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Abstract— A minimum variance filter for a class of discrete
time systems with additive as well as multiplicative noise is
investigated in this paper. We extend the results from recent
work by Ponomareva and Date to account for multiplicative
noise in the measurement equation. More importantly, we
provide an interpretation of the multiplicative noise in both
transition and measurement equations in terms of parameter
perturbations in a linear additive model. The utility of the
proposed filtering algorithm is demonstrated through numerical
simulation experiments using models from academic literature
where the parameters are estimated from real data.

I. INTRODUCTION

Estimation and filtering in noise is an important problem
in many practical areas, including economics, tracking,
weather forecasting, navigation systems, control and signal
processing. The additive noise state space model has received
much attention in the filtering literature (see, for instance,
[1], [2], [3], [4]). On the other hand, in many practical
systems we need to consider the noise component to be
both multiplicative and additive to the signal component.
Compared to the additive noise case, the corresponding
filtering problem for systems with multiplicative noise
has gained somewhat less attention. Multiplicative noise
has been observed in many applications in sciences and
engineering such as signal processing systems, chemistry,
economics, biological movement and ecology; see [5], [6],
[7], [8] and references therein. The second order statistics
of the multiplicative noise, in contrast to the case of the
additive noise, is unknown a priori. However, multiplicative
noise model can be used to model the stochastic uncertainty
in the system parameters which are estimated from data,
and a demonstration of this fact is one of the contributions
in the paper. In an extended KF, multiplicative noise can
act as a proxy for neglected higher order terms in Taylor
series (since, unlike the additive noise, it does depend on
the state). So far, discrete time filtering problems subject
to multiplicative noise has been studied recently in several
papers. This includes a filtering algorithm which uses linear
matrix inequalities to guarantee that the covariance error
is bounded from above by a specified positive definite
matrix [9], an optimal filter within a class of polynomial
transformations of a fixed degree [10], a linear minimum
mean square estimator (LMMSE) subject to state and
measurement multiplicative noises and Markov jumps in the
parameter vector [11], a robust finite-horizon Kalman filter
[12] and a minimum variance linear filter for a class of
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systems which includes multiplicative noise [13]. In [14], a
new structure of a linear recursive estimator minimizing the
mean square error is derived for a system with multiplicative
noise in the measurement model. The results in [14] were
generalized in [15] to develop a different structure of linear
recursive estimator for a nonzero mean signal corrupted by
multiplicative noise. In [5] the filtering and control problem
under the H∞ criterion has been studied. A similar problem
was considered in [16] for continuous-discrete linear state
space models.

In this paper we consider an extension of Ponomareva and
Date’s work in [13] on filtering in systems with multiplicative
noise. Specifically, we extend the results from [13] to propose
a complete, closed-form solution to the minimum variance
filtering problem for linear systems with multiplicative noise
in both transition and measurement equations and demon-
strate its performance through numerical simulation experi-
ments. The main contribution of the paper is a demonstration
of how filtering under multiplicative noise can act as a proxy
for filtering under parameter uncertainty, which is character-
ized as random perturbations of the state space matrices. A
limited amount of work has been done on minimum variance
filtering under parametric uncertainty, although a related
robust estimation problem under parametric uncertainty has
been recently addressed in [17].

The remaining paper is organized as follows. In section
II, the aforementioned class of systems is described. We
outline the problem and derive its solution in this section. In
section III, the proposed filtering algorithm is demonstrated
by comprehensive numerical examples. Some concluding
remarks given in section IV. Proof of the main theorem in
section II is provided in the Appendix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system dynamics under consideration can be de-
scribed by the following discrete time equation:

X (k + 1) = AX (k) +B + UwW(k) +G1 diag(Xj(k))S1(k),
(1)

while the measurement model is

Y(k) = CX (k) +D + UvV(k) +G2 diag(Xj(k))S2(k).
(2)

Here X (k) ∈ Rn is the state vector at time k, Y(k) ∈ Rr is
the measurement vector at time k and A, B, G1, C, D, G2,
Uw and Uv are given deterministic matrices. For a vector
Z,M = diag(Zj) represents a diagonal matrix with Mjj =
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Zj . W(k) ∈ Rn and V(k) ∈ Rr are the process noise and
the measurement noise, respectively. The random variables
S1(k) ∈ Rn and S2(k) ∈ Rr represent the multiplicative
noise sources. Note that (1) and (2) contain both additive as
well as multiplicative noise. We make two assumptions:

1) The noise signals W(k), V(k), S1(k) and S2(k) are
zero mean, i.i.d. random vectors with identity covari-
ance matrix I.

2) The initial state is a random vector with a known
mean and covariance matrix, E[X (0)] = X̂ (0) and
E[(X (0) − X̂ (0))(X (0) − X̂ (0))>] = P (0) respec-
tively. X (0), W(k), V(k), S1(k) and S2(k) are mutu-
ally independent.

Under the above assumptions, note that one may also treat
S1(k) and S2(k) as zero mean random perturbations in the
system matrices A and C which have covariance matrices
G1G

>
1 and G2G

>
2 respectively. This can be seen by re-

arranging (1) and (2) as

X (k + 1) = (A+G1diag(S1j(k)))X (k) +B + UwW(k),
(3)

Y(k) = (C +G2diag(S2j(k)))X (k) +D + UvV(k). (4)

We will later use this interpretation in the numerical exper-
iments in section III. Assume that the observations up to
time k are given and that approximations of the conditional
mean of X (k) given Y(k), X̂ (k|k), is available. From this
value, the approximated conditional mean of X (k+1), which
provides the predictor, X̂ (k + 1|k), is derived using (1):

X̂ (k + 1|k) = AX̂ (k|k) +B. (5)

The predictor X̂ (k + 1|k) must now be updated with the
information provided by the new measurement, Y(k), to
obtain the filter. The update equation for a linear filter is

X̂ (k + 1|k + 1) =

X̂ (k + 1|k) + K̄(k + 1)(Y(k + 1)− Ŷ(k + 1|k)), (6)

and the covariance matrix is given by

P̄ (k + 1|k + 1) = E[Φ(k + 1)Φ(k + 1)>], (7)

where Φ(k) := X (k + 1) − X̂ (k + 1|k + 1). Our objective
is to find a filter gain K̄(k + 1) that would minimize the
trace of the covariance P̄ (k + 1|k + 1) of the state estimate
X̂ (k + 1|k + 1) and obtain an expression for the optimum
filter. Our main result in this section, which is an extension
of the corresponding result from [13], is given in the next
theorem.

Theorem 1: For system (1)- (2) with assumptions 1-2, the
filter gain K̄(k+1) that minimizes the trace of the covariance
P̄ (k + 1|k + 1) is given by

K̄(k + 1) = P̄ (k + 1|k)C>[CP̄ (k + 1|k)C> + UvU
>
v +

G2(diag (P̄jj(k|k) + (X̂j(k|k))2))G>2 ]−1 (8)

where

P̄ (k + 1|k) = AP̄ (k|k)A> + UwU
>
w +

G1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>1 . (9)

Proof: See Appendix.

Remark 1: If G2 = 0, our filter reduces to a special case
of the filter with state multiplicative noise only, which was
discussed earlier in [13], with γ = 1 in the authors’ notation
in that paper. If, in addition, G1 = 0 i.e. if there is no
multiplicative noise either in the transition equation or in
the measurement equation, our filter reduces to the Kalman
filter for the linear additive noise case.

III. NUMERICAL EXAMPLES

We consider two numerical examples in this section. In
both the cases, the parameters of the state space model under
consideration are estimated from real data in the literature.
The purpose of these examples is to demonstrate how one
can use the information about randomness in the parameters
estimated from data (e.g., in terms of the asymptotic variance
of the parameter estimates) to design a filter which minimizes
variance relative to the additive noise as well as the noise
introduced by parameter uncertainty.

A. Example 1

In this example, we consider a two factor extension of the
Vasicek interest rate model [18]. The treatment below and
the estimated parameter values are from [19], although the
model has been treated quite extensively in the econometric
and financial literature; see, e.g. [20] and [21] for empirical
studies, among others. The transition equation in the state
space formulation of this model is expressed as the follow-
ing:

[
X1(k + 1)
X2(k + 1)

]
=

[
e−κ1∆t 0

0 e−κ2∆t

]
︸ ︷︷ ︸

A

[
X1(k)
X2(k)

]
+

[
θ1(1− e−κ1∆t)
θ2(1− e−κ2∆t)

]
+

[
W1(k + 1)
W2(k + 1)

]
,

(10)

where W(k+ 1) =
[
W1(k + 1) W2(k + 1)

]>∼N(0,W ),
with

W =

[
σ2
1

2κ1
(1− e−2κ1∆t) 0

0
σ2
2

2κ2
(1− e−2κ2∆t)

]
,



and the measurement equation is:
Y(tk, T1)
Y(tk, T2)

.

.

.
Y1(tk, Tm)

=



F1(tk,T1)
T1−tk

F2(tk,T1)
T1−tk

F1(tk,T2)
T2−tk

F2(tk,T2)
T2−tk

. .

. .

. .
F1(tk,Tm)
Tm−tk

F2(tk,Tm)
Tm−tk


︸ ︷︷ ︸

C

[
X1(k)
X2(k)

]

+



−E1(tk,T1)
T1−tk

−E1(tk,T2)
T2−tk
.
.
.

−E1(tk,Tm)
Tm−tk


+


V1(k)
V2(k)
.
.
.

Vm(k)

 ,

where

E(t, T ) =

2∑
i=1

(κ2
i (θi − σiλi

κi
)− σ2

i

2 )(Fi(t, T )− (T − t))
κ2
i

− σ2
i F

2
i (t, T )

4κi
,

and

Fi(t, T ) =
1

κi
(1− e−κi(T−t)), i = 1, 2.

Here, κi, σi, λi and θi, i = 1, 2 are model parameters. For
the example from [19] considered here, m = 6. Vi(k) ∼
N(0, H) are noise variables and H = diag(h2

1, h
2
2, ..., h

2
m),

where hi are positive constants. In practice, equation (10) is
the two factor short rate model, while each Y(tk, Ti) denotes
the yield at time tk for maturity Ti. The parameters used in
our simulation are the same as those estimated from real data
in [19]. These are listed in Table I; see [19] for the exact
details of the data set, parameter estimation procedure etc. As
the parameters are obtained from data, one has an estimate
of the standard error in each parameter. We consider a small,
zero mean, normally distributed perturbation in the nominal
values of κ1 and κ2, with a standard deviation of β = 5%
of nominal value of each of the two parameters. Matrices
G1 and G2 are then computed to reflect the element-wise
uncertainties introduced in matrices A and C respectively,
using Monte Carlo simulation. This experiment is then
repeated for a changed standard deviation of β = 10% and
β = 15% of the nominal values for both the parameters.

The initial conditions as in [19] are used:
X (0) =

[
0.015 0.025

]>
, X̂ (0) =

[
0.02 0.02

]>
and

P (0) = 5× 10−3

[
1 0
0 1

]
.

Our goal in this section is to see whether a small uncer-
tainty or a small random perturbation in the parameter values
has an impact on the filtering performance. We will compare
the KF (which ignores the parameter uncertainty) with the
filter proposed in this paper (called MKF in the tables in
this section) which encapsulates the parameter uncertainty
in terms of multiplicative noise, via G1 and G2 matrices. In

TABLE I
ESTIMATED PARAMETERS FOR VASICEK MODEL

Parameters κ1 θ1 σ1 λ1 κ2

Values 0.7030 0.0056 0.0321 -0.4591 0.0255
Parameters θ2 σ2 λ2 h1 h2

Values 0.0035 0.0142 -0.2652 0.0009 0.0012
Parameters h3 h4 h5 h6

Values 0.0013 0.0007 0.0009 0.0010

order to compare the performance of the estimators, we use
the root mean square error (RMSE) criterion. Consider 100
independent simulations, each with 200 data points. Denoting
X (s)(k), k = 1, ..., 200 as the sth set of true values of the
state, and X̂ (s)(k|k) as the filtered state estimate at time k
for the sth simulation run, the RMSE of the filter for each
of the algorithms is calculated by

RMSEi(s) =

√√√√ 1

200

200∑
k=1

(X (s)
i (k)− X̂ (s)

i (k|k))2,

i = 1, 2, s = 1, ..., 100.

Then the average of RMSE for each of the states over 100
simulations is given by

AvRMSEi =
1

100

100∑
s=1

RMSEi(s), i = 1, 2,

The results for the three different levels of perturbations,
β = 5%, β = 10% and β = 15%, are summarised
in the table II. Recall that each of the parameters κ1, κ2

are perturbed by normally distributed random noise with
zero mean and a standard deviation equal to β times their
respective nominal values, to generate G1, G2 matrices in the
state space equations using Monte Carlo simulation. As can
be seen, the modified filter, i.e. the MKF has a significantly
smaller AvRMSE than the KF, for both the states and for
all the three levels of parameter perturbations. The RMSE
values of KF are very high and are equal within four decimal
places, for all three perturbation levels.

TABLE II
COMPARISON OF AvRMSE1 AND AvRMSE2 FOR KF AND MKF

FOR DIFFERENT LEVELS OF PERTURBATIONS β

Level of perturbations β = 0.05 β = 0.10 β = 0.15

AvRMSE1 KF 1.3705 1.3705 1.3705
MKF 0.1075 0.1469 0.1544

AvRMSE2 KF 1.0811 1.0811 1.0811
MKF 0.2368 0.2725 0.2785

B. Example 2

As another example with parameters estimated from real
life data, consider a discrete-time system (1)-(2) with the
following parameter specification:

A = ρ

[
cos(λ) sin(λ)
sin(λ) cos(λ)

]
, C =

[
1 1

]
,



U2
w = 214 and U2

v = 1593. ρ and λ are random variables
with means ρ̂ = 0.4 and λ̂ = 0.41. The dynamics and the
chosen parameter values (with G1 = 0 and G2 = 0) are
used in ([22], chapter 2) as a time series model of rainfall
in north-east Brazil. As the previous subsection, we allocate
normally distributed random perturbations to λ and ρ with
zero mean and β times the nominal values as the standard
deviation. Three different values of β are used as in the
previous case; β = 5%, β = 10% and β = 15%. The
perturbation matrix G1 is computed in each case via Monte
Carlo simulation. G2 in this case is zero since there is no
uncertainty in C =

[
1 1

]
. The initial conditions are:

X (0) =
[

0 1
]>

, X̂ (0) =
[

0 0
]>

and

P (0) =

[
1 0
0 1

]
.

Similar to the previous subsection, the RMSE of the filter
for each of the two algorithms is calculated by

RMSE(s) =

√√√√ 1

200

200∑
k=1

(

2∑
i=1

X (s)
i (k)−

2∑
i=1

X̂ (s)
i (k|k))2,

s = 1, ..., 100,

Note that the error in this case is the difference between the
‘true rainfall’ generated by the model and the one step ahead
rainfall prediction by the filter. The average of RMSE over
100 simulations is given by

AvRMSE =
1

100

100∑
s=1

RMSE(s).

Table III summarises the results of this numerical exper-
iments. As can be seen, the proposed filtering algorithm
clearly outperforms the KF, which ignores the parameter
uncertainties. This is in keeping with the theoretical results
and is consistent with our previous example.

TABLE III
COMPARISON OF AvRMSE FOR KF AND MKF FOR DIFFERENT

LEVELS OF PERTURBATIONS β

Level of perturbations β = 0.05 β = 0.10 β = 0.15

AvRMSE KF 6.3097 6.3697 6.5014
MKF 5.0106 5.4468 5.8086

IV. CONCLUSION

In this paper, the optimal linear minimum variance filter is
discussed for a class of discrete time systems with additive
as well as multiplicative noise. The closed form solution
generalizes the results for minimum variance filtering for
additive-multiplicative noise case in [13]. We have also
provided a new interpretation of filtering under multiplicative
noise in terms of filtering under parameter perturbations in an
additive noise model. The results of this paper were applied
to two different real data experiments for linear systems with
additive-multiplicative noises. Our numerical experiments
indicate that the proposed filtering algorithm can be used
to improve the filtering performance (as measured by the

estimation error variance), when there is uncertainty in the
estimated model parameters. We are currently investigating
two different research directions: firstly, we are looking at an
application of this algorithm for volatility estimation from
option prices. As the state space models involved in this
application are nonlinear, this would also bring in our second
direction of research, which would involve exploring the use
of this filtering algorithm to generate a prior for a sequential
Monte Carlo filter.

APPENDIX

The filtering estimates of the state covariance is obtained
by combining the equations (1)-(6) as follows. For brevity
of notation, an expression LL> will sometimes be denoted
as (L)(?)>, where L is a matrix-valued expression and
where there is no risk of confusion. The proof below is
a straightforward modification of a similar proof in [13]
and reproduced here for the sake of completeness. The state
covariance matrix at time k + 1 can be written as

P̄ (k + 1|k + 1) = E[(X (k + 1)− X̂ (k + 1|k + 1))(?)>]

= E[((AX (k) + B + UwW(k) + G1 diag(Xj(k))S1(k))

− (AX̂ (k|k) + B + K̄(k + 1)(Y(k + 1)− Ŷ(k + 1|k))(?)>]

= E[A(X (k)− X̂ (k|k))(?)>] + UwU
>
w +

G1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>
1 +

K̄(k + 1)(E[(Y(k + 1)− Ŷ(k + 1|k))(?)>]K̄(k + 1)>−
K̄(k + 1)(E[(A(X (k)− X̂ (k|k)) + UwW(k)+

G1 diag(Xj(k))S1(k))(Y(k + 1)− Ŷ(k + 1|k))>]+

E[(Y(k + 1)− Ŷ(k + 1|k))(A(X (k)− X̂ (k|k))

+ UwW(k) + G1 diag(Xj(k))S1(k))>]) (11)

Next, we need the following covariance term in evaluating
P̄ (k + 1|k + 1):

E[(Y(k + 1)− Ŷ(k + 1|k))(?)>] = CAP̄ (k|k)A>C>+

CUwU
>
wC
> + CG1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>1 C

>

+ UvU
>
v +G2(diag (P̄jj(k|k) + (X̂j(k|k))2))G>2 . (12)

We also need to evaluate some cross covariance terms, whose
expressions are derived next:

E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(Xj(k))S1(k))

(Y(k + 1)− Ŷ(k + 1|k))>]

= E[(A(X (k)− X̂ (k|k)) + UwW(k)+

G1 diag(Xj(k))S1(k))(CAX (k) + CUwW(k)+

CG1 diag(Xj(k))S1(k) + UvV(k)+

G2 diag(Xj(k))S2 − CAX̂ (k|k)))>]

= CE[(A(X (k)− X̂ (k|k))(X (k)− X̂ (k|k))>A>)]+

CUwU
>
w + CG1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>1

= AP̄ (k|k)A>C> + UwU
>
wC
>+

G1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>1 C
>. (13)



Further,

E[(Y(k + 1)− Ŷ(k + 1|k))(A(X (k)− X̂ (k|k)) + UwW(k)

+G1 diag(Xj(k))S1(k))>]

= CAP̄ (k|k)A> + CUwU
>
w +

CG1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>1 . (14)

Substituting (12), (13) and (14) in (11), we have

P̄ (k + 1|k + 1) = AP̄ (k|k)A> + UwU
>
w +

G1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>1

+ K̄(k + 1)(CAP̄ (k|k)A>C> + CUwU
>
wC
>+

CG1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>1 C
> + UvU

>
v +

G2(diag (P̄jj(k|k) + (X̂j(k|k))2))G>2 )K̄(k + 1)>

− 2K̄(k + 1)(AP̄ (k|k)A>C> + UwU
>
wC
>+

G1(diag (P̄jj(k|k) + (X̂j(k|k))2))G>1 C
>)

= P̄ (k + 1|k) + K̄(k + 1)(CP̄ (k + 1|k)C> + UvU
>
v +

G2(diag (P̄jj(k|k) + (X̂j(k|k))2))G>2 )

K̄(k + 1)> − 2K̄(k + 1)P̄ (k + 1|k)C>, (15)

where P̄ (k + 1|k) is as defined in (9). To find the value of
K̄(k + 1) that minimizes the trace of the covariance P̄ (k +
1|k + 1) we differentiate the trace of the above expression
with respect to matrix K̄(k + 1) and set the derivative to
zero.

∂trP̄ (k + |k + 1)

∂K̄(k + 1)
= −2P̄ (k + 1|k)C> + 2K̄(k + 1)

[CP̄ (k + 1|k)C> + UvU
>
v +

G2(diag (P̄jj(k|k) + (X̂j(k|k))2))G>2 ]. (16)

Setting ∂trP̄ (k+|k+1)
∂K̄(k+1)

= 0 leads to

K̄(k + 1) = P̄ (k + 1|k)C>[CP̄ (k + 1|k)C> + UvU
>
v +

G2(diag (P̄jj(k|k) + (X̂j(k|k))2))G>2 ]−1, (17)

which is the required expression.
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