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In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and
data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging
(fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the
reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples
used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm
that aims at overcoming the clustering methods selection problem as well as reliability issues in neu-
roimaging by means of first applying several analysis methods (three in this study) on multiple datasets
and then integrating the clustering results. To validate the method, we applied it to a complex fMRI
experiment involving affective processing of hundreds of music clips. We found that brain structures
related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroac-
tivity during affective processing. The comparisons between the results obtained from our method and
those from each individual clustering algorithm demonstrate that our paradigm has notable advantages
over traditional single clustering algorithms in being able to evidence robust connectivity patterns even
with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The
consensus clustering method is implemented in the R package “UNCLES” available on http://cran.r-
project.org/web/packages/UNCLES/index.html.
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1. Introduction

After the rapid rise of human neuroimaging in the
90s (“the decade of the brain”)1 with funding initia-
tives, papers in such prominent journals as Nature,
Science, and lavish attention from the press, there is
currently a vein of skepticism towards neuroimaging
findings. Papers making the headlines announced sig-
nificant brain activity in dead salmon or evidenced
magical high correlations between behavioral and
brain data.2 Although the fascination of brain data
can still blur critical thinking in front of a crudely-
built mock brain scanner,3 scientists are question-
ing the reliability of neuroimaging and the danger
of false positives and reverse inference, hence com-
promising the relevance of a whole field for the
general scientific community.4 A recent main criti-
cism relies on the wide variety of analysis strategies,
combined with small sample sizes, used to investi-
gate regional brain activity measured with functional
magnetic resonance imaging (fMRI) and leading to
inconsistent findings.5 To overcome the limitations of
model-based methods, data-driven methods imposed
by the researchers, such as clustering, independent
component analysis (ICA), seed-based functional
connectivity analysis (for reviews, cf. Ref. 6), and
inter-subject correlation analysis7 are increasingly
adopted. However, new algorithms are often pro-
posed, augmenting the discrepancies in the results
and the difficulty of choosing the most appropriate
data-driven method. Calls for consensus in analysis
and meta-analysis methods for neuroimaging have
been made.8

In research fields characterized by the sheer com-
plexity of the stimulus parameters and the subjectiv-
ity of the individual mental state, such as the inves-
tigation of musical emotions, the aforementioned dif-
ficulties are even more reflected in the wide dis-
crepancy of results. In a recent meta-analysis of 21
fMRI studies on musical emotions, the amygdala,9

the anterior cingulated cortex, the insula,10 the
orbitofrontal cortex11,12 and the reward circuit13

were found to be associated with any musical emo-
tion. While this meta-analysis shows a consistent
view, the picture becomes more fragmented when
looking at different types of emotions. Very recently,
data-driven methods, such as graph theory,14 eigen-
vector centrality mapping,15 network science16–18

and ICA19 have been only marginally adopted to

investigate functional connectivity during listening
to music. Clustering analysis20,21 has instead not
been applied to music neuroscience. In the broader
domain of cognitive neuroscience, many methods
have been used to address the clustering prob-
lem such as K-means,22 hierarchical clustering,23

artificial neural network24-based self-organizing
maps (SOMs),25 graph clustering,22,26 and fuzzy
clustering.27 When using clustering analysis, there
is one critical procedure that determines the appro-
priate algorithm and related parameters such as
the number of clusters K. Traditionally, one can
either use the discriminative approach such as model
selection method to rank the competing algorithms,
which are k-means, hierarchical clustering and SOM
in this study, based upon some given criteria or use
the generative approach to model the data gener-
ation process. However, obtaining the most appro-
priate algorithm and parameters from discriminative
approach becomes increasingly difficult due to the
lack of ground truth in clustering problems and large
dimension of data. The generative approach is also
difficult when the data generation process is compli-
cated such as the fMRI paradigms used in this study.

To achieve consensus results in a model-free con-
text and provide a more feasible alternative to gener-
ative design, we propose a new consensus clustering28

strategy, called the binarization of consensus parti-
tion matrices (Bi-CoPaM).29 Rather than ranking
the different clustering algorithms, Bi-CoPaM inte-
grates the results generated by multiple clustering
methods. Moreover, the results are able to be tuned
in terms of the consensus level reflecting the quality
of the clusters. In this study, we selected three widely
used clustering algorithms in neuroimaging, namely
the K-means, hierarchical clustering and SOM,23,30

to be fed into the Bi-CoPaM pipeline and produced
consensus results. The Bi-CoPaM pipeline extracts
clusters from many (1856) datasets consisting of
fMRI trials associated with each subject’s listen-
ing to hundreds of emotional music clips and seeks
the ones characterized by consistently synchronized
fMRI signal changes in most of the datasets. By
using such a pipeline, we found that several brain
structures related to visual, reward, and auditory
processing have intrinsic temporal patterns of coher-
ent neuroactivity during affective processing without
defining any explicit model.
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2. Materials and Methods

2.1. Participants

Twenty-nine healthy subjects without any hearing,
neurological or psychological problem participated
in this study (15 females). Among these twenty-nine
participants, thirteen were musicians who possessed
formal musical training, on average, for 16.1±6 (SD)
years. The others were nonmusicians who did not
receive any formal musical training but nevertheless
had an interest in listening to music consistently. At
the time of experiment, musicians reported that they
practice their instruments, on average, for 2.5 ± 3.4
(SD) hours per day and nonmusicians declared that
they listened to music several hours per day. The
study were approved by the ethical committee of the
Helsinki University Central Hospital and complied
with the Helsinki Declaration. The dataset is a sub-
set of a larger data collection, parts of which have
been published in Refs. 31–33.

2.2. Music

Four stimulus categories were used in the fMRI
experiment. These categories consisted in music that
was classified by subjects to be liked and happy (LH),
liked and sad (LS), disliked and happy (DH), and dis-
liked and sad (DS). Participants were asked to bring
four music pieces for each category, giving 16 pieces
in total. (For more details on selecting the appropri-
ate music stimuli, cf. Ref. 31). Two 18-second long
music excerpts with 500ms fade-in and fade-out were
selected from each music piece using Adobe Audition
and on the basis of a listening test. This yielded 32
excerpts with eight in each stimulus category.

2.3. fMRI experiment

The fMRI measurements were conducted with a 3
Tesla scanner (3.0T Signa VH/I General Electric)
in the advanced magnetic imaging (AMI) Center at
Aalto. Participants rested on the scanner bed in a
supine position. Music was presented via fMRI com-
patible earphone with about 30 dB of gradient noise
attenuation. Thirty-three oblique slices covering the
whole brain (field of view 20mm; 64 × 64 matrix;
thickness 4mm; spacing 0mm) were acquired using
an interleaved gradient echo-planar imaging (EPI)
sequence with TR equal to 3 s, echo time 32ms and
flip angle 90◦, sensitive to blood-oxygen-level depen-
dent (BOLD) contrast.

During the fMRI experiment, participants lis-
tened to the 32 18 s excerpts of music selected as
described above. The music excerpts were delivered
to the participants via high fidelity MR compatible
earphone. Each participant was presented with 32
excerpts for two times in a random order, prompted
by a visual cue on the screen (one time it shows like?
dislike?, and another time it shows sad? happy?) to
keep the participants concentrating on the emotion
aspects of the stimuli. Following the end of the stim-
uli was a 3 s interval without music stimuli during
which another cue asked the participants to answer
the questions showed on the screen when they lis-
tened to the previous music excerpt by pressing a
MR compatible button pads with the second and
the third fingers of the left or right hand. After the
interval a sinusoidal tone indicated the start of next
trial. The scanning session lasted for 23 minutes.
After a short break, anatomical T1 weighted MR
images (field of view 26mm; 256×256 matrix; thick-
ness 1mm; spacing 0mm) were acquired for about
9 min. (For more details about this experimental pro-
cedure and other scanning technical specifications,
cf. Ref. 31)

2.4. Data preprocessing and
preparation

The whole-brain images were preprocessed by statis-
tic parametric mapping 8 (SPM8, http://www.
fil.ion.ucl.ac.uk/spm) and voxel-based morphome-
try (VBM, http://dbm.neuro.uni-jena.de/vbm/) for
SPM. Each participant’s images were segmented,
realigned, spatially normalized into the Montreal
Neurological Institute (MNI) template and spatially
smoothed by Gaussian filter with an FWHM of
6 mm (for more details, cf. Ref. 31). For prepar-
ing the data for the consensus analysis, we followed
two steps using the fMRItoolbox (implemented at
the University of Jyväskylä in MATLAB environ-
ment): vectorization and segmentation. In vectoriza-
tion step, the 3D volume data was converted to a
vector (228453× 1) by using a standard brain mask.
The above step was applied to every 3D volume scan
from each subject and all the scans were combined
sequentially, forming the fMRI time series of each
subject. According to the order that musical excerpts
were played, the whole fMRI time series were seg-
mented into 64 EPI brain volumes, each containing
6 or 7 time points (covering 18 s at a sampling rate

1650042-3

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

R
U

N
E

L
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
10

/1
3/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

September 1, 2016 15:13 1650042

C. Liu et al.

Fig. 1. Structure of music excerpts where DH stands for
disliked happy music, DS for disliked sad music, LH for
liked happy music, and LS for liked sad music. Note that
each category has different music excerpts for different
subjects. For example, LS1 listened by subject 1 is dif-
ferent from LS2 listened by subject 2. Also, one certain
category has different music excerpts for one particular
subject. For example, in subject 1, the music representing
the first DS1 is not necessarily the same as the last DS1.

of 3 s), and each corresponding to instances when
the participants were listening to music clips. Fig-
ure 1 illustrates the order each music excerpt was
presented (partial).

For one excerpt, we used a 228, 453 × 6 (or 7)
matrix with the row corresponding to the voxels
and the column corresponding to the time profile
for this excerpt. In total, there are 1856 excerpts for
all subjects, resulting in 1856 × 228, 453 × 6 (or 7)
data points that were used in the following clustering
analysis.

2.5. Consensus clustering (Bi-CoPaM)

The Bi-CoPaM method is a tunable consensus clus-
tering method which recruits various single cluster-
ing algorithms while considering various datasets to
identify the subset of objects (e.g. voxels) that are
consistently correlated.29 Given L datasets and C

clustering methods, the Bi-CoPaM can be applied
by the following four main steps:

(i) Partition generation: each of the C clustering
methods is applied to each of the L datasets
yielding R = C × L partitions.

(ii) Relabeling: because clustering is unsupervised,
there are no labels for the clusters in the differ-
ent partitions, i.e. the ith cluster in one parti-
tion is not guaranteed to match the ith cluster
in another partition. Relabeling reorders, the
clusters in the partitions so that they become

aligned. Min–min approach was used to perform
relabeling.

(iii) Fuzzy consensus partition matrix (CoPaM) gen-
eration: the relabeled partitions are averaged to
produce a fuzzy CoPaM in which each voxel has
a fuzzy membership value in each of the clus-
ters based on the number of individual parti-
tions that assigned it to it.

(iv) Quenching/Binarization: the fuzzy CoPaM is
binarized to produce the final binary partition.
Different threshold binarization (DTB) tech-
nique assigns a voxel to a cluster if and only
if its fuzzy membership value in that cluster is
higher than its closest competing cluster fuzzy
membership value by the value of the param-
eter δ. The parameter δ ∈ [0, 1] controls the
tightness of the cluster where δ = 0.0 is the least
tight (most sparse) and δ = 1.0 is the tightest.

One important feature of the Bi-CoPaM is that
the results are tunable. As clusters are tightened,
many voxels are unassigned from clusters and are
left without being assigned to any other cluster,
and smaller and more focused clusters are generated.
Some clusters might become completely empty at rel-
atively low δ values while others would resist higher
levels of tightening. In general, the role of many of
the clusters that become empty at low δ values is to
contain and then filter out the majority of the voxels
that are irrelevant to the context. On the other hand,
the voxels that resist higher δ values are those which
have been assigned to the same cluster by higher
numbers of individual partitions, and are therefore
expected to be more consistently correlated and more
relevant to the context.

2.6. Degree of freedom in Bi-CoPaM

The Bi-CoPaM method requires presetting the num-
ber of clusters (K). Moreover, the tightening param-
eter δ needs to be optimized. M–N scatter plots tech-
nique tackles those issues. Each time that Bi-CoPaM
is applied with different K values, DTB binarization
is performed with a range of δ values (e.g. from 0.0
to 1.0 with 0.1 steps). All of the individual clusters
that appear in the results are scattered on a 2D plot
where the horizontal axis (M) represents the aver-
age mean square error (MSE) values of the cluster
over all of the datasets, and the vertical axis (N)
represents the logarithm of the number of voxels in
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the cluster. Both axes are normalized to have unity
length. The average MSE per voxel for the kth clus-
ter can be calculated by

MSEcluster(k) =
1

LNk

L∑
l=1

∑
n∈Ck

‖xl
n − zl

k‖2, (1)

where L is the number of datasets, Nk is the number
of voxels in the kth cluster, Ck is the set of voxels in
the kth cluster, xl

n is the normalized BOLD signal
vector of the nth voxel in the cluster from the lth
dataset, zl

k is the average normalized BOLD signal
vector of the voxels in the kth cluster from the lth
dataset, and ‖ · ‖ is the norm of a vector. The objec-
tive is to maximize the number of voxels included in
the clusters while minimizing the dispersion within
the clusters measured by the MSE metric.

As all of the individual clusters generated under
all of the different combinations of parameters are
scattered on this M–N plot as shown in Fig. 2.

The cluster closest to the top left corner of the
plot is selected as the best cluster (blue dot). This
cluster is expected to be large with many voxels
(high vertical axis value), yet tight with high corre-
lation (low horizontal axis value). The selected clus-
ter and all of the other clusters that have overlaps
with it, even by a single voxel, are removed from
the plot. Then, the closest remaining cluster to the
top left corner of the plot is selected as the second
best distinct cluster. The steps of selecting clusters
and removing those with overlaps with the selected
ones are repeated iteratively up to a preset maxi-
mum number of clusters or earlier when the scat-
ter plots are empty. The final number of clusters

Fig. 2. (Color online) Example of M–N scatter plots
technique.

is not predetermined as it depends on when the
plot becomes completely empty. Moreover, the pro-
duced clusters are ordered in a descending manner
regarding their tightness and size measured by their
closeness to the top left corner. Practically, the top
selected clusters are of interest to the downstream
analysis while most of the low ranked clusters may
be considered as containers of irrelevant voxels and
are thus discarded.

2.7. Test the over representation

The hypergeometric test uses the hypergeometric
distribution to calculate the statistical significance of
having drawn specific k successes out of n total draws
without replacement from the population whose size
is N and has K successes. The formula for calculat-
ing the probability is

P (X = k |N, K) =

(
K

k

) (
N − K

n − k

)
(

N

n

) , (2)

where the bracket is the binomial coefficient.34

Hypergeometric test is often used to identify which
sub-population is over or under represented in a sam-
ple. In this experiment, we use the hypergeometric
cumulative distribution function (CDF) to compute
the p value. The hypergeometric CDF is

P (X ≥ k |N, K) =
n∑

i=k

P (X = i). (3)

The P in formula (3) is the probability of get-
ting equal or more than k instances of class a if
one randomly selects n instances from a population
whose size is N and has K class a. We utilized
this test to examine the distribution of two differ-
ent classes of stimulus categories and one class of
subject groups, i.e. liked music versus disliked music
and happy music versus sad music as well as musi-
cian versus nonmusician, compared with their back-
ground frequency (N , K in the above formula). We
take the null hypothesis to be that different cate-
gories or groups have equal effects on the BOLD sig-
nal. If a certain stimulus category or subject group
is significantly over represented in terms of p value
(e.g. p < 0.005), we drew the conclusion that this
category or group has effect on the BOLD signal in
the corresponding condition.
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2.8. Clustering experiment

2.8.1. Clusters generation by Bi-CoPaM

Each of 1856 excerpts data (normalized to 0 mean
and unit variance) was clustered by K-means, hierar-
chical and SOM with k equals to 10, 25, 50, and 100.
These clustering results generated by different algo-
rithms with four different cluster numbers were com-
bined using the Bi-CoPaM paradigm and selected
by M–N scatter plot, yielding the consensus cluster-
ing results. The brain regions within clusters were
extracted out by using automated anatomical label-
ing (AAL) atlas.35

2.8.2. Filtering

Two types of filtering were used in order to make
the results more reliable. Firstly, the original clus-
ters were filtered by discarding those voxels with
weak responses (voxels whose time series have a small
variance), since the data used to be clustered were
normalized and thus lost the signal magnitude infor-
mation. In this analysis, the voxels whose variance
corresponded to less than half of the mean of the
variance for all the voxels from one subject were dis-
carded. After repeating this process for all the sub-
jects, we obtained 29 thresholded partitions. Then
if more than 70% percent of the subjects showed a
strong response at a certain voxel, this voxel was
retained for the following analysis. After this step,
the clusters only contained voxels having strong
BOLD responses. A sensitivity test was also carried
out with respect to the filtering parameters described
above. Secondly, the resulting clusters from the pre-
vious step were filtered by using the hypergeomet-
ric (HyperGeo) distribution test that discarded iso-
lated voxels. Voxels covering large connected brain
area would feature a very small p value (normally
below 0.001 level) while those covering tiny isolated
brain structures would result in a relatively high p

value (normally above 0.1 level). We chose p equals
to 0.001 to distinguish the large clusters from the
isolated voxels.

2.8.3. Excerpts pattern analysis

By utilizing the fact that the clustering experiment in
this study is based on the BOLD response shapes cor-
responding to stimuli, we inspected the differences in
response shapes to test the hypothesis that different

music categories (DH, DS, LH, LS) or different group
of participants (musician versus nonmusician) would
elicit distinct shapes. Once the final clusters were
obtained, the time series of the voxels within each
final cluster were averaged for each stimulus, which
represents the mean time profile for this stimulus
within this cluster, based on which we carried out
statistical test on the response shapes. Figure 3 illus-
trates the excerpt data averaging process.

The averaged excerpt data were further clustered
into groups with each one having distinct response
shapes. HyperGeo tests were carried out between
groups of musicians and nonmusicians, liked versus
disliked stimuli, as well as sad versus happy stimuli. If
in a particular cluster one stimulus category or par-
ticipants’ group was significantly represented, then
this category or group would be declared to tend to
have the corresponding response shape.

2.8.4. Analysis on music excerpts causing
“strong” response

We designed another analysis pipeline based on the
time series of the clustering results, which searches
the musical categories that tend to elicit strong
BOLD signal response. In the case of a particu-
lar subject, for a cluster (e.g. Visual or Reward or
Auditory) that contains V voxels and for each voxel
having a time series of 450 time points (scans), it

Fig. 3. Illustration of excerpt data averaging. For each
subject and each excerpt, the time series of the voxels
within each final cluster were averaged to obtain the
mean time profile for this stimulus within this cluster.
Repeating the averaging process on all the data for 29
subjects gives 1856 (= 29 subjects × 64 excerpts) aver-
aged time profiles for each cluster.
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(a)

(b)

Fig. 4. (Color online) Visualization of cluster data from
one random subject. (a) is the raw time series of the vox-
els within this cluster and (b) is the heat map. Values in
first quantile (Q1) are plotted as blue, values in fourth
quantile are plotted as red (Q4), and values in between
are plotted with two other colors (Q2 and Q3). The visi-
ble vertical patterns through the whole scan session indi-
cate the synchronized responses among the voxels within
this cluster.

gave V × 450 time points in total. Each of these data
values (amplitudes), corresponding to V × 450 time
points, is assigned a number from 1 to 4 correspond-
ing to its position in quantile 1 to quantile 4. Figure 4
is the example of visualizing the quantile data of a
random cluster.

After obtaining the quantile data matrix (V ×
450) for a particular subject, we examined the modes
of the quantile values within the time windows
covering the duration of each stimulus (music
excerpt). If in a certain time window, the mode would
be 4, then this would be taken to mean that the
“strong” response (red colored in Fig. 3) dominates
during this stimulus. Hence, we extracted out the
excerpt categories eliciting the “strong” responses
for that particular subject, and we repeated this for
every cluster for that subject, and then for every
other subject and all clusters. To compensate for
the individual variability in the BOLD response as

Fig. 5. The threshold values/third quartiles for strong
response in Reward cluster of all the 29 subjects.

shown in Fig. 5, we coded subjects’ response val-
ues in the range from 1 to 4, irrespective of the
range of the original responses, and without ref-
erence to anybody else’s responses. Furthermore,
for a particular subject, the score of each excerpt
was also computed without reference to any other
excerpts of any category for this subject. This
ensures that the scores of the excerpts are indepen-
dent subject-wise, category-wise, and excerpt-wise.
Afterwards, we tested the distribution differences
among the four stimulus categories and the two par-
ticipant groups to inspect which type of stimuli or
subject group elicited stronger responses than others
within the same cluster type (e.g. Visual or Reward
or Auditory).

2.9. Pipelines

Figure 6 demonstrates the whole experiment pipeline
in this paper.

Fig. 6. Experiment pipeline.
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2.10. Availability

The Bi-CoPAM method and the M-N plots technique
are implemented in the R package “UNCLES” avail-
able on: http://cran.r-project.org/web/packages/
UNCLES/index.html.

3. Results

3.1. Topology of clusters

We inspected the first 20 clusters (ranked by M–N

plots algorithm), as these clusters showed very strong
similarity in the response shapes as well as covered
large continuous regions, thus complying with expec-
tations based on knowledge of brain physiology.36

Among these clusters, we found that emotion and
sensory-related brain areas were grouped into three
clusters separately (see Fig. 7) which correspond well
with the literature studying music emotions with
the model-based approach.30,31 Cluster A comprises
bilateral visual areas, namely the calcarine fissure
and the cuneus. Cluster B comprises bilateral neu-
ral structures of the reward system, namely the ven-
tral striatum — extending to the globus pallidus,
the thalamus, the amygdala, the orbitofrontal cor-
tex, and the left insula. Cluster C comprises the
auditory areas, namely the bilateral superior tem-
poral gyrus, Heschl’s gyrus, the left middle temporal
gyrus, as well as one region of the somatosensory
cortex, namely the right rolandic operculum.

3.2. Comparison among multiple
clustering algorithms combinations
and single algorithm

In order to evaluate the advantage of using the Bi-
CoPaM with multiple methods over the Bi-CoPaM
with a single method, we compared the clustering
results obtained by the following four experiment
scenarios: (1) Bi-CoPaM with k-means, (2) hierarchi-
cal clustering, (3) SOM, and (4) the combination of
all the aforementioned methods. The Venn diagrams
(Fig. 8) show the relationships among the results
obtained by different clustering algorithm settings
for cluster A Visual, cluster B Reward, and cluster C
Auditory.

All the four experimental scenarios could detect
cluster A Visual, although the size and accurate posi-
tion of the voxels contained in the cluster are dif-
ferent depending on the paradigm used. For clus-
ter B Reward, the hierarchical clustering failed to

(a) Cluster A Visual

(b) Cluster B Reward

(c) Cluster C Auditory

Fig. 7. The 3D illustrations of clusters and the size
of each sub-cluster with voxels falling within a known
anatomical brain structure, identified with the AAL
atlas.

form a cluster within subcortical reward regions. Bi-
CoPaM with all the three methods not only con-
tained the common parts of the results from the other
two experiment paradigms, but also included 988
voxels that are not included in the results obtained
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(a) Cluster A Visual

(b) Cluster B Reward

(c) Cluster C Auditory

Fig. 8. The Venn diagram for comparing the set rela-
tionship among different clustering experiment settings.
Each ellipse represents the clustering results with the
value indicating the number of voxels in each set.

with either KM or SOM method. Cluster C Audi-
tory did not appear in the results by the single
SOM algorithm and similarly, the Bi-CoPaM with
all the three methods successfully found clusters

around the bilateral auditory cortex with 89 vox-
els not included in the results with either KM or
HC method. Thus the current findings show that, of
the four experimental scenarios, Bi-CoPaM with all
the three methods provides the most complete set of
clusters.

3.3. Filtering sensitivity test

We ran the filtering (Material and Methods, Sec. 2.8,
Filtering) with different parameter combinations
(percentage of total data and percentage of mean
variance) and inspected the filtered cluster size to
see the filtering impact on the results. From Tables 1
to 3, with the number in each cell representing the
size of the cluster, we could verify that as long as the
filtering parameter combinations were not extremely
strict (bottom right corner of each table), the per-
formance remained very stable. The rectangles in all
the tables indicate the parameter combination used
in this study.

3.4. Robustness test against subject
functional data variability

Considering that the brain activity to a certain stim-
ulus varied among different individuals, it raises
the problem whether the algorithm could perform
well regarding the functional data variation among
participants. Since it has been demonstrated that
Bi-CoPaM with three methods provides the most
complete set of clusters, we carried out the test to
investigate the robustness of Bi-CoPaM with three
clustering methods against data variability on afore-
mentioned three clusters. We generated two groups
of subsets for test. One was created by randomly
selecting 75% of the musicians (10 out of 13) and
nonmusicians (12 out of 16) as well as 75% of the
excerpts for each participant, which yields a subset
consisting approximately 56% of all the data from
the fMRI experiment. The above random selection
was repeated 10 times and these 10 subsets formed
group A. Similarly, we chose a different ratio of 90%
of the musicians (12 out of 13) and nonmusicians (14
out of 16) as well as 90% of the excerpts for each
participant, when the data were randomly selected.
Repeating the selection with new ratio for 10 times
formed group B consisting approximately 80% of all
the data. Then we applied Bi-CoPaM with three
clustering algorithms on these subsets and recorded
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Table 1. Filtering results for cluster Visual.

Percentage of total data for cluster Visual

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%

Percentage of mean variance 12.5% 429 429 429 429 429 429 429 429 429
25.0% 429 429 429 429 429 429 429 429 428
37.5% 429 429 429 429 429 429 429 421 398

50.0% 429 429 429 429 429 421 410 379 277
62.5% 429 429 427 425 415 389 339 249 121
75.0% 429 427 424 410 363 295 200 116 43
87.5% 429 423 396 340 251 153 84 36 7

Table 2. Filtering results for cluster Reward.

Percentage of total data for cluster Reward

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%

Percentage of mean variance 12.5% 4777 4777 4777 4777 4777 4777 4777 4777 4777
25.0% 4777 4777 4777 4777 4777 4777 4777 4777 4776
37.5% 4777 4777 4777 4777 4777 4773 4748 4678 4407

50.0% 4777 4774 4747 4696 4606 4483 4293 4026 3384
62.5% 4763 4639 4491 4300 4132 3865 3510 2973 1894
75.0% 4622 4307 4058 3725 3341 2850 2216 1492 732
87.5% 4330 3870 3342 2747 2219 1550 1049 599 317

Table 3. Filtering results for cluster Auditory.

Percentage of total data for cluster Auditory

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%

Percentage of mean variance 12.5% 3145 3145 3145 3145 3145 3145 3145 3141 3112
25.0% 3145 3145 3141 3137 3125 3096 3053 2962 2644
37.5% 3140 3133 3111 3076 3016 2938 2774 2372 1614

50.0% 3133 3110 3045 2952 2790 2522 2123 1513 767
62.5% 3122 3063 2911 2675 2349 1948 1422 847 308
75.0% 3101 2952 2652 2321 1868 1339 869 438 79
87.5% 3055 2781 2356 1864 1318 877 518 155 5

the clustering results. Table 4 lists the results from
group A and Table 5 lists the results from group
B. Note that for the final size of cluster Reward
and Auditory, there were unspecified voxels included
within AAL atlas which are not reported in Tables 4
and 5.

Tables 4 and 5 illustrate that in most of the tri-
als, the three important clusters (Visual, Reward,
and Auditory) were always identified despite the dif-
ferent subsets being used. Meanwhile, when the pro-
portion of data used increased, the results became
more stable. For example, the Reward cluster was
missed three times in the first test reported in Table 4

but was never missed in the second test reported in
Table 5. On one hand, this proved our Bi-CoPaM
method is robust to variability of participants’ data
and thus generated reproducible results; on the other
hand, it also showed the benefits of using a large
number of subjects for more reliable results in data-
driven analysis of functional brain imaging data.

3.5. Statistical test of temporal features
of clusters

We carried out the response shape analysis in the
three clusters Visual, Reward, and Auditory with
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Table 4. Results of test group A (56% of the full data). Final size is the obtained cluster size by using the
whole participants’ data. Trial size is the cluster size obtained in different trials. Intersection is the size of
the part that the clusters in each trial intersect with the clusters obtained by using the whole participants’
data.

Clusters Trial

1 2 3 4 5 6 7 8 9 10 Mean

Visual Final size 410 410 410 410 410 410 410 410 410 410
Trial size 551 1031 961 900 924 1838 713 877 2027 651
Intersection 357 410 410 410 405 410 396 409 410 393
Dice coeff. 0.74 0.57 0.60 0.63 0.61 0.36 0.71 0.64 0.34 0.74 0.594

Reward Final size 4293 4293 4293 4293 4293 4293 4293 4293 4293 4293
Trial size 2857 2591 4646 0 3263 1028 0 1620 0 4168
Intersection 1479 2046 3218 0 2278 915 0 1403 0 3303
Dice coeff. 0.41 0.59 0.72 0 0.60 0.34 0 0.47 0 0.78 0.391

Auditory Final size 2123 2123 2123 2123 2123 2123 2123 2123 2123 2123
Trial size 2381 3477 1452 2980 1576 2191 1801 2161 856 2006
Intersection 1738 2021 16 1995 439 1581 1459 1343 797 1673
Dice coeff. 0.77 0.72 0 0.78 0.24 0.73 0.74 0.63 0.54 0.81 0.596

Table 5. Results of test group B (80% of the full data).

Clusters Trial

1 2 3 4 5 6 7 8 9 10 Mean

Visual Final size 410 410 410 410 410 410 410 410 410 410
Trial size 591 991 385 821 803 1119 784 1216 821 803
Intersection 402 410 326 406 406 410 407 410 406 406
Dice coeff. 0.80 0.59 0.82 0.66 0.67 0.54 0.68 0.50 0.66 0.67 0.66

Reward Final size 4293 4293 4293 4293 4293 4293 4293 4293 4293 4293
Trial size 3028 2867 3118 4381 1813 4390 4426 2362 4381 1813
Intersection 1273 1027 2467 3308 1519 3157 3461 1891 3308 1519
Dice coeff. 0.35 0.29 0.67 0.76 0.50 0.73 0.79 0.57 0.76 0.50 0.592

Auditory Final size 2123 2123 2123 2123 2123 2123 2123 2123 2123 2123
Trial size 476 1948 2910 1348 2496 3158 3036 771 1348 2496
Intersection 458 1548 1997 338 1855 2051 1704 578 338 1855
Dice coeff. 0.35 0.76 0.79 0.19 0.8 0.78 0.66 0.40 0.19 0.8 0.572

respect to the contrasts between experimental con-
ditions and groups: liked versus disliked, happy ver-
sus sad, musician versus nonmusician. In cluster A
Visual, we found the response difference in musician
versus nonmusician group as shown in Fig. 9. For the
response shape (initially reduces and then steadily
rises till the end of the stimuli) shown in the figure,
nonmusician is significantly over represented with
p value equal to 0.00053. Additionally, no signifi-
cant difference in the shape of the BOLD responses
was found on the contrasts liked versus disliked and
happy versus sad in this cluster A. For cluster B
Reward and cluster C Auditory, we did not find any

significant difference between the response shapes
among any of the contrasts.

3.6. Music categories and participant
groups that cause “strong” BOLD
response level

We extracted out the stimuli that caused the
“strong” BOLD response (predominantly higher
amplitudes) for the clusters A Visual, cluster B
Reward and cluster C Auditory. HyperGeo tests
were then carried out based on these distributions
(Table 6) with respect to contrasts liked versus

1650042-11

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

R
U

N
E

L
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
10

/1
3/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

September 1, 2016 15:13 1650042

C. Liu et al.

Fig. 9. (Color online) Response pattern in cluster A
Visual. There are 248 excerpt responses (248 six-points
temporal profiles) that were grouped together. Of these
similar BOLD response shapes, 87 come from musi-
cians (blue lines) and 161 come from nonmusicians (red
lines). The p value for nonmusician in this distribution is
0.00053, indicating nonmusicians are more likely to elicit
the above response shape than musicians.

Table 6. M stands for group musician and N stands
for group nonmusician.

DH DS LH LS Total

Cluster A M 58 53 57 50 218
N 84 73 87 58 302

Total 142 126 144 108

Cluster B M 57 49 63 72 241
N 75 69 113 78 335

Total 132 118 176 150

Cluster C M 105 86 69 43 303
N 129 94 97 60 380

Total 234 180 166 103

All Clusters M 18 16 19 10 63
N 33 18 32 22 105

Total 51 34 51 32

disliked, happy versus sad and musician versus non-
musician.

We identified the stimulus categories that are
more likely to elicit “strong” responses (higher
BOLD response levels) with the Bonferroni-corrected
p value 0.017 (original p = 0.05). In the cluster A
Visual (calcarine fissure and cuneus), a larger num-
ber of excerpts of happy music than sad music
elicited stronger responses (p = 0.0042). In the
cluster B Reward (striatum, thalamus, amygdala,

globus pallidus, and olfactory cortex), a larger num-
ber of excerpts of liked music than disliked music
elicited stronger responses (p = 0.000083). In the
cluster C Auditory (superior and middle tempo-
ral gyrus, Heschl’s gyrus and Rolandic operculum),
a larger number of excerpts of happy music than
sad music elicited stronger responses (p = 1.1e−8).
It also showed that a larger number of excerpts
of disliked music than liked music elicited stronger
responses in the brain regions encompassed by clus-
ter C Auditory (p = 1.8e−12). We also tested the
stimuli that simultaneously elicited the strong and
most similar responses in the brain areas within
all the three clusters. Results showed that a larger
number of excerpts of happy music than sad music
elicited a stronger large-scale brain response network
(p = 0.0023).

4. Discussion

In the current study, we tested a novel data-driven
approach aimed at integrating results from several
clustering algorithms (rather than applying a single
one) to a complex research question related to brain
processing of musical emotions. By doing this we
obtained several brain regions having consistent and
robust pattern of functional connectivity in response
to different musical emotions. Based on the clusters
obtained by Bi-CoPaM, we found the music cate-
gories that elicited strong responses in visual, reward,
and auditory brain regions. In addition, we also
obtained different BOLD responses between musi-
cians and nonmusicians.

We used the following criteria to ensure the
quality of the clustering results. Firstly, we chose
three commonly used clustering methods that have
been used in the study involving the analysis of
fMRI data.19,24 Secondly, we did not give any spa-
tial information but clustered the fMRI data purely
based on its time series. In other words, voxels
are clustered based on the their time series profiles
and not on their topology in the brain. In addi-
tion, the fact that the overall size of the clusters
was much larger than the Gaussian spatial smooth-
ing kernel size (about 30 voxels) means it is not
likely that this similarity comes from the prepro-
cessing step, which made the results more reliable.
Finally, the Bi-CoPaM paradigm and M–N scatter
plot generated and selected the nontrivial clusters
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with a large number of members showing consistently
synchronized activities during most of the experi-
mental conditions. In neuroimaging studies, the sig-
nal to noise ratio is often very low,37,38 making it
hard to draw any conclusion based on a single or
even several experiments. The paradigm in this study
has overcome this issue, since integrating the results
from 1856 independent clustering processes means
that the results are reproducible: if certain clusters
would only appear in few clustering trials, then they
would be most likely due to random error or other
factors and would not be included in the final results.
Remarkably, we obtained these results with a stimu-
lation paradigm that included stimulus sets that var-
ied across participants, and a subjective task related
to affective ratings of the stimuli. Hence, the robust
findings contrasted the variability of the experimen-
tal paradigm.

We further explored how the tunable consensus
clustering results from individual clustering meth-
ods differ compared with the same from Bi-CoPaM
utilizing all three clustering methods. To this end,
for each of the three clusters described above and
obtained from all three methods, we obtained the
clusters generated by k-means and Bi-CoPaM, hier-
archical clustering and Bi-CoPaM, as well as SOM
and Bi-CoPaM separately. We compared the coher-
ences and differences and found that the three indi-
vidual methods give different clustering results. For
example, hierarchical clustering did not identify the
cluster B Reward and SOM did not identify the
cluster C Auditory. Yet, by using the same exper-
imental data, the clusters generated by Bi-CoPaM
with all three methods not only include the intersec-
tions among the results from three individual meth-
ods but also areas that were not identified by any
individual method on its own. Therefore, the fact
that Bi-CoPaM with multiple algorithms detected
clusters that could not be identified by a single
algorithm, demonstrates the advantages of using Bi-
CoPaM with multiple methods over using a single
specific method.

Our innovative use of Bi-CoPaM methodology
allows us to find clusters including functionally
and anatomically related neural networks respond-
ing to emotional music (for a broad discussion of
the model-based findings obtained with the same
dataset and of their relation with the acoustic fea-
tures present in the music stimuli, cf. Ref. 33).

After the cluster generation and selection, emotion-
related brain structures responsible for rewarding
and pleasurable sensations such as the basal gan-
glia, thalamus, insula,39 and other areas involved
with processing of auditory features such as the Hes-
chl’s gyrus, the Rolandic operculum and the supe-
rior temporal gyrus40 were grouped into correspond-
ing clusters separately. One of the most important
findings of this study is that, without any prede-
termined model assigning a value to each stimulus,
the Bi-CoPaM methodology was able to obtain a
single cluster including the anatomically connected
subcortical and cortical structures of the reward cir-
cuit, responding selectively to liked, enjoyed music.
This is one of the few studies obtaining such finding
with a data-driven method. In a recent study using a
data-driven network science method to study affec-
tive music processing,16 no reward circuit activity
was found. Our study confirms findings on the neural
structures related to musical emotions obtained with
model-based approaches.31,39,41–45 Neural structures
of the reward circuit have also been found to be more
or less connected only in other functional connectiv-
ity analysis studies such as one studying attention-
deficit/hyperactivity disorder (ADHD).46

In our statistical tests, we also investigated the
response shapes elicited by the different stimulus
categories (liked, disliked, happy, and sad music)
and experimental groups (musicians and nonmusi-
cians). Unlike the traditional statistical tests for
fMRI data that compare the response strength dif-
ferences using a general linear model,47 which often
have been questioned,48 the clustering analysis of the
mean excerpt response shape would distinguish the
response shape difference, providing a finer tempo-
ral information than comparing the response mag-
nitude level alone. The neurodynamics of func-
tional connections related to affective responses to
music have been previously studied only with model-
based approaches and only within selected regions
of interests, such as the caudate and the nucleus
accumbens.49,50 With the current results, we repli-
cated those findings without falling into the risks
of circular analysis.8 Moreover, we evidenced a dif-
ference between musicians and nonmusicians in the
temporal course of the BOLD response for the inter-
connected cortical areas of cluster A including the
calcarine fissure and the cuneus. This finding sug-
gests a larger involvement of visual processes that
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might be related to imagery or even to a relaxation
state in nonmusicians accumulated and achieved as a
consequence of listening to 18 s of emotionally-loaded
music. A similar result of tightened connectivity in
visual clusters was found by Luo et al.51 with par-
ticipants lying in the MR scanner at rest with eyes
closed, confirming the coupling of these areas during
relaxation. Remarkably, while the authors focused
the analysis of the differences between musicians
and nonmusicians on other regions, a tendency for
a larger recruitment of visual clusters seems to be
present in nonmusicians, similarly to the current
study.

On the other hand, when the same dataset was
analyzed using a model-driven approach for evidenc-
ing regional activations during music listening, musi-
cians showed larger regional activations in somato-
motor areas, such as the precentral and post-central
cerebral gyri and the cerebellar declive, in musi-
cians over nonmusicians, whereas the latter group of
participants did not show any larger brain activity
as compared with musicians. The apparent discrep-
ancy with previous findings obtained with the same
dataset relates to the divergent approaches used. In
the current study, functional coupling among areas
within the same cluster was computed and the tem-
poral dynamics of the BOLD response within each
cluster was then compared between musicians and
nonmusicians for all the stimulus conditions, whereas
in the study by Brattico et al.33 the overall magni-
tudes of the BOLD regional responses in the whole
brain were compared between groups with the gen-
eral linear model and post hoc t-tests. Moreover, since
in the current study our main goal was to validate
a new clustering approach rather than testing the
neural adaptations to affective music listening as a
consequence of musical training, we did not proceed
in studying the differences in the response shape pat-
terns between musicians and nonmusicians for each
of the stimulus categories. In our previous study
with the general linear model approach, we obtained
new evidence for larger activations of reward-related
areas in musicians than nonmusicians, in the line of
previous findings by Chapin et al.52 or James et al.53

As discussed already in Ref. 54 future model-based
and data-driven studies should solve the issue on the
role of expertise in shaping emotional responses to
music in the brain.

Here, we first clustered the data not with one
clustering algorithm but with three clustering algo-
rithms independently. Then Bi-CoPaM generates
consensus among the three sets of clusters. This takes
out the risks of capturing artefacts of an individual
clustering algorithm. Furthermore, we analyzed the
data not with one set of parameters but with many
sets of parameters. For example, Bi-CoPaM explores
consensus clusters with different degrees of tightness,
which naturally avoids the pitfalls of a single set of
clusters found using a single set of parameters. Thus,
our study provided a robust solution for obtaining
the consistently strong activation patterns in neu-
roimaging studies of affect.
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