̃T

σ(k)Pσ(k+1).(14)

From (2), it is seen that(
F (x̄ (k))− Ū1x̄ (k)

)T (
F (x̄ (k))− Ū2x̄ (k)

)
≤ 0,(

G (x̄ (k))− Ū3x̄ (k)
)T (

G (x̄ (k))− Ū4x̄ (k)
)
≤ 0

where

Ū1 = INs ⊗ U1, Ū2 = INs ⊗ U2,

Ū3 = INs ⊗ U3, Ū4 = INs ⊗ U4.

Hence, it can be obtained that(
Γ (k)− Ȳ1x̄ (k)

)T (
Γ (k)− Ȳ2x̄ (k)

)
≤ 0 (15)

where

Ȳ1 =
[
ŪT
1 ŪT

3

]T
, Ȳ2 =

[
ŪT
2 ŪT

4

]T
.

Furthermore, we can get

E {∆V (k)}
< ηT (k)(ÃT

σ(k)Pσ(k+1) − Pσ(k)) + ΓT (k)(ẼT
σ(k)Pσ(k+1)

+ ω̄T (k)G̃T
σ(k)Pσ(k+1) − 2(Γ(k)− Ȳ1x̄(k))

T 12Ns

+ (Γ(k)− Ȳ2x̄(k))
T 12Ns

= ηT (k)(ÃT
σ(k)Pσ(k+1) − Pσ(k))− ηT (k)Ỹ T

2 1Ns(2nx+ny)

+ 2ηT (k)Ỹ T
1 1Ns(2nx+ny) + ω̄T (k)G̃T

σ(k)Pσ(k+1)

+ ΓT (k)(ẼT
σ(k)Pσ(k+1) − 12Ns). (16)

It can be seen from (16) that E{∆V (k)} < 0 if ω(k) = 0 and

ÃT
σ(k)Pσ(k+1) − Pσ(k)

+2Ỹ T
1 1Ns(2nx+ny) − Ỹ T

2 1Ns(2nx+ny) ≼ 0,

ẼT
σ(k)Pσ(k+1) − 12Ns ≼ 0 (17)

which implies that system (11) is asymptotically stable in the
absence of the disturbances if (17) holds. Without loss of
generality, letting σk = i and σk+1 = j, (17) is equivalent
to the first two inequalities of (12).
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The following performance index is defined to obtain aver-
age l∞ performance of system (11):

J =
1

Ns

Ns∑
i=1

∞∑
k=1

E {∥z̃i (k)∥1} − α
∞∑
k=1

∥ω (k)∥1.

By making use of the property of the norm, it is obtained
that

∥z̃i(k)∥1 =
∥∥Mσ(k) (x (k)− x̂i(k))

∥∥
1

<
∥∥Mσ(k)x (k)

∥∥
1
+

∥∥Mσ(k)x̂i(k)
∥∥
1

= xT (k)MT
σ(k)1nx + x̂T

i (k)MT
σ(k)1nx .

Furthermore, combining with (11) leads to

J =
1

Ns

Ns∑
i=1

∞∑
k=1

E {∥z̃i(k)∥1} − α
∞∑
k=1

∥ω(k)∥1

=

∞∑
k=1

{
1

Ns

Ns∑
i=1

E {∥z̃i(k)∥1} − α∥ω(k)∥1

}

<
∞∑
k=1

{
1

Ns

Ns∑
i=1

E
{
xT (k)MT

σ(k)1nx

}
+

1

Ns

Ns∑
i=1

E
{
x̂T
i (k)M

T
σ(k)1nx

}
− αωT (k)1nw

}
=

∞∑
k=1

1

Ns

{
ηT (k)

⇀

M
T

σ(k)1Ns(2nx+ny)

− αω̄T (k)1Nsnω

}
.

Based on the zero-initial conditions η(0)T = 0 and V (k) ≥ 0
when k ≥ 0, we have

J =
∞∑
k=1

1

Ns

{
ηT (k) M⃗T

σ(k)1Ns(2nx+ny) − αω̄T (k) 1Nsnω

+ ∆V (k)−∆V (k)}

≤
∞∑
k=1

1

Ns

{
ηT (k) M⃗T

σ(k)1Ns(2nx+ny) − αω̄T (k) 1Nsnω

+ηT (k)
(
ÃT

σ(k)Pσ(k+1) − Pσ(k) + 2Ỹ T
1 1Ns(2nx+ny)

− Ỹ T
2 1Ns(2nx+ny)

)
+ ΓT (k) (ẼT

σ(k)Pσ(k+1) − 12Ns)

+ω̄T (k) G̃T
σ(k)Pσ(k+1)}

=

∞∑
k=1

1

Ns

{
ηT (k)

(
ÃT

σ(k)Pσ(k+1) − Pσ(k)

+2Ỹ T
1 1Ns(2nx+ny) − Ỹ T

2 1Ns(2nx+ny)

+ M⃗T
σ(k)1Ns(2nx+ny)

)
+ ΓT (k)

(
ẼT

σ(k)Pσ(k+1) − 12Ns

)
+ ω̄T (k)

(
G̃T

σ(k)Pσ(k+1) − α1Nsnω

)}
=

∞∑
k=1

1

Ns

(
η̃T (k) Ξk,k+1

)

where

η̃(k) =
[
ηT (k) ΓT (k) ω̄T (k)

]T
,

Ξk,k+1 =

 Π(k),

ẼT
σ(k)Pσ(k+1) − 12Ns

G̃T
σ(k)Pσ(k+1) − α1Nsnω

 ,

Π(k) = ÃT
σ(k)Pσ(k+1) − Pσ(k) + 2Ỹ T

1 1Ns(2nx+ny)

− Ỹ T
2 1Ns(2nx+ny) + M̃T

σ(k)1Ns(2nx+ny).

Obviously, J ≤ 0 holds if Ξk,k+1 ≼ 0. Letting σk = i and
σk+1 = j based on Ξk,k+1, we can get the inequality (12).
This means that if (12) holds, system (11) is asymptotically
stable and also satisfies the performance index (10). The proof
is now complete.

Remark 4: In (14), because of the stringent requirements
that ẼT

σ(k)Pσ(k+1) and Pσ(k) are positive vectors, it might not
be easy to ensure E {∆V (k)} < 0. To deal with such an issue,
we take into account the sector-bounded condition in (15) and
introduce 2Ỹ T

1 1Ns(2nx+ny)− Ỹ T
2 1Ns(2nx+ny) associated with

the nonlinear function ΓT (x). This way, some auxiliary vectors
are added which would help enhance the feasibility of the
matrix inequalities (12).

Remark 5: It should be pointed out that, based on the
widely accepted H∞ index, the average H∞ performance
index has been used in existing literature (e.g. [16], [39]) for
the distributed filter design over the sensor network, where
the disturbances belongs to the l2 space and the Lyapunov
function with the quadratic form is constructed. However, in
our paper, because of the nonnegative property of switched
positive systems, a straightforward application of distributed
filter design for non-positive dynamical systems might be
infeasible. Instead, an average l∞ index is introduced for
the design of distributed filter and the co-positive Lyapunov
function is constructed, which preserve the positivity in the
filtering procedure.

IV. DISTRIBUTED FILTER DESIGN

We are now in a position to present sufficient conditions on
the existence of the distributed filter and characterize the filter
gains.

Theorem 2: For system (1), let the scalars α > 0, β̄ ∈ [0, 1]
and γ̄i ∈ [0, 1] (i ∈ {1, 2, · · · , Ns}) be given. The distributed
filter (8) with missing measurements (7) can be designed to
ensure the asymptotic stability of the filtering error dynamics
and also achieve the average l∞ performance index (10) if
there exists positive matrices Ks ∈ R+

Nsnx×Nsnx
, Hs ∈

R+
Nsnx×Nsny

, pi1 ∈ R+
Nsnx×1, q ∈ R+

Nsnx×1, pi3 ∈ R+
Nsny×1,

(i, j ∈ ∆) such that the following inequalities hold:

ĀT
i pj1 +

(
Λ̄γC̄

)T
HT

s 1Nsnx +
(
Λ̄γC̄

)T
pj3

−pi1 + 2Ȳ T
1 12Ns − Ȳ T

2 12Ns + M̄T
i 1Nsnx ≼ 0,

ḠT
i pj1 +

(
Λ̄γD̄

)T
HT

s 1Nsnx

−
(
Λ̄γD̄

)T
pj3 − α1Nsnω ≼ 0,
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KT
s 1Nsnx − q + M̄T

i 1Nsnx ≼ 0,(
I − Λ̄γ

)T
HT

s 1Nsnx +
(
I − Λ̄γ

)T
pj3 − pi3 ≼ 0,

β̄ĒT
i pj1 − 1Ns ≼ 0,

(
1− β̄

)
ĒT

i pj1 − 1Ns ≼ 0 (18)

where

Ks = [Ksij ]Nsnx×Nsnx
, Hs = [Hsij ]Nsnx×Nsny

,

Hsij =

{
Hsij , j ∈ Ni

0, j /∈ Ni
, Ksij =

{
Ksij , j ∈ Ni

0, j /∈ Ni
.

Moreover, if there exists a feasible solution to (18), then the
desired filter gain can be determined by

H̄T = Hs
T q−1

d , K̄T = Ks
T q−1

d (19)

where qd = diag{q1, q2, · · · , qNsnx}, qi, i = 1, · · · , Nsnx

are the elements of the vector q.
proof 2: Defining

HT
s = H̄T qd, KT

s = K̄T qd,

Pi =
[
pTi1 qT pTi3

]T
(20)

and substituting (20) into (18), we can readily get (12). In other
words, if there exist positive matrices Ks ∈ R+

Nsnx×Nsnx
,

Hs ∈ R+
Nsnx×Nsny

, pi1 ∈ R+
Nsnx×1, q ∈ R+

Nsnx×1,
pi3 ∈ R+

Nsny×1, (i, j ∈ ∆) such that (18) are satisfied, then
system (11) is asymptotically stable and satisfies performance
specifications (10), which means system (11) is insensitive
against the disturbance by means of the index α. This means
that the design problem of distributed filters (8) for system (1)
with measurement missing (7) is solvable. At last, by using
(20), the filter gains are constructed by (19). The proof is now
complete.

Remark 6: It is observed from (19) that there are the
proportion qd between Hs and H̄ as well as Ks and K̄ in
Theorem 2. Note that the vector q in (18) is transformed into
the product of a diagonal matrix qd whose elements are those
of q and a vector 1Nsnx whose elements are all ones. Such
matrix transformation technique is proposed to deal with the
challenges resulting from the sparseness of the sensor network
topology and preserving structure of the distributed filters.

Remark 7: Our main results are based on the LMI con-
ditions. The available Matlab YALMIP toolbox implements
state-of-the-art external solvers for the actual computations.
Note that, for the standard LMI system, the algorithm has
a polynomial-time complexity. That is, the number N (ε) of
flops needed to compute an ε-accurate solution is bounded by
O(MN 3 log(V/ε)), where M is the total row size of the LMI
system, N is the total number of scalar decision variables, V is
a data-dependent scaling factor, and ε is relative accuracy set
for algorithm. Obviously, the computational complexity of the
LMI-based algorithms depends polynomially on the variable
dimensions. In order to reduce the computation burden, a
possible way is to conduct model reduction while preserving
the main characteristics of the switched nonlinear positive
systems. Fortunately, research on LMI optimization is a very
active area in the applied mathematics, optimization and the
operations research community, and substantial speed-ups can
be expected in the future.

Remark 8: In Theorem 2, sufficient conditions on the
existence of the distributed filters for switched positive systems
are presented that guarantee the feasibility of the distributed
filtering problem with an l∞ performance index. It is shown
that the design problem of such filters is solvable if a feasi-
ble solution to (18) is found. In Theorem 2, the following
features are considered for the underlying wireless sensor
networks: (1) average l∞ performance index which ensures
the disturbance rejection capability of the filtering dynamics;
(2) missing measurements; (3) RVNs appearing in the plant
under consideration; and (4) the coupling between the nodes
in accordance with a topology. Hence, the distributed filters
designed in Theorem 2 by utilizing the linear programming
approach provides a satisfactory filtering performance against
the complexities mentioned above.

V. AN ILLUSTRATIVE EXAMPLE

In this section, a simulation example is used to illustrate the
effectiveness of the established results.

Consider the discrete-time switched positive system (1) with
the following parameters:

A1 =

[
0.32 0.01
0.04 0.73

]
, E1 =

[
0.1
0

]
,

G1 =

[
0.1
0

]
, M1 =

[
0.08 0.11
0 0.1

]
and

A2 =

[
0.58 0.02
0.03 0.67

]
, E2 =

[
0.2
0

]
,

G2 =

[
0.3
0

]
, M2 =

[
0.11 0.09
0 0.15

]
and the RVNs are described by

f(x(k)) = x1/(4x
2
1 + 10) + 0.2x2,

g(x(k)) = 0.1x1 + 0.2x2 + 0.1x2 sinx2,

Prob {β (k) = 1} = β̄ = 0.85.

It is not difficult to find that the above nonlinear functions
f(x(k)) and g(x(k)) satisfy (2) with

U1 =
[
0.1 0.3

]
, U2 =

[
0 0.2

]
,

U3 =
[
0.15 0.3

]
, U4 =

[
0.05 0.1

]
.

Suppose that there are five nodes in the sensor network
represented by a directed graph G = (ν, ε, A) with

ε=

{
(1, 1) , (1, 2) , (1, 5) , (2, 2) , (2, 3) ,
(3, 3) , (4, 2) , (4, 4) , (5, 2) , (5, 5)

}
which is represented by the following adjacency matrix:

A =


1 1 0 0 1
0 1 1 0 0
1 0 1 0 0
0 1 0 1 0
0 1 0 0 1

 .
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The output of each sensor with missing measurements (7) is
described by

C1 =
[
1 0.2

]
, D1 = 0.8, C2 =

[
0.98 0.1

]
, D2 = 1,

C3 =
[
1.01 0.4

]
, D3 = 1.1, C4 =

[
1.01 0.3

]
,

D4 = 0.9, C5 =
[
1 0.2

]
, D5 = 0.7.

The probabilities of missing measurements are taken as γ̄1 =
0.82, γ̄2 = 0.92, γ̄3 = 0.85, γ̄4 = 0.78 and γ̄5 = 0.83.
According to (18) and (19) in Theorem 2, a feasible solution
is found and the parameters of the distributed filters are
calculated as

K11 =

[
0.1832 0.1830
0.1824 0.1822

]
, K12 =

[
0.1712 0.1712
0.1705 0.1704

]
,

K13 =

[
0.1832 0.1830
0.1824 0.1822

]
,K22 =

[
0.1050 0.1050
0.1047 0.1047

]
,

K23 =

[
0.1123 0.1122
0.1120 0.1119

]
,K31 =

[
0.1832 0.1830
0.1824 0.1822

]
,

K33 =

[
0.1832 0.1830
0.1824 0.1822

]
,K42 =

[
0.2530 0.2530
0.2514 0.2514

]
,

K44 =

[
0.2962 0.2957
0.2944 0.2938

]
,K52 =

[
0.1712 0.1712
0.1705 0.1704

]
,

K55 =

[
0.1832 0.1830
0.1824 0.1822

]
, H11 =

[
0.0060
0.0059

]
,

H12 =

[
0.0048
0.0048

]
,H15 =

[
0.0059
0.0059

]
,

H22 =

[
0.0030
0.0030

]
,H23 =

[
0.0036
0.0035

]
,

H31 =

[
0.0060
0.0059

]
,H33 =

[
0.0058
0.0058

]
,

H42 =

[
0.0072
0.0071

]
,H44 =

[
0.0010
0.0010

]
,

H52 =

[
0.0048
0.0048

]
,H55 =

[
0.0059
0.0059

]
.

To demonstrate the filtering performance, the form of dis-
turbances considered is 0.1|sin(k)| and the initial states x(0)
and x̂(0) are with [6 8]T . The switching signal is randomly
generated and shown in Fig. 1. Fig. 2 indicates the state
responses of switched positive systems. Fig. 3 and Fig. 4
display the output z and its estimation. Fig. 5 and Fig. 6
show the estimated errors of output z. From Fig. 5 and Fig.
6, it is seen that the estimated errors approach to 0 eventually.
It is observed from (1), (5) and (19) that the disturbances
have an impact on the design of the distributed filters by
influencing on the system parameters Gi and Di. In order to
show the corresponding estimation performance of different
disturbances, Table I provides estimation performances αv =
5∑

i=1

30∑
k=1

E {∥z̃i (k)∥1} /(5
30∑
k=1

∥ω (k)∥1) when increasing the

amplitudes of the disturbances by one, two and three times. It
is seen from Table I that the estimation performances become
poor with the increase of the amplitudes of the disturbances.
It is observed that, although the sensor network suffers from

missing measurements, the proposed distributed filter tracks
the estimated output of systems quite well.

TABLE I: Different estimation performances αv.
Times 0 1 2 3

αm 0.8493 0.8653 0.8742 0.8817
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Fig. 1: A switching signal.
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Fig. 2: State responses of system (1).
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Fig. 3: Output z1 and its estimations of system (1).

VI. CONCLUSION

In this paper, we have analyzed the distributed filtering
problem for a class of switched positive systems with stochas-
tic nonlinearities and missing measurements over sensor net-
works. A novel distributed filtering technique has been pro-
posed to satisfy the prescribed average filtering performance



SUBMITTED 8

0 10 20 30
0

0.5

1

1.5

Time (k)

O
ut

pu
t z

2 a
nd

 it
s 

es
tim

at
io

ns

 

 

z2
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Fig. 4: Output z2 and its estimations of system (1).
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Fig. 5: Estimation errors of output z1 of system (1).
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Fig. 6: Estimation errors of output z2 of system (1).

index. Sufficient conditions on the existence of distributed
filters have been presented in terms of linear programming and
the filter gains have been constructed. Finally, an illustrative
example has been given to highlight the effectiveness of the
developed filtering approach.
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