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AN APPLICATION OF EXTREME VALUE

THEORY IN MODELING EXTREME SHARE
RETURNS

Konstantinos Tolikas
Cardiff University, UK

Extreme value theory (EVT) methods are used to investigate the asymptotic distri-
bution/s of the extreme minima and maxima of the Athens Stock Exchange daily
returns over the period 1976–2001. Innovative aspects of this study include: (1) the
generalized extreme value and generalized logistic distributions are considered, (2) L-
momentsratio diagrams are used to identify the distribution/s most likely to fit the
extreme daily returns adequately, (3) the probability weighted moments method is
used to estimate the parameters of the distribution/s, and (4) the Anderson–Darling
goodness of fit test is employed to test the adequacy of fit. The generalized logistic
distribution is found to provide adequate descriptions of the behavior of both the
extreme minima and maxima over the period studied; however, the asymptotic dis-
tributions of extremes appear to become less fat tailed over time implying that the
probability of a large daily return occurring is decreasing.

Keywords: Extreme value theory; L-moments; Anderson–Darling good-
ness of fit test; Generalized extreme value distribution; generalized logistic
distribution.

1. Introduction

Longin (1996) defined the extreme return of an index to be the maximum or
minimum return over a pre-specified time period; for example, the minimum
daily return over a period of one week. These extremes can be the results of
market corrections that can be characterized as usual market conditions or
the results of political, economic, social, speculative or other unknown causes

61

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/74409063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


October 7, 2007 14:56 WSPC/SPI-B565: Advances in Doctoral Research in Management Vol 2 ch04 1st Reading

62 K. Tolikas

that can be characterized as market crises. Such large stock price movements
can lead to enormous losses and consequently financial managers and regu-
lators are increasingly interested in their associated probabilities. For exam-
ple, the Bank for International Settlements (BIS, 1996) stipulated the use of
value-at-risk (VaR)a as a market risk measurement tool for financial institu-
tions to calculate minimum capital requirements (MCR). This MCR aims to
cover the potential losses that might accrue from a financial institution’s mar-
ket positions due to adverse market movements and should, therefore, help
to avoid financial disasters. A usual assumption made in estimating VaR
is that financial returns follow a normal distribution. Empirical evidence,
however, suggests that most of the times, financial return distributions, espe-
cially those of high frequency (i.e., intraday or daily returns), deviate from
normality (see, for example, Aparicio and Estrada (2001) for an assessment
of the normality assumption of European stock returns). In this case the
probabilities of extreme returns occurring will be underestimated and that
can have a severe impact on investment strategies and on the stability of the
financial system.

On the other hand, extreme value theory (EVT) is a special branch of
statistics that focuses exclusively on these extremes and is increasingly used
to model financial returns that exhibit non-normal behavior. The aim of this
chapter is to examine the usefulness of innovative EVT methods by analyzing
the asymptotic distribution of the extreme minima and maxima daily returns
of a developing stock market; the Athens Stock Exchange (ASE). For that
reason, daily prices of the ASE general index for the period 1976–1988 have
been manually collected from the ASE Records Department and combined
with daily prices for the period 1988–2001 collected from Datastream. This
is a period of sufficient length to include major changes in the ASE as it
has developed over the last decades. In addition, the EVT methods used in
this chapter are quite innovative in financial analysis and their usefulness
has not yet fully explored. Therefore, it is also aimed to introduce a new
toolkit for those interested in the analysis of the extremal behavior of financial
returns.

This chapter introduces a number of innovative points with respect to
current applications of EVT in finance. First, in addition to the generalized

aVaR can be defined as the maximum loss of a portfolio over a particular time horizon and at a
pre-specified confidence level (Jorion, 2000). Statistically, it can be defined as one of the lowest
quantiles of the distribution of returns.
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extreme value (GEV) distribution, the generalized logistic (GL) is also con-
sidered as a model for the extremes of the ASE daily returns. Second, the
distribution/s that are likely to best fit the empirical data are identified by
using L-moments ratio diagrams and the parameters of these distributions
are estimated by using the probability weighted moments (PWM) method.
Finally, the Anderson–Darling (AD) test statistic is then used to test the good-
ness of fit of the chosen distribution/s to the empirical data.

This chapter is divided by the following sections. Section 2 provides a
brief review of the literature regarding the EVT. The methodological steps are
described in Sec. 3, while Sec. 4 describes the ASE general index daily returns.
In Sec. 5, empirical results are obtained and the most likely distributions to
fit adequately the extreme returns are identified. Finally, Sec. 6 concludes
and summarizes the chapter.

2. Extreme Value Theory

Longin (1996) was one of the first to apply EVT in finance. In his sem-
inal work he identified the distribution for the extreme daily returns of
the S&P500 over the period 1885–1990 to be the GEV. He also argued
that EVT could be useful in VaR estimation, margin setting in future mar-
kets, and in regulating capital requirements for financial institutions. The
GEV distribution was also found by McNeil (1999) to model adequately
the S&P500 annual minima during the period 1960–1987 who also illus-
trated that the drop of the S&P500 index in October 1987 crash could have
been predicted. Cotter (2001) applied EVT in estimating margin require-
ments in future markets and argued that EVT can lead to more realistic
estimates. More recently Gettinby et al. (2004) investigated the distribu-
tion of the daily extreme returns in the UK stock market and found that
the GL distribution provides accurate descriptions of both the minima and
maxima extremes. Tolikas et al. (2007) also found that the GL distribu-
tion describes well the extremal behavior of daily returns in the German
stock market and they also provided evidence that EVT can be useful in
risk management since it can lead to more accurate VaR estimates. Impor-
tant papers wherein the role of EVT in financial management is emphasized
both theoretically and empirically, include Longin (2000), McNeil and Frey
(2000) and Embrechts et al. (1998). A detailed description of the theory
of extremes and its applications can be found in the books by Embrechts
et al. (1997).
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3. Methodology

The EVT methods proposed in this study involve a number of steps. First,
the frequency of financial returns should be chosen. This is influenced by the
liquidity of the financial assets and since a general stock market index is
used, daily logarithmic returns are employed. Second, the length of the selec-
tion interval over which the extremes are collected has to be specified. This
choice directly affects the number of minima and maxima that are available
for the analysis and should be sufficiently large to allow for the efficient
estimation of the parameters of the extremes distribution. This is an arbi-
trary choice and in order to investigate both the behavior of parameters and
the goodness of fit over successively increasing selection intervals; weekly,
monthly, and quarterly extremes are considered. Without lost of generality,
these extremes are collected over non-overlapping periods 5, 20, and 60 trad-
ing days, respectively. The behavior of the extremes distribution over time
aggregation is also examined by dividing the series of weekly and monthly
extremes into 2, 4, and 10 sub-periods and the quarterly extremes into 2 and 4
sub-periods.

The third step is to identify the distributions that are likely to model the
empirical data adequately. The choice of an appropriate distribution may
be affected by criteria such as its ability to reproduce the variability of the
empirical data, sensitivity to data outliers, computational complexity, and
the number of parameters to be estimated (Cunnane, 1985). Inspired by the
work in the flood frequency analysis area, it was decided to focus on the
GEV and GL distributions. Details of these distributions can be found in
Appendix A. There are three parameter distributions that have been proved
particularly effective in describing stochastic processes of extreme observa-
tions in environmental and engineering studies (see, for example, Peel et al.,
2001). The parameters of these distributions are commonly referred as the
location (β), scale (α), and shape (κ). The location and scale parameters are
analogous to the mean and standard deviation, while the shape parameter
is directly linked to the fatness of tails of the empirical distribution. Higher,
in absolute terms, shape parameter values correspond to fatter tailed distri-
butions and vice versa. Although the GEV has already been used to analyze
financial extreme returns, the GL has only been used in a limited number of
studies (Gettinby et al., 2004; Tolikas et al., 2007). This set of distributions
includes as special cases stochastic processes such as, the normal, student-t,
log-logistic and log-normal distributions, mixture of normal distributions or
even ARCH processes (de Haan et al., 1989).



October 7, 2007 14:56 WSPC/SPI-B565: Advances in Doctoral Research in Management Vol 2 ch04 1st Reading

An Application of Extreme Value Theory in Modeling Extreme Share Returns 65

The most likely distributions to fit the extremes are identified by using
L-moments ratio diagrams. L-moments are linear combinations of ordered
data and analogously to conventional moments they provide a summary
statistic for probability distributions.b The main advantage of the L-moments
is that being linear combinations of the ordered data they are more robust
than the conventional moments in the presence of outliersc (Hosking, 1990;
Royston, 1992; Sankarasubramanian and Srinivasan, 1999). They defined
for any random variable X which mean exists as follows (Hosking, 1990):

λr ≡ r−1
r−1∑
k=0

(−1)k
(

r − 1
k

)
EXr−k:r, r = 1, 2, . . . . (1)

The first two L-moments, λ1 and λ2, can be regarded as measures of location
and scale of a distribution. Additionally, the quantities τr = λr/λ2, where
r = 3, 4, . . . are called the L-moment ratios of the random variable X and the
first two, τ3 and τ4, can be regarded as measures of skewness and kurtosis,
respectively. The identification of the distributions that best fit the empiri-
cal data is implemented graphically by using a statistical distribution map,
wherein the L-moment ratios equivalent to skewness and kurtosis are esti-
mated from the data and plotted.d The same diagram contains the plots of the
skewness and kurtosis of the theoretical distributions which are considered.
The identification of the appropriate distribution for a particular data set is
made, by choosing the distribution whose L-skewness and L-kurtosis curve
passes closest to it. This allows the examination of the suitability of many
distributions in just one diagram. For the purpose of distributions identifi-
cation, the utility and the superiority of L-moment ratios diagrams against
conventional moments diagrams is well illustrated in Peel et al. (2001) and
Pandey et al. (2001).

The next step is to estimate the parameters of these most appropriate
distributions. For that purpose the method of PWM is used. PWM are expec-
tations of certain functions of a random variable X with distribution func-
tion F, whose mean exists, and they first defined by Greenwood et al. (1979).

bThe book by Hosking and Wallis (1997) provides a detailed presentation of the L-moments
theory.
cThis is because the calculation of conventional moments, like skewness and kurtosis, involve
third and fourth powers; thus, greater weight is given to outliers.
dGraphical methods have been used for a long time in social sciences to examine the goodness
of fit of a theoretical distribution to the empirical data and have found to be particularly useful.
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A tractable definition is given by Hosking (1986).

αr = E[X{1 − F(X)}r], r = 0, 1, . . . , (2)

where E[X(·)] is the expectation of the quantile function of a random vari-
able X. The PWM method estimates a distribution’s parameters by equating
the sample moments to those of the fitted distribution. In the case of small
samples this method is considered to be more efficient compared to the max-
imum likelihood (ML) method (Coles and Dixon, 1999). This is particularly
important since, by definition, extremes are rare; even long observational
periods can provide very few data points if, for example, annual minima are
used. PWM are linearly related to L-moments by the following relationships
(Hosking, 1986):

λ1 = α0, (3)

λ2 = α0 − 2α1, (4)

λ3 = α0 − 6α1 + 6α2, (5)

λ4 = α0 − 12α1 + 30α2 − 20α3, (6)

Hosking et al. (1985) showed that for the GEV distribution, estimates of
parameters and quantiles made using the PWM method are estimated with
at least 70% efficiency. They also showed that for shape parameter values in
the range −0.5 to 0.5 and for samples of up to 100 observations, estimates
generated by the PWM method have lower root-mean square error than
estimates generated by the ML method. Additionally, Landwehr et al. (1979)
found that for a special case of the GEV distribution, the Gumbel, the PWM
method results in more efficient parameter estimates compared to the ML
and conventional moments method.

Once the appropriate distribution/s have been identified and the parame-
ters have been estimated it is essential to test the goodness of fit of the chosen
distribution/s to the empirical data. Anderson and Darling (1954) defined a
class of test statistics by:

∫ ∞

−∞
[Fn(x) − F(x)]2φ(x)dF(x), (7)

where Fn(x) is the empirical distribution function (EDF) of a random vari-
able X, F(x) is the cumulative distribution function (CDF) of X, n is the
number of observations, and φ(x) is a function that assigns weight to the
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squared differences [Fn(x)−F(x)]2. When, φ(x) = [Fn(x)(1−F(x))]−1 the test
statistic focuses on measuring discrepancies in both tails.e Stephens (1976)
and d’Agostino and Stephens (1986) have reported that the AD goodness
of fit test to be more powerful than the Pearson chi-squared test for small
sample sizes.

4. Data Description

The dataset used to illustrate the usefulness of EVT consists of 6466 daily
logarithmic returnsf of the ASE general index that cover the 26-year period
of 2 January 1976 to 28 December 2001. The data for the period 1976–1988
have been manually collected from the ASE Records Department while the
data for the period 1988–2001 has been obtained from Datastream.g Prices
for the second period take the account of any capital changes (e.g., dividend
distributions, stock splits) but this is not the case for the prices of the first
period. However, the focus is on the extreme returns which are collected
over selection intervals and therefore, it can be reasonably assumed that any
effect of capital changes is well diversified and no significant bias is present
in the results.

Table 1 contains descriptive statistics of the dataset employed in the
analysis. The ASE index has a daily mean return of 0.06% and a daily
standard deviation of 1.64%. The minimum daily returnh is −16.29% and
occurred on 7/12/87 while the maximum, 24.23%, occurred two days after
on 11/12/87. Furthermore, the daily returns distribution has a low value of
skewness, 0.329, but a rather high value of kurtosis, 19.045. The kurtosis

eThe AD test is a modification of the kolmogorov–Smirnoff goodness of fit test. However,
the AD test depends on the particular distribution that is examined. This makes the AD
a more effective test but it has the drawback that critical values must be produced by
simulation.
fDaily logarithmic returns are calculated according to the formula, Xt = 100 ln (Pt/Pt−1), where
Pt is the index closing price at day t.
gTherefore, the dataset covers a period that computers were not used to record stock prices dur-
ing which ASE prompted by EU directives as well as technological advances went considerable
transformation. The Datastream code is TOTMKGR and the index is composed of the most
heavily traded shares that aim to cover the 70%–80% of the total market capitalization.
hAlthough the ASE was closed around the period of the stock markets crash on 19/10/87, the
negative sentiment of investors affected the Greek stock market which lost 13.51% on 26/10/87,
10.24% on 4/11/87, 12.77% on 26/11/87, and eventually 16.29% on 7/12/87.
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value indicate that the distribution of daily returns is fat tailed and there-
fore, it deviates from normality.i This is also confirmed by the Shapiro–Wilk
test statistic which rejects the normality assumption at the 99% confidence
level.j

In addition to the whole time period, descriptive statistics of the ASE
daily returns for the sub-periods, 1976–1988 and 1989–2001 are also
reported in Table 1. The mean daily return for the period 1976–1988 was
0.04% while that for the period 1989–2001 was double that figure, 0.08%;
however, standard deviation was also higher in the second period. Although
skewness was low for both sub-periods, daily returns exhibited a large kur-
tosis of 68.41 in the first sub-period while in the second sub-period it was
remarkably lower, 5.53. The normality hypothesis was also rejected for both
sub-periods. A Q–Q plot where quantiles of the daily returns empirical dis-
tributions for the two sub-periods are plotted against those of a normal
distribution highlights the differences between the empirical distributions of
the daily returns in the two sub-periodsk (Fig. 1).

iThe values of skewness and kurtosis for the normal distribution are 0 and 3, respectively.
jTo examine further the distribution of the daily returns, returns are standardized and the pairs
of empirical percentiles (1%, 99%), (5%, 95%), and (10%, 90%) are compared with those
of the standard normal distribution; (−2.326, 2.326), (−1.645, 1.645), and (−1.281, 1.281),
respectively. The comparison reveals that the pair of (1%, 99%) empirical percentiles are
too large, (−3.102, 3.096), while the pairs of (5%, 95%), and (10%, 90%) are too small,
(−1.315, 1.490) and (−0.842, 0.933), respectively. Additionally, if the ASE daily returns were
normally distributed then only 18 of the 6466 observations would lie outside plus or minus
three standard deviations from the mean. This is because a well-known property of the nor-
mal distribution is that the 99.73% of the observations lie within plus or minus 3 standard
deviations away from the mean. Therefore, only the 0.27% of total observations lies outside
that range and since the normal distribution is symmetric, there should be a proportion of
0.135% in each tail. However, there are 144 observations that lie outside this range; 67 obser-
vations in the left tail and 77 observations in the right tail. Clearly, the empirical distribution
of ASE daily returns exhibits more extreme observations than those implied by the normal
distribution.
kFurthermore, when the pairs of (1%, 99%), (5%, 95%), and (10%, 90%) empirical standard-
ized percentiles are examined, it is revealed that for the period 1976–1988 all pairs are too small,
(−2.066, 2.278), (−0.733, 0.880), and (−0.468, 0.505), in comparison to those of the normal
distribution; (−2.326, 2.326), (−1.645, 1.645), and (−1.281, 1.281), respectively, while for the
period 1989–2001 the pairs of (1%, 99%), (5%, 95%) are too large, (−3.323, 3.325) and
(−1.707, 1.929) and the pair of (10%, 90%) is too small, (−1.167, 1.280). Additionally, for
the period 1976–1988, 59 observations lie outside the range of plus or minus three standard
deviations, while only nine are expected, with 27 in the left and 32 in the right tail of the empir-
ical distribution. For the period 1989–2001 there are 54 observations outside that range, while
only nine are expected, with 25 in the left and 29 in the right tail of the empirical distribution.
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5. Analysis of the Extreme Daily Returns

5.1. Identification of the appropriate distribution for the extreme
daily returns

Table 1 contains descriptive statistics for the weekly, monthly, and quar-
terly minima and maxima extreme daily returns which were collected over
the 26-year period. The series of weekly and monthly extremes were also
divided into 2, 4, and 10 sub-periods and the series of quarterly extremes
into 2 and 4 sub-periods. The L-skewness (τ3) and L-kurtosis (τ4) were calcu-
lated and plotted for each of the sub-periods of the series of weekly, monthly,
and quarterly extremes. The same diagram also contain the theoretical rela-
tionship between the L-skewness and L-kurtosis of different distributions.l

Figure 2 contains the plots of τ3 and τ4 for the 10 sub-periods of
the weekly minima over the period 1976–2001. It can be noticed that the
L-moment ratio points are mainly dispersed around the theoretical curves of
the GL and the GEV distributions with most points lying above the GL curve.
This is an interesting observation since higher L-kurtosis values correspond to
fatter tailed distributions. Similar patterns appeared in the L-moment ratio
diagrams for different sub-periods of the weekly, monthly, and quarterly
minima.m The same graphical analysis was implemented for the extreme
weekly, monthly, and quarterly maxima. Again, the L-moment ratio points
are mainly dispersed around the theoretical curves of the GL and GEV dis-
tributions. Overall, although the L-moment ratio diagrams do not provide
additional support in favor of either the GL or the GEV distribution the
visual evidence suggests that the analysis should focus only on these two
distributions.

5.2. Parameter estimation and goodness of fit test

The whole series of the weekly minima as well as different sub-periods of
the weekly minima were fitted by the GL and GEV distributions using the
PWM method. Table 2 contains the parameter estimates and the AD good-
ness of fit test for the 10 sub-periods. It is noticeable that both the GEV
and GL did not provide an adequate fit to the whole data series as well as

lA single point represents two parameter distributions (e.g., the normal), whereas a three param-
eter distribution is represented by a curve (e.g., the GEV). The lower bound of all the distributions
is also plotted.
mThese diagrams are not included in this chapter but they are available from the author upon
request.
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when 2 and 4 sub-periods were used. This is probably because the nature of
extremes distribution is changing over time and therefore, when large time-
periods are used that encompass most of these changes the fitting becomes
difficult. However, when 10 sub-periods were used the GL distribution fitted
the empirical data adequately in six of the 10 sub-periods while the GEV in
four of them. In comparison to the GEV, the GL fitted better the data in nine
of the 10 sub-periods. However, a point that should be added in favor of
the GEV distribution is that it performed significantly better in the last sub-
periods. This is probably because the distribution of extremes in the second
half of the whole period is less fat tailed than it is in the first half. Therefore,
the GEV, which is less fat tailed than the GL, improves its ability to fit the
empirical data.

In Fig. 3 one could notice that the estimated scale and location parame-
ters of the GL distribution over time behave in a stable fashion for the first
periods but become volatile for the next sub-periods. This is because the sec-
ond half of the total period contains larger negative daily returns than the
first half.n These large negative values probably reflect the effects of political
uncertainty on the ASE during that period as well as the global volatile envi-
ronment. In contrast, the shape parameter is more volatile in the first half
than it is in the second half of the total period.

For the GEV distribution the parameters, in general, follow similar pat-
terns (Fig. 4). The scale and location parameters appear to be stable for almost
all periods that represent the first half of the 26-year period. In addition, the
shape parameter estimates for the GEV vary more than the estimates for the
GL and this is especially the case for the first half of the total period. Over-
all, even though both the GL and the GEV distributions fail to fit the whole
sample of weekly minima, the GL performed better than the GEV when sub-
periods were used. Additionally, the parameter behavior over time appeared
to be more stable for the GL than the GEV distribution.

The weekly maxima of the whole interval as well as of 2, 4, and 10 sub-
periods were also fitted by the GL and GEV distributions.o Similarly, in the
case of weekly minima both distributions failed to fit adequately the empirical
data in the case of 1, 2, and 4 sub-periods. However, when the data was
divided into 10 sub-periods both distributions improved their performance.
In particular the GL fitted adequately in 7 of the sub-periods while the GEV

nFor example, the second half of the whole period contains the large drops of the ASE index
with values of −14.63% (3/10/88), −12.42% (16/10/89), and −10.59% (6/11/89), respectively.
oIn the interest of brevity, these results are not included in the chapter.
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in the last 5. It is noticeable that these 5 sub-periods refer to the period
after 1988. An explanation is that the distribution of the ASE daily returns
became less fat tailed in the second half of the period examined, thus the
GEV improved its ability to fit adequately extreme daily returns. In terms
of parameters’ behavior over time, the patterns seem to be similar to those
found in the case of weekly minima. For both the GL and GEV distributions,
the location and scale parameters behave stable in the first half of the whole
interval and they become volatile in the second half. Additionally, the shape
parameter tends to take larger values, in absolute terms, in the first half
rather than the second. Since larger shape parameter values in absolute terms
indicate fatter tails it could be argued that the empirical distribution of the
ASE index weekly maxima becomes less fat tailed over time. This finding can
be interpreted as implying that the probability of a large extreme maxima
occurring has decreased after 1988 (Table 3).

Overall both the GL and the GEV distributions appear to be able to
provide an adequate fit to the empirical data. However, the GL seems to be
the most appropriate distribution for the ASE extreme daily returns since its
ability to fit the empirical data adequately is more consistent over time.

5.3. GL and GEV parameter estimates behavior over time
aggregation

The monthly and quarterly minima and maxima of the ASE index were also
fitted by the GL and GEV distributions. The reason for doing that is if a
distribution fits adequately the extremes then its behavior should be consis-
tent over different selection intervals of extremes. Results for the case of the
monthly minima are presented in Table 4 and for the case of quarterly minima
in Table 5. One could notice that none of the distributions fitted adequately
the monthly minima for the whole period. In the case of 2 sub-periods the
GEV fitted adequately in the first sub-period and the GL in none, while in
the case of 4 sub-periods the GL fitted the data adequately in two while the
GEV only in one sub-period. However, when the data was divided into 10
sub-periods both distributions performed better. The GEV fitted adequately
in 6 and the GL in 7 sub-periods. In comparison, the GL fitted the data better
than the GEV in 8 of the sub-periods. When quarterly minima were fitted by
the GL and GEV both distributions failed to fit adequately the whole dataset
while in the case of two sub-periods both the GEV and GL fitted adequately
the data in the first sub-period with the GL giving a higher AD goodness
of fit test p-value. Finally, in the case of four sub-periods the GL performed
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better than the GEV in 3 of them. Overall, it is the GL that describes con-
sistently better the empirical data over different sub-periods and selection
intervals.

The monthly and quarterly maxima of the ASE index were also been fit-
ted by the GEV and GL distributions and the results are presented in Tables 6
and 7, respectively. Similarly to the case of monthly and quarterly minima
the results provided further support to the ability of the GL distribution to
fit adequately the extreme daily share returns in the ASE. For example, when
monthly maxima divided into 10 sub-periods were fitted the GL fitted 7 sub-
periods better than the GEV; although both distributions fitted adequately
the data in all sub-periods. The same pattern appeared in the case of quar-
terly maxima divided into 4 sub-periods with the GL fitting better than the
GEV in 3 sub-periods. In addition, the parameters appeared to behave in a
similar fashion as in the case of the minima. The scale and location were
more volatile during the second half of the whole period while the shape
parameter exhibited a tendency to decrease over time from large to small
values, in absolute terms, for both distributions. Overall, it is again found
that the GL distribution provides a consistently better fit to the ASE index
extreme maxima over the period 1976–2001.

Conclusion

This chapter employed innovative EVT methods in order to characterize
the asymptotic distribution of the ASE extreme minima and maxima over
the period 1976–2001. For this reason, prices from 1976 to 1988 were
manually collected from the ASE and combined with prices from 1988 to
2001 collected from electronic sources. Weekly, monthly, and quarterly min-
ima and maxima were then collected as the minimum and maximum daily
returns over non-overlapping periods of certain length. A set of probability
distributions comprising the GEV and GL was then considered, L-moment
ration diagrams were used as an initial screening of the empirical data, the
PWM method was used to estimate the parameters of the most likely dis-
tributions to fit the extremes and the AD goodness of fit test was used to
assess the adequacy of fit. These EVT techniques can be useful to those
interested in risk management since they comprise an additional toolbox
for the analysis of extreme stock price movements and the estimation of the
associated risk.

In terms of empirical results, it was found that the GL distribution pro-
vides adequate descriptions of the ASE index extreme minima and maxima
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for the period 1976–2001. This finding offers greater support to a limited
number of studies (Gettinby et al., 2004; Tolikas et al., 2007) which have
also found GL distribution to fit adequately financial extremes. Modeling
adequately the tails of financial returns distributions can have important
implications for risk management because this is where the really catastrophic
events are located. The accurate estimation of their associated probabilities
can therefore, lead to more accurate and helpful risk management tools. For
example, research has shown that the use of EVT methods in VaR estimation
can lead to more accurate estimates of the probabilities of big losses (see, for
example, Tolikas et al., 2007; Longin, 2000).

Additionally, the behavior of the empirical distributions of both the min-
ima and maxima extremes appeared to be time varying with a tendency to
become less fat tailed over time. These results can be of particular impor-
tance to domestic and international investors as well as financial regulators,
since less fat tailed distributions of extremes means that the probabilities of
extremes occurring are decreasing and that could lead to increasing confi-
dence amongst market participants and regulators. The latter can have prac-
tical implications for portfolio managers with respect to entering or exiting
the Greek stock market.

Appendix A

The GEV and GL are three parameter distributions which have the following
CDFs, quantile functions, and parameter estimates. The parameters κ, α,
and β are called shape, scale, and location, respectively.

Generalized extreme value (GEV) Generalized logistic (GL)
Cumulative distribution function (CDF)

F(x) = e−e−y
F(x) = 1/(1 + e−y)

Quantile function

X(F) =
{
β + α{1 − (− log F)κ}/κ, κ �= 0
β − α log (− log F), κ = 0

X(F) =
{
β + α[1−{(1 − F)/F}κ]/κ, κ �= 0
β − α log{(1 − F)/F}, κ = 0

Parameter estimates

κ = 7.8590c + 2.9554c2 κ = −τ3

where c = (2β1−β0)
(3β2−β0) − ln 2

ln 3

α = λ2κ

(1−2−κ)�(1+κ) α = λ2
�(1−κ)�(1+κ)

β = λ1 − α
κ
{1 − �(1 + κ)} β = λ1 − α

κ
{1 − �(1 − κ)�(1 + κ)}
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