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Abstract
We introduce options on FTSE100 index in portfolio optimisation with shares in which conditional
value at risk (CVaR) is minimised. The option considered here is the one that follows FTSE100
Index Option standards. Price of options are calculated under the risk neutral valuation. The
efficient portfolio composed under this addition of options shows that put option will be selected
as part of the investment for every level of targeted returns. Main finding shows that the use of
options does indeed decrease downside risk, and leads to better in-sample portfolio performance.
Out-of-sample and back-testing also shows better performance of CVaR efficient portfolios in
which index options are included. All models are coded using AMPL and the results are analysed
using Microsoft Excel. Data used in this study are obtained from Datastream. We conclude that
adding a put index option in addition to stocks, in order to actively create a portfolio, can
substantially reduce the risk at a relatively low cost. Further research work will consider the case
when short positions are considered, including writing call options.
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1 Introduction

The portfolio selection problem is about how to divide an investor’s wealth amongst a set
of available securities. One basic principle in finance is that, due to the lack of perfect
information about future asset returns, financial decisions are made in the face of trade-offs.
Markowitz[8] identified the trade-off faced by the investors as risk versus expected return
and proposed variance as a measure of risk. He introduced the concepts of efficient portfolio
and efficient frontier and proposed a computational method for finding efficient portfolios.

Following notations given by Roman et al. [15], we consider an example of portfolio
selection with one investment period. A rational investor is interested in investing their
capital in each of number of available assets so that at the end of the investment period the
return is maximised. Consider a set of n assets, with asset j ∈ {1 . . . n} having a return
of Rj at the end of the investment period. Since the future price of the asset is unknown,
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9:2 Portfolio Optimisation Using Risky Assets with Options

Rj is a random variable. Let xj be the percentage of capital invested in asset j and let
x = (x1, . . . , xn) denote the portfolio choice. This portfolio’s return is given as

Rx = x1R1 + . . .+ xnRn

with distribution function F (r) = P (Rx ≤ r) depending on the choice of x = (x1, . . . , xn) .
The weighs (x1, . . . , xn) belongs to a set of decision vectors given as

X = {(x1, . . . , xn)|
n∑
j=1

xj = 1, xj ≥ 0,∀j ∈ {1, . . . , n}} (1)

This is the simplest way to represent a feasible set by the requirement that the weights
must sum to 1 and no short selling is allowed.

In the mean-risk paradigm, a random variable Rx representing the return of a portfolio
x is characterised using two statistics of its distribution: the expected value / mean (large
value are desired) and a “risk” value (low values are desired).

An efficient portfolio is the one that has the lowest risk for a specified level of expected
return. Varying the level of expected return, we obtain different efficient portfolios 1. An
efficient portfolio is found by solving an optimisation problem in which we minimise risk
subject to a constraint on the expected return.

Markowitz [8] proposed variance as a measure of risk. Criticism of variance, mainly due
to its symmetric nature that penalised upside potential as well as downside deviations, led
to proposal of other risk measures.

The first objective of this paper is to present the results of an empirical study on the effect
of different risk measures on portfolio choice. We examine portfolios with the same expected
return, obtained by minimising various risk measures: variance together with downside
risk measures (lower partial moment (LPM)) and quantile based risk measures (conditional
Value-at-Risk (CVaR)).

The second objective of this paper is to analyse the effect of introducing index options, in
addition to stocks, to the portfolio optimisation; this is done in the context of mean-CVaR
optimisation. Naturally, options are used as insurance against unfavourable outcomes hence
they reduce downside risk; this comes however at a cost that reduces overall the return of
the portfolio.

The rest of this paper is organised as follows. Risk measures are presented in Section 2.
The algebraic formulations of the corresponding mean-risk optimisation models is presented
in Section 3. Section 4 describes the background for incorporating an index option in the
portfolio optimisation. Computational results are presented in Section 5. Conclusions are
drawn in Section 6.

2 Risk Measures

We give a review of mean risk models and risk measures presented by Roman and Mitra in
[15] . Risk measures are classified following [1][14][9] into two categories. The first category
measures the deviation from a target and concerned with the whole distribution of outcomes.
The second category concerns only with the left tail of a distribution.

Adopting the terminology used in [3], risk measures of the first kind measure the magnitude
of deviations from a specific point. These risk measures can be further divided into symmetric

1 This corresponds to examples of low mean-low risk trade-offs up to high mean – high risk trade-offs.



M.A. Maasar, D. Roman, and P. Date 9:3

risk measures and asymmetric risk measures. Symmetric risk measures are calculated in
terms of dispersion of results around a pre-specified target. Namely, symmetric risk measures
such as variance and mean absolute deviation (MAD) are mathematically convenient while
being not so good in representing the reality. Asymmetric risk measures in the other hand
quantify risk based on the observation that an investor’s true risk is the downside risk.
Lower partial moments and central semi-deviations are among the important asymmetric
risk measures.

Risk measures of the second kind measure the overall significance of possible losses. These
risk measures are concerned only with a certain number of worst outcomes ( the left tail), of
the distribution. The commonly used risk measures in this category are Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR). This section gives brief overview on risk measures
(variance, LPM0, VaR and CVaR) that will be used in this work, and review the concept of
coherent risk measures.

Variance. Variance is a well-known indicator used in statistics for the spread around the
mean of a random variable . The variance of a random variable Rx is defined as its second
central moment, the expected value of the square of the deviations of Rx from its own mean;

σ2(Rx) = E[Rx − E(Rx))2]

where E(Rx) is the expected value of Rx. The variance of a linear combination of random
variables is given as;

σ2(aR1 + bR2) = a2σ2(R1) + b2σ2(R2) + 2abCov(R1, R2)

where R1, R2 are random variables, a, b ∈ R, and Cov(R1, R2) is the covariance of R1 and
R2:

Cov(R1, R2) = σjk = E[(R1 − E(R1))(R2 − E(R2))]

In portfolio optimisation problems, this property is useful to express the variance of the
portfolio return Rx = x1R1 + . . .+ xnRn, as a result from choice x = (x1, . . . , xn) as:

σ2(Rx) =
n∑
j=1

n∑
k=1

xjxkσjk

Thus, variance is expressed as a quadratic function of x1, . . . , xn [8].

Lower Partial Moments (LPM). An asset pricing model using a mean-LPM was first
developed by Bawa and Lindenberg [3] and Fishburn [4] in 1977. LPM is a generic name for
asymmetric measures that consider a fixed target below which an investor does not want the
return to fall. Asymmetric measures provide a more intuitive representation of risk, since
upside deviations are not penalised. LPM measures the expected value of deviation below a
fixed target value τ .

By letting τ be a predefined target value for the portfolio return Rx, and let α ≥ 0, the
LPM of order α around τ of the random variableRx with distribution function F is defined
as [4]:

LPMα(τ,Rx) = E{[max(0, τ −Rx)]α} =
∫ τ

−∞
(τ − r)αdF (r) .

SCOR’16



9:4 Portfolio Optimisation Using Risky Assets with Options

While τ is a target fixed by decision maker (DM), α is a parameter describing the investor’s
risk aversion. The larger the α , the more risk-averse is the investor. A decision maker is
willing to take a risk in order to minimise the chance that the return falls below τ , provided
that the main concern is the failure to meet the target return. For this case, choosing a small
α is appropriate. Instead, if small deviations below the target are reasonably harmless when
compare to large deviations, the DM prefers to fall lower of τ by small amount. In this case,
a larger α is obtained [4].

Value-at-Risk (VaR). One of the most popular quantile-based risk measures is the Value-at-
Risk (VaR) [6]. The VaR at confidence level α ∈ (0, 1) in is defined as the (1− α)-percentile
of the portfolio loss distribution, where α is typically chosen as 0.01 or 0.05. Thus, in
the calculation of Value-at-Risk at level α of random variable Rx, we suggest that with
probability of at least (1−α), the loss 1 will not exceed VaR. Following definitions presented
in [15], the VaR at level α of Rx is defined using the notion of α−quantiles:

I Definition 1. An α− quantile of Rx is a real number r such that

P (Rx < r) ≤ α ≤ P (Rx ≤ r) .

I Definition 2. The lower α− quantile of Rx, denoted by qα(Rx) is defined as

qα(Rx) = inf{r ∈ R : F (r) = P (Rx ≤ r) ≥ α} .

I Definition 3. The upper α− quantile of Rx, denoted by qα(Rx) is defined as

qα(Rx) = inf{r ∈ R : F (r) = P (Rx ≤ r) > α} .

I Definition 4. The Value-at-Risk at level α of Rx is defined as the negative of the upper
α−quantile of Rx : V aRα(Rx) = −qα(Rx).

The minus sign in the definition of VaR is because qα(Rx) is likely to be negative. Absolute
values are considered in reporting this value in term of "loss".

In general, VaR is not a sub additive measure of risk. It means that the risk of a portfolio
can be larger than the sum of the individual risks of its components when measured by VaR
(see [16] for examples). Furthermore, VaR is difficult to optimize with standard available
methods because VaR is not convex with respect to choice of Rx. This is explained in [7]
[10] and references therein. Convexity is an important property in optimization because it
removes the possibility of a local minimum being different from a global minimum [13].

Conditional Value-at-Risk (CVaR). Conditional Value-at-Risk [11] [12] was proposed as
an alternative quantile-based risk measure. It has been gaining interest from practitioners
and academics due to its desirable computational and theoretical properties. As shown in
[15], we consider that CVaR is approximately equal to the average of losses greater than or
equal to VaR at the same α.

I Definition 5. The CVaR at level α of Rx is defined as:

CV aRα(Rx) = − 1
α
E(Rx1{Rx≤qα(Rx)})− qα(Rx)[P (Rx ≤ qα(Rx))− α]}

where

1Relation =
{

1, if Relation is true;
0, if Relation is false.

1 In our context we refer negative returns as positive losses. Therefeore, any loss related to random
variable Rx is represented by a random variable −Rx
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2.1 CVaR calculation and optimisation
The following results is used in CVaR optimisation; It was proven by Rockafellar and Uryasev
in [12]. Let Rx be a random variable depending on a decision vector x that belongs to a
feasible set X as defined by 1 and let α ∈ (0, 1) . CVaR of the random variable Rx for
confidence level α is denoted by the CV aRα(x) . Consider the function:

Fα(x, v) = 1
α
E[−Rx + v]+ − v,

[u]+ =
{
u, if u ≥ 0;
0, if u < 0.

Then:
1. As a function of u , Fα is finite and continuous (thus convex) and

CV aRα(x) = min
v∈R

Fα(x, v) .

In addition, the set consisting of the values of v for which the minimum is attained, denoted
by Aα(x) , is a non-empty, closed and bounded interval that contains −V aRα(Rx). In
some cases, the set may be formed by just one point.

2. Minimising CV aRα with respect to x ∈ X is equivalent to minimising Fα with respect
to (x, v) ∈ X × R :

min
x∈X

CV aRα(x) = min
(x,v)∈X×R

Fα(x, v) .

In addition, a pair (x∗, v∗) minimises the right hand side if and only if x∗ minimises the
left hand side and v ∈ Aα(x∗) .

3. CV aRα(x) is convex with respect to x and Fα is convex with respect to (x, v).
Thus, if the set X of feasible decision vectors is convex, minimising CVaR is a convex
optimisation problem.
In practice, a portfolio return Rx is a discrete random variable because the random
returns are usually described by their realisations under various scenarios. This simplifies
the calculation and optimisation of CVaR as it makes the optimisation problems above
as linear programming problems. Suppose that Rx has m possible outcomes r1x, . . . , rmx
with probabilities p1, . . . , pm with rix =

∑n
j=1 xjrij ,∀i ∈ {1 . . .m}, then:

Fα(x, v) = 1
α

m∑
i=1

pi[v − rix]+ − v = 1
α

m∑
i=1

pi[v −
n∑
j=1

xjrij ]+ − v .

This formulation will be used for the mean-CVaR optimisation model in the next section.
In contrast to VaR, the CVaR is a convex function of the portfolio weights x = (x1, . . . , xn)
. It is obvious that CV aRα(x) ≥ V aRα(x) for any portfolio x ∈ X . Thus, minimising
CVaR can be used to limit the VaR of a portfolio. Furthermore CVaR is known to be a
coherent risk measure. We give a review on coherent risk measure in the next subsection.

2.2 Coherent Risk Measures
Consider a set V of random variables representing future returns or net worth of portfolios.
The function ρ : V 7→ R is said to be a coherent risk measure if it satisfies the following four
axioms:

SCOR’16



9:6 Portfolio Optimisation Using Risky Assets with Options

1. Subadditivity: For all v1, v2 ∈ V, ρ(v1 + v2) ≤ ρ(v1) + ρ(v2).
2. Translation Invariance: For all v ∈ V, a ∈ R, ρ(v + a) = ρ(v)− a.
3. Positive Homogeneity: For all v ∈ V, a ≥ 0, ρ(av) = aρ(v).
4. Monotonicity: For all v1, v2 ∈ V such that v1 ≥ v2, ρ(v1) ≤ ρ(v2).

The four axioms that define coherency were introduced by Artzner et.al [2]. The subadditivity
axiom ensures that the risk associated with the sum of two assets cannot be larger than the
sum of their individual risk values. This property requires that financial diversification can
only reduce risk. Translation invariance means that receiving a sure amount of a reduces the
risk quantity by a. Positive homogeneity implies that the risk measure scales proportionally
with the size of the investment. Finally, monotonicity implies that when one investment
almost surely performs better than another investment, its risk must be smaller.

From all risk measures discussed in this section, only the CVaR is a coherent risk measure.
VaR fails to satisfy subadditivity axiom, and the mean-standard deviation risk measure does
not satisfy monotonicity axiom.

3 Mean-risk Optimisation Models

In this section we provide the algebraic formulation of mean-risk models that will be used in
this work, namely mean-variance, the mean-LPM of target 0 and order 1, and mean-CVaR
optimisation modes. At the end of this section we will give a brief equivalence of mean-CVaR
optimisation with a model for maximising returns under a CVaR constraint.

3.1 Algebraic form of the mean-risk models
In this subsection we present below the algebraic form of the three mean-risk models used in
our computational analysis. We will use the following notation:

Input data

m = the number of (equally probable) scenarios;
n = the number of assets;
rij = the return of asset j under scenario i; j = 1 . . . n, i = 1 . . .m;
µj = the expected rate of return of asset j; j = 1 . . . n;
σkj = the covariance between returns of asset k and asset j;k, j = 1 . . . n;
d = level of targeted return for the portfolio.

The decision variables

xj = the fraction of the portfolio value invested in asset j,j = 1 . . . n.

3.2 The Mean-Variance Model (MV)

min
x

n∑
j=1

n∑
k=1

σkjxjxk

subject to:
n∑
j=1

µjxj ≥ d ; ∀x ∈ X
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3.3 The Mean-Expected Downside Risk model (M-LPM0)
For this model, in addition to the decision variables xj , there are m decision variables,
representing the magnitude of negative deviations of the portfolio return from the zero value,
for every scenario i ∈ {1 . . .m}:

yi =

 −
n∑
j=1

rijxj , if
n∑
j=1

rijxj ≤ 0;

0, otherwise.

min 1
m

m∑
j=1

yi

subject to:

−
n∑
j=1

rijxj ≤ yi ; ∀i ∈ {1 . . .m}

yi ≥ 0 ; ∀i ∈ {1 . . .m}
n∑
j=1

µjxj ≥ d ; ∀x ∈ X

3.4 The Mean-CVaRα Model (M-CVaRα)
For this model, in addition to the decision variables xj , there are m+ 1 decision variables.
The variable v represents the negative of an α-quantile of the portfolio return distribution.
Thus, when solving this model, the optimal value of the variable v may be used as an
approximation for VaRα. The other m decision variables represent the magnitude of negative
deviations of the portfolio return from the α-quantile, for every scenario i ∈ {1 . . .m}:

yi =

 −v −
n∑
j=1

rijxj , if
n∑
j=1

rijxj ≤ −v;

0, otherwise.

min v + 1
αm

m∑
j=1

yi

subject to:
n∑
j=1
−rijxj − v ≤ yi ; ∀i ∈ {1 . . .m}

yi ≥ 0 ; ∀i ∈ {1 . . .m}
n∑
j=1

µjxj ≥ d ; ∀x ∈ X

4 Mechanism of Option Pricing and Portfolio Management

An option is a financial derivative described as a contract when the holder of the contract is
given a right to exercise a deal, but the holder is not obliged to exercise this right. Financial
options are traded both on exchanges and in the over-the-counter market.

There are two basic types of options namely calls and puts. A call option gives the holder
the right to buy (not the obligation) the underlying asset (stock, real estate, etc.) at a

SCOR’16



9:8 Portfolio Optimisation Using Risky Assets with Options

certain price at a specified period of time. A put option gives the holder the right to sell
the underlying asset at a certain price at a specified period of time. The price of underlying
stated in the contract is known as the exercise price or strike price while the date in the
contract is known as the expiration date or maturity [5].

There are four types of participant in option markets, buyers of calls, sellers of calls,
buyers of puts, and seller of puts. Most common options that are being exercised today are
either American options or European options, which differ in period of exercising the option.
American options can be exercised at any time from the date of writing up to the expiration
date, while European options can only be exercised on the expiration date.

4.1 Value of options
The value of an option can be broken into two components called intrinsic value and time
value. Intrinsic value is the difference between the value of the underlying and the exercise
price. The intrinsic value of an option may be either positive or zero, but it can never be
negative. This is because the contract involves no liability on the part of the option holder,
where the option holder can walk away without exercising the option.

I Example 6. For a holder of call option, if the value of underlying (example: stock) is less
than the option exercise price, the option is referred as being out of the money (OTM). If
the value of stock is greater than the exercise price, the option is referred to as being in the
money (ITM). If the value of the stock is equal to the exercise price, the option is referred to
as being at the money (ATM).

Mathematically, value of an option is represented in term of option payoff function. An
option payoff function, evaluated as a function of the underlying stock price ST , at maturity.
Consider put and call options with strike price K, the payoff function is given as:

Vput(ST ) = max{0,K − ST }, and Vcall(ST ) = max{0, ST −K},

respectively.

I Example 7. Assume that an investor is holding a portfolio consisting of a stock (long)
and a put option on the same stock (long) with strike price K. The payoff function of the
portfolio,Vpf , is therefore given as

Vpf (ST ) = ST + Vput(ST ) = max{K,ST } .

This payoff function shows that the put option with strike price K secure the portfolio value
at maturity from dropping below K.

Risk-neutral valuation [5] is used in our implementation towards incorporating option
into the mean-risk portfolio optimisation problems. Thus, we assume that in the long-run,
the price on an option will equal to the expected future payoff of the option itself, discounted
at a risk-free rate r, over maturity period T − t. We denote Ct and Pt as our empirical prices
for call and put respectively, so

Pt or Ct = E[payoffs]e−r(T−t) .

4.2 Incorporating option into portfolio optimisation
In the case of stocks, obtaining the parameters rij necessary in order to implement the
optimisation models in 4.1. is straightforward, if we use historical data in order to generate
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scenarios. In this case, we monitor the prices of the corresponding shares at interval of times
equal to the investment period of the portfolio model; we then compute the historical returns
and use them as “scenarios”, assuming that past will repeat in the future. Alternatively, we
can simulate prices for the shares at the end of the investment period, and using the current
known prices, to obtain simulations for the returns.

Consider now the case when one of the assets is an option (on a generic underlying asset),
with the same maturity as the investment period of the portfolio problem. In this case,
obtaining the scenarios for its return at the end of the investment period is different, since
the return depends on the price of the underlying asset at expiration.

In this work, we introduce a call and a put option on the FTSE100 index as two additional
assets to the existing components of FTSE100.

In this case, we need to simulate the price of FTSE100 at the end of the investment
period. We have used historical rates of return for the component assets of FTSE100. To
keep consistency, we do the same for the index itself: we monitor the historical rates of
return and, using the current (known) price, we simulate prices for FTSE100 at the end of
the investment period.

The corresponding pay-offs of the options can then be calculated for any strike price K.
The return of the option is calculated then using the current price of the option and the
simulated pay-offs. If there is no price available for an option with strike price K and the
given maturity, a correct price can be calculated, for example using the arbitrage free / risk
neutral pricing using the current risk free rate of return.

To summarise, we use the following method :
1. We compute the historical rates of return for the underlying FTSE 100 for a period of

time equal to investment period.
2. The returns from step 1 are used to simulate next period’s underlying (FTSE100) value,

given its current value:

St+1|t = St(1 + rt+1) .

3. Using known strike price for call and put options, Kc and Kp, and one period simulated
underlying asset value S(t+1|t), we simulate option payoffs at their maturity t+ 1. Thus
the payoffs for call and put are given respectively as:

Ct+1|t = max(St+1 −Kc, 0), and Pt+1|t = max(Kp − St+1, 0).

4. Using the simulated payoff above, option returns are computed by:

rt+1|t,c =
Ct+1|t

Ct
− 1, and rt+1|t,p =

Pt+1|t

Pt
− 1

5 Computational Results

This section aims to investigate the behaviour of mean-risk models exhibited formulated
in Section 3 when used in application of investment portfolio selection. We consider three
different mean-risk models, with risk measured by variance (denoted by M-V), the expected
downside risk by the lover partial moment of order 1 and target 0 (M-LPM0), and CVaR for
5% confidence level (M-CVaR0.05).

We first work with only stocks and we consider the efficient portfolios in the mean-risk
models above for several levels or expected return. We investigate their properties, in terms
of their composition, the in-sample performance, and the out-of-sample performance. At the

SCOR’16



9:10 Portfolio Optimisation Using Risky Assets with Options

Table 1 The Euclidean distance between efficient portfolios with expected return d1 = 0.01.

Models Value of D
M-V M-LPM0 0.245071661
M-V M-CVaR0.05 0.298300895

M-LPM0 M-CVaR0.05 0.398379982

same time, the equivalence of M-CVaR0.05 and model for maximisation of expected value
with CVaR constraint (Max-E) is shown for the same level of alpha.

Finally, we include FTSE 100 index options (put and call), in addition to FTSE100 stocks.
We implement the mean-CVaR model with this new universe of assets and compare the
performance of the resulting optimal portfolios with that of stocks-only portfolios.

5.1 Data set
The data used for this analysis is drawn from the FTSE100 index. Our investment period is
one month. The monthly returns of the 87 stock components of the index from January 2005
until January 2015 were considered. The dataset for the in-sample analysis has 100 time
periods from January 2005 until May 2013. For the out-of-sample analysis, the behaviour of
the portfolio obtained is examined over the twenty months period of June 2013 until January
2015. The models were implemented in AMPL and solved using CPLEX 12.5 optimisation
solver.

5.2 Methodology
The characteristics of efficient portfolios may vary depending on targeted return, d. Based on
our data set, the maximum level of asset return is 0.0349 and the minimum is at −0.007323.
Thus, for simplicity of implementation and for feasible possible solutions, we chose three
different level of d as d1 = 0.01, d2 = 0.02, and d3 = 0.03. We solve the three mean-risk
models considered above for every level of expected return d1, d2, and d3. We also give a
fair comparison between two equivalent optimisation models: of M-CVaR0.05 and Max-E for
the same alpha level.

5.3 The composition of the efficient portfolios
The difference of the composition of two portfolios x = (x1, . . . , xn) and y = (y1, . . . , yn) is
described by using the Euclidean distance between vectors x and y. This quantity is denoted
as D(x,y) =

√
(x1 − y1)2 + . . .+ (xn − yn)2.

It is observed that the composition of the M-CVaR0.05 efficient portfolios differs substan-
tially from the composition of the other efficient portfolios. Table 1 presents the values of
the indicator D for the efficient portfolios with expected return d1 = 0.01. The M-CVaR0.05
efficient portfolios have relatively different composition with the other two mean-risk models.
The Euclidean distance between the M-CVaR0.05 and the M-LPM0 is 0.298 and the distance
with the M-V is 0.398. The same features is also observed for the other two levels of expected
return.

We also observe the number of assets that constitute the efficient portfolios. It is seen
that the model with the risk measure of the first kind, the variance, produced portfolios
with the highest number of component assets, while M-CVaR0.05 model produce portfolios
with the lowest number of component assets. This is consistent with the modelling standard,
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Table 2 The number of assets in the composition of mean-risk portfolios.

M-V M-LPM0 M-CVaR0.05

d1 = 0.01 18 12 9
d2 = 0.02 13 11 8
d3 = 0.03 6 6 4

Table 3 Statistics for the mean-risk efficient distributions with expected value d1 = 0.01.

M-V M-LPM0 M-CVaR0.05

Median 0.013642802 0.015415625 0.011657133
Standard Deviation 0.033783896 0.037980983 0.03830069313
Skewness -0.572809564 -0.699597028 0.361368572
Minimum -0.091575414 -0.13878571 -0.075281385
Maximum 0.096340696 0.115140014 0.1340699

since diversification is the basis of the mean-variance portfolio theory. The number of assets
composition is shown in Table 2. It is also noticed that as the level of portfolio expected
return increases, the number of component assets decreases. This is also consistent with the
modelling standard that at lower levels of return, an efficient portfolio has more assets in
composition in order to lower the risk.

5.4 In-sample analysis
The return distributions of the efficient portfolios are discrete with 100 equally probable
outcomes. We analyse these distributions using in sample parameters of standard deviation,
skewness, minimum, maximum, and range. We compare sets of three distributions, each
having the expected values of d1, d2, and d3.

For a portfolio distribution, it is desirable to have smaller standard deviation and range,
and to have larger median, skewness, minimum, and maximum.

Table 3 presents the results obtained for the level of targeted return d1 = 0.01. The M-V
efficient portfolio has the lowest standard deviation. The return distribution of the M-CVaR
efficient portfolios achieve the best values for the parameters concerned with the left tail
of distributions. It has the highest skewness, highest minimum and also highest maximum.
Notice that M-CVaR efficient distribution always positively skewed while the other models,
the distribution are negatively skewed. Similar results is obtained for other levels of d as
shown in Table 4 and 5.

5.5 Out-of-sample analysis
We analysed the performance of the efficient portfolios over the twenty time periods following
the last period of in-sample data. The results of the out-of-sample analysis were consistent
with those of the in-sample analysis. The consistency is in the sense of the portfolios selected
under M-CVaR models were distinct from the other two mean-risk models. This is shown
via Figure 1, where it may be noticed that a generally good performance of M-CVaR models
are obtained. The similar figures for different in-sample mean returns also shown in Figure 2
and 3.

Figure 1 exhibits the compounded returns of the efficient portfolios with in-sample mean
returns d2 = 0.02. It is seen that the M-CVaR efficient portfolio performs better than the
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Table 4 Statistics for the mean-risk efficient distributions with expected value d2 = 0.02.

M-V M-LPM0 M-CVaR0.05

Median 0.026989273 0.019547821 0.027136642
Standard Deviation 0.045539089 0.048306959 0.053504299
Skewness -1.068379489 -0.541590574 0.106153237
Minimum -0.169911236 -0.169067343 -0.147248853
Maximum 0.113089218 0.132563297 0.189886327

Table 5 Statistics for the mean-risk efficient distributions with expected value d3 = 0.03.

M-V M-LPM0 M-CVaR0.05

Median 0.034052445 0.025471156 0.033057945
Standard Deviation 0.077244906 0.080794207 0.084842553
Skewness -0.577646499 -0.307744989 0.199328725
Minimum -0.254267371 -0.269452992 -0.213015378
Maximum 0.186538415 0.200218938 0.274484094

other two portfolios. Statistical parameters for out-of-sample results also show that M-CVaR
had the highest mean. However, note that the out-of-sample performance for d3 = 0.03 is
fairly different from our expected performance. Further investigations are required to explain
this behaviour in the near future.

5.6 Introducing index options in the universe of assets

In this subsection, we consider in addition to the stocks described in 5.1, a put and a call
option on FTSE 100 with maturity one month and with strike price K = 6583.1, which
is equal to the current price of FTSE 100. We compute the prices for these options using
risk free valuation and simulate the rates of return as described in section 4.3. We test the
performance on two mean-risk models, the M-V and the M-CVaR0.05 , for d1, d2, and d3.
Based on portfolio composition, it is interesting that both models include index put option
as one of the components in the efficient portfolio for every level of targeted returns, with
range of weights from 1.2% to 2.9% of overall wealth. The call option is however not selected
at any level of targeted returns. Table 6 summarizes these figures.

Another out-of-sample finding is on the risk measures comparison between portfolio
with stock only (S-portfolios) versus portfolio with stocks and options (OS-portfolios). It
is observed that for every cases of d, in the case of M-CVaR0.05 , risk associated with
OS-portfolios always lower than of S-portfolios. For example of d = 0.01, the average loss in
the worst 5% cases is only 2.34% of initial investment of OS-portfolios. At the same level,
the average loss fo S-portfolios is nearly doubles at 5.63%. We present the values in Table 7.

We also vary our strike price K to different levels such as at the average index point
level and the minimum index point level over the simulated index points. Interestingly, the
portfolio composition gives similar results as we present here; (1) It is observed that no call
option will be selected to the portfolio in all cases, and (2) the risk measures for OS-portfolios
are lower than of S-portfolios at every level of d.

To continue with the implementation of options into our portfolio optimisation problems,
a backtesting is conducted to see the accuracy of our portfolio in predicting actual results.
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Figure 1 The out-of-sample performance of the mean-risk efficient portfolios with in-sample
mean returns d2 = 0.02

Figure 2 The out-of-sample performance of the mean-risk efficient portfolios with in-sample
mean returns d1 = 0.01

5.7 Backtesting
The purpose of backtesting is to see how the optimized portfolios would have performed in
reality. Using the same data drawn from FTSE100 as before, we use the optimized weights
of each stocks (and options) to evaluate the next period’s expected return.

The backtest plan that we use in this study follows the following Figure 4.
We analysed the performance of our strategy by comparing the backtest results of portfolio

with stock only (S-portfolios) versus portfolio with stocks and options (OS-portfolios). The
backtest is performed over 12-month period (until t=12) by looking at the growth rate of
both portfolios. Results show that the growth of OS-portfolios is higher until the 8th month.
In these time periods, we observed that options are beneficial to the portfolios, while the
S-portfolios suffer from bigger losses or lower returns. For the last 4-month period we can
see that the growth of S-portfolios growing stronger. In these periods, it is made clear that
there are some scenarios when buying put options is just a cost of insurance for a portfolio
against huge losses. Figure 5 exhibit the growth that we mentioned here.

The expected return for each period is shown in the following Table 8 , by comparing
the returns for the S-portfolios with the OS-portfolios. It is observed that the maximum
return of S-portfolio is 9.3% and the maximum for the OS-portfolio is at 8.1%. Whereas,
the minimum for S-portfolio is the loss of 10.9% while the minimum for OS-portfolio is only
a loss of 3.1%. We interpret the overall performance of the two portfolios by looking at
the average of these expected returns and their standard deviations. It is clearly seen that
the average expected returns of S-portfolios is slightly higher of 0.5% against the returns
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Figure 3 The out-of-sample performance of the mean-risk efficient portfolios with in-sample
mean returns d3 = 0.03

Table 6 The number of assets in the composition of mean-risk portfolios with weight of index
put option.

M-V M-CVaR0.05

Number of assets Weight of put Number of assets Weight of put
d1 = 0.01 19 0.0124823 17 0.0217767
d2 = 0.02 15 0.0149846 13 0.0235232
d3 = 0.03 6 0.020194 6 0.02948

of OS-portfolios. However, the deviation measure of S-portfolios is s higher than deviation
measure of OS-portfolios by 2.4%. These indicate that we have a better performance of
CVaR efficient portfolios in which index options are included.

The expected return for each period is shown in the following Table 8 , by comparing
the returns for the S-portfolios with the OS-portfolios. It is observed that the maximum
return of S-portfolio is 9.3% and the maximum for the OS-portfolio is at 8.1%. Whereas,
the minimum for S-portfolio is the loss of 10.9% while the minimum for OS-portfolio is only
a loss of 3.1%. We interpret the overall performance of the two portfolios by looking at
the average of these expected returns and their standard deviations. It is clearly seen that
the average expected returns of S-portfolios is slightly higher of 0.5% against the returns
of OS-portfolios. However, the deviation measure of S-portfolios is s higher than deviation
measure of OS-portfolios by 2.4%. These indicate that we have a better performance of
CVaR efficient portfolios in which index options are included.

6 Conclusion

We consider three mean-risk models, where the risk measures are variance, the lower partial
moment of oder 1 and target 0 and CVaR at confidence level 95%. They are conceptually
measuring risk very differently, as variance is a symmetric risk measure that penalises
deviations from mean on either side of the distribution. Lower partial moments are asymmetric
risk measures that penalise only negative deviations from a fixed target, while CVaR is a
tail/quantile risk measure that only looks at a pre-specified percentage of worst case losses.

We implement the risk models in AMPL using a dataset drawn from FTSE100 with 87
stocks. For each mean-risk models, we consider the efficient portfolios at expected rate of
return 1%, 2% and 3% respectively – corresponding to low mean-low risk, medium mean-
medium risk, high mean-high risk trade-offs. We observed that the mean-variance portfolios
are the most diversified while the mean-CVaR efficient portfolios the least diversified. The
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Table 7 Risk measure quantities for M-CVaR0.05 for efficient portfolio with and without options.

M-CVaR0.05

S-portfolio OS-portfolio
d1 = 0.01 5.63% 2.34%
d2 = 0.02 8.05% 2.67%
d3 = 0.03 13.42% 8.54%

Figure 4 The Backtesting Plan.

in-sample characteristics of their return distributions are somewhat as expected, considering
the nature of the risk measures. The mean-CVaR efficient portfolios have the best left
tail, with the highest minimum and highest skewness. The out-of-sample performance,
evaluated on the next 12 months following the last price observations, show a generally better
performance of mean-CVaR efficient portfolios, although this is not consistent across.

We include FTSE100 index options (calls and puts) in the mean-variance and mean-CVaR
portfolio optimisation. The maturity of the options is the same with the investment period
(one month in our computational work) and we experimented with different strike prices;
for each of these we calculated the price of the option under the risk neutral valuation and
generated the scenarios for options returns. For each of the strike prices considered, the
optimal portfolio weight of the call is zero hence there is no investement in it, while in the
majority of cases, the optimal weight of the put option was around 2% of the portfolio value.

This is somewhat expected since the return of the portfolio of stocks, even though actively
constructed via risk minimisation is positively correlated with index’s return. An investment
in a portfolio of stocks from FTSE100 (long positions) is somewhat assuming that the price
of FTSE100 is on increase. The put option acts hence as a type of insurance for the cases
when the FTSE100 prices are on the decrease.

The computational results are interesting not because the risk (either measured by
variance or CVaR) is decreased with the introduction of option; this is natural since the
option is simply an additional asset which can only improve or keep the same risk value.
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Figure 5 Portfolio Growth Comparison between Stock Portfolio (S-portfolio) and Stock+Options
Portfolio (OS-portfolio).

Table 8 Expected Returns for S-portfolios and OS-portfolios.

Expected Returns
Backtest Periods S-portfolio OS-portfolio

1 -0.10889 -0.03016
2 0.09329 0.08102
3 0.02801 0.01105
4 0.00209 0.03019
5 -0.00969 -0.02504
6 0.05007 0.01787
7 -0.02598 -0.00431
8 0.08269 0.07479
9 0.09147 0.01838
10 -0.03970 0.00561
11 -0.01483 -0.03051
12 0.04622 -0.01729

Average 0.01623 0.01097
Standard deviation 0.060752874 0.037197654

The results are interesting because the decrease in risk is substantial. For example, with the
CVaR minimisation at 2% in sample expected rate of return, the optimal CVaR in the case
of stocks only is 8.05%, while in the case of stocks + put is 2.67%, for only 2.35% of the
portfolio value invested in the put (refer Table 6 and 7).

The backtesting results show that the portfolios composed of stocks and options had
substantially different realised returns, compared with the stocks only portfolio. It is
somewhat expected that the stocks only portfolio has an average slightly better returns there
will be cases when the put has zero pay off and -100% return. However, the realised returns
of the portfolios including the option have a better minimum– the lowest realised rate of
return is 8%, as compared to -11% in the case of stocks only portfolios – and also much
lower standard deviation. As a conclusion, adding a put index option in addition to stocks,
in order to actively create a portfolio, can substantially reduce the risk at a relatively low
cost. As a future research work, we would like to consider the case when short positions are
considered, including writing call options.
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