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a b s t r a c t 

Recent studies in maritime shipping have concentrated on environmental and economic impacts of ships. 

In this regard, fuel is considered as one of the important factors for such impacts. In particular, the sailing 

speed of the vessels affects the fuel consumption directly. In this study, we consider a speed optimization 

problem in liner shipping, which is characterized by stochastic port times and time windows. The objec- 

tive is to minimize the total fuel consumption while maintaining the schedule reliability. We develop a 

dynamic programing model by discretizing the port arrival times to provide approximate solutions. A de- 

terministic model is presented to provide a lower bound on the optimal expected cost of the dynamic 

model. We also work on the effect of bunker prices on the liner service schedule. We propose a dynamic 

programing model for bunkering problem. Our numerical study using real data from a European liner 

shipping company indicates that the speed policy obtained by proposed dynamic model performs signif- 

icantly better than the ones obtained by benchmark methods. Moreover, our results show that making 

speed decisions considering the uncertainty of port times will noticeably decrease fuel consumption cost. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

Sailing speed is an important decision variable affecting fuel

onsumption and consequently, greenhouse gas emission. Many

perational strategies in container shipping have focused on re-

ucing fuel costs ( Christiansen, Fagerholt, Nygreen, & Ronen, 2013 ).

or instance, Maersk, one of the major liner shipping company,

ntroduced slow steaming strategy in 2008 to cope with the in-

reasing bunker price. Although sailing with the slowest speed is

avorable with respect to the fuel cost and greenhouse gas emis-

ions, it may not be always feasible due to the uncertainties in sea

ransport legs and the ports that may affect service level agree-

ent with customers. Sailing speed decision at sea transport legs

ainly depends on the port time windows and the transit time

etween ports. Therefore, it is natural to expect that the speed de-

ision should be made by considering both the time windows and

he uncertain port service times. 

Stochastic port service time and travel time play important
oles on the total cruise time of vessels. Port and travel times can 
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e highly variable due to congestion, handling and weather condi-

ions ( Notteboom, 2006 ). Congestion or disruption in a port may

esult in deviation from the planned schedule and hence, it may

ause delays at the following ports along the route. Vernimmen,

ullaert, and Engelen (2007) state that only about 52% of the ves-

els dispatched for liner services arrived at the planned sched-

le. Drewry (2016) presents a detailed reliability report by trade

nd reports that the average percentage of on-time delivery ranges

rom 55% to 89%. Notteboom (2006) reports that 93.6% of the de-

ays are caused by disruptions in port and terminal operations.

iteLee15 state that container handling capacity at ports becomes

nsufficient for the growth in the container transport demand and

he variability in port times is a vital problem for liner opera-

ors. To prevent the delays and maintain schedule reliability, ves-

els may increase their speeds, which in turn increases the total

uel consumption and greenhouse gas emission. In some cases like

nforeseen delay in a port, vessels may not reach the next port on

ime even if they sail at maximum speed. To avoid poor service

evel and meet the planned schedule on time, uncertain port times

hould be considered in speed decision. Despite this expectation,

umerous studies in the literature do not consider the uncer-

ainties in liner shipping. Psaraftis and Kontovas (2013) provide a

etailed review of speed models in maritime transportation and

eveal that only few studies consider the uncertainties in liner
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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Fig. 1. Bunker fuel prices (IFO380) at various ports (source: bunkerindex.com) . 
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shipping. In this paper, we focus on speed optimization problem

with stochastic port times. We develop new models to optimize

sailing speed for liner shipping. 

Another important factor that affects ship liners’ operating cost

is bunker price. Since fuel cost constitutes a major portion of oper-

ational cost of a container ship, shipping companies focus on effi-

cient ways to reduce bunker cost ( Ronen, 2011 ). Through private

conversation with a major liner company in the Mediterranean,

it was realized that liner operators can make long term or short

term contracts with the fuel suppliers. Long term contract is gen-

erally set for a year and during this period, fuel price has been

fixed for the contracted amount. Liner operators who want to avoid

the risks of fluctuating bunker price, prefer long term contracts.

On the other hand, short term contracts are made approximately

ten days before the liner service starts. The contract specifies the

bunkering ports, price and quantity. Short term contracts are pre-

ferred in short-haul routes like those in the Mediterranean. Fig. 1

shows the monthly average fuel price at several bunkering ports

in the Mediterranean and the Black Sea area from 2010 to 2016.

As it is seen in this figure, bunker prices at different ports have

significant differences. For instance, in February 2015, the average

monthly prices in Novorossiysk and Algiers were 184 dollars and

489 dollars per metric ton. Bunkering ports significantly affect the

total fuel cost of a liner service. Therefore, bunkering port selection

is an important decision. In this paper, we also consider bunker-

ing port selection strategy. In particular, we focus on short term

bunkering contracts and study the decisions regarding where to

bunker and how much to bunker? Bunkering decision is directly

related to fuel consumption and affects the sailing speed. For in-

stance, to avoid high fuel costs liner companies prefer slow steam-

ing strategy ( Maloni, Paul, & Gligor, 2013 ). Therefore, sailing speed

and bunkering decisions are interrelated. In this paper, we study

the joint speed and bunkering problem. 

We make the following research contributions in this paper.

First, we present a new dynamic programing formulation for the

fuel consumption problem in liner shipping that can handle ran-

dom port times. Our model takes into account future possible port

service times in assessing the current speed decision. The objec-

tive is to optimize sailing speed along the route to minimize fuel

consumption cost and the cost of delays by considering port time

windows. We use the term “time window” to describe the re-

served time period that a port allocates to serve the vessel. In our

study, we assume that ports report the available time windows
nd then, the vessel determines the arrival times according to

hese given windows ( Meng, Wang, Andersson, & Thun, 2014 ). The

iterature addressing the uncertainties at ports is limited. The pro-

osed studies generally utilize heuristical approaches due to the

ifficulty in solving the stochastic problem and these approaches

o not guarantee the global optimality unless the objective func-

ion has a special structure. Second, we examine the properties of

he proposed dynamic model and provide some theoretical results

egarding the optimal speed decision and port arrival time. Third,

e work on the deterministic model formulation and we show

hat this model provides a lower bound on the optimal expected

ost. Consequently, by using the discretized dynamic model and

eterministic model, we can provide an upper bound on the op-

imality gap. Fourth, we develop a new model for bunkering prob-

em. In particular, we work on where to bunker and how much to

unker decisions in short-term contracts. Different than the pro-

osed bunkering studies in the literature, we allow liner vessel to

unker at the ports which are not on the planned route schedule.

inally, we perform a computational study by using real shipping

ata from a liner company. Our experiments are motivated by the

act that the liner shipping industry is interested in what-if scenar-

os, and this observation leads us to evaluate the impacts of prob-

em parameters on speed and bunkering decision, fuel consump-

ion and service level. 

The rest of the paper is organized as follows. In Section 2 , we

rovide an overview of the related literature. In Section 3 , we de-

elop a dynamic programing formulation of the speed optimization

roblem for liner shipping. Section 4 presents a deterministic ap-

roximation to the dynamic model that provides a lower bound

n the optimal total expected cost. In Section 5 , we extend the

ynamic programing formulation by considering bunkering prob-

em. In Section 6 , we present our computational study. We con-

lude and discuss some future research directions in Section 7 . 

. Review of related literature 

There is an extensive literature on ship routing and scheduling

roblems in maritime transportation. For a comprehensive review

f this area, we refer to Psaraftis and Kontovas (2013) , Christiansen

t al. (2013) and Meng et al. (2014) . These review studies demon-

trate that recent trend in maritime transportation have focused on

ailing speeds and environmental impact of ships. 

http://bunkerindex.com
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Ronen (2011) points out the importance of reducing vessels’

peed on operating cost. He addresses the speed optimization

roblem by considering the service frequency and the required

umber of vessels. Fagerholt, Laporte, and Norstad (2010) and

vattum, Norstad, Fagerholt, and Laporte (2013) work on the speed

ptimization problem in liner shipping with port time windows.

hey restrict vessel to arrive within the time window of each port

o achieve 100% service level. Fagerholt et al. (2010) discretize the

rrival times and solve the problem by using shortest path algo-

ithm. Hvattum et al. (2013) develop an exact solution algorithm

or the deterministic problem. Wang and Meng (2012c) work on

he speed optimization problem with transshipment and container

outing. They formulate the problem as a mixed-integer nonlin-

ar model and propose outer-approximation algorithm to obtain

pproximate solutions. Norstad, Fagerholt and Laporte (2011) in-

orporate speed decision in the tramp ship routing and schedul-

ng problem and propose a local search method. They first de-

elop a solution algorithm for speed optimization problem with

xed route. Then, they utilize this algorithm to generate an ini-

ial solution for the proposed local search method. Zhang, Teo,

nd Wang (2014) extend the work of Fagerholt et al. (2010) and

orstad, Fagerholt and Laporte (2011) , and study the optimality

roperties. 

Later studies in this field focus on the schedule reliability in

iner shipping. Mansouri, Lee, and Aluko (2015) provide a re-

iew on multi-objective models in maritime shipping and examine

he relation between service level and fuel costs. Li, Qi, and Lee

2015) and Brouer, Dirksen, Pisinger, Plum, and Vaaben (2013) an-

lyze the delays in planned arrival time due to the port disrup-

ion and examine speeding up, port omitting and port swapping

ptions to catch up with the planned schedule. Both of these

tudies assume deterministic port service time. While Li et al.

2015) discuss single vessel problem, Brouer et al. (2013) propose

 general solution method for multiple vessels on a liner network.

otteboom (2006) highlights the effects of waiting times and de-

ays on schedule reliability and discusses the trade-off between

chedule reliability and operating costs. He also points out that due

o the fast growth in the volume of sea transportation, port con-

estion has become the main reason of port delays. Due to the port

ongestion, vessels may have to wait long hours for service, which

ay result in delays in the following ports. In case of such delays,

hip managers of liner shipping companies can keep up with the

lanned schedule by increasing vessel speeds. However, this may

esult in high fuel cost. This is the main dilemma experienced by

hip managers. According to SeaIntel global liner performance re-

ort, although Maersk Line is one of the top reliable carriers in

erms of on time performance, their operational costs are consid-

rably higher compared with the low-cost carriers ( SeaIntel, 2015 ).

ort delays and resultant high costs have directed shipping compa-

ies to finding ways of anticipating unexpected delays ( Notteboom,

006 ). 

The maritime literature on fuel emission with uncertainty is

carce. Wang and Meng (2012a) study the ship route schedule de-

ign problem by considering sea contingency and uncertain port

imes. They do not allow late arrivals and formulate the problem as

onlinear mixed integer stochastic programing model. Wang and

eng (2012b) work on the robust design of liner shipping schedule

y allowing late arrivals. They penalize the vessel if it arrives later

han the published time. To recover the delays, they force vessels

o sail at high speed whenever it is necessary. In other words, they

ecide vessel speed without considering the trade-off between fuel

nd delay costs. Lee, Lee, and Zhang (2015) work on the effects of

low steaming on service level and fuel consumption by consid-

ring uncertain port times. They consider fast steaming and flexi-

le slow steaming strategies to examine the relation between de-

ay and fuel consumption costs. In fast steaming strategy, a vessel
ails at its highest speed during the entire journey. On the other

and, in flexible slow steaming strategy, a vessel usually sails at its

owest speed and it can switch to the highest speed when there is

 delay. 

Qi and Song (2012) propose a vessel scheduling model by con-

idering uncertain port times. They formulate a liner shipping

roblem to find the optimal transit time between ports and conse-

uently, obtain the planned arrival schedule for multiple voyages.

n their problem formulation, ports do not have specific time win-

ows for service and hence, vessels are allowed to arrive at any

ime. In other words, they assume that ports are always ready for

ervice. However, this assumption may not be consistent with the

ractice ( Wang & Meng, 2014 ). To achieve high service levels dur-

ng the journey, Qi and Song (2012) assume that ports penalize

he vessel if it arrives later than the planned arrival time of that

ort. In other words, they aim to minimize the deviation from the

lanned schedule. They use linear cost function to penalize the de-

ays and propose a stochastic approximation algorithm to tackle

he problem. 

Li, Qi, and Song (2015) study the real-time schedule recovery

roblem in a liner shipping service. They propose a multi-stage

tochastic model by dividing the sea legs into multiple segments.

heir objective is to find optimal travel time at each segment by

onsidering the uncertainties in sailing times and at ports (due

o port disruption). As in the work of Qi and Song (2012) , they

ssume that ports do not have any time windows for their con-

racted service. Instead, the vessel aims to arrive at the planned

rrival time. Moreover, different than our work, they do not con-

ider waiting cost for early arrivals, which is contradictory to the

urrent practice in liner shipping. To facilitate the implementation

f the model, they assume that planned arrival time to each seg-

ent in a leg is predefined. Nonetheless, due to the difficulty of

olving this problem, they focus on uncertainties in sailing time

nd consider the case with only one disruption event. In our pro-

osed work, we study the uncertainties at all ports by considering

oth early and late arrivals. 

The literature on bunkering management is limited. Recently,

onen (2011) analyzes the effects of bunker price change on liners’

perational costs. He works on the tradeoff between slow steam-

ng and increasing the fleet size. Yao, Ng, and Lee (2012) take

nto account the bunker price difference across different ports and

ropose a bunkering model to find optimal bunkering ports and

unkering amounts. However, in the proposed model they limit

he number of bunkering times. They also optimize the sailing

peed between ports by restricting the vessel to arrive within pre-

efined time windows. The objective is to minimize bunker cost

nd revenue loss due to carrying bunker fuel weight. Sheng, Lee,

nd Chew (2014) extend the work of Yao et al. (2012) by consid-

ring the uncertainty in fuel consumption and bunker prices. The

roposed model aims to minimize the bunker cost and bunker in-

entory holding cost. Kim (2014) present a bunkering model to

inimize the total cost of bunker purchasing, ship time (total char-

ering cost of the vessel and time value of containers) and car-

on tax. In the model formulation, a liner vessel is assumed to

rrive ports at any time, without any restriction. Lagrangian heuris-

ic is proposed to obtain a bunkering strategy. Ghosh, Lee, and Ng

2015) focus on long term bunker contracts. By considering fluc-

uating bunker prices, they propose a dynamic programing model.

hey assume that vessel sails at constant speed during the voy-

ge, however the fuel consumption between ports is uncertain. The

bjective is to minimize total bunkering cost, penalty cost of run-

ing out of fuel and damage cost for not fulfilling the committed

mount. 

In this paper, we first focus on speed optimization problem

n the presence of uncertain port service times. To the best of

ur knowledge, the speed optimization problem considering port
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time uncertainties and port time windows for fixed liner shipping

route has not been addressed in the literature. Our study is closely

related to the work of Qi and Song (2012) . We consider a liner

schedule, which is repeated on regular basis (weekly, monthly

etc.). Different from Qi and Song (2012) , our study focus on speed

optimization problem with time windows on a single voyage. This

enables us to analyze the structure of the dynamic model and in-

vestigate the properties of optimal speed decisions. Furthermore,

the deterministic approximation that we use to obtain a lower

bound on the optimal expected cost, can be useful to assign the

bound on the optimality gap for each problem instance. Since sail-

ing speed decision is affected by the fuel prices, we also study the

relation between sailing speed and bunkering. We focus on short

term contracts at the planning level of liner shipping companies

and propose a dynamic programing model to determine optimal

vessel speed, bunkering ports and the bunkering quantities. Differ-

ent than the previous studies, we allow a liner vessel to bunker at

the ports which are not on her planned route. In other words, a

vessel may detour to select a cheaper bunkering port. Based on a

real shipping data, we analyze the effects of bunker prices on the

liner’s service schedule. 

3. Dynamic speed optimization model 

Motivated by the shipping operations of a major liner shipping

company, we propose a dynamic speed optimization model. We

consider a vessel which provides shipping services over a given

sequence of ports-of-call denoted by set N = { 0 , 1 , . . . , n } . Port 0

shows the starting node of the network. We use leg i to denote

the trip from port (i − 1) to port i . The vessel can visit port i

within its time window. For a liner shipping company, on time de-

livery of the cargo is paramount as delayed cargo results in high

cost by customers. Therefore, it is crucial to be served on time. If

the vessel arrives earlier than the allocated time, it has to wait. If

the vessel misses the reserved time, this may cause deviation from

the planned schedule. Service time of a vessel in each port is a

stochastic variable and denoted by S i for port i . A vessel has for

all practical purposes a lower and an upper speed limit. We have

to decide the speed between ports in order to minimize total fuel

consumption and maximize service level. We will use the follow-

ing notation throughout the paper. 

N : set of ports 

S i : random service time in hour at port i such that l i ≤ S i ≤ u i 
t a 
i 

: arrival time of vessel at port i 

t d 
i 

: departure time of vessel at port i 

[ αi , β i ]: time window at port i 

d i : length of leg i in nautical mile 

ϕ: fuel cost per hour during waiting and service time at a port 

θ i : delay penalty per hour at port i 

r s : price of fuel per ton consumed during sailing 

r p : price of fuel per ton consumed at ports 

v i : average speed at leg i (nautical mile per hour), which is lim-

ited by [ v , ̄v ] 

In the literature, quadratic function of sailing speed is gener-

ally used to compute fuel consumption of a vessel ( Fagerholt et al.,

2010 ). We use the equation proposed by Yao et al. (2012) to calcu-

late fuel consumption rate (tons per day). Yao et al. (2012) present

an empirical model to present the relation between bunker con-

sumption rate and the vessel speed by considering the size of the

vessels. The proposed fuel consumption rate is given as k 1 v 3 i 
+ k 2 ,

where k 1 and k 2 are constants and their values depend on the size

of the vessel. We assume that the speed of a vessel is constant be-

tween two consecutive ports. We also assume that vessel’s speed

is not affected by the weather conditions during sailing. Multipli-

cation of fuel consumption rate by the time required to travel the
istance between ports yields the total amount of fuel consump-

ion (in tons). Then, the fuel consumption function for leg i is given

s: 

(v i ) = (d i / 24 v i ) k 1 v 3 i + k 2 . (1)

he fuel consumption function g(v i ) is convex and increasing with

 i for v i ∈ [ v , ̄v ] . As an extension to the model proposed by Qi and

ong (2012) , we also consider the fuel consumption during waiting

nd service time at ports. Due to international regulations, vessels

re not allowed to use high sulfur fuel while berthing at ports as

pposed to open sea cruise ( EUR-Lex, 2012 ). Low sulfur fuel con-

umed at ports is more expensive than the high sulfur fuel. We

ssume that the vessel consumes a fixed amount of fuel per hour

uring waiting and service time at each port. Let κ be the average

mount of fuel (tons) consumed per hour. Then, ϕ = r p κ gives the

uel cost per hour. Consequently, the total fuel consumption cost is

iven by, 

n 
 

i =1 

(r s g(v i ) + ϕ(t d i − t a i )) . 

As in Qi and Song (2012) , we also consider the service level in

ach port. Arriving later than the given time window will result

n delay in the planned schedule. Vessel delays can be very costly

ue to cargo misconnecting, rerouting the delayed cargo, inventory

andling cost and loss of customer goodwill ( Qi & Song, 2012 ).

o maximize the service level and avoid such delays, we penal-

ze the vessel for each hour of the lateness. In real world applica-

ions, shipping companies also quantify costs resulting from sched-

le delays. For instance, Maersk pays different amounts of money

o shippers depending on the length of the delay in the planned

chedule ( Li et al., 2015 ). In this study, we use a linear delay cost

unction. However, our model can handle any nondecreasing delay

ost function. The total cost is given by: 

n 
 

i =1 

r s g(v i ) + 

n ∑ 

i =1 

ϕ(t d i − t a i ) + 

n ∑ 

i =1 

θi [ t 
a 
i − βi ] 

+ 

here [ t a 
i 

− βi ] 
+ = max { t a 

i 
− βi , 0 } . Given the speed decision v i and

ervice time S i at port i , the states of the system at the following

orts are defined by the following system dynamics equations: 

 

a 
i = t d i −1 + d i / v i , (2)

 

d 
i = max { t a i , αi } + S i , i = 1 , . . . , n. (3)

ince we start with port 0, we assume that t a 
0 

= t d 
0 

= 0 . We are in-

erested in minimizing the total expected cost over a finite horizon.

n formulating this problem by using dynamic programing, we di-

ide the problem into ( n + 1 ) stages and each stage corresponds

o one port. At each stage, we have to decide the average sailing

peed until the next port. Our decision on speed will designate the

rrival time to the next port. Since sailing speed and service time

re bounded, the possible arrival time is also bounded. We use t̄ i 
nd t i to denote these upper and lower limits, respectively. To cap-

ure the state of the system at stage i , we use t i as the arrival time

t port i . Using t i as the state variable at port i , the optimal speed

olicy can be found by computing the value functions { J i (.): i ∈ N }

hrough the following equation: 

 i (t i ) = E 

{ 

min 

v i ∈ [ v , ̄v ] 
{ ϕ(S i + [ αi − t i ] 

+ ) + θi [ t i − βi ] 
+ 

+ r s g(v i ) + J i +1 (t i +1 ) } 
} 

(4)

or every t i ∈ [ t i , ̄t i ] . Arrival time to the following port ( t i +1 ) is com-

uted by using recursive equations given in (2) and (3) . The bound-

ry condition for every t n ∈ [ t n , ̄t n ] is given by: 

 n (t n ) = ϕ(E [ S n ] + [ αn − t n ] 
+ ) + θi [ t n − βn ] 

+ . (5)
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Since the vessel is deployed from port 0 initially, J 0 (0) gives the

ptimal expected total cost at the beginning of the journey, where

 represents the fact that the arrival time to port 0 is t 0 = 0 . The

rst two cost functions in Eq. (4) correspond to the port time cost

nd delay penalty, respectively. These cost functions depend on

he arrival time. While port time cost function is a non-increasing

unction in t i , delay penalty function is a non-decreasing function.

iven the realization of the service time S i , the arrival time to

he next port is determined by the speed decision. Consequently,

he state transition and decision function for the optimal policy is

iven by: 

(v i , t i +1 ) = argmin 

v i ∈ [ v , ̄v ] 
{ ϕ(S i + [ αi − t i ] 

+ ) + θi [ t i − βi ] 
+ 

+ r s g(v i ) + J i +1 (t i +1 ) | S i } . (6) 

Since possible arrival times, sailing speeds and service times

re continuous variables, we need to discretize time into a fi-

ite number of time points to implement the dynamic programing

odel. This provides an approximation to the continuous dynamic

odel. Since the resulting model only considers the discretized

ime points, its optimal solution is feasible for the continuous dy-

amic model. Consequently, the optimal objective value of the dis-

rete dynamic model is greater than the continuous model and it

ives an upper bound on the continuous model. Now, we will pro-

ide some information about the optimal solution. 

emark 3.1. Given a realization of service times at all ports

 S 1 , S 2 , . . . , S n } , let v ∗
i 

and t ∗
i 

for i ∈ N be a feasible solution for

peed between ports (i − 1) and i , and corresponding arrival times.

onsider a port p with time window [ αp , βp ] and the feasible so-

ution v < v ∗p ≤ v̄ and t ∗p < αp . Then, there exists a better solution

ith sailing speed v̄ p such that v ≤ v̄ p < v ∗p . 

Due to the port time window, a vessel cannot berth as soon as

t arrives to the port. It has to wait until port service time starts.

herefore, by considering the fuel prices we can say that it is not

eneficial to arrive at a port earlier than the time window of that

ort. 

emma 3.1. Let t 1 
i 

and t 2 
i 

denote the two possible arrival times for

ort i such that t i ≤ t 1 
i 

≤ t 2 
i 

≤ αi . For any given service time S i and

rrival times t 1 
i 

and t 2 
i 
, let v 1 ∗

i 
and v 2 ∗

i 
be the optimal sailing speeds

t leg i , respectively. Then, we have v 1 ∗
i 

= v 2 ∗
i 

. 

We defer the proof of the lemma to the supplementary docu-

ent. Lemma 3.1 implies that the optimal speed decision does not

hange when the vessel arrival time is t i ∈ [ t i , αi ]. This obser-

ation allows us to reduce the state space of dynamic programing

odel at each stage. In other words, sailing speed v i at leg i will

e computed for the arrival times t i ∈ [ αi , ̄t i ] . The optimal sailing

peed for the arrival time period t i ∈ [ t i , αi ) will be equal to the

ptimal sailing speed when t i = αi . Next, we present some results

hen t i ∈ [ αi , ̄t i ] . For every t i ∈ [ αi , ̄t i ] , the optimal value functions

f the restricted problem are given as: 

 

R 
i (t i ) = E 

{ 

min 

v i ∈ [ v , ̄v ] 
{ ϕS i + θi [ t i − βi ] 

+ + r s g(v i ) + J R i +1 (t i +1 ) } 
} 

(7) 

ith the boundary condition, 

 

R 
n (t n ) = ϕE [ S n ] + θi [ t n − βn ] 

+ . (8) 

roposition 3.1. J R 
i 
(t i ) is convex and nondecreasing with t i for every

 = 0 , . . . , n . 

The proof of the proposition is given in the supplementary doc-

ment. Next, we present the relation between the sailing speed

ecision and the port arrival time. 

orollary 3.1. Let t 1 
i 

and t 2 
i 

denote the two possible arrival times for

ort i such that αi ≤ t 1 
i 

≤ t 2 
i 

≤ t̄ i . For any realization of service time
 i , let v 1 ∗
i 

and v 2 ∗
i 

be the optimal sailing speeds at leg i given that the

essel arrival times are t 1 
i 

and t 2 
i 
, respectively. Then, we have v 1 ∗

i 
≤

 

2 ∗
i 

. 

The proof of the corollary is presented in the supplementary

ocument. 

. Deterministic approximation 

An alternative solution method for the speed optimization

roblem described in Section 3 is to solve a deterministic model.

 deterministic approximation of the above dynamic programing

odel assumes that all random quantities are known in advance

nd they take their expected values. Hence, deterministic models

o not capture the temporal dynamics of the problem as dynamic

odels do ( Talluri & van Ryzin, 2005 ). However, they are popular

n practice due to their computational efficiency. The deterministic

pproximation is formulated as follows: 

inimize 

n ∑ 

i =1 

r s g(v i ) + 

n ∑ 

i =1 

ϕ(t d i − t a i ) + 

n ∑ 

i =1 

θi [ t 
a 
i − βi ] 

+ (9) 

ubject to t a i = t d i −1 + d i / v i , i = 1 , . . . , n, (10) 

 

d 
i = l i + E [ S i ] , i = 1 , . . . , n, (11) 

 i ≥ αi , i = 1 , . . . , n, (12) 

 i ≥ t a i , i = 1 , . . . , n, (13) 

 ≤ v i ≤ v̄ i = 1 , . . . , n, (14) 

here t a 
0 

= t d 
0 

= 0 . Constraints (10) and (11) correspond to the sys-

em dynamics equations. Constraints (12) and (13) ensure that the

essel’s service starts within the time windows at all ports. Con-

traint (14) guarantees that the speed of the vessel is within the

ower and upper limits in all legs. 

Note that constraint (10) is nonlinear. We define τ i to denote

he transit time between ports ( i − 1 ) and i and it is formulated

s τi = d i / v i . Replacing d i / v i by τ i and rewriting the constraints

10) and (14) , we obtain a feasible region with linear constraints. 

hen, the objective function in (9) is given as: 

n 
 

i =1 

r s g(τi ) + 

n ∑ 

i =1 

ϕ([ αi − t a i ] 
+ + E [ S i ]) + 

n ∑ 

i =1 

θi [ t 
a 
i − βi ] 

+ . (15) 

ote that the fuel consumption function g ( τ i ) is convex in τ i . Let

efine h (t a 
i 
) as the waiting and penalty cost function for port i .

hen, we have: 

 (t a i ) = ϕ([ αi − t a i ] 
+ + E [ S i ]) + θi [ t 

a 
i − βi ] 

+ . (16) 

t is clear that the function h (t a 
i 
) is convex in t a 

i 
. Consequently, the

bjective function in (15) is convex in (τi , t 
a 
i 
) for all i = 1 , . . . , n . 

emma 4.1. Deterministic model given in (9) –(14) is a convex pro-

ram. Therefore, a local minimum solution is also the global minimum

olution for model (9) –(14) . 

Due to convexity, deterministic model (9) –(14) can be efficiently

olved by a nonlinear programing solver. The solution of the model

9) –(14) provides a scheduling and speed policy to minimize total 

uel consumption. Moreover, its optimal objective value provides a

ower bound for the minimum expected cost. In other words, let-

ing Z ∗DM 

be the optimal objective value of problem (9) –(14) , we

ave Z ∗
DM 

≤ J 0 (0) as shown in the next proposition. This relation

an be used to assess the optimality gap of a suboptimal policy de-

ived from any solution algorithm such as heuristic methods. The

roof of the proposition is given in supplementary document. 
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Proposition 4.1. The optimal objective value of the deterministic

model gives a lower bound for the dynamic programing model, that

is, Z ∗
DM 

≤ J 0 (0) . 

As mentioned above, we approximate the dynamic model

(4) and (5) by discretizing the time and this approximation pro-

vides an upper bound for the continuous dynamic model. There-

fore, the percentage gap between the objective function values of

the deterministic model and the approximate dynamic model pro-

vides an upper bound for the optimality gap of the continuous dy-

namic model. 

5. Bunker port selection 

In this section, we study the bunkering management strategy.

We consider the planning level problem for short term contracts.

Short term bunkering contracts are made approximately a week

before the liner’s planned service. In real practice, prior to the ser-

vice, liner operators negotiate with the bunker suppliers and make

bunkering decisions according to the quotes offered by suppliers.

The key decisions in bunkering problem are where to bunker and

how much to bunker? 

In our model formulation, we assume that there are refueling

stations at several ports-of-call along the liner service. In addition,

to decrease the bunkering cost a vessel may detour to the ports

which are not on her service schedule. Bunkering operation takes

approximately 2–3 hours and it can be performed during the ser-

vice (loading and unloading) at ports 1 . Therefore, it can be said

that bunkering at one of the service ports is more time efficient

than detouring to another port. We use the same notation as in

Section 3 to formulate the bunkering problem. Additionally, We de-

fine d ij to show the distance between ports i and j . To denote the

bunkering ports, we introduce set M . The set of all ports is given by

N 

′ = N ∪ M and N 

′ 
i 

presents the set of ports that are reachable from

port i . Since bunkering is a planning level problem, we assume that

port time takes its expected value. As in Section 3 , we assume that

fuel consumption is directly related to the sailing speed for which,

we use the empirical model of Yao et al. (2012) to compute the

fuel consumption rate. As mentioned in Section 3 , vessels gener-

ally consume two types of fuel in a voyage: low and high sulfur

fuel. Since high sulfur fuel is mostly used while cruising, we focus

on decisions related to this type of fuel, which has further sim-

plified the problem. We assume that vessel has enough low sul-

fur fuel inventory for a voyage. The aim of the bunkering model is

to find the optimal bunkering ports, bunkering quantities and sail-

ing speed in order to minimize the total bunkering and delay cost.

The optimal solution of this model can be used to decide on the

bunkering ports, average bunkering quantity required to complete

the service and the average sailing speed. 

To include varying fuel prices, we extend the dynamic pro-

graming model given in (4) and (5) . Since bunkering decision de-

pends on the remaining bunker on the vessel, we need to store

the bunker inventory. We define w i to denote the bunker inventory

when vessel arrives at port i . The state space for port i is given by

(i, t i , w i ) . At each stage, we have to decide whether to detour for

bunkering (if possible), the sailing speed to the next port and how

much to bunker at the current port (if possible)? We use r i to de-

note the bunker price per ton at port i and x i to denote the bunker

order-up-to-level at port i . If vessel does not bunker at port i, then

x i = w i . Let V (i, t i , w i ) denote the minimum cost from port i up to

port n given that the arrival time to port i is t and the remaining
i 

1 Private conversation with a liner operator, 2016. 

m  

s  

s  

d  
unker is w i . Then, we have the following DP recursion, 

 (i, t i , w i ) = min 

v i j ∈ [ v , ̄v ] 
x i ≤C, j∈ N ′ 

i 

{ 

ϕ(E[ S i ] + [ αi − t i ] 
+ ) + r i (x i − w i ) 

+ θi [ t i − βi ] 
+ + V ( j, t j , w j ) 

} 

(17)

here t j = max { αi , t i } + E[ S i ] + d i j / v i j and w j = x i − g(v i j ) . The

oundary condition is given by: 

 (n, t n , w n ) = ϕ(E [ S n ] + [ αn − t n ] 
+ ) + θi [ t n − βn ] 

+ . (18)

Now, we will provide some structural results for the bunkering

ecision. The cost function V (i, t i , w i ) is decreasing in w i for every

 i and i . In other words, as the initial bunker inventory at port i in-

reases, the total cost from port i to port n decreases. Since carried

unker does not affect the total cost, increase in the initial bunker

nventory does not increase the total cost. 

emma 5.1. Let assume a vessel visits ports i and j consecutively in

he optimal schedule and the bunker prices (dollars per ton) at ports

 and j are denoted by r i and r j and r i > r j . Let v ∗
i j 

denote the opti-

al value of the sailing speed at leg i − j, and x ∗
i 

denote the optimal

unker up-to-level at port i when the initial bunker inventory is w i .

hen, x ∗
i 

= g(v ∗
i j 
) , if w i < g(v ∗

i j 
) and x ∗

i 
= w i , if w i ≥ g(v ∗

i j 
) . 

The proof of the lemma is given in the supplementary docu-

ent. Lemma 5.1 implies that we can reduce the search space for

he bunkering decision variable in special cases. 

. Computational results 

We devote this section to a computational study for discussing

ifferent aspects of our proposed solution methods. We conduct

xperiments by using real data from a major European liner ship-

ing company. In particular, we evaluate performances of dynamic

rograming and deterministic models and investigate managerial

nsights obtained from these models. We next explain our simula-

ion setup in detail and then present our numerical results. 

.1. Experimental settings 

We design experiments by using real data from the case ship-

ing company including three routes with 16, 11 and 8 ports, re-

pectively. These data include the distances between ports, vessel

rrival and berthing times, and port service times. The detailed

chedules of these routes are presented in Tables 1 –3 . 

As proposed by Qi and Song (2012) , we assume the service

imes S i follow the uniform distribution. The lower bound on the

ervice times at each port are set to the port times given in

ables 1 and 2 . We apply sensitivity analysis with respect to the

ort times and set the range between upper ( u i ) and lower ( l i )

ound values as 6 and 10. The cost function of our proposed model

an be divided into three parts: fuel consumption cost, port time

ost (waiting and service) and delay cost. We use the empirical

ormula of Yao et al. (2012) to compute the fuel consumption per

ime unit. Their model presents the relation between sailing speed

nd fuel consumption rate by considering the size of the vessel. We

est the empirical model by using the historical fuel consumption

ata of the case shipping company. The results are demonstrated in

ig. 2 . In our numerical experiments, we set the constants in fuel

onsumption function as k 1 = 0 . 004595 and k 2 = 16 . 42 . Fuel con-

umption and port time cost is directly related to the fuel price. As

entioned before, international regulations limit the use of high

ulfur fuels near ports. According to the data obtained from the

hipping company, their vessels consume two types of fuel with

ifferent sulfur contents. The fuel consumed at ports (low sulfur
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Table 1 

An existing schedule of the shipping company with 16 ports. 

Port Distance Arrival Service start Departure Port time (hours) Weight of port 

P0 – – – 18/09/15 23:00 

P1 40 19/09/15 02:00 19/09/15 02:00 19/09/15 13:00 11 .0 7 

P2 125 19/09/15 22:30 19/09/15 23:00 20/09/15 08:00 9 .0 2 

P3 190 20/09/15 21:30 20/09/15 22:30 21/09/15 15:30 17 .0 9 

P4 1149 25/09/15 02:00 25/09/15 03:30 25/09/15 17:30 14 .0 10 

P5 249 26/09/15 13:00 26/09/15 14:00 27/09/15 0 0:0 0 10 .0 7 

P6 182 27/09/15 13:00 27/09/15 13:00 28/09/15 0 0:0 0 11 .0 8 

P7 97 28/09/15 07:00 28/09/15 08:30 28/09/15 17:30 9 .0 4 

P8 40 28/09/15 20:45 28/09/15 22:00 29/09/15 04:30 6 .5 3 

P9 50 29/09/15 08:30 29/09/15 09:30 29/09/15 16:30 7 .0 7 

P10 112 30/09/15 01:00 30/09/15 01:00 30/09/15 13:30 12 .5 8 

P11 136 01/10/15 0 0:0 0 01/10/15 01:00 01/10/15 11:30 10 .5 2 

P12 966 04/10/15 17:15 04/10/15 18:00 05/10/15 01:00 7 .0 5 

P13 416 06/10/15 10:00 06/10/15 11:30 07/10/15 01:00 13 .5 3 

P14 190 07/10/15 14:30 07/10/15 15:00 08/10/15 00:30 9 .5 1 

P15 125 08/10/15 09:30 08/10/15 10:00 08/10/15 16:00 6 .0 9 

Table 2 

An existing schedule of the shipping company with 11 ports. 

Port Distance Arrival Service start Departure Port time (hours) Weight of port 

P0 – – – 22/01/15 08:30 

P1 116 22/01/15 16:00 22/01/15 17:05 23/01/15 10:30 17 .5 3 

P2 410 24/01/15 10:00 24/01/15 11:30 24/01/15 19:00 7 .5 7 

P3 35 24/01/15 21:30 24/01/15 21:30 25/01/15 09:30 12 .0 5 

P4 1546 29/01/15 07:00 29/01/15 08:00 29/01/15 19:00 11 .0 9 

P5 1681 03/02/15 15:30 03/02/15 18:30 04/02/15 18:00 23 .5 3 

P6 537 06/02/15 07:00 06/02/15 07:00 07/02/15 04:00 21 .0 8 

P7 142 07/02/15 13:00 07/02/15 14:00 07/02/15 23:00 9 .0 6 

P8 617 09/02/15 07:30 09/02/15 07:30 09/02/15 21:30 14 .0 10 

P9 143 10/02/15 07:00 10/02/15 07:30 11/02/15 01:00 17 .5 4 

P10 180 11/02/15 13:00 11/02/15 13:30 11/02/15 21:30 8 .0 1 

Table 3 

An existing schedule of the shipping company with 8 ports. 

Port Distance Arrival Service start Departure Port time (hours) Weight of port 

P0 – – 04/01/15 05:30 

P1 430 05/01/15 06:30 05/01/15 09:30 06/01/15 10:00 24 .5 4 

P2 593 07/02/15 21:00 07/01/15 21:00 08/01/15 00:30 3 .5 3 

P3 90 08/01/15 05:30 08/01/15 06:00 08/01/15 19:00 13 .0 6 

P4 484 10/01/15 05:00 10/01/15 08:00 10/01/15 17:30 9 .5 5 

P5 435 11/01/15 20:30 11/01/15 21:30 12/01/15 09:00 11 .5 10 

P6 100 12/01/15 15:30 12/01/15 15:30 12/01/15 19:30 4 .0 2 

P7 625 14/01/15 14:00 14/01/15 14:00 14/01/15 23:00 9 .0 7 

Fig. 2. Comparison of actual and estimated fuel consumption. 
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uel) is more expensive than the one consumed during sailing (in-

ermediate sulfur fuel). We refer readers to Bunkerworld (2016) ’s

eb site for the price relationship between various fuel types. In

ur experiments, fuel prices are set by considering the average

rices charged to the liner shipping company. The price of fuel

sed in the ports and during sailing are set to r p = 380 dollars

er ton and r s = 185 dollars per ton, respectively. To measure the

mpact of waiting, we apply sensitivity analysis with respect to the

aiting cost. Waiting cost per hour is directly related to the price

f fuel consumed at the ports. According to the information ob-

ained from the shipping company, a vessel consumes 2.0 tons per

ay fuel on average while waiting at a port which approximately

orresponds to 31 dollars per hour. Considering this information,

e apply sensitivity analysis with respect to the waiting cost se-

ected as ϕ ∈ [30 dollars, 50 dollars]. 

On the other hand, it is difficult to estimate the monetary value

f delay penalty since it is also related to the loss of customer

oodwill. Since customers served in each port are different, our

elay penalty for each port is also different. We define weights for

ach port to show the importance of that port. As the real data
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Table 4 

Upper bound on the optimality gap. 

Instances Discrete DM Deterministic model Relative gap 

n δ ϕ UB LB (UB – LB)/LB (%) 

8 50 30 51,328 50,779 1.08 

50 53,247 52,699 1.04 

100 30 51,548 50,779 1.52 

50 53,468 52,699 1.46 

11 50 30 100,579 10 0,0 0 0 0.58 

50 103,998 103,427 0.55 

100 30 101,807 100,303 1.50 

50 105,228 103,723 1.45 

16 50 30 73,834 72,402 1.98 

50 77,807 76,372 1.88 

100 30 74,687 72,405 3.15 

50 78,661 76,375 2.99 
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is not available, we generate these weights randomly between 1

and 10; 1 being the lowest and 10 being the highest priority. The

weights of the ports are given at the last column in Tables 1 and 2 .

Let κ i be the weight of port i . Then, the delay penalty of port i is

given by θi = κi δ, where δ can be defined as the delay coefficient.

Since we do not have liner data regarding delay penalty, we set δ
to [50, 100] to represent low and high penalty values. This leads

delay cost to change between 50 dollars and 10 0 0 dollars per hour

( Qi & Song, 2012 ). 

Another important parameter that affects the speed policy is

the time window. The schedule of the vessel is planned with re-

spect to the available time slots of the ports. These time win-

dows are defined according to the contractual agreements with

customers and ports. To test the performances of our models, we

define two values for the width of time window t w ∈ [3 , 6] corre-

sponding to tight and loose window. In our experiments, time win-

dow of each port is extracted from the real data of the shipping

company. The starting time ( αi ) of the time window is set to the

service start time at port i and the latest service start time is com-

puted as βi = αi + t w . Lastly, we assume that sailing speed ranges

from 12.5 knots to 19.5 knots ( Yao et al., 2012 ). To implement dy-

namic programing, we discretize time by an interval of 5 minutes.

We present detailed results on the effect of discretization in sup-

plementary document. For our experiments, we used a computer

with 1.8 gigahertz Intel Core i5 with 4 processors and 8 gigabytes

of RAM. The solution methods are coded in MATLAB 8.2.0 and run

under Windows 8.1 operating system. 

6.2. Results analysis 

As discussed before, the optimal objective values of the de-

terministic model and the discretized dynamic programing model

provide lower and upper bounds for the continuous model, respec-

tively. We compare the percentage gaps between these lower and

upper bounds in Table 4 . We use UB and LB to denote the upper

and lower bounds provided by the discretized dynamic model and

the deterministic model, respectively. The first three columns indi-

cate the characteristics of the test instances. The next two columns

give the optimal objective values of dynamic and deterministic

models. The last column presents the percentage gap between the

objective function values of these two bounding models. Our aim

is to measure the effects of delay and waiting costs on the tight-

ness of these bounds. In this experiment, we set the range between

the upper and lower bounds on the service time to 6 hours and to

emphasize the effect of the delays, we set the width of the time

window to 3 hours. 

The first observation from the results in Table 4 is that the op-

timality gap is less than 4.0%. The results show that the relative

differences are mostly affected by the delay penalties. As delay
enalty increases, optimal objective value of the dynamic model

ncreases significantly. In our problem setting, we assume that

elays are resulted from the uncertainty of port times. In other

ords, more variation in port times increases the probability of de-

ays. Dynamic model considers all possible realizations of the port

imes and hence, it is sensitive to cost parameters. On the other

and, deterministic model computes the optimal sailing speeds by

nly considering the expected port times. Therefore, it is slightly

ffected by the changes in delay penalty. Consequently, the per-

entage gap tends to increase with the delay penalty. Regarding

he impact of the problem size, we have not observed any correla-

ion between the number of ports visited and the percentage gap.

e conjecture that the percentage gap is significantly affected by

he problem structure. When we examine the test problems with

1 and 16 ports, we see that the distance between ports is shorter

n 16 port test. Since dynamic model considers the uncertainty in

he problem, it can estimate the effects of delays in shorter dis-

ances better than the deterministic model. 

In the next experiment, we test the effect of delay penalty on

he speed decision. We use the shipping data given in Table 3 and

et the width of the time window to 3 hours and waiting time to

0 dollars per hour. To observe the cumulative effect of the delay,

e set the service time realizations of ports P1 and P2 to the upper

ound on their service time. The service times of the remaining

orts are set to their expected values. The realization of port ser-

ice time for this experiment is given as {30.5, 9.5, 16, 12.5, 14.5, 7,

2} for ports P1 to P7, respectively. In this experiment, we analyze

he reaction of the dynamic model to this long port time. Table 5

resents the results of this experiment. The first column corre-

pond to the delay penalty parameter. The next columns present

he resulting delay time (in hours) and sailing speeds according to

he port time realization. The first observation we made is that the

peed decision is significantly affected by the delay penalty. When

elay penalty is high, vessel is only late at port P3. This delay is re-

ulted from the long port time in P1 and P2. When delay penalty is

ow, vessel arrives at ports P3 and P6 later than the time windows.

oreover, we observe that sailing speed decision depends on the

uel consumption cost and the penalty paid for being late. When

elay penalty is low, sailing at slow speed and arriving late to ports

an be more cost effective than sailing at high speed. This behavior

an be attributed to the impact of port weights. As mentioned be-

ore, each port has different delay penalty and these penalties are

omputed with respect to the port weights. Weight of port P6 is

 while the maximum weight is 10 and hence, the vessel prefers

o arrive later than the time window instead of sailing at higher

peed. We can deduce from this result that in unexpected events,

eing late to some ports can be less costly. 

.3. Simulation results 

In this section, we test the performances of dynamic and de-

erministic models. We also provide a sensitivity analysis with re-

pect to various problem parameters. For our analysis, we generate

nother speed strategy based on a heuristic method. This heuris-

ic method aims at maximizing service level by avoiding delays. It

omputes the sailing speed in such a way that the vessel arrives

t ports at the middle of respective time windows. On the other

and, to improve the performance of deterministic model, we re-

ne its speed policy during the simulation. In our simulation ex-

eriments, we estimate the expected total costs of these models

y simulating the service time realizations over 250 sample paths.

e use common random numbers when simulating the perfor-

ances of the different solution methods. In the sequel, we refer to

he average costs obtained by the optimal policy of the discretized

ynamic model, deterministic model and the heuristic method as

DM, DTM and HM, respectively. 
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Table 5 

Analysis on delay penalty and waiting cost. 

Instances Delay time (hours)/ Port index 

δ speed (knots) P1 P2 P3 P4 P5 P6 P7 

50 Delay – – 3.83 – – 0.38 –

v i 15.35 19.33 19.29 17.23 17.23 17.66 16.00 

100 Delay – – 3.58 – – – –

v i 15.35 19.50 19.29 17.34 17.40 16.66 15.82 

Table 6 

Simulation results over 250 runs. 

Instances DDM DTM HM % gap with DDM 

n t w δ ϕ Mean Std dev Mean Std dev Mean Std dev DTM (%) HM (%) 

8 3 50 30 51,424 1260 52,072 1583 52,315 1528 1 .26 1 .73 

50 50 53,356 1350 54,031 1650 54,246 1614 1 .27 1 .67 

100 30 51,640 1382 53,005 2459 52,845 1995 2 .64 2 .33 

100 50 53,572 1469 54,963 2521 54,776 2074 2 .60 2 .25 

6 50 30 50,484 1079 51,088 1716 51,913 1403 1 .20 2 .83 

50 50 52,416 1169 53,028 1791 53,845 1490 1 .17 2 .73 

100 30 50,549 1094 52,198 3081 52,156 1715 3 .26 3 .17 

100 50 52,481 1184 54,137 3151 54,088 1795 3 .16 3 .06 

11 3 50 30 10 0,80 0 1799 102,666 2601 103,207 2182 1 .85 2 .39 

50 50 104,228 1890 106,134 2663 106,636 2270 1 .82 2 .31 

100 30 102,124 2698 105,374 4889 105,906 3866 3 .18 3 .70 

100 50 105,553 2781 108,843 4947 109,335 3945 3 .11 3 .58 

6 50 30 98,931 1312 101,0 0 0 2662 101,629 1734 2 .09 2 .73 

50 50 102,361 1408 104,453 2732 105,058 1824 2 .04 2 .64 

100 30 99,392 1531 103,184 4724 103,124 3015 3 .81 3 .75 

100 50 102,821 1623 106,637 4790 106,552 3094 3 .71 3 .63 

16 3 50 30 73,941 1856 77,085 4594 76,742 3712 4 .25 3 .79 

50 50 77,916 1958 81,132 4662 80,713 3798 4 .13 3 .59 

100 30 74,830 2915 81,386 8871 79,804 7010 8 .76 6 .65 

100 50 78,806 30 0 0 85,426 8991 83,775 7084 8 .40 6 .31 

6 50 30 72,548 1204 74,992 3736 75,513 3113 3 .37 4 .09 

50 50 76,521 1317 79,011 3808 79,484 3200 3 .25 3 .87 

100 30 72,748 1471 77,989 7203 77,576 5826 7 .20 6 .64 

100 50 76,722 1573 82,068 7306 81,547 5897 6 .96 6 .29 
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Table 6 presents average costs over all simulation runs for vary-

ng factors. In this experiment, we set the range between the upper

nd lower bounds on the service time to 6 hours. We aim to com-

are the performances of speed optimization methods with respect

o width of time windows, delay, waiting cost and size of the prob-

em. The total cost obtained by DDM is used as a base approach

o report the relative performances of the solution methods. It is

alidated that the percent gaps between the total expected costs

btained by DDM and the remaining solutions methods are statis-

ically significant at 99% level. The details of ANOVA and the post-

oc analyses are presented in supplementary document. 

Comparing the percentage gaps in Table 6 , we observe that the

ynamic model constantly outperforms the other solution strate-

ies. Moreover, the performance gaps between DDM and the re-

aining solution methods are statistically significant across all

roblems instances with 8, 11 and 16 ports, respectively (see Ta-

les B.6–B.8 in supplementary document). When we look into DTM

nd HM, we observe that performance of DTM is better for low de-

ay penalty. The performance of deterministic model deteriorates

s the delay penalty increases. The speed decision of deterministic

odel is static and it does not change with the realization of port

ime. Therefore, delay in one port leads to delays in the successive

orts. On the other hand, heuristic method aims to avoid delays

nd hence, its speed policy is advantageous for high delay penalty.

s it is seen in Table 6 , DTM performs worse than HM in almost

ll instances when the delay penalty is high. We caution the reader

hat the performances of DTM and HM deteriorate when the prob-

em size is large. As we mentioned before, uncertainty in the prob-

em increases with the number of ports. Therefore, DDM performs

ignificantly better than the other methods. 
b  
Next, we apply sensitivity analysis with respect to the uncer-

ainty in port times and analyze its effect on delay and sailing

peed. In this experiment, we compare the speed policy of dy-

amic and deterministic model with respect to service time un-

ertainty. We set waiting cost to 30 dollars per hour and time

indow length to 3 hours. We test the models by setting the

ange between upper and lower bound values of the service time

= u i − l i as 6 and 10. Fig. 3 illustrates the trend in average de-

ay and sailing speed. In this figure, the horizontal axes correspond

o the test instances denoted by ( n , 	, δ). As delay penalty coeffi-

ient δ increases, optimal policies of the dynamic and deterministic

odel impose to sail at high speed so that the overall delay cost is

inimized. We can observe this result by comparing Fig. 3 (a) and

b). The effect of delay penalty is more significant when the varia-

ion at port service time is high and problem size is large. An inter-

sting result is that the average sailing speed of the deterministic

odel is generally higher than the one in dynamic model. Average

ailing speeds of these models are closer as the variation in the

ervice time decreases. Although the deterministic model imposes

 higher sailing speed than the dynamic model, the delay resulted

rom its speed policy is higher than the delay resulted from the

ynamic speed policy. 

.4. Bunkering problem results 

In this section, we test the bunkering policy of dynamic model

resented in Section 5 . We consider the liner service given in

able 2 . The vessel is allowed to bunker at all ports along the ser-

ice. Moreover, it may detour to other ports that provide cheaper

unker. The alternative bunkering port information is given in
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Fig. 3. Analysis on delay and sailing speed. 

Table 7 

Alternative bunkering ports. 

Alternative Distances (nautical miles) 

Bunkering ports P0 P1 P4 P5 

A1 225 100 – –

A2 – – 200 1600 
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Table 7 . In this experiment, we assume that alternative bunker

ports do not have any time windows. We set the average bunker-

ing time to 3 hours and the bunker prices in port B1 and B2 to 150

dollars and 125 dollars, respectively. We assume that bunker prices

at the scheduled ports gradually decrease and increase along the

service route (see Table 8 ). In this study, we look into details of

the optimal speed and bunkering decisions. In particular, we ana-

lyze the effect of port time windows, delay cost and bunker price

on these decisions. 

We first study the effect of port time windows and delay cost.

Although detour for bunkering is an effective way to reduce fuel

cost, it may delay the planned arrival time for the scheduled ports.

In this experiment, we analyze the bunkering decision with re-

spect to different delay cost and time window parameters. We

set the waiting cost to 30 dollars per hour and initial bunker in-

ventory to 50 tons. Tables 8 and 9 show optimal bunkering and

speed decisions for tight and wide time windows, respectively. As
Table 8 

Optimal bunkering and speed decision with respect to low

Port Bunker price Low delay cost 

(dollars per ton) Bunkering Sai

amount (tons) (kn

P0 300 18.

A1 150 204 19.

P1 275 19.

P2 250 17.5

P3 225 17.3

P4 200 15.

A2 125 306 16.

P5 175 15.

P6 200 15.

P7 225 17.3

P8 250 14.

P9 375 14.

P10 300 –

Total bunkering 68,850 

Cost 
een from these tables, vessel generally detours to reduce fuel cost.

hen the delay penalty is low, detour for bunkering is more cost

ffective even if it increases the total traveled distance. We can

bserve this result by comparing the total bunkering cost. It is

mportant to note that the total bunkering amounts in low and

igh delay penalty cases are different due to the additional dis-

ance covered during detour. Moreover, vessel increases its speed

ollowing the detour to prevent the delays. This result shows that

lthough detour leads to additional bunker cost, it may decrease

he total bunkering cost of the service. By comparing Tables 8 and

 , we observe that the total bunkering cost is lower in wide time

indow case. Wide time windows allow a vessel to sail at slower

peed and hence, total required bunker amount for the service

ecreases. 

We next study the effect of bunker prices on the sailing speed

nd detour decisions. We set the width of the time window to

 hours and delay parameter to 100 dollars per hour. We con-

ider two scenarios corresponding to low and high bunker prices.

hile in the first scenario bunker prices are closer, the differ-

nces are more significant in the high bunker price scenario. Op-

imal bunkering and speed decisions are presented in Table 10 .

hen bunker prices are high, detour is more cost efficient even

or high delay penalty. On the other hand, when bunker prices are

loser, detour for bunkering may not cover the additional bunker

ost due to detouring and cost of delay. Therefore, vessel may pre-

er to bunker at her planned schedule. These results indicate that
 and high delay cost ( t w = 3 ). 

High delay cost 

ling speed Bunkering Sailing speed 

ots) amount (tons) (knots) 

75 13.64 

33 

07 15.47 

0 17.50 

7 142 16.02 

38 18 15.38 

24 306 16.24 

13 15.13 

77 15.77 

8 17.38 

30 14.30 

40 14.40 

–

73,800 
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Table 9 

Optimal bunkering and speed decision with respect to low and high delay cost ( t w = 6 ). 

Port Bunker price Low delay cost High delay cost 

(dollars per ton) Bunkering Sailing speed Bunkering Sailing speed 

amount (tons) (knots) amount (tons) (knots) 

P0 300 18.75 13.64 

A1 150 200 19.33 

P1 275 19.07 15.47 

P2 250 17.50 17.50 

P3 225 16.80 140 15.61 

P4 200 14.81 18 15.38 

A2 125 306 16.24 305 16.09 

P5 175 15.79 15.79 

P6 200 15.77 15.77 

P7 225 16.90 16.90 

P8 250 14.30 14.30 

P9 375 14.40 14.40 

P10 300 – –

Total bunkering 68,250 73,225 

Cost 

Table 10 

Optimal bunkering and speed decision at different bunker price. 

Port Low bunker price High bunker price 

Bunker Bunkering Sailing speed Bunker Bunkering Sailing speed 

price (dollars per ton) amount (tons) (knots) price ( dollars per ton) amount (tons) (knots) 

P0 240 13.64 600 18.75 

A1 120 300 204 19.32 

P1 220 15.47 550 19.07 

P2 200 17.50 500 17.50 

P3 180 142 16.02 450 17.37 

P4 160 18 15.38 400 15.38 

A2 100 306 16.24 250 306 16.24 

P5 140 15.13 350 15.12 

P6 160 15.77 400 15.77 

P7 180 17.38 450 17.38 

P8 200 14.30 500 14.30 

P9 220 14.40 550 14.40 

P10 240 – 600 –
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elay penalty should be determined by considering the variation in

uel prices. Assigning high delay penalty to a port forces vessel to

rrive within the time window, which may increase the fuel con-

umption cost significantly. On the other hand, assigning low delay

enalty may result in arriving much later than the time window of

mportant ports, which leads to high operational costs and dam-

ges the reliability of liner company. Moreover, bunker decision is

irectly related to bunker prices which also affect the service route

nd sailing speed. 

. Conclusion 

In this paper we addressed the speed optimization and bunker-

ng problem in liner shipping. We first focus on the stochastic

peed optimization problem. Despite the fact that vessel schedul-

ng and routing has been well studied in recent years, stochastic

spects of the problem has not explicitly been considered in the

iterature. This paper aimed to fill this gap. By considering the

ncertain port times, we formulated the problem as a dynamic

rogram. The proposed model incorporates possible costs resulted

rom waiting and delay in ports, and take the port service times

nto consideration when making speed decisions. To implement

he dynamic model, we discretize the state space, which provides

n upper bound on the optimal expected cost. We also formu-

ate a deterministic model by assuming that the stochastic port

imes take on their expected values and we show that this model

rovides a lower bound on the optimal expected cost. In practi-

al implementations, these lower and upper bounds designate the
stimated minimum and maximum total cost of a vessel service.

e also study the properties of the optimal value functions and

nvestigate the variation of sailing speed with respect to the vessel

rrival time. 

Fuel consumption cost is one of the major operational costs of

iner companies. Sailing speed and bunker prices have direct im-

act on this cost. Therefore, in the second part of the paper, we

tudy the relationship between sailing speed and bunkering. We

ainly focus on where to bunker, how much to bunker and deter-

ining the vessel speed at each leg along the service route. We de-

elop a dynamic programing model for joint bunkering and speed

ptimization problem. Different than the proposed bunkering mod-

ls in the literature, our formulation allows a vessel to bunker at

he ports that are not on the planned service route. The aim of

he proposed model is to plan the bunkering operation. In other

ords, optimal solution of this model can be used to decide on the

unkering ports, average bunkering quantity required to complete

he service and the average sailing speed. Since bunker contracts

re set before the vessel departs for a voyage, our model is formu-

ated by considering the expected service times. However, stochas-

ic dynamic model proposed in Section 3 can be used to assign the

ailing speed to the next port if vessel deviates from the planned

chedule. 

We conduct a computational study by using real-life cases from

 liner shipping company. We test the performances of the pro-

osed speed optimization and bunkering models. The numerical

xperiments for the stochastic speed optimization problem demon-

trate that determining sailing speed by taking into account the
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uncertain port times can bring significant cost improvements. This

result is consistent with the real life examples. As Notteboom

(2006) stated, fast growth in cargo volumes has increased the

possibility of port congestion. Planning the service schedule only

based on the expected port times can disrupt the whole liner

service schedule. Therefore, sailing speeds and port arrival times

should be computed by considering the uncertainties at ports to

mitigate associated risks. 

Our computational study also provides a number of useful prac-

tical insights. Many studies in maritime literature restrict vessels

to arrive within the time window and compute the optimal sail-

ing speed by only considering the fuel consumption cost. How-

ever, delays are very common in real-life cases as reported by

Vernimmen et al. (2007) . Our numerical experiments indicate that

sailing speed is significantly affected by the delay penalty. Even

waiting cost can influence on the speed decision. Due to uncer-

tainties in ports, a vessel can prefer to sail at high speeds to avoid

delays or sail at slow speed to arrive late at some ports in or-

der to avoid arriving early to following ports. Thus, ship operators

are likely to see clear benefits when making decisions consider-

ing both cost types. On the other hand, our numerical results for

bunkering problem show that bunkering amount and ports should

be determined by considering the planned schedule of vessel, de-

lay cost and bunker prices. For tight schedules, it can be more

cost effective to bunker at ports on the planned schedule of a ves-

sel, even if the fuel prices at the alternative bunkering ports are

cheaper. Moreover, delay penalty significantly affects the bunker-

ing port selection. Therefore, delay penalty parameter should be

assigned by considering the bunker prices. We also analyze the im-

plications of bunker prices on the speed decision. Our results show

that bunkering port and quantity decisions are directly related

to bunker prices which also affect the service route and sailing

speed. When bunker prices are closer at all ports, vessel may not

prefer detour for bunkering due to the additional bunker cost of

detouring. 

There are a number of research directions to pursue. Although

we focus on the uncertainties in liner shipping, we assume that

weather does not affect the speed decision. Further research is

needed to develop new models and solution methods that avoid

this assumption. This line of research can benefit from the studies

proposed for weather routing. Another future research direction is

to incorporate port swapping and port skipping options. In practi-

cal applications, ship operators can deal with delays by reshuffling

the order of ports or skip some ports. Even there are cases that a

vessel can leave the port before completing its service to avoid de-

lay to next ports. A promising direction of future research would

be to model these decisions as a dynamic program by considering

the uncertainties along the journey. 
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