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Abstract
Transactional Memory (TM) is a high-level programming abstraction for concurrency control that provides
programmers with the illusion of atomically executing blocks of code, called transactions. TMs come in
two categories, optimistic and pessimistic, where in the latter transactions never abort. While this simpli-
fies the programming model, high-performing pessimistic TMs can complex.

In this paper, we present the first formal verification of a pessimistic software TM algorithm, namely,
an algorithm proposed by Matveev and Shavit. The correctness criterion used is opacity, formalising the
transactional atomicity guarantees. We prove that this pessimistic TM is a refinement of an intermediate
opaque I/O-automaton, known as TMS2. To this end, we develop a rely-guarantee approach for reducing
the complexity of the proof. Proofs are mechanised in the interactive prover Isabelle.
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1 Introduction

Transactional memory (TM) is a mechanism that provides an illusion of atomicity in concurrent
programs. It aims to reduce the burden on programmers of implementing complicated, error-prone
synchronization mechanisms. TMs are analogous to database transactions in the sense that both
perform a series of updates to data in an all-or-nothing manner — if a transaction succeeds, all its
operations succeed, and otherwise, it aborts and all its operations fail. Since the first proposal of a
software transactional memory (STM) [29], a number of STM algorithms have been developed [16],
and many have made their way into mainstream programming, e.g., the ScalaSTM library, a new
language feature in Clojure that uses an STM implementation internally for all data manipulation, the
G++ 4.7 compiler (which supports STM features directly in the compiler) and others.

Intuitively, the purpose of an STM is that the transactions appear to be executed sequentially,
i.e., as if their sections of code were protected by locks. However, unlike conventional locking
mechanisms, STMs should (and do) allow multiple transactions to be executed concurrently. The

* Doherty and Dongol are supported by EPSRC Grants EP/M017044/1 and EP/N016661/1, respectively. Wehrheim is
supported by DFG grant WE2290/8-2.

© Simon Doherty, Brijesh Dongol, John Derrick, Gerhard Schellhorn and Heike Wehrheim;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/74409286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Proving Opacity of a Pessimistic STM

desired atomicity property for STMs is opacity [14, 3], which requires that all transactions (including
aborting transactions) agree on a single sequential history of committed transactions. From a
verification perspective opacity proofs represent a challenge beyond correctness conditions such as
linearizability [10] due to interleaving at the level of operations as well as transactions.

There are two categories of STM designs: optimistic and pessimistic. Optimistic STMs assume
that conflicts are rare, and when they do occur, the transaction that detects the conflict is aborted.
Transactional aborts cause effort to be wasted, and interact badly with operations that are immediately
visible outside of a transaction (e.g., consuming input from a stream, or printing to a console).
Pessimistic STMs guarantee that no transaction ever needs to abort, thereby avoiding these difficulties.
This can be easily achieved at the cost of sacrificing concurrency. For example, it is simple to
implement a pessimistic STM that prohibits concurrency between read-only and writing transactions
(e.g., by using a read/write lock). However, because conflicts between transactions are rare, overall
performance can be improved by allowing read-only transactions to execute concurrently with
writers. Supporting this concurrency can involve significant additional complexity, and this additional
complexity can make the problem of verifying pessimistic algorithms significantly more difficult.

A number of approaches have so far studied verification of STMs, none of them – however –
a pessimistic STM1. Here, we present a fully mechanised proof of correctness (i.e., opacity) of a
pessimistic STM algorithm, namely that by Matveev and Shavit given in [24]. It poses a significant
verification challenge due to the subtle nature of the synchronisation techniques it uses. Particularly
difficult is showing that opacity holds when a writing transaction commits (see Listing 4), which
potentially synchronises with another committing writer and all other active readers.

Our proof of opacity proceeds via showing refinement (more precisely, a forward simulation)
between the STM algorithm and a high-level opaque specification. This follows a general scheme for
showing opacity proposed in [9], which used a specification called TMS2. Since the development of
the TMS2 specification, there has been just one example of its use in a refinement-style verification
of opacity [19], where the (simpler) NoRec STM is verified. Here, we present its first application to a
pessimistic STM. To this end, both the STM implementation and the abstract specification are given
as I/O-automata. This allows us to leverage existing theories within the interactive prover Isabelle
[26] for our mechanised proof. The proof of refinement – as usual – requires a large number of
invariants, both about the shared and local data of transactions. These invariants need to be shown
to be preserved by all operations of all transactions. In order to decrease the complexity associated
with such cross-preservation proofs (which are similar to interference-freedom proofs of [27]), we
introduce a rely principle for transactions into invariance proofs (similar to rely-guarantee reasoning
[17]). This provides a systematic way of stating assumptions on transactions as well as proving
invariants. The work in this paper shows that this rely principle can make refinement-based proofs
scale, even for complex STMs. All of our proofs have been carried out in Isabelle and can be found
online [8].

Our presentation of the Matveev-Shavit algorithm is more precise than the original, and resolves
certain ambiguities in the original description. In particular, a naive interpretation of the original
description would result in an algorithm that was not opaque.

The structure of the paper is as follows. In Section 2, we introduce our running example and
discuss the choices we made resolving the ambiguities in the original presentation of the algorithm.
In Section 3, we introduce I/O automata as a model for opacity and the TMS2 specification. Section
4 develops our methodology based on refinement and rely-guarantee methods for proving opacity for
pessimistic STMs. This is applied to the pessimistic STM of Matveev and Shavit [24] in Section 5.
Finally, we conclude in Section 6.

1 A discussion of related work can be found in the conclusion.
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Listing 1 Initialisation
(globalVersion = 1) and (lock = free) and (∀ loc • (version (loc) = 0)) and
(∀ t • (txnVersion(t) = Idle) and (not writerWaiting(t)) and

(t.wrSet = {}) and (not t.progressSeen))

Listing 2 Reader transaction’s operations.

1: procedure READ BEGIN(t)
2: txnVersion(t)←Reading . Inform others that reader t has started
3: t.temp← globalVersion . Read the global version
4: txnVersion(t)← t.temp . Set t’s txnVersion to stored global version

5: procedure READ READ(t, loc)
6: READ FROM MEM(t, loc) . Execute as procedure READ FROM MEM

7: procedure READ COMMIT(t)
8: txnVersion(t)← Idle . Inform others that reader t has finished

9: procedure READ FROM MEM(t, loc)
10: if not t.progressSeen then . Check if committing writer’s progress has been seen
11: if version(loc) = txnVersion(t) then . Check if loc is potentially being written
12: await txnVersion(t) 6= globalVersion . Wait for committing writer to finish
13: t.progressSeen← true . Inform t’s next READ FROM MEM that

the writer’s commits have completed

14: return mem(loc) . Read value of loc from the memory

2 A Pessimistic STM

In this section, we present the pessimistic STM by Matveev and Shavit [24] (which we will refer to as
MSPessTM) where no transaction ever aborts. MSPessTM distinguishes between read-only (which
perform no writes) and write transactions. A read-only transaction starts by calling READ BEGIN,
performs a number of READ READ operations, then completes using the operation READ COMMIT
(see Listing 2). Similarly, a write transaction starts using operation WRITE BEGIN, performs some
number of reads and writes using WRITE READ and WRITE WRITE, respectively (Listing 3), then
completes using WRITE COMMIT (Listing 4).

Synchronisation is achieved using shared variables globalVersion, txnVersion(t) (t being a trans-
action), etc. as well as transaction-local variables t.temp, t.progressSeen etc, which are initialised
as in Listing 1. Some variables such as t.temp are unrestricted initially, and hence, do not appear in
Listing 1.

(1) MSPessTM uses a deferred update strategy: a write transaction t caches all its writes (pairs of
locations loc and values v) in t.wrSet, which are committed to the shared memory when executing
WRITE COMMIT.

(2) Readers and writers are synchronised via the counter globalVersion. A committing writer will
increment globalVersion prior to updating mem (with writes from its write set) and again after these
updates are completed. Thus, globalVersion is even iff there is a committing writer.

(3) After invoking WRITE BEGIN, a writer transitions through three main phases: waiting, active
and committing. There may be multiple waiting writers, but at most one active writer and at most
one committing writer. Only the active writer may read or write, and only the committing writer may
modify the shared memory. A waiting writer must not have progressed beyond line 18. A writer
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Listing 3 Writer transaction’s begin, read and write operations.

15: procedure WRITE BEGIN(t)
16: writerWaiting(t)← true . Inform others that writer t has started
17: while writerWaiting(t) do . Check that t has become active
18: atomic{if lock = free then lock← taken else goto 17} . Try to acquire lock
19: writerWaiting(t)← false . t has acquired lock, so can become active

20: t.temp← globalVersion . Read globalVersion
21: txnVersion(t)← t.temp . Set txnVersion(t) to the globalVersion read

22: procedure WRITE READ(t,loc)
23: if loc ∈ dom(t.wrSet) then
24: return t.wrSet(loc) . If possible return value of loc from own write set
25: else
26: READ FROM MEM (t, loc) . Otherwise return value of loc from the memory

27: procedure WRITE WRITE(t,loc,v)
28: t.wrSet← t.wrSet ⊕ {loc 7→ v} . Store new value of loc in the write set

. Notation f ⊕ {x 7→ a} denotes functional override

t becomes active when shared variable writerWaiting(t) becomes false (either at line 19, or due to
another writer executing line 39), and becomes committing by incrementing globalVersion (line 36).

(4) Synchronisation between writers is achieved as follows. Initially, there is neither an active nor a
committing writer. Waiting writers compete for the shared lock (at line 18), and the winner becomes
active. An active writer may enter the “critical section” for a committer by progressing beyond line
32 (which can only happen if there is no committer). The active writer actually becomes committing
after executing line 36 (the first increment of globalVersion). At this point the writer is both active and
committing, and only ceases to be an active writer after executing the code block in lines 37-41. Here,
it either makes another writer active (line 39), or if no waiting writers are found, it simply releases
lock (line 41). Matveev and Shavit refer to the mechanism at line 39 as “passing the baton” because
lock is effectively transferred from the current active writer to some other waiting writer. Note that
because lines 37-41 are executed after the first increment of globalVersion, there is no danger of there
being more than one committing writer. A committing writer may need to synchronise with reads of
another active writer; this is achieved using the mechanism described below.

(5) Synchronisation between readers and writers is the most complex mechanism of the algorithm. To
understand this, we first note that from perspective of a writer, there are two abstract versions of the
memory: the current memory (which is the value of the shared mem variable) and the new memory
(which is the mem updated with all writes in the write set). The synchronisation mechanisms ensure
no transaction reads from both current memory and the new memory in an inconsistent manner. Note
that a reader can read from the current and new memory without violating consistency if all of the
locations read are unchanged (and MSPessTM allows this). Therefore, a writer distinguishes between
current and new readers, which access the current and new memory, respectively.

A writer that has entered the critical section of WRITE COMMIT (i.e., progressed beyond line 33)
goes through four distinct phases: blocking new readers from accessing changed locations in the
new memory (lines 34-35), waiting for quiescence from readers of the current memory (lines 42-43),
installing the current memory (lines 44-45), and signalling completion (lines 46-47). Note that lines
36-41 deal with a writer committing then becoming inactive (but still committing) as described above.

A reader t must also wait if t detects that a new memory is being installed as the current memory
(lines 10-12), which is true if the version number of the location loc that t wants to read is the same
as t’s transaction version. Such a reader must have read globalVersion after the first (but before the
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Listing 4 Writer transaction’s commit operation.

29: procedure WRITE COMMIT(t)
30: t.temp← txnVersion(t) . Load t’stransaction version into a temporary variable
31: if even(t.temp) then . Check for a committing writer
32: await t.temp 6= globalVersion . Wait for committing writer to finish
33: t.temp← globalVersion . Re-read global version

34: for all loc ∈ dom t.wrSet do . Prepare to write each loc in t’s write set
35: version(loc)← t.temp + 1 . Inform other readers that loc is being updated

36: globalVersion← t.temp + 1 . Update global version and become a committing writer
37: if ∃ u • writerWaiting(u) then . Check for a waiting writer
38: choose t.txn ∈ {u | writerWaiting(u)} . Pick some waiting writer
39: writerWaiting(t.txn)← false . Make the selected waiting writer active
40: else
41: lock← free . Free the lock if no waiting writers seen

42: for all t.txn ∈ {u | t 6= u and READING(t, u)} do
43: await not READING(t, t.txn)) . Wait for each potential reader of current memory to

finish or signal that it will read the new memory
44: for all (loc, v) ∈ t.wrSet do
45: mem(loc)← v . Update memory with new value for each element in the write set

46: globalVersion← t.temp + 2 . Inform others that commits have finished
47: txnVersion(t)← Idle . Inform others writer t has finished

48: function READING(t, u)
49: return txnVersion(u) 6= Idle and txnVersion(u) ≤ t.temp

second) increment within WRITE COMMIT. On the other hand, a writer waits for all readers that
may be accessing the current memory during its quiescence phase. These are determined as non-idle
transactions with a version number smaller than the writer’s version number.

(6) A transaction t executing READ FROM MEM must wait for a committing writer at most once
(line 12), i.e., after the current writer has committed, a reader will not need to wait for new active
writers since any new active writer t′ is guaranteed to wait for the older reader t when t′ enters its
quiescence phase. Hence, a variable t.progressSeen is used to improve efficiency; once t.progressSeen
is set to true, future reads may safely read from memory without making further checks.

An intuitive English description of this algorithm is given in [24], but no more precise description
is provided. In our work we have developed both a pseudocode description and a formal model of
the algorithm. This has allowed us to resolve certain ambiguities in the original presentation. Our
presentation is explicit about when the shared variables globalVersion and txnVersion need to be
accessed. A direct implementation of the WRITE COMMIT operation as presented in [24] would
result in a procedure with several superfluous accesses to these variables, causing unnecessary and
potentially inefficient memory activity. In the version of the algorithm that we verify, txnVersion(t) is
saved in the local variable t.temp at line 30, and then this value is used throughout the operation.

Perhaps more importantly, Matveev and Shavit [24] do not detail how globalVersion should
be copied into txnVersion(t) at the beginning of a read-only transaction. A naive implementation
that implemented this copy non-atomically (by first loading globalVersion into a local register and
then writing the resulting value into txnVersion(t)) would not be opaque. To see this, consider the
following execution: (1) some reader t2 begins and reads globalVersion to a local register; (2) an
already executing writer t1 enters its commit operation and passes through the blocking phase (setting
the version number of locations in its write set and incrementing globalVersion); and finally (3)
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t1 checks for quiescence. Assuming that no other reader is currently active, t1 sees quiescence
as it cannot detect that t2 has already read globalVersion and exits the loop in lines 42/43. If t2
next executes the other half of the non-atomic statement, setting txnVersion(t2) to its old copy of
globalVersion, we arrive at a situation where the reader t2 can continue while the writer t1 copies
the values in t1.wrSet to the shared store. The fact that txnVersion(t2) is stale means that t2 will be
able to read from locations in t1.wrSet without becoming blocked at line 12 in READ FROM MEM,
and may observe inconsistent values. We avoid this problem by using the special Reading value to
indicate when a beginning transaction is copying globalVersion (see line 2 of READ BEGIN). This
technique is used explicitly in Matveev and Shavit’s lock-eliding STM [1] to solve essentially the
same problem.

3 Modelling STMs as Input/Output Automata

To show that the MSPessTM algorithm satisfies opacity, we prove that it is a refinement of an
intermediate opaque I/O-automaton, known as TMS2. In this section we start by introducing I/O-
automata (IOA) [22] and the TMS2 specification [9], then give examples of the (straightforward) IOA
encoding of MSPessTM.

The correctness condition we need to prove about MSPessTM is opacity [14]. Overall opacity
guarantees that committed transactions should appear as if they are executed atomically, at some
unique point in time, and aborted transactions, as if they did not execute at all. Amongst other things,
opacity also guarantees that all reads that a transaction performs are valid with respect to a single
memory snapshot.2 Opacity is formulated as a condition on histories, i.e. sequences of operations of
transactions. In the following, we will use the term trace to stand for such sequences. When proving
opacity of an STM, we thus need to show that all traces an STM allows are opaque.

We do not give a formal definition of opacity here because our proof does not make use of it
directly. Instead, our proof strategy leverages two existing results from the literature: the definition
of the TMS2 specification by Doherty et al. [9], and the mechanised proof that TMS2 is opaque by
Luchangco et al. [23]. Using these results, it is sufficient that we prove trace refinement between
MSPessTM and the TMS2 specification: we show that all traces of MSPessTM are contained in the
traces of TMS2, which in turn gives us opacity of MSPessTM.

TMS2 is formalised using input/output automata [22], and hence, our formalisations also use IOA.
Moreover, Müller [25] has mechanised the IOA theory (including its simulation rules) in Isabelle,
which is now part of the standard Isabelle distribution [26]. As our objective is a mechanised proof
using an interactive theorem prover, we thus chose to carry out our proofs within Isabelle. Overall,
we obtain a fully mechanised verification of opacity for MSPessTM. First we define I/O automata.

I Definition 1. An I/O automaton (IOA) is a labeled transition system P with a set of states ΣP, a
set of actions acts(P) (partitioned into internal and external actions), a set of start states start(P) ⊆ ΣP

and a transition relation trans(P) ⊆ ΣP × acts(P)× ΣP (actions label transitions). 2

The TMS2 specification. The TMS2 specification is given in Figure 1. In IOAs, transitions are
typically specified in an operational style: every IOA has a number of variables and transitions are
formulated by giving a precondition and an effect of the transition stated in terms of these variables.
For each transition, the first line in Figure 1 gives the action name. The transition is enabled if all its
preconditions, given after the keyword Pre, hold in the current state. The state modifications (effect)

2 In addition, opacity provides meaning to aborted transactions, but because our case study MSPessTM is a pessimistic
algorithm, we elide these details.
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of the transition are given as a number of assignments after the keyword Eff. In that, the index t refers
to the transaction executing the operation.

The transitions of TMS2 are designed to capture the structural patterns common to most STM
implementations defined in terms of read and write operations. The state of TMS2 therefore includes
a statust, which is ‘notStarted’ initially. The status enforces that each transaction must execute
TMBegin, then some number of TMRead and TMWrite operations, and finally TMEnd.3

The status is ‘ready’ in between reads and writes, and ‘committed’ after the end of the transaction
(i.e., when it has committed). Since operations of different transactions may execute concurrently, the
abstract specification splits executing an external operation into several steps, including an invocation
and a response. For example, for TMRead, the external step invt(TMRead(loc)) represents the
invocation when reading from location loc, and respt(TMRead(v)) represents a read returning with
value v. In between, an STM implementing TMS2 must at some time determine the value it reads. In
TMS2 this is represented by the internal step DoReadt(loc, n), which computes v by setting statust to
readResp(v). The internal actions of TMS2 (those prefixed by Do) correspond to the points at which
operations “take effect” — these are similar to linearization points in linearizability proofs [10].

Like opacity, TMS2 guarantees that transactions satisfy two critical requirements: (R1) all reads
and writes of a transaction work with a single consistent memory snapshot that is the result of all
previously committed transactions, and (R2) the real-time order of transactions is preserved.

To ensure (R1), the state of TMS2 includes 〈mems(0), . . . ,mems(maxIdx)〉, which is a sequence
of all possible memory snapshots. Initially the sequence consists of one element, the initial memory
mems(0). Committing writer transactions append a new memory newmem to this sequence (cf.
DoCommitWritert), by applying the writes of the transaction to the last element mems(maxIdx).
To ensure that the writes of a transaction are not visible to other transactions before committing,
TMS2 (like MSPessTM) uses a deferred update semantics: writes are stored locally in the transaction
t’s write set wrSett and only published to the shared state when the transaction commits.

All reads in TMS2 must be consistent (i.e., occur from a single memory snapshot), therefore each
transaction t keeps track of all its reads from memory in a read set rdSett. A read of location loc by
transaction t checks that either loc was previously written by t itself (then branch of DoReadt(loc)),
or that all values read so far, including loc, are from the same memory snapshot n, where beginIdxt ≤
n ≤ maxIdx (predicate validIdx(t, n) from the precondition, which must hold in the else branch). In
the former case the value of loc from wrSett is returned, and in the latter the value from mems(n) is
returned and the read set is updated. The read set of t is also validated when a transaction commits
(cf. DoCommitReadOnlyt and DoCommitWritert). Note that when committing, a read-only
transaction may read from a memory snapshot older than mems(maxIdx), but a writing transaction
must ensure that all reads in its read set are from most recent memory (i.e., mems(maxIdx)), since its
writes will update the memory sequence with a new snapshot.

To ensure (R2), if a transaction t′ commits before transaction t starts, then the memory that t reads
from must include the writes of t′. Thus, when starting a transaction (cf. invt(TMBegin)), t saves the
current last index of the memory sequence, maxIdx, into a local variable beginIdxt. When t performs
a read, the check validIdx(t, n) ensures that that the snapshot mems(n) used has beginIdxt ≤ n, which
implies that the writes of t′ are included.

Encoding MSPessTM as an IOA. The state of the IOA representing MSPessTM contains local variables
statust, wrSett, progressSeent and tempt, and shared variable writerWaitingt and txnVersiont for each
transaction t. Note that statust (with initial value NotStarted) is used to model control flow within
each transaction, and hence, does not appear explicitly within the pseudocode in Listings 1-4. The

3 The full TMS2 specification [9] includes transitions for cancelling and aborting a transaction, which we do not
present here, since we do not need them for our pessimistic algorithm.
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invt(TMBegin)
Pre: statust = notStarted
Eff: statust := beginPending

beginIdxt := maxIdx

respt(TMBegin)
Pre: statust = beginPending
Eff: statust := ready

invt(TMRead(loc))
Pre: statust = ready
Eff: statust := doRead(loc)

respt(TMRead(v))
Pre: statust = readResp(v)
Eff: statust := ready

invt(TMWrite(loc, v))
Pre: statust = ready
Eff: statust := doWrite(loc, v)

respt(TMWrite)
Pre: statust = writeResp
Eff: statust := ready

invt(TMEnd)
Pre: statust = ready
Eff: statust := doCommit

respt(TMEnd)
Pre: statust = commitResp
Eff: statust := committed

DoCommitReadOnlyt(n)
Pre: statust = doCommit

dom(wrSett) = ∅
validIdx(t, n)

Eff: statust := commitResp

DoCommitWritert

Pre: statust = doCommit
rdSett ⊆ mems(maxIdx)

Eff: statust := commitResp
mems := mems⊕ newmem

DoReadt(loc, n)
Pre: statust = doRead(loc)

loc ∈ dom(wrSett) ∨ validIdx(t, n)
Eff: if loc ∈ dom(wrSett) then

statust := readResp(wrSett(loc))
else

v := mems(n)(loc)
statust := readResp(v)
rdSett := rdSett ⊕ {loc→ v}

DoWritet(loc, v)
Pre: statust = doWrite(loc, v)
Eff: statust := writeResp

wrSett := wrSett ⊕ {loc→ v}

where maxIdx =̂ max(dom(mems))

newmem =̂ {maxIdx + 1 7→ (latestMem⊕ wrSett)}
validIdx(t, n) =̂ beginIdxt ≤ n ≤ maxIdx ∧ rdSett ⊆ mems(n)

Figure 1 The transition relation of TMS2

state of the IOA also contains synchronisation variables globalVersion (which models the shared
global version counter) and lock (which models the active writer lock). Finally, the IOA must make
the shared memory explicit, thus the state includes two shared variables: store (which maps locations
to values) and version (which maps each location to a version number).

The IOA models execution by representing each atomic step of the MSPessTM algorithm (typic-
ally every line in the algorithm) as single IOA transition. As in TMS2, for each MSPessTM operation,
the invocations and responses are external; all other lines of code map to internal actions.

Input arguments to an operation executed by transaction t are modelled as part of the statust

variable. In particular, whenever t is executing an operation, the value of statust is of the form
pending(pc, <input values>), where pc is the line number of the next step to be executed, and
<input values> are the input arguments. Note that for MSPessTM, <input values> is none for the
begin and end operations, a location loc for read operations, and a location loc and value v for write
operations. As an example, Figure 2 shows the three transitions for the WRITE WRITE operation
from Listing 3: an invocation action invt(TMWrite(loc, v)), an internal action write writet(28)

(corresponding to line 28 in the algorithm, hence the name), and a response action respt(TMWrite).
The set Writers in the precondition of invt(TMWrite(loc, v)) is used to denote the set of writer
transactions; we assume that this set is predetermined in some manner.
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invt(TMWrite(loc, v))
Pre: statust = Ready

t ∈ Writers
Eff: statust :=

pending(28, loc, v)

write writet(28)

Pre: statust = pending(28, loc, v)
Eff: statust := writeResp

wrSett :=

wrSett ⊕ {loc→ v}

respt(TMWrite)
Pre: statust = writeResp
Eff: statust := ready

Figure 2 Transitions of MSPessTM for operation WRITE WRITE

4 Verifying opacity as Input/Output automata refinement

We are now equipped with two IOA specifications, one for MSPessTM and one for TMS2. Of the
latter we already know that its traces are opaque. Our next objective is to show that MSPessTM
refines TMS2 from which opacity of MSPessTM follows. The standard way of verifying a refinement
is to use a forward simulation between the implementation and the specification, as this allows one to
verify the refinement in a stepwise manner. In this section we define forward simulations, and then
develop a novel method for verifying some of the invariants that one needs as part of the proof of
forward simulations. Details of how we apply this to the simulation proof between MSPessTM and
TMS2 are given in Section 5.

4.1 Proving opacity via refinement.

To verify that pessimistic STM algorithms are opaque we verify that their IOA representations (in this
case MSPessTM) are a refinement of TMS2. To define refinement formally we need some definitions.
An execution of an IOA P is a sequence σ of alternating states and actions, beginning with a state in
start(P), such that for all states σi except the last, (σi, σi+1, σi+2) ∈ trans(P). A reachable state of P
is a state appearing in an execution of P. An invariant of P is a predicate satisfied by all reachable
states of P. A trace of P is any sequence of (external) actions obtained by restricting the actions of P
to its external actions. The set of traces of P represents P’s externally visible behaviour.

Refinement is a property between the visible behaviours of abstract an IOA A and a concrete
implementation IOA C. In particular, we say C refines A iff every trace of C is also a trace of A. In
our setting, each externally visible behaviour consists of a sequence of invoke and response events,
including the input/output values of reads and writes.

We let external(A) and internal(A) denote the external and internal actions of IOA A, respectively.
Writing cs a−→C cs′ for (cs, a, cs′) ∈ trans(C), we define:

I Definition 2. A forward simulation from a concrete IOA C to an abstract IOA A is a relation
R ⊆ ΣC × ΣA such that each of the following holds.

Initialisation.
∀ cs ∈ start(C) • ∃ as ∈ start(A) • R(cs, as)

External step correspondence.
∀ cs ∈ reach(C), as ∈ reach(A), a ∈ external(C), cs′ ∈ ΣC •

R(cs, as) ∧ cs a−→C cs′ ⇒ ∃ as′ ∈ ΣA • R(cs′, as′) ∧ as a−→A as′

Internal step correspondence.
∀ cs ∈ reach(C), as ∈ reach(A), a ∈ internal(C), cs′ ∈ ΣC •

R(cs, as) ∧ cs a−→C cs′ ⇒
R(cs′, as) ∨ ∃ as′ ∈ ΣA, a′ ∈ internal(A) • R(cs′, as′) ∧ as a′−→A as′ 2

The conditions for forward simulation we use here are adapted from Lynch and Vaandrager [21]; our
step correspondence conditions use a single abstract step instead of a full sequence as in [21], since
this is simpler and sufficient for our proof.
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We have proved in Isabelle that the existence of a forward simulation (in the sense given here) is
sufficient to ensure trace inclusion (this follows fairly directly from a lemma in the I/O-automaton
theory of [25]). Furthermore, a proof that all traces of TMS2 are opaque has been completed in
the PVS interactive prover by Luchangco et al. [23]. Therefore, proving the existence of a forward
simulation from the MSPessTM automaton to TMS2 is sufficent to prove opacity of MSPessTM.

4.2 Proving an Invariant with a Rely

The verification of an actual forward simulation for a specific STM algorithm turns out to depend
critically on a complicated invariant. In order to manage this complexity, we have developed, in
Isabelle, a scheme that allows us to decompose our invariant into simpler components, and prove that
our invariant holds with the help of a rely condition. We now describe this scheme in the general case.
In Section 5.2, we show how to apply this scheme to the MSPessTM algorithm.

To describe the scheme generically, fix an automaton P whose actions are indexed by transactions
from a set T , as in TMS2 and MSPessTM. That is, we assume acts(P) ⊆ Act × T , for some set Act
of action names. Further, assume we are given a shared invariant, sharedI ⊆ ΣP, that describes
an invariant of P’s shared state, and transaction invariants, txnIt ⊆ Act × ΣP, t ∈ T , that describe
the relationship between each transaction’s local state upon enabledness of the action a ∈ Act and
the automaton’s shared state. The reason for incorporating actions in transaction invariants is that
invariants for transactions typically consists of lots of cases, differentiating between the different
program locations of the transactions. Thus, a transaction invariant txnIt(a, s) can be read as “the
property that holds when transaction t executes a in state s”.

Our goal is to prove that the composition of the shared invariant and the transaction invariant is an
invariant of P. Formally, we must prove that for all s ∈ reach(P),

sharedI(s) ∧ ∀(a, t) ∈ acts(P) • txnIt(a, s) (1)

Observe that to prove invariance of property (1), it is sufficient to prove the following four properties:
start Invariant (1) is true initially, i.e., for all s ∈ start(P), sharedI(s) and ∀(a, t) ∈ acts(P) •

txnIt(a, s).
shared The shared invariant is preserved. Formally, for all states s, s′, actions a and transaction t, if

sharedI(s) ∧ txnIt(a, s) and s
a,t−→ s′ then sharedI(s′).

self Each step of each transaction preserves its own invariant. Formally, for all states s, s′, actions
a, a′ and transaction t, if sharedI(s) ∧ txnIt(a, s) and s

a,t−→ s′ then txnIt(a′, s′).
cross Each step of each transaction preserves the invariant of every other transaction. Formally,

for all states s, s′, actions a, a′ and transactions t, t′ where t 6= t′, if sharedI(s) ∧ txnIt(a, s) ∧
txnIt′(a′, s) and s

a,t−→ s′ then txnIt′(a′, s′).

Unfortunately, the last proof obligation, cross, introduces substantial complexity in any verifica-
tion based on invariants and simulation. To see this, observe that for each step of each transaction t,
we must consider the effect of the step on every action of the transaction t′. If we were to prove the
noninterference property directly, we would need to discharge quadratically many proof obligations,
one obligation for each pair of actions. We address this issue by introducing a rely condition, which
describes the possible interference that a transaction may experience during its execution. This
method reduces the number of proof obligations from quadratic to linear in the number of actions.

Roughly speaking, a rely condition is a relation over the states of an automaton that must preserve
the invariant of each transaction, and that must abstract the transitions of each transaction. We say
that a relation relyt ⊆ ΣP × ΣP, t ∈ T , is a rely condition of P, if the following conditions hold.
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guar Each transaction preserves the rely of every other transaction. Formally, for all states s, s′,
actions a and transactions t, t′ where t 6= t′, if sharedI(s) ∧ txnIt(a, s) and s

a,t−→ s′ then
relyt′(s, s′).

rely The rely must be strong enough to preserve each transaction’s invariant. Formally, for all states
s, s′, actions a and transactions t, if sharedI(s) ∧ txnIt(a, s) and relyt(s, s′) then txnIt(a, s′).

It is straightforward to see that properties guar and rely together imply property cross above.
Thus, we have the following theorem.

I Theorem 3. If sharedI and txnIt for each t ∈ T satisfy properties start, shared, and self, and
there is some relyt for each t ∈ T satisfying properties guar and rely, then for all s ∈ reach(P),

sharedI(s) ∧ ∀(a, t) ∈ acts(P) • txnIt(a, s) 2

This theorem has been formalized and proved in our Isabelle development.
Note that unlike some other rely/guarantee schemes, our rely condition is not required to be

reflexive or transitive. In some other schemes, the rely condition describes the interference from
any number of environment steps. In our setting, the purpose of the rely condition is to ensure that
every step of every other transaction preserves the relying transaction’s invariant, so transitivity is
unnecessary. As we shall see, for our proof of MSPessTM, the rely condition we use is not transitive.

Of course, standard rely/guarantee approaches also employ a guarantee condition. In a con-
ventional setting, the guarantee condition of a component enables it to be composed with other
components whose rely conditions are unknown when the first component is developed. So long
as the guarantee of one component implies the rely of the other, the composition is sound. In our
setting, no transaction is able to modify any state in the environment of the transactional memory
system. Therefore, no transaction is capable of interfering with any other component, except the
other transactions. Thus, no explicit guarantee is necessary. We require only that each step of each
transaction preserves the rely of every other transaction.

Having defined our general approach we show how we develop a simulation relation for this
specific example, show how we use the above simplification when we need to verify our invariants.

5 Application to MSPessTM

In this section we apply our theory to the verification of the MSPessTM algorithm.
As part of the proof, we introduce two auxiliary variables: CWriter and AWriter which keep track

of the committing and active writers, respectively. If there is no committing writer, then CWriter = ⊥,
otherwise it has the transaction identifier of the committing transaction (similarly AWriter). Initially,
we set AWriter = CWriter = ⊥. CWriter is updated to t when transaction t executes line 36, and to
⊥ when t executes line 46. AWriter is updated to t either when t acquires the lock at line 18, or when
some other (active and committing) transaction sets writerWaitingt to false at line 39. AWriter is set
to ⊥ when some committing transaction releases the lock at line 41.

5.1 The Simulation Relation

First of all we define a simulation relation R between the states of MSPessTM and TMS2. We use cs
to denote a concrete state (i.e., the state of MSPessTM) and as to denote an abstract state (i.e., the
state of TMS2). The value of variable v in cs is given by cs.v (and similarly as.v).

For reasons of space, it is not possible to describe the entire simulation relation, so we focus our
attention on the most challenging and important aspect of our proof: showing that each read operation
returns a legal value. It is through read operations that transactions actually observe the state of the
memory. The full simulation relation may be viewed online [8].
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First, it must be possible to identify particular indices of the memory sequence mems (which is
part of as) using the variables of cs. For our refinement proof, we must identify the last element in
mems (i.e. maxIdx in Figure 1). Recall that in MSPessTM, each writer increments globalVersion
twice when it commits and that globalVersion = 1 initially. Thus, the total number of committed
write transactions is bcs.globalVersion/2c. Also, recall that in the initial state of TMS2 mems has one
element, and each committing writing transaction appends a new memory snapshot to mems. Our
simulation captures this correspondence by requiring:

bcs.globalVersion/2c = as.maxIdx (2)

We must ensure that some step of the MSPessTM read operation corresponds (c.f., Definition
2) to the DoReadt(n) step of TMS2, for some n. For any transaction t, this abstract read index n is
determined by the value of txnVersiont after t has executed either line 4 or line 21. We let:

readIdxt = btxnVersiont/2c (3)

The index readIdxt is defined throughout the interval between the response of the transaction t’s begin
operation, and the point during the commit operation when t sets txnVersiont to Idle.4 Our simulation
relation specifies that the read set of each transaction is consistent with as.mems(readIdx(cs, t))
throughout the interval over which readIdx is defined. This allows us to prove that the precondition of
DoReadt(n) is satisfied over this interval.

We must also show that each concrete read operation returns the correct value (i.e., is consist-
ent with the value returned by the abstract read). That is, we need to show that when a transac-
tion executes line 14 of READ FROM MEM reading from location loc, that the value returned is
as.mems(cs.readIdxt)(loc). To achieve this, our simulation relation must relate the values of the
concrete memory to values in the abstract memory sequence. There are two cases to consider. In the
first, there is no committing writer and the concrete memory is equal to the latest abstract memory. In
the second, there is a committing writer, t, and the concrete memory agrees with the second-to-last ab-
stract memory on all locations, except those in t’s write set. Formally, our simulation relation specifies
that one of the two following conditions hold, where ‘−C’ denotes domain anti-restriction [30].

cs.CWriter = ⊥ ∧ cs.mem = as.mems(maxIdx) (4)

cs.CWriter = t ∧ (cs.wrSett −C cs.mem) = (cs.wrSett −C as.mems(maxIdx− 1)) (5)

Using (4) and (5) a transaction executing READ FROM MEM (t, loc) returns the correct value in
state cs, provided that we can guarantee the following two properties.
index Either cs.readIdxt = as.maxIdx holds or both cs.readIdxt = as.maxIdx− 1 and cs.CWriter 6=
⊥ hold.

loc loc 6∈ dom(cs.wrSetcs.CWriter) whenever cs.CWriter 6= ⊥. Thus, loc is not in the write set of any
transaction.

Together, properties (4), (5) and index allow us to prove cs.mem(loc) = as.mems(cs.readIdxt)(loc)

holds so long as loc is not in the write set of any committing transaction, which in turn follows from
property loc.

Properties index and loc are proved using the following invariants and transaction invariants of
MSPessTM.
inv1 In any state where txnVersiont is defined, globalVersion− 2 ≤ txnVersiont ≤ globalVersion

and txnVersiont = globalVersion− 2⇒ CWriter 6= ⊥.
inv2 CWriter = ⊥ iff globalVersion is odd.

4 Recall that txnVersiont is guaranteed to be in N throughout this interval.
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cs′.CWriter = t⇔ cs.CWriter = t (6)

cs.CWriter = t⇒ (7)

cs′.globalVersion = cs.globalVersion ∧
cs′.store = cs.store ∧ cs′.version = cs.version ∧
(quiescent(cs, t)⇒ quiescent(cs′, t))

cs.AWriter = t⇒ (8)

cs′.AWriter = t ∧ cs′.lock = cs.lock ∧
cs′.version = cs.version ∧
(cs.CWriter = ⊥ ⇒ cs′.CWriter = ⊥)

cs′.CWriter = cs.CWriter ⇒ cs′.globalVersion = cs.globalVersion (9)

cs′.CWriter 6= cs.CWriter ⇒ (10)

cs′.globalVersion = cs.globalVersion + 1 ∧
(cs′.CWriter = ⊥ ⇒ effTxnVer(cs, t) = cs.globalVersion) ∧
(cs′.CWriter 6= ⊥ ⇒ cs.CWriter = ⊥)

cs′.txnVersiont = cs.txnVersiont (11)

∀ l • cs′.version(l) = cs.version(l) ∨ cs′.globalVersion < cs′.version(l) (12)

cs′.writerWaitingt 6= cs.writerWaitingt ⇒ (13)

cs.writerWaitingt ∧ ¬cs′.writerWaitingt ∧
cs′.lock = free ∧ cs.CWriter 6= ⊥ ∧
cs′.AWriter = t ∧ even(cs.globalVersion)

Figure 3 Our rely condition is the conjunction of these assertions, along with assertions stating that the
local variables of each transaction are not changed. The effective transaction version of a transaction, denoted
effTxnVer(cs, t) and appearing in property (10), is equal to cs.txnVersiont except when t has copied globalVersion
into its temp variable during the begin operation, but not yet written that value into txnVersiont. The predicate
quiescent, in property (7), is defined as quiescent(cs, t) =̂ ∀ t′.t 6= t′ ⇒ effTxnVer(cs, t′) = cs.globalVersion.

txinv1 Whenever a transaction t is enabled to execute line 14 of the READ FROM MEM procedure,
txnVersiont < globalVersion or version(loc) 6= txnVersiont.

txinv2 Whenever a transaction t is enabled to execute any of the WRITE COMMIT procedure after
line 35 until line 46, we have for all loc ∈ dom(wrSett), version(loc) = globalVersion.

Property index follows from invariants inv1 and inv2. Property loc follows from invariants txinv1
and txinv2, and we use the generic approach described above to verify these in turn.

5.2 Verifying the invariants for MSPessTM

We now outline how we proved invariants inv1 and inv2. The full invariant is too long to present
in this report, but Isabelle source describing the invariant can be obtained from [8]. We focus our
attention on the rely condition, and explain how to prove that our key invariants are preserved by this
rely. Our rely condition is presented in Figure 3. Note that this rely relyt states the properties which
the transaction t can assume to hold between current and next state while the other transactions t′ 6= t
execute.

We first consider invariant txinv2. The antecedent of this invariant is false until t completes the
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loop at lines 34-35, after which the consequent is true by the effect of that loop. At this point t is
the active writer. Properties (8) and (7) of the rely condition describe which aspects of the shared
state are stable when a writing transaction is either active or committing. Together, these properties
ensure that while t = AWriter or t = CWriter, version does not change. Further, properties (8) and
(6) ensure that the value of AWriter and CWriter are not changed by another transaction. The stability
of txinv2 follows from these facts.

We turn now to invariant inv1. This invariant is established when the transaction t writes its temp
variable into txnVersiont. Properties (11) and (9) of the rely condition ensure that the invariant is
preserved over transitions where cs′.CWriter = cs.CWriter, because none of the relevant variables
are changed. When cs′.CWriter 6= cs.CWriter, there are two possibilities, both of which are described
by property (10) of the rely. If cs′.CWriter 6= ⊥, then cs.CWriter 6= ⊥, so cs.txnVersiont 6=
cs.globalVersion − 2 by invariant inv1. The invariant follows easily. If cs′.CWriter = ⊥, then
cs.txnVersiont = cs.globalVersion by property (10) itself, and hence

cs′.txnVersiont = cs′.globalVersion− 1

holds, which preserves the invariant. (Note that property (10) is not transitive because it stipulates
that globalVersion can only be incremented.)

For reasons of space, we have ignored the question of how we prove the guar property of
Section 4.2 for our rely. We note only that the transition relation of MSPessTM ensures that when
cs′.CWriter 6= cs.CWriter and cs.CWriter = ⊥, the transition is the step of the transaction cs′.CWriter
when it increments globalVersion the second time at line 46. MSPessTM has the invariant that at this
point, the state is quiescent. The fact that during these steps, cs.txnVersiont = cs.globalVersion for all
t follows from this quiescence.

This proof has been mechanized in Isabelle. This effort took around three weeks of full time
work, including building the MSPessTM model and stating and proving the invariant and simulation
relation. The proof uses Isabelle theories, including an Isabelle formalisation of the TMS2 automaton,
that had already been developed by the authors as part of a larger transactional memory verification
project.

6 Related work and conclusions

A number of approaches have so far studied verification of STMs, none of them – however – a
pessimistic STM. The proposed techniques range from model checking approaches [12, 13] to
interactive proofs [19]. A comprehensive survey of STM verification methods can be found in [18, 6].
Model checking (e.g., [4]) is generally not suitable for our aims of rigorously verifying algorithms
against all possible executions. One promising approach is by Guerraoui et al. [12, 13], who present
a method for model checking opacity using a reduction theorem that lifts opacity for two threads and
two variables to opacity for an arbitrary number of threads and variables. However, their specifications
do not consider the values that are read or written, and hence, the link to the definition of opacity in
[15] is unclear. Moreover, as far as we are aware, the proof of their reduction theorem itself has not
been mechanised.

Li et al. [20] have verified STM algorithms, however they show correctness against their own
abstract specification. Lesani [18] developed a formal proof method for opacity by splitting opacity
into a number of other conditions (markability). In spirit, this technique is similar to linearization
proofs which rely on finding statements in the code which represent linearization points. Very recent
work includes [2], which proved the CaPR+ algorithm correct with respect to a notion called conflict
opacity, which is a subset of opacity. Emmi et al. [11] describe a method for infering invariants in
order to prove strict serializability of TM algorithms. This simplifies a crucial task in mechanised
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proofs; similar techniques could be used for other correctness conditions, including opacity. The
verification of TMs in the presence of non-transactional code is studied in [5].

In this paper, we presented a proof of opacity of the pessimistic STM of [24]. Our proof is based
on refinement against the TMS2 specification, leveraging existing work that has mechanically verified
TMS2 to be opaque [23]. This significantly improves on our previous work that inductively checks
opacity [7]. Furthermore, we have developed and used a new generalised reasoning scheme for
proving transaction invariants via rely conditions. The new proof scheme reduces the number of
proof obligations from quadratic (with respect to the number of lines of code) to linear complexity.

As future work, we intend to investigate the usefulness of our rely reasoning technique to other
types of transactional memory algorithms. In particular, we plan to study hybrid transactional memory,
i.e., transactional memory partly implemented in hardware and partly in software. Besides opacity,
our interest is also in liveness properties of STMs. For this, we intend to generalize the proposal of
Schellhorn et. al. [28] for thread-local liveness proofs.
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