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Abstract

In this paper, the costs and carbon savings in the Economic Dispatch (ED) prob-
lem of the power system operation are optimised. Energy demands and generation
are forecast and assimilated using Ensemble Kalman Filter (EnKF). Optimisation is
performed using the Ensemble-based Closed-Loop Production Optimisation Scheme
(EnOpt). The real energy parameters of thermal units with green generators (wind
farm) are used to test the methodology. The ability of the EnKF to predict, and
the robustness of the EnOpt to optimise costs and the resultant carbon emissions are
demonstrated. The proposed approach addresses the complexity and diversity of the
power system and may be implemented in operational conditions of energy suppliers.
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Nomenclature

Acronyms

BAU Business-as-usual

BMRS Balancing mechanism reporting system

ED Economic dispatch

EnKF Ensemble Kalman filter

EnOpt Ensemble-based closed-loop production optimisation scheme

HH Half hourly

Indexes

αλ Tuning parameter that determines step size

λ Iteration index

i Generating fuel index

j Ensemble member index

k Index for data times in EnOpt model

t Time step index

tk Time step at data times k in EnOpt model

Parameters

λmax Maximum iteration step

Cmax,i Maximum fuel cost at ith generating unit

d Model prediction

Emax,i Maximum amount of energy generation for ith generating unit

Emin,i Minimum amount of energy generation for ith generating unit

hmax,i Maximum price penalty factor at ith generating unit

m Real parameters of energy data

Ne Total number of ensemble members

Ni Total number of fuels or generating units

Nk Total number of data times for EnOpt model

Nt Total number of time steps

Nx Total number of control variables

NE Total number of generating units that contribute carbon emissions

NG Total number of thermal units

NW Total number of wind generators

Wmax,i Maximum amount of generation for ith wind generator

Emax,i Maximum emission cost at ith generating unit

Variables

xλ Mean value of control vector x at iteration λ

C(xλ, Y u) Mean value of objective function C(xλ,j , yuj )

x Vector of control variables

xλ Control vector x at λth iteration

xλ+1 Updated control vector x at iteration λ+ 1

xλ,j Realisation of control vector at iteration λ and ensemble j
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dGi,t Fuel cost coefficient for ith generating unit at time step t

dWi,t Wind cost coefficient for ith generating unit at time step t

dEi,t Emission cost coefficient for ith generating unit at time step t

dobs,j Perturbed observations at jth ensemble member

Ei Energy generation at ith thermal generating unit (MWh)

Wi Energy generation at ith wind generating unit (MWh)

xi Control variable for ith generating unit

Y Ensemble of state vector y in matrix form

y State vector

Y p priori ensemble of state vector y in matrix form

Y u posteriori ensemble of state vector y in matrix form

Y uG posteriori ensemble estimates of thermal units

Y uW posteriori ensemble estimates of wind generators

ypj priori jth ensemble member of state vector y

yuj posteriori jth ensemble member of state vector y

C(x, Y uG ) Objective function for EnOpt model. It is the function of control vector x and posteriori
ensemble estimates Y uG of thermal units

C(xλ,j , yuj ) Objective function for EnOpt model. It is the function of realisation of control vector xλ,j
at iteration λ and ensemble j, and posteriori yuj at jth ensemble member

CO Optimised cost function

CS Cost savings

CY (x) Objective function for costs with control vector x

CBAU BAU cost function

Ei Emission function for ith generating unit

EO Optimised carbon emissions (ktCO2)

ES Carbon savings (ktCO2)

EBAU BAU carbon emissions (ktCO2)

C(xj , yuj ) Objective function for EnOpt model. It is the function of realisation of control vector xj
at ensemble j, and posteriori yuj at jth ensemble member

1 Introduction

In a power system, the grid operator aims to appropriately tune power flows with mini-
mal systems losses [Crow, 2009]. However, the tuning of parameters in randomised manner
without optimal planned strategy may increase the power operating costs, and also the envi-
ronmental effects due to unnecessary firing-up of power plants. Instead of randomly tuning
the parameters without proper arrangements and strategies, the optimisation of parameters
through a selected objective function is required [Crow, 2009, Zhu, 2009]. The objective
function is formulated to optimise operational strategies such as generating costs, reservoir
production level, and system losses. With the increasing need to optimise power generation,
the economical dispatch (ED) models were introduced. Due to the environmental concerns
the ED problem has been undergoing major enhancement addressing the reduction of carbon
emissions. Such enhancement is needed due to the legislation on the 2050 low carbon econ-
omy that requires the reduction of emissions by 80 % below 1990 levels, with 40 % reduced
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emissions by 2030 and 60 % by 2040 [DG Clima, 2016]. The legislation by DG Clima [2016]
requires the implementable and affordable participation of all sectors in the transition to
low-carbon economy.

These legislations have led to implementation of various low carbon energy plans, with
rising need to quantify the environmental impacts. One of the earlier modelling frame-
works that addresses this is the UK MARKAL-Macro developed by Strachan and Kannan
[2008]. The model predicts the aggregated energy demand response and technological change
through the 2007 UK Energy White Paper policy framework. It provides the quantification
of cost-economical implications due to the long-term decarbonisation strategies.

In the present paper, the novel modelling approach focusing on the quantification of
costs and carbon emissions is proposed in the electricity generation which optimises costs
and carbon savings. The approach is based on the ensemble Kalman filter (EnKF) com-
bined with optimisation using ensemble-based closed-loop production (EnOpt) algorithm.
The framework integrates the electrical data from generators (green and non-green energy)
predicted and assimilated by EnKF and optimised by EnOpt, with operational constraints
in a power system. In principle, this framework may be implemented at the level of the
UK National Grid (the transmission operator) in collaboration with energy suppliers and
distribution network operators.

The paper is organised as follows. Section 2 outlines modelling of energy systems, reviews
the carbon factors, emissions and savings. The later includes the review of uncertainties
in the power system and the introduction of the EnKF application. The review of the ED
problem is also performed, along with the earlier optimisation technique in the power system
and further introduces the EnOpt application. Section 3 presents the methodology for the
ensemble assimilation and optimisation of costs and carbon savings. Section 4 presents the
case study of the ED problem using the formulated EnKF and EnOpt algorithm. Section 5
discusses the numerical simulation results. Section 6 concludes.

2 Modelling of power systems

2.1 General modelling approaches in power system

The power system modelling is expanded substantially in order to mitigate the negative
impact towards the environment, where the modelling includes the optimisation of the power
system in the area of linear and nonlinear problems [Crow, 2009, Rau, 2009]. The general
power system modelling approaches include the economic dispatch (ED), optimal power
flow, unit commitment, and optimal load shedding [Zhu, 2009, Rau, 2009]. In this paper,
the ED problem is applied to optimise the costs and carbon savings of the renewable and
non-renewable energy.

2.2 Environmental impact of power generation

The UK carbon factors (also known as carbon footprints) are calculated by the company
Ricardo-AEA [Ricardo-AEA, 2015], with quality assurance performed by the Department
for Environment, Food and Rural Affairs (DEFRA) [Hill et al., 2013] and the Department
of Energy and Climate Change (DECC) [DECC, 2013]. The results are reported annually
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by DEFRA. The latest data are available in the form of Microsoft Excel spreadsheets on the
website [DEFRA, 2015], where statistics are currently stored for the years 2002–2015.

Carbon factors for fuel type with uncertainty ranges are reported in the post-notes of the
Parliamentary Office of Science and Technology [POSTnote 268, 2006, POSTnote 383, 2011]
and Carbon Trust [Carbon Trust, 2012], in grams (or kilograms) of carbon dioxide (CO2)
equivalent per unit of energy (kWh). Since generated energy is given in kWh and carbon
factors in kgCO2/kWh, carbon emissions can be estimated as CO2 equivalent for a given
time period.

Carbon savings are defined as the difference between the business-as-usual (BAU) emis-
sions and the modified/optimised emissions, which are obtained by multiplying energy by
corresponding carbon factors.

2.3 Uncertainties in power systems

The complexity of a power network requires flexibility of participating nodes, with consumers
and generators connecting and disconnecting from the grid depending on conditions and
demand. The conventional measurements of energy generation according to fuel types have
been reported at 5 and 30 minute temporal resolution. Due to the variable dynamics of energy
generation, the short-term forecast and assimilation of energy generation incorporating the
uncertainty estimation is necessary. This is where the EnKF plays a useful role.

The green generators are known to be intermittent, and therefore the contribution to
the grid is uncertain, hence non-green generators have to provide back-up generation to
balance the power output. In the case of high amount of green generation, excess amount
of generated energy may be created due to limited available energy storage. Experimental
storage solutions are being developed but not employed at the level of National Grid yet.
Thus, the green energy is uncertain, and the excess can be dumped in the system due to the
infrastructural constraints.

Several methodologies have been developed to address uncertainties in power systems.
One can express uncertainties using levels of fuzziness (fuzzy programming), or the Monte
Carlo sampling techniques, for instance, the Stochastic Approximation (SA) and Sample
Average Approximation (SAA). Lin et al. [2011] developed a dynamic optimisation model
for energy systems planning under uncertainty through the integration of interval-parameter,
fuzzy and mixed integer programming techniques within a network energy system. Li et al.
[2010] applied a multistage interval-stochastic integer linear programming method in mod-
elling electric power systems under uncertainty.

Similarly, Chen et al. [2010b] developed a two-stage inexact programming method for
estimation of carbon emissions under uncertain network conditions. Zhu et al. [2013] further
extended Li et al. [2010], Chen et al. [2010b] by developing a mixed-integer programming
method for modelling carbon emissions to address uncertainties (for instance, constraints of
energy demand and supply balance).

However, the accuracy of fuzzy strategies is low: Albertos and Sala [1998] argued that
fuzzy strategies do not works well in scenarios where high levels of precision and accuracy
are required. Nemirovski et al. [2009] stated that the multidimensional expectation integral
of the objective function cannot be computed with high accuracy.

In this paper, EnKF is applied to forecast and assimilate the uncertain realisations of
modelled energy generation, which realistically approximate conditions of the energy sys-
tem. EnKF was first introduced by Evensen [1994] and further developed and applied in
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various branches of science (see Evensen [2003, 1994] and references therein). As described
in Evensen [2003], Nævdal et al. [2003], Jensen [2007], Altaf et al. [2014], the EnKF is a
recursive filter based on a Monte-Carlo approach to generate an ensemble of model repre-
sentations. An ensemble is a system representation based on random sampling of system
distribution [Evensen, 2003]. The ‘true’ state of the model is approximated by the ensemble
mean [Almendral-Vazquez and Syversveen, 2006]. The covariance matrix in EnKF is pre-
dicted (forecast) and analysed by using statistics of the ensemble [Jensen, 2007]. Detailed
formulation of EnKF can be found in [Evensen, 2003, Jensen, 2007, Haugen et al., 2008].
EnKF is suitable for sequential data assimilation in high-dimensional nonlinear systems.
Even a few ensemble members have the ability to demonstrate the large-scale covariance be-
haviour of the system [John and Mandel, 2008]. EnKF has been widely used for assimilation
of the real-time production data, providing both the estimate of a model and the correspond-
ing uncertainty, by keeping track of the whole ensemble [Begum, 2009, Chen et al., 2009,
Jahangiri, 2012].

2.4 Optimisation in power systems

With the increasing need to optimise the energy generation costs, ED models were intro-
duced. As stated by Zhu [2009], EDs aim to minimise the operating cost of power generators
by optimising the power output in each generators (thermal units) under specific constraints.
The basic ED only minimises fuel costs subject to operational constraints. With the ad-
vancement of technological innovations along with environmental concerns, improved EDs
have been developed incorporating the security of supply, emissions reduction and renewable
generation.

The security-of-supply constraints are introduced in the ordinary ED model incorporat-
ing the power balance and line overload prevention [Huang et al., 2012]. The emissions
function can be further added to the ED problem. However, such addition may introduce
the trade-offs between the cost and emissions. The priority of optimising costs rather than
emissions may increase emissions in the energy system. Ramanathan [1994], Rajasomashekar
and Aravindhababu [2012] presented a methodology that concludes emissions constraints by
applying the weighted sum technique to translate the multi-objective function (costs and
emissions) into a single objective function. Similarly, Senthil and Manikandan [2010], Sub-
ramanian and Ganesan [2010] converted a multi-objective function to a single optimisation
problem using the price penalty factor approach.

In addition to the security and emission constraints, the ED problem can be integrated
with the renewable energy generation. Hetzer et al. [2008] included overestimation and
underestimation of the available wind energy factor into the ED model. In their model,
a linear cost function was assumed for the wind energy. On the other hand, Li et al.
[2014] introduced the mean-variance multi-objective ED problem (due to the difficulty in
obtaining the weights) for generators.

The basic ED problem is to be combined with other factors such as the security-of-
supply constraints, emissions and renewable generation. This is to decrease/balance the
trade-offs of optimisation in the power system. Power generators are to be evaluated and
their production optimised along with integration of the renewable energy, network security
and emissions constraints.

Wei et al. [2014] proposed a bi-level (government and grid operators) economical optimi-
sation model that determines the optimal tax rate among power generating units, balances
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the carbon emissions and profits of the energy sectors. Chen et al. [2013] developed an
inexact optimisation method for supporting the carbon emissions management in the en-
ergy system, by employing interval-parameter programming within a robust optimisation
framework. The optimisation scenarios generate alternative decisions to mitigate the car-
bon emissions within the economic context. Most interestingly, Cui et al. [2012] presented
a robust bi-level model that combined consumers and utility companies to optimise social
welfare by incorporating a feedback system that acted as a global controller.

However, the environmental impact of the power system is still evaluated at a very
crude level. In the context of real-time control operations, the carbon reduction target
is mostly pre-conditioned by the needs of positive economic impacts (profitable investments
subject to operational constraints). The accurate assessment of costs and emissions in power
systems is extremely important, as evaluation of energy data solely in terms of costs does
not guarantee the environmental safety across the power system. In addition, limited access
to power system data and infrequent metering have also led to uncertain carbon impacts of
the operating strategies employed. Therefore, an efficient optimisation model is needed that
does not only guarantee the profitable economical return of investment in the ED problem,
but also addresses the need to reduce the nationwide emissions while adhering to operational
constraints.

To this end, a new robust energy modelling and optimisation methodology is proposed
that minimises costs and carbon emissions of the ED problem. In addition, a closed-loop
based feedback optimisation control is proposed for continuous updates and optimisations
in the ED problem. The EnOpt,

a production optimisation model that combines the EnKF and optimisation that was
initially developed for the SmartWell technologies in the oil industry [Chen et al., 2009], is
applied in order to develop optimal operating strategies in optimising the ED problem.

EnKF forecasts and assimilates system state with respect to the historical production
data. Such data assimilation aims to minimise the mismatch between the model prediction
and the production data [Chen et al., 2009]. The resultant assimilation data from EnKF is
further utilised in the EnOpt, which estimates expectation of the objective function based on
the assimilated data along with optimised control constraints [Chen et al., 2009, Jahangiri,
2012, Nwaozo, 2006]. At the end of the EnOpt simulation, the best control settings are the
optimal control variables that minimise the objective function [Chen et al., 2009, Jahangiri,
2012, Nwaozo, 2006]. EnOpt has been well established as the optimisation algorithm in
searching for optimal operating strategy in reservoir management [Chen et al., 2009, Ja-
hangiri, 2012, Chen et al., 2010a, Petvipusit, 2011]. EnOpt is applied in this paper in order
to develop operating strategies in the ED problem that optimise both costs and carbon
savings.

3 Methodology

3.1 Carbon factors, carbon emissions and savings of energy gen-
eration and consumption

Energy carbon factors have units of kilograms of carbon dioxide equivalent (eqCO2) per unit
of energy. These units describe all greenhouse gases involved that have the same global
warming potential as the amount of CO2. In energy industry, the majority of greenhouse
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gases are produced by power stations, and even green generators have carbon footprints,
which are derived using the Life Cycle Assessment methodology [Convenant of Mayors,
2010]. Carbon emissions E can be generally estimated as CO2 equivalent for a given time
period (Eq. (1)).

E =

Ni∑
i=1

Nt∑
t=1

Ei(t) · Fi, (1)

where Ei denotes generated energy, i is the fuel index, t is the time index, Fi is the carbon
factor for fuels, Ni is the total number of fuels, Nt is the total number of time steps.

To determine carbon emissions, the carbon factors of the electricity generators with
known uncertainties are used. The Monte Carlo method with uniformly distributed ran-
dom numbers drawn from uncertainty intervals corresponding to fuel types (as described
in POSTnote 268 [2006], POSTnote 383 [2011], Lau et al. [2014]) is applied.

Carbon savings S are determined as the difference between the BAU EBAU and the
optimised EO carbon emissions:

ES = EBAU − EO, (2)

where EBAU is obtained based on either input energy data or model simulator. Optimised
carbon emissions EO are obtained using the EnOpt algorithm.

3.2 The ED optimisation problem

Fuel cost function. The fuel cost function (of ith generating unit) is commonly described
in a quadratic form of the active energy output [Huang et al., 2012, Ramanathan, 1994,
Rajasomashekar and Aravindhababu, 2012, Senthil and Manikandan, 2010, Subramanian
and Ganesan, 2010].

Ci(Ei,t) = ai + biEi,t + ciE
2
i,t, (3)

where a, b and c are the cost coefficients of the generating unit i, E is the amount of gener-
ated energy by the ith generator at time t. The unit of the fuel cost function C is £/HH.
The HH scale is used to present the energy data in Smart grid.

Emission function. The emission function of the ED model is also commonly described
in the quadratic form [Huang et al., 2012, Ramanathan, 1994, Rajasomashekar and Aravin-
dhababu, 2012, Senthil and Manikandan, 2010, Subramanian and Ganesan, 2010], which is
the same as in Eq. (3)

Ei(Ei,t) = di + eiEi,t + fiE
2
i,t, (4)

where d, e and f are the emissions coefficients of the generating unit i, E is the amount of
generation from the ith generator at time t. The unit of the emission function E is ktCO2/HH.

Renewable function. In this paper, the wind energy is selected as the renewable energy
that integrates with the ED model. As suggested by Hetzer et al. [2008], Geetha et al. [2015],
the linear cost function of the wind energy model is as follows:

CW,i(Wi,t) = dWi,tWi,t, (5)
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where dWi,t is the coefficient of wind generation at ith wind generator at time t, Wi,t is the
active energy generation of ith wind generator at time t.

Objective function. The multiple objective functions from Eqs. (3) to (5) are converted
into a single objective function, incorporating the maximum price penalty factor hmax in the
emission function. Following the methodology Senthil and Manikandan [2010], Subramanian
and Ganesan [2010], Geetha et al. [2015], Khan et al. [2015], the objective function of the
ED problem is follows:

C =
NG∑
i=1

Nt∑
t=1

Ci(Ei,t) + hmax,i

NE∑
i=1

Nt∑
t=1

Ei(Ei,t) +
NW∑
i=1

Nt∑
t=1

CW,i(Wi,t). (6)

The first term refers to the fuel cost (Eq. (3)), the second term is the emission func-
tion (Eq. (4)), the final term is the wind function (Eq. (5)). Here NG is the total number of
thermal units, NE is the total number of generating units that contribute carbon emissions,
NW is the total number of wind generators.

The maximum price penalty factor hmax,i is calculated as the ratio of the maximum of
the fuel cost to the maximum emissions at the energy output.

hmax,i =
Cmax,i

Emax,i

(7)

Based on the publicly available fuel and emission cost data from [DECC, 2012], cost coeffi-
cients (a − f) are excluded in this case. The available data from [DECC, 2012] allows one
to estimate the direct profile trends of fuel and emission costs. This eliminates the needs to
compute the cost coefficients corresponding to individual generators. The Eq. (6) is further
simplified taking into account the BAU costs as follows:

CBAU =
NG∑
i=1

Nt∑
t=1

dGi,tEi,t + hmax,i

NE∑
i=1

Nt∑
t=1

dEi,tEi,t +
NW∑
i=1

Nt∑
t=1

dWi,tWi,t, (8)

where dGi,t and dEi,t are the cost coefficients of fuel and emission cost corresponding to ith
generating units at time t.

Similarly, the optimised cost of generation based on the integration of control vector x
corresponding to ith generating units for the EnOpt algorithm is calculated as:

CO =
NG∑
i=1

Nt∑
t=1

dGi,tEi,x,t + hmax,i

NE∑
i=1

Nt∑
t=1

dEi,tEi,x,t +
NW∑
i=1

Nt∑
t=1

dWi,tWi,t. (9)

DECC [2012] provides documentation with levelised electricity generation cost ranges
where the direct cost coefficient data (dGi,t, d

E
i,t and dWi,t) can be obtained. Additionally, the cost

coefficients are obtained dynamically in different periods (on- and off-peak periods). These
coefficients are profiled based on the bid-offer spread of the electricity market imbalance
volume. The bid-offer price data is available in the portal maintained by Elexon [2015].
Documentation of Elexon [2014] and Investopedia [2014] provide the detailed explanation of
bid and offer price and the distribution spread, where spreads are determined by liquidity,
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as well as supply and demand for a specific security. According to Investopedia [2014], the
high liquidity (high bid price) will have very low spreads due to no major imbalance between
supply and demand. On the other hand, if there is a significant imbalance and low liquidity,
the bid-ask spread will significantly expand.

The bid-offer price spread is further applied as the main profiling of cost coefficients and
is calculated as:

bid offeri,t =
offer pricei,t − bid pricei,t

offer pricei,t
, (10)

where i refers to the thermal units and wind generators at time t.
Using Eq. (10), the updated cost coefficient for the ED problem can be calculated as:

dGi,t = dG′i,t (1 + bid offeri,t) ,

dEi,t = dE ′i,t (1 + bid offeri,t) ,

dWi,t = dW′i,t (1 + bid offeri,t) .

(11)

Values dG′i,t , d
E ′
i,t and dW′i,t are the standard mean of prior cost coefficients resulting from the

Monte-Carlo simulation of the levelised electricity generation costs from the data [DECC,
2012].

Based on Eq. (9), as wind generation is uncertain, other conventional generators (thermal
units and hydro) are used to balance the wind output. The wind energy is generally assumed
to be uncontrollable in adjusting the required load factor. Hence, there is no associated
control vector in the wind function. In the context of EnKF, the wind energy can be used
for short-term forecast and assimilation of the wind energy data. The short-term forecast
of wind-generated data is possible by using HH wind generation data from Elexon [2015],
Balancing Mechanism Reporting Systems [2015]. On the other hand, the wind energy will
be implemented as the BAU solution in this paper, and other generators will be used to
balance the wind output.

The total cost savings due to the EnOpt simulation are calculated as:

CS = CBAU − CO. (12)

Similarly, the Eq. (2) can be used to determine the amount of emission savings by using the
second term of the cost function in Eqs. (8) and (9).

Constraints. The optimisation procedure is subject to the generation capacity constraints,
energy balance (electricity market balance) constraints, and the actual wind energy genera-
tion limits:

Emin,i ≤ Ei,x ≤ Emax,i,

NG∑
i=1

Ei,x +
NW∑
i=1

Wi − EL − ED = 0,

0 ≤ Wi ≤ Wmax,i,

(13)

where EL refers to the energy losses and ED is the total energy demand, NG is the total
number of thermal units, NW is the total number of wind generators. According to Balanc-
ing Mechanism Reporting Systems [2015], as it is the normal routine to have breakdowns
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during energy generation by fuel type, any fuel type with negative values in the dataset is
capped to zero of total positive generation in order to meet the energy demand. Additionally,
as there is no minimum operating energy limit for wind generation, the minimum amount
of wind generation is set as zero [Geetha et al., 2015]. According to Ramanathan [1994],
the emission constraint is not needed to be computed as the optimality condition can be
achieved by imposing the constraint of the energy balance and generator limit.

3.3 EnKF method

As described by Nævdal et al. [2003], EnKF provides short-term forecast and uses ensemble
realisations of a model state and state updates that are acquired through the combination of
‘true’ model and predicted ensemble estimates. Within EnKF, the model state is forecast and
assimilated based on the ensemble propagated with the Kalman update. The formulations
of EnKF as described by Evensen [2003], Nævdal et al. [2003], Almendral-Vazquez and
Syversveen [2006], Chen et al. [2009] and Jahangiri [2012] are given below (note that only
the key equations are provided).

The EnKF comprises two main steps, forecast and analysis. In the forecast step, as the
‘true’ state is not always available, new ensemble is created based on the realisations in each
of the model state through the model dynamics (simulator).

yj = y + wj, (14)

where j indexes the ensemble member, y is the state vector of the model simulator, yj is the
resultant new formation of a set of ensemble through the prediction of the model state y at
ensemble member j, wj is the model process noise. As in line with Almendral-Vazquez and
Syversveen [2006], the initial ensemble members of y are sampled from a normal distribution
with the zero mean and standard deviation.

Spread of the ensemble members of y are further combined into a matrix Y to denote
the priori ensemble:

Y =
[
y1, y2, ..., yj, ..., yNe

]
, (15)

where Ne is the total number of ensemble members.
On the other hand, during the analysis step, new observations from the measurement sets

are represented by another ensemble. In order to obtain consistent error propagation using
the EnKF, the observations have to be considered as random variables [Nævdal et al., 2003].
This is accomplished by using the actual measurement (or whenever measurements are avail-
able) as the reference and the random measurement noise (d) is added to the measurement
to obtain the perturbed observations denoted by dobs,j [Evensen, 2003, Nævdal et al., 2003,
Jensen, 2007].

dobs,j = d+ vj, (16)

where vj is the measurement noise at jth ensemble member.
Both y in Eq. (14) and d in Eq. (16) are perturbed with model error: the process error

w with zero mean and covariance Q for y and similarly, the measurement error v with
zero mean and covariance R for d, i.e. values w and v are assumed to be drawn from
Gaussian distributions as w ∼ N(0, Q) and v ∼ N(0, R). The errors are important in
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EnKF, because without them the system may be over-specified and no solutions resulting
from EnKF propagations would be obtained [Jensen, 2007].

In Eq. (15), priori ensemble (ypj ) will be propagated using EnKF to obtain the new
posteriori ensemble (yuj ) using the EnKF updating formula:

yuj = ypj + CYH
T (HCYH

T +R)−1(dobs,j −Hypj ). (17)

CY is the covariance matrix of y, R is the covariance matrix of the Gaussian measurement
error v, H is the measurement operator relating model variables to perturbed observations
dobs,j at jth ensemble member allowing for vj [Evensen, 2003]. The product of CYH

T is the
cross-covariance between state variables and predicted observations. HCYH

T is the auto-
covariance of the predicted observations. d in this case corresponds to Hypj . The product of
CYH

T (HCYH
T + R)−1 provides the Kalman gain. CY is formulated as follows:

CY ≈
1

Ne − 1
(Y p − Y p)(Y p − Y p)T , (18)

where Y P denotes the matrix form of ypj .
At the end of the EnKF data assimilation, the posteriori ensemble of the system state

shall converge towards the ‘true’ data. Therefore, the model states and parameters are
updated at the analysis step, not at the forecast step.

3.4 EnOpt method

EnOpt is applied to minimise the objective function, which describes costs and carbon emis-
sions, based on the propagated posteriori (yuj ) ensemble (Eq. (17)). The approaches as
described by Chen et al. [2009], Jahangiri [2012], Nwaozo [2006] and Jafroodi and Zhang
[2011] are given below. Ensembles of yuj as Y u are denoted in matrix form.

The control vector x is introduced that integrates the energy data modelled at different
control steps. The control vector x is formulated as follows:

x = k ·
[
x1, x2, ..., xi, xNx

]
. (19)

Here i indexes the components of x and k is the smoothing coefficient. The Nx is the total
number of control variables. It is calculated as the product of the number of thermal units
and the control steps.

Eq. (9) is used as the primary objective function of the ED simulator model. Realisations
made in the EnKF earlier are further applied in the EnOpt optimisation module to optimise
the energy generation:

C(x, Y u
G) =

Nt∑
t=1

dG(t)Y u
G(x, t) + hmax

Nt∑
t=1

dE(t)Y
u
G(x, t) +

Nt∑
t=1

dW(t)Y u
W(t), (20)

where Y u
G is the posteriori ensemble estimates of thermal generating units and Y u

W is the
posteriori ensemble estimates of wind generators. x represents the control vector to be opti-
mised. Both Y u

G and Y u
W are based on the resultant EnKF propagation using Eq. (17).

Since the EnOpt algorithm utilises realisations of yuj with Ne simulation runs, the aug-
mented objective function from Eq. (20) can be denoted as

CY (x) =
1

Ne

Ne∑
j=1

C(xj, yuj ). (21)
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Here Ne denotes the total number of ensemble members, C(xj, yuj ) is based on realisations
of yuj with Ne simulation runs only. The subscript Y indicates that costs and emissions are
optimised based on the simulator model updated in the EnKF [Chen et al., 2009]. The yuj
stays constant during the production optimisation process at specific time step while x is
optimised. Therefore CY (x) is expressed as a function of x only.

The steepest descent method is applied to obtain the optimal x that minimises CY (x).
The steepest descent is performed as follows:

xλ+1 =
1

αλ
CxCx,CY (x) − xλ, (22)

where λ denotes the iteration index, αλ is the tuning parameter that determines the step
size, Cx is the covariance matrix of x, Cx,CY (x) is cross-covariance between x and CY (x) and
is formulated as follows:

Cx,CY (x) ≈
1

Ne − 1

Ne∑
j=1

(xλ,j − xλ)(C(xλ,j, yuj )− C(xλ, Y u)), (23)

with

xλ =
1

Ne

Ne∑
j=1

xλ,j, C(xλ, Y u) =
1

Ne

Ne∑
j=1

C(xλ,j, yuj ). (24)

3.5 Implementation of EnKF and EnOpt

In EnOpt, x is optimised at each λth iteration, whereas yuj and Y u are kept constant at
every particular time step tk (during production optimisation process only). k(1, 2, ..., Nk) is
the index for data times with Nk denoting the total number of data times for EnOpt model.

The EnKF and EnOpt implementation steps are as follows:

1. Set k = 0. Initialise and generate ensemble Y0 and x.

2. Propagate Yk and x from tk to tk+1 through the simulator model.

3. Apply EnKF to obtain Y u by updating Yk using Eq. (17). Set k = k + 1.

4. Start optimisation for the EnOpt at λ = 1, generate x1 and x1,j, j = 1, 2, ..., Ne.

(a) If k = 1 (k is the first time step), x1,j is generated in two steps. First, the mean
of the control is sampled from uniform distribution with lower and upper bounds
of thermal capacity constraints. Second, the control mean is further perturbed
by adding Gaussian random number with zero mean (N ∼ (0, Cx)).

(b) If k 6= 1 (k is not the first time step), x1 is set to x1 = x in each realisations. The
x1 is the control optimised at the previous data assimilation. Gaussian random
number with zero mean (N ∼ (0, Cx)) is added to x1 to form x1,j.

5. If λ 6= 1, Gaussian random number with zero mean (N ∼ (0, Cx)) is added to form xλ
in each realisations.
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6. Run the optimisation model (Eq. (9)) and calculate C(x, Y u
G) using Eq. (20), where Y u

G

refers to the ensemble representation of Y u
k .

7. Use Eq. (23) to compute Cx,CY (x).

8. Compute xλ+1 using Eq. (22).

9. Evaluate CY (xλ+1) using Eq. (21) that require Ne realisations.

10. If CY (xλ+1) < CY (xλ), replace xλ by xλ+1 and let λ = λ + 1; otherwise, keep xλ,
increase αλ and proceed to step (8).

11. If stopping criteria is satisfied, set x = xλ and exit the optimisation loop; otherwise,
repeat from step (5).

12. Repeat from step (2) until the end of the data assimilation t.

Stopping criteria include: (i) a maximum optimisation step λmax; (ii) unsuccessful search
for αλ; (iii) αλ is not allowed to increase more than twice; (iv) the relative iterative increase
of the objective function is less than 1%.

The obtained E in the second term of Eq. (9) is further used to represent the expectation
of optimised carbon emissions EO in Eq. (2). Similarly, the tabulated values of CO at the end
of EnOpt simulation (Eq. (20)) are used to compare with CBAU (Eq. (8)). The cost saving
in the ED problem is calculated using Eq. (12).

4 Case study

This section shows the case study of the ED problem using the EnKF and EnOpt algorithms
as formulated in Sections 3.3 and 3.4.

4.1 EnKF application

In EnKF, the main goal is to estimate posteriori ensemble based on the energy generation.
The EnKF needs to be initialised by providing model and input parameters for computation
of the priori ensemble.

Variables of interest are collected into a state vector y as the input of the model state:

y =

[
m
d

]
. (25)

Eq. (25) also corresponds to the main input simulator model in Step 2 of the EnKF and
EnOpt implementation (Section 3.5). In this case study, it is assumed that m are real pa-
rameters of the historical energy data representing the thermal units and wind generators
(known profiles of thermal units and wind generators) from the portal [Elexon, 2015, Bal-
ancing Mechanism Reporting Systems, 2015]. The available m results in model prediction
d of the energy generation data for thermal units and wind generators. Parameters m are
adopted from the portal [Elexon, 2015, Balancing Mechanism Reporting Systems, 2015], and
remain constant throughout the data assimilation. On the other hand, d is the model predic-
tion (actual measurement) of energy generation Ei,t with real parameters m. The component
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d in vector y changes with data assimilation, incorporating the model errors in addition to
m at every time step.

The component y is augmented as follows:

y =
[
m1, m2, ..., mi, E1, E2, ..., Ei, W1, W2, ..., Wi

]T
. (26)

The m component refers to real parameters of the thermal units and wind generators [Elexon,
2015, Balancing Mechanism Reporting Systems, 2015]. The components of d consist of:
1) the predicted energy generation data for thermal units E1, E2, ..., Ei; 2) the predicted
wind energy generation W1, W2, ..., Wi.

The ‘true’ data of the energy generation from Elexon [2015], Balancing Mechanism Re-
porting Systems [2015] will be further predicted using ensemble representations (denoted as
actual measurements d), with perturbed observations (dobs,j) based on the perturbation of
d.

Sets of y are stored in matrix Y (Eq. (15)) and are further denoted as priori ensemble
(ypj ). The ypj is further assimilated in the EnKF algorithm in order to obtain the new updated
posteriori ensemble (ypj ) using Eq. (17).

4.2 EnOpt application

The component of control vector x in EnOpt contains energy generation output of thermal
units that minimises costs and carbon emissions within the imposed constraints (Eq. (13))
for ED optimisation problem. The total number of control variables Nx from Eq. (19) is
calculated as the product of the number of thermal units and the control steps. By following
the implementation step in Sections 3.4 and 3.5, the output variables – the optimised cost
and carbon emissions based on the ED problem – can be obtained.

5 Results and discussion

5.1 EnKF numerical simulation

The EnKF short-term prediction (forecast) and assimilation are obtained based on the histor-
ical and real-time HH records of energy generation data Elexon [2015], Balancing Mechanism
Reporting Systems [2015]. Five energy generation profiles for thermal units and one offshore
wind generator are considered. Energy data in the beginning of spring season (01/03/2015)
is adopted with the addition of model noises in order to forecast the total energy generation
by the power plants. Since the historical and real-time HH records of energy generation are
available, variable y in Eq. (25) contributes to direct model predictions (d) of the energy
generation based on the real energy data (m) of thermal units and wind generator.

The input data of energy generation is simulated using the modelled parameters in Eq. (25)
for EnKF predictions. Various EnKF realisations are produced (Ne = 10, 100, 1000)
through Eqs. (15) and (26) and propagated at every time steps. As in line with Almendral-
Vazquez and Syversveen [2006], the initial ensemble members of yp are drawn from a normal
distribution with mean and standard deviation such that N(0, 20). Additionally, the model
(process) error w is sampled from w ∼ N(0, 1). The measurement error, on the other hand,
is sampled as v ∼ N(0, 0.5). The assimilation is performed for 48 time steps (24 hours with
HH interval). The ensemble corresponding to one day period in matrix Y (Eq. (15)) is the
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prior (ypj ) ensemble. The ensemble is updated to form the posterior (yuj ) ensemble (Eq. (17))
and is stored in the matrix Y u. Values Y u of energy generation allows the comparison of
convergence in relation to the perturbed observations dobs,j. Quantity dobs,j is generated by
perturbing d.

The daily plot of the resultant energy generation (thermal units plus wind generators)
and the EnKF assimilation of Y u with different realisations is shown in Fig. 1. The figure
shows that the larger the ensemble size, the better Y u estimation converges towards the
observation.

Additionally, the EnKF assimilation corresponding to thermal units and wind generation
are performed. This is to examine the performance of EnKF in the assimilation of the
individual units. Figs. 2 and 3 show different realisations of the diurnal EnKF’ed energy
generation from thermal units and wind generators. The small ensemble size (Ne = 10)
in Fig. 3 results in poor EnKF forecast and assimilation of wind data. Both simulations
show that the larger the ensemble sizes, the lesser oscillation for the assimilation in EnKF.
Consequently, the smaller the EnKF errors relatively to the observations.
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Figure 1: Total energy generation with different EnKF realisations. Generating fleets are
thermal units and wind generators.
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Figure 2: Total energy generation of thermal units with different EnKF realisations.
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Figure 3: Wind-based energy generation with different EnKF realisations.

5.2 EnOpt numerical simulation

The resultant energy Y u is further used in the EnOpt algorithm in order to optimise the
energy generation in the ED problem (Eqs. (9) and (20)) along with optimisation of controls x
in Eq. (19)) following the imposed operational constraints in Eq. (13). The price penalty
factor hmax is introduced that converts the emission function of the ED problem into the
emission cost function.

Using the Monte-Carlo approach, the repeated random sampling of cost coefficients
(dGi,t, d

E
i,t and dWi,t) based on levelised costs from DECC [2012] are computed. The average

HH bid-offer data for thermal units and the wind-generated energy are available in Elexon
[2015], and this allows one to compute the bid-offer spread and updated cost coefficients
using Eqs. (10) and (11). The cost coefficient of fuel and wind energy generation is shown
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in Table 1. Similarly, the emission cost coefficient is shown in Table 2.

Cost coefficient Cost (£/MWh)

dG,1,t
[
70, 100

]
dG,2,t

[
120, 135

]
dG,3,t

[
330, 400

]
dG,4,t

[
70, 75

]
dG,5,t

[
110, 170

]
dW,1,t

[
133, 138

]
Table 1: Fuel and wind cost coefficient range.

Cost coefficient Emission cost (£/MWh)

dE,1,t
[
18, 19

]
dE,2,t

[
5, 42

]
dE,3,t

[
50, 51

]
dE,4,t

[
0, 5
]

dE,5,t
[
24, 26

]
Table 2: Emission cost coefficient range.

As mentioned, the time frame for the optimisation of costs is 24 hours and the control
vector x is modified in every HH slot. The wind farm is assumed to be uncontrollable and
therefore the generation output of the wind farm is balanced by those thermal units. The
total number of control parameters for the vector x is 5× 48 = 240, which is the product of
the number of the thermal units and the number of the control steps. Total of 100 EnKF
realisations are used in this example.

The maximum optimisation procedure is allowed to run for λmax = 200 iterations. The
iteration terminates when the relative increase of the EnOpt objective function is less than
1%. As the steepest descent method is a type of unconstrained optimisation, the updated
vector x which violates the control constraints (Eq. (13)) is truncated, and the new x is
reallocated proportionally among generators based on the offset of truncated values.

The initial state of the control vector x is generated as the mean of the sampled lower
and upper bounds of energy produced by the generating units. It is further perturbed
with Gaussian random numbers N ∼ (0, 0.5). Each component of x consists of energy
generation value that corresponds to ith generating units in Eq. (19) which is to be optimised.
Quantity x is further integrated with Y u that optimises the energy generation. Total of five
thermal units and one off-shore wind farm generator are considered in this EnOpt simulation.
Constraints as outlined earlier in Eq. (13) are summarised in Table 3. ‘0’ implies switched-
off generation. The TD losses account approximately 7.9 % of the energy demand [DUKES,
2015].

The cumulative curves for the cost of generation for CBAU and optimised CO are shown
in Fig. 4. The total CBAU within the simulation run is obtained as £12.16 million, which is
comparable to multiple simulation of generating units analysed by [Senthil and Manikandan,
2010, Subramanian and Ganesan, 2010]. The relative increases of cost savings based on CBAU

and CO are shown in Fig. 5. It can be seen that the relative increase of the optimised costs of
generation is relatively low within the time frame 0600-2000. This is due to the requirement
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Notation Description Amount (GWh)

Emin,i Minimum allowable thermal generation capacity for:
Emin,1 67.20
Emin,2 100.80
Emin,3 0
Emin,4 84
Emin,5 0

Emax,i Maximum allowable thermal generation capacity for:
Emax,1 180
Emax,2 156
Emax,3 1.20
Emax,4 7.20
Emax,5 2.40

EL TD energy losses 2.40
ED Energy demand 300
Wmax Maximum amount of wind generation 36

Table 3: Constraints of the ED problem.

to all generating plants to supply the required energy in response to the instant electricity
market demand.
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Figure 4: Daily cumulative plot of the business-as-usual versus optimised costs of the ED
problem at every time step.

Carbon emissions plots of EBAU and EO are shown in Fig. 6. Due to the standardised
regulations of costs in the electricity market, additional carbon emissions are produced in
the afternoon. This shows the trade-offs between and emissions in the modern electricity
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Figure 5: The relative increase of cost savings based on business-as-usual and the optimised
at every time step.

market. Thus, the priority to optimise costs may lead to the increase of the emission level.
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Figure 6: Carbon emissions for business-as-usual versus optimised in the ED problem at
every HH time step.
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Figure 7: The relative increase (% ∆λ,k) of the objective function corresponding to λth
iteration.

Finally, the relative increase (%) of CY (xλ) corresponding to λth iterations is shown
in Fig. 7. We show the plot for 58 iterations in order to illustrate the clear trend of relative
increase of CY (xλ), which converges at later iterations.

The optimised CO at the end of EnOpt simulation (Eqs. (9) and (20)) are compared with
CBAU (Eq. (8)). Cost savings in this ED problem are calculated using Eq. (12) and are equal
to £1.15±0.10 million. On the other hand, the second term of Eq. (9) is EO, which is used for
estimation of carbon savings ES in Eq. (2). Even though there are no carbon savings during
the day time (based on Fig. 6), the overall savings ES are achieved and are approximated as
0.81±0.1 ktCO2 in one day of simulations.

Finally, the converged CY (xλ) indicates that xλ is optimised. xλ then propagates forward
to regulate the amount of energy generation in the next time step.

6 Conclusion

In this paper, to address the increasingly used intermittent and uncontrollable wind-generated
energy, other forms of generators are employed to balance the wind-generated energy out-
puts. EnOpt is used to optimise costs and carbon savings of generators in the power system
that is subject to ED constraints, such as the generation capacity, electricity market balance
and the actual wind generation limits. The established ED constraints also correspond to the
current electricity market rules that maintain the security-off-supply in the power system.

Five energy generation profiles and one offshore wind generator from Elexon [2015], Bal-
ancing Mechanism Reporting Systems [2015] are forecast and assimilated using EnKF, and
the assimilated data is further used in the EnOpt algorithm for the numerical optimisation.
The parameters of the energy profile data are used in EnKF to sequentially predict and up-
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date the ensemble members and obtain filtered energy yuj . EnOpt optimises costs CO using
the updated yuj assimilated from EnKF with optimal control xλ. At every time step of the
EnOpt simulation, the resultant xλ that optimises CY (xλ) is selected in order to maintain
the current strategy in the ED problem with minimised costs and carbon emissions. The
optimised carbon emissions can be also determined using the secondary term of the formu-
lated objective function cost without incorporating the price penalty factor. At the end of
the EnOpt simulation, CO and EO are collected to quantify ES and CS.

Overall, EnKF demonstrates strength in minimising the mismatch between observations
and EnKF updates, provided that the ensemble size must be sufficiently large: this improves
convergence in EnKF propagation.

The ability to optimise CY (xλ) with convergence demonstrates the robustness of EnOpt.
Optimal xλ represents the electrical variables that may be incorporated in operational strate-
gies in the power system that reduce costs and carbon emissions depending on the current
demand.

Overall, the presented methodology is in line with the Capacity Market in UK Govern-
ment’s Electricity Market Reform (EMR) programme [DECC, 2016]. This is achieved by
using the novel optimisation technique to ensure appropriate capacity of conventional gen-
eration in responding to intermittency of green generation. The EnOpt algorithm applied in
this study is instrumental in regulating energy generation.

Additionally, due to random values of carbon intensity and cost coefficients at different
time steps, uncertainties have been quantified in the simulations.

Already at the current stage of development of Smart technologies in the UK, the pro-
posed methodology can be very useful for running and controlling complex power systems,
accounting the emissions and renewable energy in a closed-loop optimal control. It can be
used by aggregators, distribution network operators, and National Grid, under the regula-
tions of the UK Office of Gas and Electricity Markets (Ofgem) requiring to quantify and
minimise the trade-offs between and carbon emissions of the ED problem. The proposed
routine provides an economical and environmental solution to allow business decisions based
on both costs and environmental benefits of optimised energy generation.

The proposed framework is very general and combines both short-term forecast using
EnKF and a flexible optimisation routine. Currently, the publicly available input required
for applying the proposed methodology in real-time systems and control rooms is insufficient.
Future analysis of real data provided by power network operators would expand applicability
of the EnKF and EnOpt methods.
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