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Nonparametric Conditional Autoregressive
Expectile model via Neural Network with
applications to estimating financial risk

Qifa Xua,b, Xi Liua, Cuixia Jianga∗† and Keming Yuc

The parametric conditional autoregressive expectiles (CARE) models have been developed by [1] to estimate expectiles

that can be used to assess value at risk (VaR) and expected shortfall (ES). The challenge lies in parametric CARE modeling

is specification of a parametric form. To avoid any model misspecification, we propose a nonparametric CARE model via

neural network. The nonparametric CARE model can be estimated by a classical gradient based nonlinear optimization

algorithm. We then apply the nonparametric CARE model to estimating VaR and ES of six stock indices. Empirical results

for the new model is competitive with those classical models and parametric CARE models. Copyright c© 2015 John Wiley

& Sons, Ltd.
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1. Introduction

An accurate risk measure is crucial for portfolio and asset pricing in financial risk management. Value at risk (VaR) has become

the standard measure of financial market risk for its simplicity and accuracy. According to [2], VaR is defined as the maximum

potential loss on the portfolio over a prescribed holding period with a confidence level 100× (1− θ)%. Therefore, assessing

VaR amounts to estimating negative tail quantiles of the underlying return distribution, i.e. V aR(1− θ) = −Q(θ). Based on

this intuition, Engle and Manganelli [3] advanced the conditional autoregressive value at risk (CAViaR) class of models to give

an accurate VaR estimation. VaR, however, is not a coherent risk measure proposed by [4] for the lack of subadditivity and

convexity. As an alternative risk measure, Expected shortfall (ES) is known to have better properties than VaR and is coherent,

see [5]. ES is defined to be the conditional expectation of the loss given that it exceeds the VaR, which can be estimated by

expectiles. A new class of univariate expectile models: conditional autoregressive expectiles (CARE), an analogue of CAViaR,

introduced by [1] to estimate time varying or conditional ES. No matter what CAViaR or CARE modeling is, the specification of

the functional form is arbitrary and certain models are challenging to find an appropriate one for giving an accurate financial risk

measure. For example, there are four CAViaR models in [3]: adaptive CAViaR, symmetric absolute value CAViaR, asymmetric

slope CAViaR, and indirect GARCH(1,1) CAViaR and its counterparts in CARE models of [1], two asymmetric slope CARE

models with high order lag terms in [6]. [6] proposed a downside risk measure, the expectile-based Value at Risk (EVaR), a more

sensitive measure of the magnitude of extreme losses than the conventional quantile-based VaR (QVaR). moreover extend the

EVaR to conditional EVaR and propose various CARE specifications as well as establishing the asymptotic results of [7] to allow

for stationary and weakly dependent data.

Most applications of quantile regression or expectile regression to predict financial risk have relied on linear or simple parametric

nonlinear models, see [8, 9]. While both complexity of dependency and misspecification of functional form need to address,

artificial neural network (ANN) and support vector machine (SVM) are often used to discover a complex nonlinear dependence

between the inputs and outputs, see [10] for more details. White [11] derived the consistency of nonparametric conditional

quantile estimators based on ANN. Taylor [12] extended ANN-based linear quantile regression to a quantile regression neural
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network (QRNN). Cannon [13] improved the QRNN model by using the Huber norm to approximate the tilted absolute value

error function which is not differentiable at 0 and developed the ‘qrnn’ package in the R programming language. However, these

existing work focuses solely on quantile estimation.

While conditional expectile is an alternative and powerful tool for risk measurement, in this paper we propose a new model,

named nonparametric conditional autoregressive expectiles (NCARE) via neural network. Without specifying the functional form,

the NCARE model can be used to estimate the potential nonlinear dynamics in expectiles, which provides the basis for conditional

ES estimation. It is worth to note that our NCARE method is different from [14]. Although they have proposed a nonparametric

approach to model EVaR, the expectiles are only modeled using covariates rather than the lagged predicted expectiles. In

contrast, we consider the first order lag of prediction expectile and propose a flexible nonparametric CARE model, which not

only overcome the withdraw that exogenous economic and investment related factors are being ignored, but also account for

the complexity and potential nonlinearity hidden in real-world data. As an illustration, we apply the proposed NCARE model to

assess the ES of six stock indices. The empirical results show that the NCARE model is quite flexible in describing dynamics of

various financial time series and generally outperforms some classical models and the parametric CARE models in terms of the

accuracy in VaR and ES measure.

The paper is organized as follows. We briefly review the estimation methods of VaR and ES in Section 2. We present NCARE

model specification, model estimation and model selection in Section 3. The empirical applications are reported in Section 4.

Section 5 makes a summary and concluding comments.

2. Methods for estimating financial risk

In this section we review some classical methods of estimating financial risk mainly on VaR and ES.

2.1. RiskMetrics model

RiskMetrics methodology to VaR calculation developed by [15] has been widely used in financial risk management. Let yt denote

a portfolio return with the distribution function FY (y) = P (Y ≤ y). According to the definition of VaR, the VaR of yt with the

confidence level 100× (1− θ)% is the negative of the θ-th quantile of FY : V aRY (1− θ) = −QY (θ). In application, RiskMetrics

assumes that yt follows the conditional normal distribution yt |Ft−1 ∼ N(µt , σ
2
t ) and can be described as follows{

yt = µt + εt , εt = σtzt

σ2
t = λσ2

t−1 + (1− λ)ε2
t−1,

(1)

where Ft−1 denotes the information set available at time t, µt is the conditional mean, σt is the conditional variance and evolves

over time according to the exponentially weighted moving average (EWMA) model with a weighting parameter λ, εi is a random

disturbance term, and the residual sequence zt is usually set to follow the standard normal distribution.

Under the assumptions in RiskMetrics, financial risk with the confidence level 100× (1− θ)% can be estimated by{
V aRt(1− θ) = −µt − σtz(θ)

ESt(1− θ) = −µt − σtE[z |z < z(θ)],
(2)

where zθ = F−1
z (θ) is the θth quantile of the standard normal distribution.

2.2. GARCH-EVT model

The GARCH-EVT model proposed by [16] and [17] combines GARCH models to estimate the current volatility and EVT for

estimating the tail of the innovation distribution of the GARCH model. The model has been widely used to estimate extreme

financial risk, see [18].

As we know, the EWMA model is a special case of a generalized autoregressive conditional heteroscedasticity model proposed

by [19] with the GARCH(1,1) form {
yt = µt + εt , εt = σtzt ,

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1

(3)

where zt ∼ i id.N(0, 1) and ω,α1, β1 are parameters underestimate. We set the conditions on parameters: ω > 0, α1 > 0, β1 > 0

and α1 + β1 < 1, to ensure strong positivity and stationarity of the conditional variance.

If F represents the distribution function of the residual series zt , the conditional excess distribution function in [20] can be

obtained as follows

Fu(y) = Pr(z − u ≤ y |z > u) =
F (z)− F (u)

1− F (u)
, (4)

where u is a given threshold, 0 ≤ y < zF − u, zF <∞ is the right endpoint of F and y = z − u. For a large class of underlying

distribution functions F , the conditional excess distribution function Fu(y), for u is large, is well approximated by the generalized
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Pareto distribution (GPD)

Gξ,σ(y) =

 1−
(

1 +
ξy

σ

)−1/ξ

, if ξ 6= 0

1− exp−y/σ, if ξ = 0,

(5)

where ξ and σ are called the shape and scale parameters, respectively. From equation (4), we have

F (z) = (1− F (u))Fu(y) + F (u). (6)

If we use the random proportion of the data (n − nu)/n to estimate F (u) and use Gξ,σ(y) to approximate Fu(y), we get the tail

estimator

F (z) = 1− nu
n

(
1 +

ξ

σ
(z − u)

)−1/ξ

, (7)

for z > u. Here, nu is the number of observations above u in all n observations.

The negative inverse of (7) with a probability θ gives the VaR

V aRz(1− θ) = −u − σ

ξ

[(
n

nu
(1− θ)

)−ξ
− 1

]
(8)

For ξ < 1, using the relationship between the ES and VaR, we obtain

ESz(1− θ) =
V aRz(1− θ)

1− ξ +
σ − ξu
1− ξ (9)

Borrowing the idea of equation (2), the financial risk of yt with the confidence level 100× (1− θ)% can be further estimated by{
V aRt(1− θ) = −µt − σt [−V aRz(1− θ)]

ESt(1− θ) = −µt − σt [−ESz(1− θ)].
(10)

2.3. GJR-GARCH model

The GJR-GARCH model of [21], which follows equation (3), is modified by the negative impact of leverage and analyzes positive

and negative shocks on the conditional variance asymmetrically with

σ2
t = ω +

p∑
i=1

(
αiε

2
t−1 + γi It−iε

2
t−1

)
+

q∑
j=1

βjσ
2
t−j , (11)

Consequently, VaR and ES at time t can be calculated through equation (3), where volatility σt is estimated by using

GJR-GARCH model (11).

2.4. Quantile and CAViaR models

It is well known that the θ-th quantile can be obtained by a simple optimization problem

QY (θ) = arg min
q
E[ρ

(Q)
θ (Y − q)], (12)

where, ρ
(Q)
θ (u) is an asymmetric loss function defined as

ρ
(Q)
θ (u) = (θ − I(u < 0)) · u, (13)

and I(·) is the indicator function. Based on this formula, the θ-th quantile can be estimated through quantile regression method

introduced by [22].

A recent proposed VaR method using quantile regression is the CAViaR models of [3]. The CAViaR models are mainly used to

estimate conditional VaR based on the relationship: V aR(1− θ) = −Q(θ). A generic CAViaR specification might be expressed

by

Qt(θ) = ω +

m∑
i=1

αiQt−i(θ) +

n∑
j=1

βj f (yt−j), (14)

where Qt(θ) is the conditional θ-th quantile, ω,αi , βj are parameters to be estimated, and f is a function of a finite number of

lagged values of observations. The commonly used CAViaR models, include adaptive CAViaR, symmetric absolute value CAViaR,

asymmetric slope CAViaR, and indirect GARCH(1,1) CAViaR, are respectively stated as follows

CAViaR-1 : Qt(θ) = Qt−1(θ) + α[θ − I(yt−1 < Qt−1(θ)], (15)

CAViaR-2 : Qt(θ) = ω + αQt−1(θ) + β|yt−1|, (16)

CAViaR-3 : Qt(θ) = ω + αQt−1(θ) + β1(yt−1)+ + β2(yt−1)−, (17)

CAViaR-4 : Qt(θ) = (1− 2I(θ < 0.5))(ω + αQt−1(θ)2 + βy 2
t−1)1/2, (18)

where (yt−1)+ = max(yt−1, 0) and (yt−1)− = −min(yt−1, 0).
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2.5. Expectile and CARE models

The loss function ρ
(Q)
θ (u) defined by (13) is a piecewise linear function. [7] considered an asymmetric quadratic loss function

ρ(E)
τ (u) = |τ − I(u < 0)| · u2, (19)

which yields expectile by optimizing

Expecti leY (τ) = arg min
e
E
[
ρ(E)
τ (Y − e)

]
, (20)

where τ ∈ [0, 1] determines the degree of asymmetry of the loss function. The τ-th expectile of Y can be estimated by using

asymmetric least squares (ALS) regression, which is the asymmetric version of ordinary least squares method or the least squares

analogue of quantile regression. It is interesting that there is a corresponding relationship between quantile and expectile. For

each τ-th expectile, there is a corresponding θ-th quantile, though τ is typically not equal to θ. For any θ ∈ [0, 1], let τ(θ) satisfy

Expecti leY (τ(θ)) = QY (θ). (21)

The one-to-one mapping from expectiles to quantiles via the relation between τ(θ) and QY (θ) in [23] is

τ(θ) =
θ ·Q(θ)−

∫ Q(θ)

−∞ ydF (y)

2E(Y )− 2
∫ Q(θ)

−∞ ydF (y)− (1− 2θ)Q(θ)
(22)

While it is possible for two assets under different returns distributions to have the same QVAR, their EVAR will likely be different

due to the dependence of expectiles on F (y) and the extreme values of Y ([6]). For our specific case, we let Y under Gaussian

distribution, for all assets. In the procedure of optimizing, we use the mean optimal values of parameter τ , 1.493% and 0.182%

obtained by [1] for θ = 5% and 1% respectively, as our initial values of τ .

Expectiles can be directly used to estimate VaR by using the one-to-one mapping in (22) and QY (θ) = Expecti leY (τ(θ)).

It can also be used to estimate ES based on the link between expectiles and ES derived by [1]. The estimation method can be

expressed as

ES(1− θ) =

(
1 +

τ

(1− 2τ)θ

)
Expecti le(τ)− τ

(1− 2τ)θ
E(Y ). (23)

With Y defined to be a residual term with mean 0, equation (23) reduces to the following

ES(1− θ) =

(
1 +

τ

(1− 2τ)θ

)
Expecti le(τ). (24)

Then, it is nature to estimate conditional ES by using the following expression

ESt(1− θ) =

(
1 +

τ

(1− 2τ)θ

)
Expecti let(τ). (25)

Therefore, conditional expectiles do make sense for accurate estimation of conditional ES. Similar to the structure of the CAViaR

models, four parametric conditional autoregressive expectiles models with their corresponding formula as follows are adaptive

CARE, symmetric absolute value CARE, asymmetric slope CARE, and indirect CARE:

CARE-1 : Expecti let(τ) = Expecti let−1(τ) + α[τ − I(yt−1 < Expecti let−1(τ))], (26)

CARE-2 : Expecti let(τ) = ω + αExpecti let−1(τ) + β|yt−1|, (27)

CARE-3 : Expecti let(τ) = ω + αExpecti let−1(τ) + β1(yt−1)+ + β2(yt−1)−, (28)

CARE-4 : Expecti let(τ) = (1− 2I(τ < 0.5))(ω + αExpecti let−1(τ)2 + βy 2
t−1)1/2. (29)

The differences between parametric CARE models and CAViaR models lie in that response variable is expectile at τ in parametric

CARE models but is quantile at θ in CAViaR models. The performance and accuracy of theses parametric models in practical

application lie in specification of the functional form. Except additional information and experience are provided, parametric

model specification is usually an challenging issue in practice.

3. Nonparametric conditional autoregressive expectile model

While nonparametric approaches are useful for dealing with model misspecification, in this section we introduce nonparametric

conditional autoregressive expectile (NCARE) model via neural network, which can be viewed as a nonparametric version of

CARE model proposed by [1].
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3.1. Model specification

From expression (20), the conditional expectiles can be estimated by minimizing the expectation of a quadratic loss fucntion.

Thus, we may consider the sample counterpart and define its empirical loss as

EL(τ) ≡ 1

T

T∑
t=1

ρ(E)
τ (yt − Expecti let(τ)), (30)

where T is the sample size, and the loss function, ρ
(E)
τ , is defined as in (19).

We then take nonparametric specification for the conditional expectile, Expecti let(τ), in the NCARE model through the

standard multilayer perceptron ANN. Inspired by the parametric CARE models, we use the predictors |yt−1|, Expecti let−1 as

inputs and Expecti let as output, which is depicted in Figure 1. It is worth to note that our proposed NCARE model is an

open framework and is flexible to use more lagged predictors, |yt−1|, · · · , |yt−p|;Expecti let−1, · · · , Expecti let−q, as inputs. It

is certain that these additional explanatory variables can be added into the NCARE model to improve its predictive power. For

contrast and simplicity, we just discuss the use of first order lag here.

Figure 1. Schematic diagram showing a NCARE model with two predictors.

We first calculate j-th hidden layer node: gj,t as

gj,t = f (h)
(
w

(h)
1j |yt−1|+ w

(h)
2j Expecti let−1 + b

(h)
j

)
, (31)

where f (h) denotes the hidden layer transfer function, which is given by applying the hyperbolic tangent, a sigmoidal transfer

function, w (h) ≡ (w
(h)
1j , w

(h)
2j )′ denotes the hidden layer weight vector, and b(h) ≡ (b

(h)
1 , b

(h)
2 , · · · , b(h)

J )′ denotes the hidden layer

bias vector. We then calculate output layer: Expecti let by

Expecti let(γ) = f (o)

(
J∑
j=1

w
(o)
j gj,t + b(o)

)
, (32)

where f (o) is a transfer function in the output layer, which is often chosen as the identity function, γ ≡
[(w (h))′, (w (o))′, (b(h))′, b(o)]′ is a vector of all parameters, w (o) ≡ (w

(o)
1 , w

(o)
2 , · · · , w (o)

J )′ is a weight vector, and b(o) is a bias.

If the empirical loss in (30) is used to train the ANN in Figure 1, then outputs are estimates of the conditional expectiles.

It is clear that the NCARE model is flexible to represent nonlinear predictor-response relationships without prior specification of

the functional form.

3.2. Model estimation

Unlike the tilted absolute value loss function ρ
(Q)
τ in [22] and [24], the asymmetric quadratic loss function ρ

(E)
τ is differentiable

everywhere for the reason is that the curve of ρ
(E)
τ is smoothed at each τ , see Figure 2. Therefore, weights and biases in the

NCARE model can be estimated by a standard gradient based nonlinear optimization algorithm. Regarding the optimization

routine, a quasi Newton BFGS algorithms is used by MATLAB functions ‘fminsearch’ and ‘fminunc’, while the loops to compute

the recursive expectile functions are coded in C. The procedure for optimizing the NCARE model at each τ is as follows:

Appl. Stochastic Models Bus. Ind. 2015, 00 1–16 Copyright c© 2015 John Wiley & Sons, Ltd. 5
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Step 1. Generate 104 vectors of parameters from uniform random number generator: U[−0.5, 0.5].

Step 2. Compute the regression expectile (RE) function defined by (32) for each of these vectors and select 10 vectors that

produce the lowest RE criterion as initial values for the following optimization routine.

Step 3. Feed each of these initial values to the quasi Newton algorithm with tolerance level set to 1e − 10 and choose the

vector producing the lowest RE criterion as the final parameter vector.

Step 4. Obtain conditional expectiles through equations (31) and (32) with the final parameter vector.

Figure 2. Asymmetric linear loss functions and asymmetric quadratics loss function at two different τ ’s.

3.3. Model selection

In our NCARE model, the number of hidden layer nodes J determines the overall complexity of the model. A model with large J

is too complicated might overfit training data, and vice versa. An important issue in NCARE modeling is to find an appropriate

J. To this end, we define the generalized approximate cross validation (GACV) criterion as

GACV (J) =

T∑
t=1

ρ
(E)
τ (yt − Expecti let(τ))

T − df , (33)

where df is a measure of the effective dimensionality of the fitted model, and can be estimated by the SURE divergence formula∑n
i=1

∂Expecti let (τ)
∂yt

proposed in [25]. The optimal J∗ at each τ is the J that minimizes the value of GACV (J). The GACV criterion

is found by [26] and [27] to be superior to the commonly used SIC (Schwarz information criterion) and AIC (Akaike information

criterion) under regular conditions.

4. Empirical applications

To illustrate the performance of the proposed NCARE model, we conduct empirical application to estimating VaR and ES of six

stock indices.

4.1. Data and backtesting methods

Our analysis uses daily observations of six stock indices: the US S&P500 Index (S&P500), the Financial Times and Stock

Exchange 100 Index (FTSE100), the Japanese Nikkei225 Index (Nki225), the Taipei Weighted Index (TWI), the Hongkong

Hang Seng Index (HSI) and the Shanghai Composite Index (SHCI) from 7 January 2002 to 25 January 2016. This interval

delivered overall 3,076 log returns which are computed as 100 times the first difference of the log transformation of the index,

i.e. rt = 100× (ln pt − ln pt−1). In order to demonstrate the robustness of our proposed NCARE method, we apply the method

6 Copyright c© 2015 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2015, 00 1–16
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under different selected sample intervals, such as including the financial crisis period or not. In our particular case, we cut the

whole sample with two cut points, 4 January 2007 and 4 January 2011, and obtain three different selected sample intervals

instead. We choose the sample interval in which these indices are relatively more volatile so as to help to illustrate the usefulness

of our method. Table 1 collects the summary statistics of these daily log returns in each sample interval. Most of these returns are

negative skewed except for the return of SHCI and GSPC in 2002-2006 and the return of HSI in 2007-2010. The distributions of

each return in different sample intervals are significant distinguished, which shows the necessity of robustness check, for example,

SHCI got a right-skewed and fat-tailed distribution for its positve skewnwss and higher kurtosi than other returns in the first

sample interval 2002-2006, however, it yielded a negative skewness and the lowest kurtosi in 2007-2010.

Table 1. Summary statistics of stock indices log returns in each sample interval.

Sample interval Stock indices Number Mean Median Min Max Std. Dev. Skew. Kurt.

2002-2006

SHCI 1109 3.843 -2.842 0.014 0.329 0.574 0.702 4.947

TWI 1109 2.382 -3.002 0.006 0.319 0.565 -0.137 2.604

S&P500 1109 2.421 -1.842 -0.001 0.198 0.445 0.198 3.098

HSI 1109 1.759 -1.817 0.004 0.189 0.435 -0.064 1.034

FTSE100 1109 2.564 -2.427 -0.010 0.223 0.472 -0.206 5.201

Nki225 1109 2.491 -2.270 0.008 0.318 0.564 -0.192 0.903

2007-2010

SHCI 882 3.924 -4.020 -0.016 0.895 0.946 -0.395 1.960

TWI 882 2.834 -2.925 0.002 0.470 0.686 -0.411 2.203

S&P500 882 4.450 -4.113 -0.020 0.551 0.742 -0.351 5.495

HSI 882 5.823 -5.899 0.006 0.856 0.925 0.084 6.391

FTSE100 882 3.678 -3.552 -0.011 0.441 0.664 -0.117 4.479

Nki225 882 5.748 -5.260 -0.026 0.705 0.840 -0.220 6.873

2011-2015

SHCI 1085 2.434 -3.853 0.006 0.427 0.654 -0.870 5.725

TWI 1085 1.937 -2.494 -0.007 0.185 0.430 -0.331 2.992

S&P500 1085 2.012 -2.995 0.011 0.188 0.433 -0.569 4.978

HSI 1085 2.379 -2.614 -0.008 0.266 0.516 -0.307 2.822

FTSE100 1085 1.713 -2.076 -0.003 0.181 0.426 -0.366 2.481

Nki225 1085 3.225 -4.844 0.020 0.379 0.616 -0.663 5.882

In our empirical analysis, the first 739 observations are used as training data for model estimation and the remaining 370

observations are left as test data for the out-of-sample evaluation in the first interval 2002-2006, while 588 /294 and 723/362 are

used for the rest two intervals, separately. Following a common practice, we use the mean, r̄ , of the in-sample returns instead of

estimating the conditional mean of each series in the analysis. All methods (RiskMetrics, GJR-GARCH, GARCH-EVT, CAViaR,

parametric CARE, and NCARE) are all applied to the resultant residuals, yt = rt − r̄ .

To evaluate the accuracy of VaR estimation, we use the likelihood ratio (LR) test of [28] and Interval Forecast Test of [29]

to backtesting, which uses the same log-likelihood testing framework as [28]. To distinguish these two tests, we name them as

uc.LR and cc.LR, respectively. Define the observed proportion of failures as

p =
N

T
=

1

T

T∑
t=1

I(−yt > V aRt(1− θ)). (34)

The ideas of both uc.LR test and cc.LR test are to check whether H0 : p = p∗, where p∗ = θ denotes the expected probability

of failures. Under the null hypothesis, the corresponding uc.LR statistic

uc.LR = 2 ln
[

(1− p)T−NpN
]
− 2 ln

[
(1− θ)T−NθN

]
, (35)

is asymptotically χ2(1) distributed.

Based on the uc.LR test, [29] proposed the cc.LR test which is extended to include a separate statistic for independence of

exceptions. The test defines an indicator variable

It =

{
0 if no violation occurs

1 if violation occurs

Following the definition, the test statistic for independence of exceptions is

ind.LR = −2 ln
[
(1− π)n00+n10πn01+n11

]
− 2 ln [(1− π0)n00πn01

0 (1− π1)n10πn11
1 ] (36)
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where ni j , i , j = 0, 1 denote the number of times that It−1 = i , It = j occurs; πi , i = 0, 1 represent the probability that a violation

occurs conditional on the previous day, that is π0 = n01
n00+n01

, π1 = n10
n00+n11

and π = n01+n11
n00+n01+n10+n11

.

Under the null hypothesis, the corresponding conditional coverage cc.LR statistic:

cc.LR = uc.LR + ind.LR (37)

is asymptotically χ2(2) distributed.

For ES evaluation, we follow the bootstrap method in [16] and define residuals

rest =
−y ∗t − ESt
V aRt

, (38)

where y ∗t ≡ {yt | − yt > V aRt} for t = 1, 2, · · · , T ∗. According to [16], the residual series is an i.i.d with mean 0. To check

whether H0 : µ = 0, where µ is the mean of the residuals, we bootstrap from the residual series B times and obtain bootstraped

sample
(
res

(1)
t , res

(2)
t , · · · , res(B)

t

)
. Then, we construct statistics for bootstraped sample and observed sample respectively with

forms

ti =
res(i)

σ(i)/
√
T ∗
, i = 1, 2, · · · , B, (39)

and

to =
reso

σo/
√
T
, (40)

where res(i), σ(i) are mean and standard deviation of bootstraped sample, while reso , σo are values of observed sample. Therefore,

the p-value of the bootstrap test is

pvalue = 2 min

{
1

B

B∑
i=1

I(ti ≥ to),
1

B

B∑
i=1

I(ti ≤ to)

}
. (41)

4.2. NCARE model

In NCARE modeling, we chose the commonly used sigmoidal function and linear function in hidden layer and output layer

respectively. For the initial expectilas calculation, we use the inverse function of (25):

Expecti le1(τ) = ES1(1− θ)× (1− 2τ)θ

(1− 2τ)θ + τ
, (42)

where ES1(1− θ) is the average of the values that exceed the V aR1(1− θ), and V aR1(1− θ) takes the negative value of sample

θ-th quantile. As set in (21), the τ-th expectile implies that the proportion of in-sample observations lying below the expectile

is θ. We set θ as 5% and 1% because they are widely used in practice. For example, Morgan reposts its daily VaR at 5% level

and the Bank of International Settlements considers VaR for assessing the adequacy of bank capital at the tail level of 1%.

Therefore, the optimal value of τ is derived by optimizing

τ∗ = arg min
τ
|P [yt ≤ Expecti let(τ)]− θ|, (43)

and the results are reported in Table 2.

Table 2. Optimal values of τ for different stock indices derived from a given θ-th quantile.

Sample interval θ(%)
τ(%)

SHCI TWI S&P500 HSI FTSE Nik225

2002-2006
5 1.800 2.394 2.558 1.757 3.020 2.034

1 0.368 0.338 0.380 0.585 0.387 0.492

2007-2010
5 1.840 0.904 2.328 2.393 2.661 3.284

1 0.136 0.216 0.350 0.737 0.180 0.505

2011-2016
5 4.101 2.159 2.476 2.650 2.700 2.687

1 0.312 0.334 0.557 0.575 0.315 0.455

Note: The expectile level is the mean value of the in-sample estimation.

The results reported in Table 2 shows these expectile levels do not change largely to affect the final results. We then estimate

NCARE model parameters using the procedure as described in Section 3.2. The optimal number of hidden layer nodes in Table

3 for each stock index return is selected through the GACV criterion. The number of hidden nodes across two θ’s and six series

is 2,3 or 4, which indicates that we do not need much complicated neural network structure in real applications. Figure 3, 4 and

5 present the out-of-sample 95% and 99% VaR and ES estimates for six stock indices produced by our NCARE model for each

sample interval. The VaR and ES estimates can be seen to change with the volatility of the returns. The curve of ES always lies

below that of VaR indicates that the former evaluates the financial risk in a conservative way.
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Table 3. Optimal numbers of hidden nodes in NCARE model determined by GACV at θ = 5% and θ = 1%.

Sample interval Stock indices
θ = 5% θ = 1%

Number of nodes GACV Number of nodes GACV

2002-2006

SHCI 2 0.077 3 0.032

TWI 4 0.051 2 0.037

S&P500 2 0.017 2 0.005

HSI 2 0.043 2 0.016

FTSE100 3 0.026 4 0.010

Nki225 3 0.064 3 0.027

2007-2010

SHCI 2 0.220 3 0.089

TWI 2 0.127 2 0.051

S&P500 2 0.064 3 0.022

HSI 3 0.078 3 0.032

FTSE100 3 0.062 3 0.023

Nki225 2 0.089 4 0.033

2011-2016

SHCI 4 1.144 3 0.086

TWI 2 0.043 3 0.018

S&P500 3 0.044 3 0.020

HSI 3 0.068 2 0.028

FTSE100 2 0.049 2 0.017

Nki225 2 0.094 3 0.043

4.3. VaR and ES results

For comparison, we use six types of models: RiskMetrics, GJR-GARCH, GARCH-EVT, CAViaR, parameter CARE and NCARE,

to estimate VaR. For implementation of these models, we estimate RiskMetrics model, GJR-GARCH, GARCH-EVT model and

CAViaR models presented in Section 2.4 following the procedures in [15], [16] and [3], respectively. The procedure to implement

parametric CARE models is similar to but different from those of [1]. We estimate parametric CARE models not for the moving

window sample but for the in-sample observations and recursively predict VaR and ES for out-of-sample.

Table 4, 5 and 6 present the values of the proportion of failures measure of each method for 95% and 99% VaR estimation

for each sample interval. The final two columns (NS1 and NS2) report a count for the number of both uc.LR test and cc.LR test

for which the null is rejected or significant at the 5% level. The closer the proportion of failures to 5% under 95% confidence

level or 1% under 99% confidence level, the better the model is.

In terms of the first sample interval 2002-2006, based on the results of uc.LR test, only GJRGARCH, CAViaR-Asymmetric

Slope, CAViaR-Indirect GARCH(1,1) and our proposed NCARE model perform well for the 95% VaR estimation. Moreover,

although CAViaR-Indirect GARCH(1,1) yields relatively better estimations than the other models, the results are still not

comparable to our NCARE model’s. Regardless of those four well-performed models, CAViaR-Adaptive and the four CARE

models perform relative poor among the rest, which all have not less than 4 values of NS. Under both confidence levels, we also

find that it is often challenging to obtain an accurate evaluation for VaR of S&P500, which is similar to [1] and the evaluation

for VaR of TWI in our particular case. Our NCARE model, however, has been successfully applied to these two stock indexes

and gives interesting results.

In the second interval 2007-2010, which includes the financial crisis period, similarly, although CAViaR-Symmetric Absolute

Value yields relatively better estimations than the other models, the results are still not comparable to our NCARE model’s.

Moreover, it is not surprising that RiskMetrics and GARCH-EVT model perform inferior than their performances in the first

interval, with 5 values of NS for the 95% VaR estimation and 6 values of NS for the 99% VaR estimation under both uc.LR

test and cc.LR test. The estimation results indicate that those two methods are insufficient while coming down to the crisis

evaluation.

In terms of 2011-2016, it may be noticed that CAViaR-Indirect GARCH(1,1) is performing slightly better than our NCARE

model yet only with stock TWI and HSI for 95% VaR estimation. However, under a stricter cc.LR test, our NCARE model is

the only one that performs well, whilst others yield more or less values of NS. Interestingly, the overall poorer performance are

yielded in the third sample interval compared to the first sample interval and even the second interval including financial crisis

interval. This phenomenon may occur because of the Europe’s sovereign debt crisis since the end of 2009. The financial crisis

has been lasting over a long time span, which is a challenging task, especially when the extreme quantiles change.

Note that, in all the three sample intervals, both 95% VaR and 99% VaR derived from the family of parametric CARE models

are generally poor compared to the other models, estimated via both uc.LR test and cc.LR test. The both zero values of NS

imply that the NCARE model gives accurate VaR evaluations of all six stock indices for its flexible ability via exploring the

nonlinear dynamics in various financial time series under different selected sample intervals, no matter including the financial
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Figure 3. Stock index returns for the 370 out-of-sample days with VaR and ES estimates from the NCARE model for sample interval 2002-2006.

crisis period or not.

In spite of the strong appeal of CAViaR approach to VaR estimation, how to use this approach to assess ES is still unknown

yet. So, we compare our NCARE method with those parametric CARE models for estimating ES, and, CARCH-EVT models,

GJR-GARCH and RiskMetrics model are implemented for comparison as well. In Table 7, 8 and 9, we report p-values for the

bootstrap test for the out-of-sample estimates of 95% and 99% ES for each sample interval. As with VaR evaluation, such as

Table 4, the number of NS is placed in the final column of Table 7, 8 and 9. For the p-values of bootstrap test, the higher the

value is, the better the model is.

For each of methods in sample interval 2002-2006, we find that the total number of rejections for six series at two different

confidence levels are all zero, except for GJR-GARCH and CARE-Adaptive model for 99% VaR evaluation. Interestingly, ES

evaluation in the second sample interval, which includes financial crisis period, is relatively poor performed compared to the other
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Figure 4. Stock index returns for the 370 out-of-sample days with VaR and ES estimates from the NCARE model for sample interval 2007-2010.

two sample intervals. The reason why ES are affected more by the financial crisis probably is that ES probes the risk associated

with extreme events, whereas VaR is blind to any tail risk with a probability of occurrence smaller than the chosen confidence

level.

It is not surprising that parametric CARE model performances better in ES evaluation than in VaR evaluation because the

optimized object in CARE model is expectiles, which is corresponding to ES directly. In general, the NCARE model performs

better than the parametric CARE models and the other three methods in ES evaluation. This implies that there may be some

complex nonlinear structure in dynamics of these six stock indices which can not be appropriately described by the existing four

parameter CARE models. To give a reasonable explanation of stylized facts in finance, we should go further to find the real

functional form of CARE model.

The best model for VaR evaluation for each sample interval is recommended by the value of proportion of failures in Table
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Figure 5. Stock index returns for the 370 out-of-sample days with VaR and ES estimates from the NCARE model for sample interval 2011-2016.

4, 5 and 6, while the best model for ES evaluation for each sample interval by the bootstrap p-values are presented in Table 7,

8 and 9. The results show that the NCARE model are at most recommended best model for both in VaR evaluation and ES

evaluation.

Figure 6 counts the numbers of best for each model for each sample interval. It is clear that the NCARE model outperform

the other models (RiskMetrics, GARCH-EVT, GJR-GARCH, CAViaR and parametric CARE). Only CAViaR-Symmetric Absolute

Value model in CAViaR family has been recommended for all three sample intervals, while the other methods have been

recommended only once during the three intervals. Interestingly, CARE models are never recommended for the best model

in VaR evaluation. Note that, our proposed NCARE model has been highly recommended, especially under uc.LR test for the

second sample interval 2007-2010, which includes the financial crisis period. The finding implies that the proposed NCARE model

is a competitive and alternative way for both VaR and ES evaluation, especially for the challenging financial crisis period.
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Figure 6. The optimal numbers of each model for VaR and ES evaluation of six stock indices at two confidence levels for each sample interval.
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Table 4. Evaluation of estimators of 95% and 99%VaR. Proportion of failures for 370 out-of-sample estimates of 5% and 1%

conditional quantile in sample interval 2002-2006.

Models
SSEI TWI S&P500 HSI FTSE100 Nki225 NS

F P1 P2 F P1 P2 F P1 P2 F P1 P2 F P1 P2 F P1 P2 NS1 NS2

θ = 1%

RiskMetrics 1.44 0.16 0.00 1.80 0.02 0.00 1.35 0.26 0.14 1.53 0.10 0.04 2.07 0.00 0.01 1.71 0.03 0.06 3 4

GJRGARCH 1.08 0.87 0.23 1.63 0.27 0.13 1.80 0.02 0.01 1.36 0.52 0.22 1.08 0.87 0.43 1.36 0.52 0.22 1 1

GARCH-EVT 0.54 0.33 0.07 0.27 0.09 0.04 0.27 0.09 0.04 0.27 0.09 0.04 0.00 0.00 0.00 0.00 0.00 0.00 2 5

CAViaR models

CAViaR-1 0.81 0.52 0.47 0.54 0.09 0.01 0.36 0.01 0.01 0.81 0.52 0.33 0.45 0.04 0.01 0.63 0.19 0.05 1 3

CAViaR-2 1.17 0.57 0.23 0.90 0.74 0.20 1.08 0.78 0.53 0.72 0.33 0.12 0.81 0.52 0.22 0.90 0.74 0.20 0 0

CAViaR-3 1.62 0.06 0.02 0.99 0.98 0.56 1.26 0.40 0.27 0.81 0.52 0.22 1.08 0.78 0.44 0.90 0.74 0.20 0 1

CAViaR-4 0.72 0.33 0.04 0.99 0.98 0.56 1.08 0.78 0.44 0.90 0.74 0.20 0.99 0.98 0.77 0.81 0.52 0.22 0 1

Parametric CARE

CARE-1 0.45 0.04 0.02 0.27 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.09 0.00 0.00 0.27 0.00 0.00 6 6

CARE-2 0.36 0.01 0.01 0.45 0.04 0.02 0.45 0.04 0.02 0.18 0.00 0.00 0.18 0.00 0.00 0.09 0.00 0.00 6 6

CARE-3 0.54 0.09 0.02 0.36 0.01 0.00 0.63 0.19 0.12 0.00 0.00 0.00 0.18 0.00 0.00 0.09 0.00 0.00 4 5

CARE-4 1.53 0.10 0.04 1.18 0.57 0.27 0.45 0.04 0.02 1.35 0.26 0.14 0.36 0.01 0.01 0.09 0.00 0.00 3 4

NCARE 0.99 0.98 0.87 1.08 0.78 0.74 1.08 0.87 0.67 0.99 0.98 0.87 0.81 0.52 0.47 1.08 0.78 0.52 0 0

θ = 5%

RiskMetrics 5.23 0.72 0.51 4.69 0.64 0.56 5.05 0.93 0.22 6.16 0.09 0.11 6.59 0.02 0.02 5.23 0.72 0.94 1 1

GJRGARCH 4.07 0.40 0.23 2.98 0.06 0.03 4.07 0.40 0.23 4.07 0.40 0.62 4.87 0.85 0.38 3.52 0.17 0.30 0 1

GARCH-EVT 5.42 0.71 0.25 2.98 0.06 0.03 2.98 0.06 0.03 4.07 0.40 0.62 1.90 0.00 0.00 2.71 0.03 0.05 2 3

CAViaR models

CAViaR-1 6.58 0.02 0.07 3.88 0.08 0.13 3.25 0.00 0.02 5.60 0.37 0.18 2.89 0.00 0.00 3.43 0.01 0.03 4 3

CAViaR-2 5.14 0.83 0.49 3.43 0.01 0.04 3.88 0.08 0.02 4.60 0.54 0.48 4.24 0.24 0.21 4.33 0.30 0.58 1 2

CAViaR-3 5.23 0.72 0.75 4.42 0.37 0.28 4.42 0.37 0.07 4.69 0.64 0.49 4.69 0.64 0.49 4.51 0.45 0.74 0 1

CAViaR-4 5.32 0.62 0.79 4.60 0.54 0.48 4.33 0.30 0.04 4.69 0.64 0.49 4.69 0.64 0.56 4.33 0.30 0.58 0 0

Parametric CARE

CARE-1 1.26 0.00 0.00 1.44 0.00 0.00 0.72 0.00 0.00 1.35 0.00 0.00 0.72 0.00 0.00 1.35 0.00 0.00 6 6

CARE-2 2.98 0.06 0.00 5.60 0.37 0.18 1.81 0.00 0.00 1.26 0.00 0.00 3.43 0.01 0.03 1.26 0.00 0.00 4 5

CARE-3 1.99 0.00 0.00 1.53 0.00 0.00 1.71 0.00 0.00 4.33 0.30 0.00 4.69 0.64 0.56 1.26 0.00 0.00 4 5

CARE-4 4.33 0.30 0.00 3.25 0.00 0.02 1.81 0.00 0.00 1.26 0.00 0.00 2.89 0.00 0.00 2.71 0.03 0.05 5 5

NCARE 5.23 0.72 0.80 4.69 0.64 0.66 4.96 0.96 0.75 4.87 0.85 0.38 5.15 0.90 0.79 4.33 0.30 0.58 0 0

NOTE: (1) CAViaR-1, CAViaR-2, CAViaR-3, and CAViaR-4 denote CAViaR-Adaptive, CAViaR-Symmetric Absolute Value, CAViaR-Asymmetric

Slope, and CAViaR-Indirect GARCH(1,1) model; (2) CARE-1, CARE-2, CARE-3, and CARE-4 denote CARE-Adaptive, CARE-Symmetric Absolute

Value, CARE-Asymmetric Slope, and CARE-Indirect GARCH(1,1) model; (3) F denotes proportion of failures while P1 and P2 stand for p-values

obtained via uc.LR test and cc.LR test separately; (4)NS1 and NS2 represent a count for the number of uc.LR test and cc.LR test separately for

which the null is rejected at 5% significance level.

5. Conclusions

In this paper, we have introduced NCARE as a means of using ANN to estimate the conditional expectiles, which serves as a

flexible model for VaR and ES calculation. Our approach can be viewed as nonparametric version of CARE method proposed by

[1] and [6]. The proposed NCARE model is a basic model to represent the nonlinear relationships among variables without prior

specification of the functional form. An appealing feature of the NCARE model is that the objective function is differentiable

everywhere and the model can be estimated by standard gradient based nonlinear optimization algorithm. The numerical results

of the new method are promising in terms of the performance of both VaR and ES evaluation.
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Table 6. Evaluation of estimators of 95% and 99%VaR. Proportion of failures for 294 out-of-sample estimates of 5% and 1%

conditional quantile in sample interval 2011-2016.

Models
SSEI TWI S&P500 HSI FTSE100 Nki225 NS

F P1 P2 F P1 P2 F P1 P2 F P1 P2 F P1 P2 F P1 P2 NS1 NS2

θ = 1%

RiskMetrics 2.56 0.00 0.00 2.68 0.00 0.00 2.86 0.00 0.00 2.68 0.00 0.00 2.77 0.00 0.00 1.85 0.01 0.00 6 6

GJRGARCH 3.87 0.00 0.00 2.76 0.00 0.00 1.93 0.11 0.08 3.54 0.00 0.00 2.53 0.01 0.01 1.77 0.11 0.05 4 4

GARCH-EVT 2.03 0.00 0.01 0.83 0.74 0.20 0.00 0.00 0.00 0.28 0.10 0.07 0.00 0.00 0.00 0.28 0.10 0.07 3 3

CAViaR models

CAViaR-1 3.78 0.00 0.00 0.83 0.56 0.32 0.74 0.36 0.26 0.09 0.74 0.36 0.74 0.36 0.09 6.18 0.00 0.00 2 2

CAViaR-2 11.35 0.00 0.00 1.48 0.14 0.17 1.29 0.36 0.32 0.83 0.56 0.32 1.57 0.08 0.04 0.83 0.56 0.14 1 2

CAViaR-3 1.57 0.08 0.05 1.20 0.52 0.28 0.74 0.36 0.26 1.21 0.52 0.28 1.75 0.02 0.05 0.74 0.36 0.26 1 0

CAViaR-4 2.58 0.00 0.00 1.57 0.08 0.12 0.83 0.56 0.32 1.01 0.96 0.21 1.38 0.23 0.03 1.29 0.36 0.26 1 2

Parametric CARE

CARE-1 0.92 0.80 0.20 0.28 0.00 0.00 0.18 0.00 0.00 0.18 0.00 0.00 0.28 0.00 0.00 0.18 0.00 0.00 5 5

CARE-2 0.37 0.02 0.00 0.18 0.00 0.00 0.28 0.00 0.00 0.28 0.00 0.00 0.55 0.11 0.02 0.74 0.36 0.00 4 5

CARE-3 0.74 0.36 0.18 0.09 0.00 0.00 0.09 0.00 0.00 0.09 0.00 0.00 0.37 0.02 0.00 0.18 0.00 0.00 5 5

CARE-4 0.65 0.21 0.11 0.09 0.00 0.00 0.09 0.00 0.00 0.28 0.00 0.00 0.55 0.11 0.02 0.18 0.00 0.00 4 5

NCARE 0.83 0.74 0.53 0.92 0.80 0.28 0.83 0.56 0.32 1.20 0.52 0.64 1.20 0.52 0.28 0.83 0.56 0.32 0 0

θ = 5%

RiskMetrics 5.81 0.23 0.45 6.27 0.06 0.07 6.09 0.11 0.24 6.37 0.05 0.13 7.29 0.00 0.00 20.20 0.00 0.00 2 2

GJRGARCH 7.18 0.07 0.02 6.35 0.26 0.48 6.08 0.36 0.56 5.52 0.65 0.90 7.73 0.03 0.08 4.14 0.44 0.67 1 1

GARCH-EVT 4.70 0.79 0.94 3.87 0.30 0.50 1.38 0.00 0.00 4.42 0.61 0.00 3.59 0.20 0.34 3.31 0.12 0.21 1 2

CAViaR models

CAViaR-1 7.38 0.00 0.00 3.23 0.00 0.01 3.63 0.11 0.26 4.43 0.38 0.45 3.97 0.11 0.26 4.34 0.31 0.48 2 2

CAViaR-2 6.92 0.01 0.00 4.52 0.46 0.40 5.44 0.51 0.27 4.84 0.76 0.72 5.17 0.80 0.78 4.89 0.87 0.36 1 1

CAViaR-3 6.73 0.01 0.00 4.61 0.55 0.76 4.80 0.76 0.90 5.07 0.91 0.55 4.31 0.65 0.84 4.24 0.24 0.50 1 1

CAViaR-4 1.75 0.00 0.00 4.43 0.38 0.57 4.61 0.55 0.82 4.52 0.46 0.22 4.89 0.87 0.95 5.54 0.43 0.48 1 1

Parametric CARE

CARE-1 2.86 0.00 0.00 1.20 0.00 0.00 1.38 0.00 0.00 1.48 0.00 0.00 1.11 0.00 0.00 1.38 0.00 0.00 6 6

CARE-2 7.20 0.00 0.00 1.85 0.00 0.00 7.18 0.07 0.02 4.34 0.31 0.48 1.85 0.00 0.00 1.85 0.00 0.00 4 5

CARE-3 6.35 0.26 0.48 1.75 0.00 0.00 1.11 0.00 0.00 1.66 0.00 0.00 3.63 0.11 0.26 1.29 0.00 0.00 4 4

CARE-4 4.43 0.38 0.57 1.94 0.00 0.00 1.29 0.00 0.00 1.57 0.00 0.00 1.94 0.00 0.00 0.55 0.11 0.02 4 5

NCARE 5.07 0.91 0.77 4.89 0.87 0.68 5.07 0.91 0.99 4.84 0.76 0.92 5.07 0.91 0.77 4.80 0.76 0.90 0 0

NOTE: same as Table 4.
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Table 7. Evaluation of estimators of 95% and 99% ES corresponding to θ = 5% and θ = 1%. Bootstrap test p-values based on

370 out-of-sample estimates of conditional ES in sample interval 2002-2006.

Models SSEI TWI S&P 500 HSI FTSE Nki225 NS

θ = 1%

RiskMetrics 0.28 0.31 0.23 0.29 0.23 0.21 0

GJRGARCH 0.03 0.03 0.26 0.28 0.12 0.18 2

GARCH-EVT 0.11 0.11 0.15 0.14 0.26 0.22 0

Parametric CARE

CARE-1 0.00 0.03 0.11 0.24 0.00 0.00 4

CARE-2 0.29 0.75 0.12 0.44 0.32 0.82 0

CARE-3 0.18 0.77 0.09 0.19 0.22 0.71 0

CARE-4 0.16 0.71 0.15 0.13 0.57 0.82 0

NCARE 0.62 0.82 0.74 0.57 0.82 0.97 0

θ = 5%

RiskMetrics 0.34 0.18 0.17 0.32 0.21 0.12 0

GJRGARCH 0.24 0.18 0.25 0.28 0.74 0.39 0

GARCH-EVT 0.12 0.14 0.14 0.14 0.18 0.17 0

Parametric CARE

CARE-1 0.12 0.12 0.00 0.11 0.00 0.26 2

CARE-2 0.17 0.17 0.09 0.11 0.14 0.11 0

CARE-3 0.17 0.10 0.10 0.19 0.12 0.13 0

CARE-4 0.16 0.11 0.10 0.10 0.11 0.17 0

NCARE 0.73 0.43 0.50 0.63 0.35 0.29 0

NOTE: (1) CARE-1, CARE-2, CARE-3, and CARE-4 denote CARE-Adaptive, CARE-Symmetric Absolute Value, CARE-Asymmetric Slope, and

CARE-Indirect GARCH(1,1) model; (2)NS represents a count for the number of Bootstrap test for which the null is rejected at 5% significance level.

Table 8. Evaluation of estimators of 95% and 99% ES corresponding to θ = 5% and θ = 1%. Bootstrap test p-values based on

294 out-of-sample estimates of conditional ES in sample interval 2007-2010.

Models SSEI TWI S&P 500 HSI FTSE Nki225 NS

θ = 1%

RiskMetrics 0.34 0.30 0.18 0.22 0.20 0.17 0

GJRGARCH 0.03 0.10 0.06 0.12 0.16 0.11 1

GARCH-EVT 0.14 0.16 0.08 0.19 0.07 0.07 0

Parametric CARE

CARE-1 0.00 0.10 0.00 0.11 0.03 0.21 3

CARE-2 0.02 0.22 0.06 0.45 0.11 0.19 1

CARE-3 0.02 0.26 0.06 0.13 0.29 0.48 1

CARE-4 0.04 0.30 0.09 0.11 0.18 0.24 1

NCARE 0.34 0.33 0.30 0.22 0.20 0.66 0

θ = 5%

RiskMetrics 0.18 0.26 0.15 0.30 0.17 0.60 0

GJRGARCH 0.19 0.27 0.27 0.18 0.30 0.59 0

GARCH-EVT 0.42 0.09 0.07 0.20 0.17 0.16 0

Parametric CARE

CARE-1 0.08 0.07 0.15 0.11 0.23 0.18 0

CARE-2 0.07 0.56 0.12 0.66 0.25 0.62 0

CARE-3 0.94 0.47 0.51 0.80 0.35 0.28 0

CARE-4 0.52 0.34 0.14 0.93 0.28 0.33 0

NCARE 0.56 0.80 0.60 0.95 0.35 0.74 0

NOTE: same as Table 7

Appl. Stochastic Models Bus. Ind. 2015, 00 1–16 Copyright c© 2015 John Wiley & Sons, Ltd. 17
Prepared using .cls



Applied Stochastic
Models in Business
and Industry Qifa Xu, et al.

Table 9. Evaluation of estimators of 95% and 99% ES corresponding to θ = 5% and θ = 1%. Bootstrap test p-values based on

362 out-of-sample estimates of conditional ES in sample interval 2011-2016.

Models SSEI TWI S&P 500 HSI FTSE Nki225 NS

θ = 1%

RiskMetrics 0.07 0.06 0.06 0.09 0.12 0.07 0

GJRGARCH 0.20 0.26 0.31 0.33 0.17 0.09 0

GARCH-EVT 0.12 0.05 0.23 0.16 0.23 0.18 0

Parametric CARE

CARE-1 0.06 0.02 0.27 0.47 0.22 0.21 0

CARE-2 0.05 0.18 0.70 0.24 0.12 0.19 0

CARE-3 0.10 0.16 0.23 0.22 0.08 0.19 0

CARE-4 0.08 0.19 0.73 0.21 0.12 0.22 0

NCARE 0.25 0.29 0.34 0.50 0.30 0.31 0

θ = 5%

RiskMetrics 0.19 0.22 0.23 0.21 0.28 0.18 0

GJRGARCH 0.16 0.23 0.39 0.22 0.25 0.40 0

GARCH-EVT 0.27 0.48 0.07 0.41 0.22 0.42 0

Parametric CARE

CARE-1 0.12 0.12 0.09 0.19 0.10 0.12 0

CARE-2 0.91 0.10 0.10 0.09 0.13 0.15 0

CARE-3 0.39 0.11 0.23 0.11 0.11 0.18 0

CARE-4 0.21 0.10 0.07 0.16 0.15 0.07 0

NCARE 0.19 0.24 0.64 0.47 0.61 0.97 0

NOTE: same as Table 7
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