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Abstract

Multiuser multiple input multiple output (MU-MIMO) systems play essential role

in improving throughput performance and link reliability in wireless communications.

This improvement can be achieved by exploiting the spatial domain and without the

need of additional power and bandwidth. In this thesis, three main issues which are

of importance to the data rate transmission have been investigated.

Firstly, antenna selection in MU-MIMO downlink systems has been considered,

where this technique can be efficiently used to reduce the complexity and cost caused

by radio frequency chains, associated with antennas, while keeping most of the diver-

sity advantages of the system. We proposed a transmit antenna selection algorithm

which can select an optimal set of antennas for transmission in descending order

depending on the product of eigenvalues of users’ effective channels. The capacity

achieved by the proposed algorithm is about 99.6% of the capacity of the optimum

search method, with much lower complexity.

Secondly, user selection technology in MU-MIMO downlink systems has been stud-

ied. Based on the QR decomposition, we proposed a greedy suboptimal user selection

algorithm which adopts the product of singular values of users’ effective channels as

a selection metric. The performance achieved by the proposed algorithm is identical

to that of the capacity-based algorithm, with significant reduction in complexity.

Finally, a proportional fairness scheduling algorithm for MU-MIMO downlink sys-

tems has been proposed. By utilising the upper triangular matrix obtained by ap-

plying the QRD on the users’ effective channel matrices, two selection metrics have

been proposed to achieve the scheduling process. The first metric is based on the

maximum entry of the upper triangular matrix, while the second metric is designed

using the ratio between the maximum and minimum entries of the triangular matrix

multiplied by the product of singular values of effective channels. The two metric

provide significant degrees of fairness.

For each of these three issues, a different precoding method has been used in order

to cancel the interuser interference before starting the selection process. This allows

to investigate each precoding design separately and to evaluate the computational

burden required for each design.
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Chapter 1

Introduction

1.1 Problem Statement

Wireless communication plays an essential role in everyday life. Its applications can

be clearly seen in devices like mobile phones, tablets, computers, and so on. More-

over, it becomes indispensable when, for instance, two air planes communicate with

each other or with the ground. However, the main aspects of life are in continuous

change and evolution. In the past few decades, one can see that wireline devises, such

as telephones or faxes, were considered main means in performing business processes.

Conversely, we see the end of these devises is in sight today and they are replaced

by more advanced and reliable means like Emails. Furthermore, the internet has

progressed from wireline to wireless, and from delivering simple data and text mails

to sophisticated web sites for interactive use. The demand for high speed and robust

internet with better access has steadily grown and the appetite for powerful laptops,

smart phones and tablets that have the ability to support multimedia services is in-

creasingly requested by people. This huge growth in the internet and wireless devises

has led to explosion in data traffic worldwide. For example, the number of smart-

phone users in the UK has reached more than 39 millions in 2015 and expected to

reach 45 millions in 2017. Further, the average mobile broadband download speed
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delivered by mobile communications standard has significantly risen from about 6

Mb/s (migabit per second) on the third generation (3G) to 15 Mb/s on the fourth

generation (4G) and is expected to reach several gegabits on 5G. As a result, the

traditional tools and methodologies used for quality evaluation and traffic manage-

ment have to be revisited. In addition, searching for new models and algorithms have

become a matter of importance in order to characterise that big amount of data in

terms of velocity, volume, and variability, while keeping the complexity and cost as

low as possible.

1.2 Motivation

Providing faster and reliable data transmission has drawn big attention in recent

wireless technologies with taking into account the cost and complexity which may

limit of solutions presented in this field. Conducting researches found that the data

bit rate and spectral efficiency is an increasing function with the number of an-

tennas. Subsequently, multiple antenna or multiple-input multiple-output (MIMO)

technology was proposed to increase data bit rate in wireless communication. Many

significant researches have been done on MIMO architecture since mid 1990’s. These

researches have focused on several aspects of wireless communication such as increas-

ing data rate, improving reliability, reducing complexity and cost and so on. Basically,

multiple antenna system means equipping the transmitter and/or the receiver with

multiple antenna elements. These antennas have to be connected with another de-

vices which are the radio frequency components in order to achieve the transmission

process. That means if the transmitter is equipped with M antennas, the number

of complete RF chains must be the same, including M devises of Analog-to-Digital

(A/D) converters which are involved in the design of these chains. Compared to an-

tenna elements, RF chains are considerably expensive. Moreover, deploying more RF

components will increase the power consumption in the system. Scaling up the num-

ber of antennas in MIMO system to improve the performance of wireless transmission

must be accompanied with increasing the number of RF switches, and leading to more

2



expenses and power consumption in the system. To cope with this problem, antenna

selection technology comes to reduce the cost and complexity of MIMO architecture,

while keeping most of its benefits. Considerable algorithms based on technical and

mathematical concepts have been proposed to achieve either transmit or receive an-

tenna selection or joint transmit/receive antenna selection. Our research concerns

with transmit antenna selection (TAS) for MIMO systems.

Another important issue in MIMO systems is the number of simultaneous users that

can be served by BS. In this correspondence, It has been found that the number of

transmit antennas, the number of receive antennas, and the scattering of the channel

play a crucial role in determining the number of users that can be simultaneously

supported in multiple antenna or multiuser MIMO systems (MU-MIMO) [30]. For

example, with a fixed number of transmit antennas at BS, increasing the number of

simultaneous users beyond a particular limit leads to reduce the achievable data rate

in the network. Consequently, the concept of user selection has emerged as a pioneer-

ing technology to improve the average sum rate for MIMO systems with the existence

of a large number of simultaneously supportable users. More specifically, with the

availability of partial or complete knowledge of the channel, the base station can se-

lect the best set of users to communicate with. Based on matrix theory and linear

algebra concepts, several prominent algorithms have been designed to select optimal

set of users under block diagonalization (BD) approach, whereby data streams are

cleared of interference and sent to the terminal users.

Most user selection algorithms are not capable of providing fairness during selection

process. In other words, users with good channel conditions are chosen for com-

munication, while the other users with poor channel conditions will not have the

opportunity to be served. Here lies the importance of proportional fairness (PF)

scheduling as an approach which takes into account fairness among users through se-

lection process. Each selected set is updated with time according to the instantaneous

channel information at BS. In summary, Combining TAS and US technologies as well

as taking into consideration PF scheduling can substantially improve performance

and reduce bit error rate for MU-MIMO systems under BD scheme.
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1.3 Contributions

The thesis contains the following contributions:

• Designing a greedy transmit antenna selection algorithm

We investigate the antenna selection in MU-MIMO downlink systems. We pro-

pose a greedy transmit antenna selection algorithm which aims at reaching the

performance obtained by the exhaustive-search algorithm (optimum method)

but with lower complexity. At each step, the algorithm finds the antenna that

contributes least to the product of eigenvalues of users’ effective channels and

deactivate it. In a descending order, the algorithm repeats until the required

number of antennas is reached. The proposed algorithm uses the iterative pre-

coding design to precancel the inter user interference. The performance, link

reliability, and complexity of the proposed algorithm have been validated and

compared to two other algorithms; the exhaustive search algorithm and the

norm-based algorithm.

• Designing a suboptimal greedy user selection algorithm

We study the user selection for MU-MIMO downlink systems. For high signal-

to-noise (SNR) regime, a suboptimal greedy user selection algorithm has been

proposed. The objective of the proposed algorithm is to achieve the performance

obtained by the capacity-based algorithm with lower complexity. At each itera-

tion, the algorithm selects a user that maximizes the product of singular values

of users’ effective channels. The algorithm repeats until the required number

of users is reached. The product of singular values can be obtained from the

upper triangular matrix after applying the QR decomposition (QRD) opera-

tion on the user’s effective channel. The algorithm designs its precoders using

the Gram-Schmidt Orthogonalization (GSO) operation in order to nullify the

interuser interference. The performance and complexity order of the proposed

algorithm have been analysed and compared to the performance and complexity
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of other suboptimal user selection algorithms and for uncorrelated and highly

correlated channels.

• Designing a proportional fairness scheduling algorithm

We study the proportional fairness (PF) scheduling for MU-MIMO downlink

systems and propose a greedy algorithm for this purpose. With an aim to

achieve a considerable degree of fairness, two selection metrics have been pro-

posed depending on the upper triangular matrix obtained by applying GSO on

the users’ effective channels. The first metric is designed using the maximum

entry of the upper triangular matrix, while the second metric is designed using

the ratio between the maximum and minimum entries of the triangular matrix

multiplied by the product of singular values of effective channels. The proposed

algorithm utilizes the block diagonalization (BD) method to precancel the in-

teruser interference. The performance of the proposed selection metrics has

been validated and compared to other greedy algorithms.

1.4 Publications

Published

1. M. Al-Shuraifi and H. Al-Raweshidy, “ Optimizing antenna selection using lim-

ited CSI for massive MIMO systems,” in Proc. IEEE Fourth International

Conference on Innovative Computing Technology (INTECH), Luton, UK, Aug.

2014.

2. M. Al-Shuraifi and H. Al-Raweshidy, “ Fast antenna selection algorithm for mul-

tiuser MIMO systems under block diagonalization,” in Proc. IEEE Fourth In-

ternational Conference on Future Generation Communication Technology (FGCT),

Luton, UK, July 2015.
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submitted

1. M. Al-Shuraifi and H. Al-Raweshidy, “ Near-optimum transmit antenna selec-

tion algorithm for multiuser MIMO downlink systems,” IEEE Commun. Lett.

, submitted for publication.

2. M. Al-Shuraifi and H. Al-Raweshidy, “ A user selection algorithm for down-

link MU-MIMO systems using product of singular values,” Elseveir journal,

submitted for publication.

1.5 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 gives a brief introductory background of the research work presented in

this thesis. It begins by providing an overview of MIMO system and its main tech-

niques used to transmit data streams from transmitter to receiver. Next, it discusses

the MIMO channel capacity and Shannon equation. The two strategies of power

allocation are presented; the equal power allocation and water filling strategy. Also,

in this context the relation between MIMO channel capacity and the condition num-

ber of its channel is investigated. Then, some linear signal detection methods for

spatial multiplexing MIMO systems are studied. After that, it discusses MU-MIMO

communication and opportunistic beamforming which is an example of exploiting

multiuser diversity to increase the whole system throughput. Finally, it studies lin-

ear transmission in MU-MIMO broadcast channels by providing a brief discussion of

three important precoding methods, by which interuser interference can be perfectly

cancelled.

Chapter 3 studies the transmit antenna selection for MU-MIMO downlink systems. It

begins by providing a brief introduction about the advantages of antenna selection and

the approaches used in this technology. The system model of MU-MIMO downlink is

6



presented, followed by explaining the iterative precoding design used to precancel IUI.

Then, two main concepts used to design the proposed TAS algorithm are described;

angle between two subspaces and intersection of null spaces. After that, the proposed

algorithm is explained, followed by outlining the main operations of the proposed

algorithm. Finally simulation results, which evaluate the performance, reliability and

complexity of the proposed algorithm compared to other algorithms, are provided.

Chapter 4 investigates user selection for MU-MIMO downlink systems. It begins by

providing an essential background and literature review on user selection techniques

and precoding methods. Next, it presents the system model of MU-MIMO downlink

system, followed by explaining the method used in designing the precoders, which is

based on GSO operation. Then, the proposed user selection algorithm is presented

with explanation of the proposed performance metric. This is followed by outlining

the main operations of the proposed algorithm. After that, the chapter analyzes the

computational complexity of the proposed algorithm and compares it to the com-

plexity order of other user selection algorithms. Finally, simulation results, which

evaluate the performance and run time of the proposed algorithm compared to other

algorithms, are plotted.

Chapter 5 studies the proportional fairness scheduling for MU-MIMO downlink sys-

tems. It begins by reviewing the concepts of fair scheduling technique and the main

constraints of multiuser diversity. Next, it presents the system model, followed by ex-

plaining the block diagonalization precoding method used to precancel the IUI. Then,

the proposed PF scheduling algorithm is presented, where two performance metrics

have been proposed in order to achieve the the required degree of fairness. After

that, the chapter provides the outlines of the proposed algorithm. Finally, simulation

results, which evaluate the performance of the proposed algorithm compared to other

algorithm are shown.

Lastly, chapter 6 concludes the thesis and suggests possible future work.
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Chapter 2

Background

2.1 Overview of MIMO Systems

In the past few decades, wireless communication has rapidly grown due to several

advantages it offers compared to wireline communication. For instance, mobility and

easy deployment are main features which make wireless communication increasingly

applied in modern life. However, data rates of wireless systems are still less than that

provided by wireline competitors, which lead to limited spectrum, signal fluctuation,

and low transmit power in wireless environment. Hence, novel techniques for increas-

ing data rates and improving link reliability are highly significant.

Multiple Input Multiple Output (MIMO) technology can effectively improve capac-

ity and link reliability of wireless communication. A MIMO system is built by using

multiple antennas at both the transmitter and receiver ends. These antennas are

separated by a specific distance and are deployed in vertical and horizontal arrays.

The physical separation between these antennas is exploited to add more degrees of

freedom in the spatial dimension which we don’t find in single antenna communica-

tion systems. The spatial degrees of freedom can be used to significantly enhance the

spectral efficiency, combat fading in wireless communication channel, and suppress

interference. This is achieved by intelligently designing transceivers and algorithms
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for signal processing. There are two main advantages of MIMO with respect to the

technique used to transmit data across the propagation channel; spatial diversity

techniques or spatial multiplexing techniques. Spatial multiplexing aims at increas-

ing achievable data rate [48]-[49] [60]. On the other hand, spatial diversity intends to

increase the robustness and quality of transmitted signal [45]-[47]. Further, the fun-

damental ideas of diversity and multiplexing tradeoff(DMT) have been investigated

in [50]-[51], while novel signaling algorithm to switch between diversity and multi-

plexing are proposed in [52]-[53].

Hence, It can be seen that the capability of MIMO to improve the performance in

wireless communication systems comes at no additional power and bandwidth. Due

to this precious property, MIMO has played crucial role in many standards of wire-

less communication such as WiMAX, 3GPP (3rd Generation Partnership Project),

4G long term evolution (LTE) and so on.

2.2 MIMO Techniques

As mentioned above, MIMO techniques (or MIMO coding) are classified into two

main categories:diversity techniques or spatial multiplexing techniques. To investigate

the advantage of each technique, let us consider a MIMO system with Nt transmit

antennas at the base station, and NR receive antennas at the receiver. The channel

between two ends is denoted by H and given as H ∈ CNR×Nt .

2.2.1 Spatial Diversity

Spatial diversity intends to increase the robustness and quality of signal by sending

multiple encoded copies of the signal across different antenna elements. These replicas

are sent over the propagation channel H such that they are statistically independent.

As a result, the probability of fading all signal replicas simultaneously is very low,

i.e., if one of these copies has higher probability to fade, the probability of fading the

9
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Figure 2.1: Spatial diversity techniques (extracted from [20]) (a) Time diversity (b)
Frequency diversity (c) Space-time diversity (d) Space-frequency diversity.

remaining copies is low. Hence, we have better chance to receive the transmitted sig-

nal. The diversity gain (DG), which is a performance criterion of diversity techniques,

is defined as follows [62] [63]

dDiv = − lim
γ→∞

logPe
log γ

(2.1)

where Pe is the error probability and γ is the SNR. dDiv denotes the diversity gain,

also known as diversity order. The maximum diversity gain that can be obtained by

10



using spatial diversity technique is

(dDiv)max = Nt ×NR (2.2)

which represents the total number of diversity paths (or channel paths) available in

MIMO channel H. Figure 2.1 shows some techniques used in spatial diversity [46].

2.2.2 Spatial Multiplexing

Spatial multiplexing aims at increasing achievable data rate. To do this, data stream

is divided into multiple independent substreams; the substreams are transmitted si-

multaneously through spatial channels. At the receiver, appropriate techniques can

be used to separate these substreams. The spatial multiplexing gain can be defined

as [62] [63]

dMul = lim
γ→∞

R

log γ
(2.3)

where R denotes the rate measured in (bits/s/Hz) and is a function of the SNR, i.e.,

R = f (SNR). The maximum spatial multiplexing gain achieved by MIMO channel

H is

(dMul)max = min (Nt, NR) (2.4)

which means the minimum of Nt and NR. dMul is also known as the number of degrees

of freedom that can be available by MIMO system with channel H.

2.2.3 The Diversity-Multiplexing Tradeoff

For a given MIMO channel, it is possible to obtain both diversity and multiplexing

gain simultaneously, i.e., a tradeoff between the probability of error of this MIMO

system and its data rate. Under high SNR regime, an optimal scheme for diversity-

multiplexing tradeoff (DMT) is proposed by [61], which assumes an i.i.d. Raleigh

flat fading channel. In this scheme, the authors describe the fundamental tradeoff of
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the gain that each MIMO coding technique can extract(e.g.,maximum multiplexing

gain can be obtained at the cost of no diversity gain). To be more specific, consider

a scheme with multiplexing gain c and diversity gain d. Hence, one can sacrifice

of all the benefit of MIMO spatial multiplexing channel in order to maximize the

system reliability. To retrieve part of that benefit, the rate of the proposed scheme is

formulated as

R? = c log SNR (2.5)

In addition, the average error probability of the proposed scheme decays like 1/SNRd.

Hence, the optimal diversity advantage dopt(c) as a function of the multiplexing gain

c can be written as [61]

dopt(c) = (Nt − c) (Nr − c) (2.6)

where c = 0, 1, ...,min(Nt, Nr). Equation 2.6 is applied whenever the block length

of the word l ≥ Nt + Nr − 1. In Figure 2.2, the optimal diversity advantage dopt is

plotted against each multiplexing gain c. As seen in the Figure, the maximum value

of c doesn’t exceed the maximum degrees of freedom min (Nt, Nr) provided by MIMO

channel, while dopt doesn’t exceed the maximum level of diversity gain NtNr given by

the channel. Hence, we can evaluate the performance of any scheme by comparing it

to the optimal tradeoff curve shown in Figure 2.2.

2.3 MIMO Channel Capacity

Consider a MIMO system with Nt transmit antennas and NR receive antennas.

The MIMO channel H can be represented by NR × Nt matrix H ∈ CNR×Nt and the

received signal y ∈ CNR×1 as

y = Hx + n (2.7)
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Figure 2.2: Optimal diversity-multiplexing tradeoff. (Figure extracted from [61])

where x ∈ CNt×1 is the transmitted signal. The vector n ∈ CNR×1 denotes the

additive white Gaussian noise with covariance matrix as

E
{
nnH

}
= NoINR

(2.8)

where No, In are the variance of n and NR × NR identity matrix, respectively. In

addition, we assume the average power across all transmit antennas is P , i.e.

E[xHx] ≤ P (2.9)
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2.3.1 Shannon Capacity and MIMO channel

Claude Shannon had defined the capacity of a channel as the maximum rate of

reliable communication or mutual information between the channel input and output

and denoted as C. This means that the possible rate of information R doesn’t go

greater than C, i.e.

R ≤ C (2.10)

According to Shannon’s definition, the channel capacity can be written as [59]

C = B log2(1 + γ), [bps] (2.11)

where B and γ denote the channel bandwidth and received SNR, respectively.

When there is a perfect channel knowledge at the receiver and the transmitter, the

capacity of MIMO channel is [54]

C = max
Q:tr(Q)=P

log2 det

(
INr,k

+
1

No

HQHH

)
, [bits/sec/Hz] (2.12)

where Q denotes the covariance matrix of the transmit signal such that

Q = E[xxH ] (2.13)

and No is the noise power. The MIMO channel H can be converted into parallel, free

of interference single-input/single-output (SISO) channels by using singular value

decomposition of matrix H as

H=UΣVH (2.14)

where U is NR×NR unitary matrix, V is Nt×Nt unitary matrix, and Σ is NR×Nt

diagonal matrix with non-negative entries. The diagonal elements of matrix Σ are

known as the singular values of H and denoted by σi, which are arranged in descending

order, i.e.

σ1 ≥ σ2 ≥ ... ≥ σmin(Nt,NR) (2.15)
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Moreover the rank of H is given as

τH = min(Nt, NR) (2.16)

The precoding and postcoding process of the MIMO channel can be simply described

as shown in Fig. 2.1, where the input signal is multiplied by matrix V before trans-

mission, i.e.

x = Vx̃ (2.17)

At the receiver, the received signal is multiplied by UH . Hence, using (2.7), the

output signal is given as

ỹ = UH(Hx + n)

= UH(UΣVH(Vx̃) + n)

= Σx̃ + ñ (2.18)

where

ñ = UHn (2.19)

Since Σ is diagonal matrix, we get

ỹi = σix̃i + ñi , i = 1, 2, ...,min(Nt, NR) (2.20)

As a result, we obtain τH parallel and non-interfering channels, which are usually

referred to as the channel eigenmodes. The sum rate capacity can be written as

C =

τH∑
i=1

log2

(
1 +

Piλi
No

)
, bits/s/Hz (2.21)

where λi’s denote the eigenvalues of HHH , i.e.

λi = σ2
i (2.22)
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mitter (Figure extracted from [20])

and τH denotes the total number of λi, i.e., the rank of matrix H. Here, Pi denotes

the power allocated to the ith eigenmode using water filling strategy and as shown

in the next subsection.

2.3.2 Water-Filling model

The parallel channels, explained in previous subsection, have different qualities ac-

cording to the difference in singular values. This is paving the way for the use of

water-filling strategy, whereby power is optimally distributed over the parallel chan-

nels by using the following form [55]

Pi =

(
ε− No

σ2
i

)+

(2.23)

where,

(a)+ =

a, if a > 0.

0, if a ≤ 0.
(2.24)

Pi is the power of x̃i, and ε is the waterfill level which satisfies the total power
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constraint as
τH∑
i=1

Pi = P (2.25)

The maximum in Equation 2.12 is achieved when the covariance matrix Q is optimally

chosen such that

Q=VPVH (2.26)

where P is Nt ×Nt diagonal matrix whose diagonal entries are defined as

P = diag(P1, ..., PτH , 0, ..., 0) (2.27)

At low SNR, the water-filling strategy allocates more power to those channels with

high singular values, and allocates less or no power to the channels with less or zero

singular values. More specifically, channels with good conditions are allocated power

more than those with worse conditions, as shown in Fig.2.4.
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At high SNR, power allocated through water-filling is approximately equal across

all parallel channels. This is expected, since the increase in power has recovered the

poor channels [55].
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Figure 2.5: SVD model for MIMO channel: we allocate equal amounts of power over
the non-zero eigenmodes in the high SNR regime. (Figure extracted from [59])

At high SNR, the optimal strategy is to allocate equal amounts of power on the

transmit antennas. In this case, the transmit covariance matrix is given as

Q =
P

Nt

I (2.28)

Thus, Equation 2.12 can be written as [54] [73]-[77]

C = log2 det

(
INr,k

+
P

NtNo

HHH

)
, bits/s/Hz (2.29)
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Equal power allocation is also considered for all parallel directions when there is no

channel knowledge in the transmitter.

2.3.3 Rank and Condition Number in Spatial Multiplexing

To determine the key parameters of performance in spatial multiplexing technique,

we focus on each of the two scenarios; high SNR and low SNR regimes. In the high

SNR, the scenario of equal power allocation on each of the non-zero eigenmodes can

be considered asymptotically optimal because the water level is deep [59]:

C ≈
f∑
i=1

log

(
1 +

Pλi
fNo

)
≈ f log SNR +

f∑
i=1

log

(
λi
f

)
, bits/s/Hz (2.30)

where f denotes the number of non-zero λi, i.e., f = τH , and SNR = P/No. The

parameter f represents the number of spatial degrees of freedom provided by MIMO

channel. Hence, the dimension of the transmitted signal becomes equal to f due

to the modification caused by MIMO channel as shown in Figure 2.5. This means

that the number of spatial degrees of freedom provided by MIMO channel is equal to

min(Nt, NR).

The rank represents a coarse measure of the capacity of MIMO channel. To obtain a

finer form, we need to investigate the non-zero eigenvalues themselves. Using Jensen’s

inequality,

1

f

f∑
i=1

log

(
1 +

P

fNo

λi

)
≤ log

(
1 +

P

fNo

(
1

f

f∑
i=1

λi

))
(2.31)

Now,

f∑
i=1

λi = trace
[
HHH

]
=
∑
i,j

|hij|2, (2.32)

which expresses the total power gain of matrix H when energy is divided equally
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over all transmit antennas. Clearly, Equations 2.31 and 2.32 show that among the

channels whose total power gain is the same, the highest capacity is achieved by the

one that has equal eigenvalues. In general, in the high SNR regime, the capacity of

MIMO channel is maximized if its singular values are less spread out. This is referred

to as the condition number of matrix H and is defined as [78]

condition number = maxiλi/miniλi (2.33)

which represents the ratio between the maximum and minimum eigenvalues of the

channel matrix H. If the condition number of a matrix approaches 1, we say that

matrix is well-conditioned. As a result, we conclude:

Well-conditioned MIMO channel matrices can facilitate communication in the high

SNR regime

At low SNR, allocating power to the strongest eigenmodes and leaving the weak

eigenmodes with no power allocation would be considered optimal policy. The achieved

capacity is [59]

C ≈ P

No

(
max
i
λi

)
log2 e, bits/s/Hz (2.34)

The power gain provided by MIMO channel is maxiλi. Hence, in the Low SNR, the

effect of the rank or condition number of MIMO channel matrix is vanished.

2.4 Linear Signal Detection of Spatial Multiplex-

ing MIMO Systems

When channel state information (CSI) is available at the transmitter, SVD is ex-

ploited to attain the full degrees of freedom (DoF) of MIMO channel as seen in

previous section. However, if only the receiver has CSI, this procedure is not possible

since the transmitted data symbols all arrive cross-coupled at the receiver. Conse-

quently, the receiver is not capable of separating these symbols efficiently in order
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that the obtained performance has full DoF. An alternative solution for this problem

is to use linear receivers (detectors) as shown in Fig.2.6. If we assume the case where

the channel is invariant with time, the received signal can be written as

y = Hx + n

=
Nt∑
i=1

hixi + n (2.35)

where h1, ...,hNt denote the columns of matrix H and xi’s are the independent data

symbols sent by transmit antennas, as shown in Figure 2.6. n denotes the noise

vector with zero mean and variance No. In linear receivers, all transmitted signals

are treated as interferences except the one sent from the target antenna. Hence, If

the desired data stream for detection at the receiver is m, Equation 2.35 is written as
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y = hmxm +
∑
i 6=m

hixi + n (2.36)

where xm is the data symbol sent from transmit antenna m through channels

h1m, h2,m, ..., hNR,m and the second term in the equation represents the interferences

which can be minimized or removed by the use of linear receiver (or detector) [59].

2.4.1 ZF Signal Detection

One idea to suppress the interferences in (2.36) is to project the received signal y

onto the subspace Vm, where Vm is an orthogonal matrix to the subspace spanned

by the vectors h1, ...,hm−1,hm+1, ...,hNt . This process repeats till all data streams

sent by transmit antennas are decorrelated. In general, zero-forcing detector uses the

pseudoinverse of matrix H to decorrelate the signal y at the receiver as follows

WZF =
(
HHH

)−1
HH (2.37)

where WZF is the pseudoinverse of matrix H, i.e.

WZF = H† (2.38)

and (.)H denotes the Hermitian transpose operation. After multiplying y, i.e. Equa-

tion 2.35, by the weight matrix WZF , the effect of channel is inverted as

x̂ZF = WZF y

= x +
(
HHH

)−1
HH n

= x + n̂ZF (2.39)
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where

n̂ZF = WZFn

=
(
HHH

)−1
HHn (2.40)

and x̂ZF denotes the vector of detected data symbols. According to (2.21), the error

covariance matrix is given as [56]-[58]

ΩZF = E
{

(x̂ZF − x)(x̂ZF − x)H
}

= No

(
HHH

)−1
=

Nt∑
i=1

No

σ2
i

(2.41)

which also represents the noise power after zero-forcing detector. Clearly, Equation

2.41 shows that small singular values of H result in large errors in detected signal due

to noise amplification.

2.4.2 MMSE Signal Detection

Linear MMSE (minimum mean square error) receiver minimizes the mean squared

error between the transmitted symbols, x, and the output of the detector, x̂, as shown

in Fig.2.6. The weight matrix of MMSE linear receiver is given as

WMMSE =
(
HHH +NoINt

)−1
HH (2.42)

After post-processing of the received signal, we obtain the following
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x̂MMSE = WMMSEy

=
(
HHH +NoINt

)−1
HHy

= x +
(
HHH +NoINt

)−1
HHn

= x + n̂MMSE (2.43)

where

n̂MMSE =
(
HHH +NoINt

)−1
HHn (2.44)

and x̂MMSE denotes the vector of post-detected data symbols. Hence, the resulting

noise power after MMSE detector can be written as [20]

ΩMMSE = E
{

(x̂MMSE − x) (x̂MMSE − x)H
}

= E
{∥∥∥ (HHH + σ2

nINt

)−1
HHn

∥∥∥2}
=

Nt∑
i=1

Noσ
2
i

(No + σ2
i )

(2.45)

By focusing on (2.41) and (2.45), we notice the difference in noise enhancement be-

tween ZF and MMSE receivers. More specifically, if we assume

σ2
min = min

{
σ2
1, σ

2
2, ..., σ

2
Nt

}
(2.46)

Then, the effects of noise enhancement due to these linear detectors can be written

as

ΩZF =
Nt∑
i=1

No

σ2
i

≈ No

σ2
min

(2.47)
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ΩMMSE =
Nt∑
i=1

Noσ
2
i

(No + σ2
i )
≈ Noσ

2
min

(No + σ2
min)

(2.48)

From (2.47) and (2.48), it is obvious that MMSE detector has less noise amplification

than ZF detector. Moreover, if

σ2
min � σ2

n (2.49)

and thus,

σ2
n + σ2

min ≈ σ2
min (2.50)

then both filters will have the same noise enhancement effect. Note that ZF receiver

nullifies the interferences sent from all transmit antennas except for the desired one

at the cost of reducing the energy of the stream of interest. In contrast, MMSE

preserves the energy of the desired stream to the possible extent without regard to

inter-stream interference. Hence, ZF receiver is considered in high SNR scenario,

while MMSE performs better in cases when inter-stream interference is low (or in low

SNR regime).

2.5 MIMO Channel Correlation

Correlation in channel occurs due to either insufficient place between antennas or

lack of scattering. As a result, the data rate of the system is reduced because the

various paths of the MIMO channel will become more dependent and correlated to

each other. To study the impact of correlation, consider a narrowband flat-fading

MIMO channel H with Nt transmit antennas and NR receive antennas such that

H ∈ CNR×Nt . The Kronecker model can be used to approximately describe the

channel covariance matrix as

ΘH = ΘTx ⊗ΘRx (2.51)

where ΘH denotes the channel covariance matrix and ⊗ is the Kronecker product.

ΘTx, ΘRx are the correlation matrices corresponding to the transmit antennas and
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receive antennas, respectively. Assuming complex Gaussian channel coefficients and

from Equation 2.51, as in [64]-[67], the channel matrix H can be expressed as

H = Θ
1/2
Rx Jiid Θ

1/2
Tx (2.52)

where Jiid represents NR×Nt independent and identically distributed (i.i.d.) complex

Gaussian random variables channel with zero mean and unit variance. Here (.)1/2 is

the matrix square root, i.e.

Θ1/2(Θ1/2)H = Θ (2.53)

2.6 Multiuser MIMO Communication

In Multiuser MIMO (MU-MIMO) technique, a base station communicates wirelessly

with multiple users and data is transmitted in either downlink or uplink direction. In

MIMO downlink channel (broadcast channel), a base station transmits data streams

to the users. On the other hand, uplink takes place when the base station receives

various information from the users. In fact, MIMO capacity can be scaled using the

minimum number of antennas at the base station and the number of total antennas

used by users. For this reason, our research concerns with the downlink transmission.

2.6.1 Multiuser Diversity

With the availability of full CSI at the transmitter, increasing the number of si-

multaneous users, which have independent faded paths with BS, will increase the

probability to find one user with good channel condition at any time. By allocating

most of the shared channel resource to that user, the total throughput of the system

is significantly maximized [59] [68]-[72]. Hence, multiuser diversity gain is increased

due to increase in system throughput.
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Figure 2.7: Opportunistic beamforming. (Figure extracted from [59])

Comparison between diversity techniques and multiuser diversity leads to the fol-

lowing:

• while diversity techniques aims at increasing the reliability of the system over

slow fading channels, the main objective of multiuser diversity is to increase the

system throughput in fast fading channels.

• the main objective of diversity techniques is to combat fading in channel; on

the other hand, multiuser diversity exploits channel fading to increase system
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performance.

Hence, the key factors that affect the multiuser diversity are the dynamic range and

the rate of channel fluctuations.

2.6.1.1 Opportunistic Beamforming

In environments with flat fade (or small fluctuations) channels, it is possible to

increase the multiuser diversity advantage by making the variations of the channel

faster and larger. Concentrating on the downlink direction, this scenario can be

achieved by the use of opportunistic beamforming technique [59] [68], as shown in

Figure 2.7.

Consider a BS with Nt transmit antennas and communicates with a user k in time

t. Let hkl(t) denote the complex channel from transmit antenna l to user k in time t.

In time t, each antenna transmits the same symbol x(t) except that we multiply each

symbol by a complex number
√
ξl(t)e

jθl(t) at antenna l, for l = 1, ..., Nt, such that

Nt∑
l=1

ξl(t) = 1 (2.54)

This is to preserve the total transmit power. At user k, the received signal is written

as

yk(t) =

(
Nt∑
l=1

√
ξl(t)e

jθl(t)hkl(t)

)
x(t) + nk(t) (2.55)

In other words, at time t, the transmitted signal can be expressed in vector form as

w(t)x(t), where

w(t) =


√
ξ1(t)e

jθ1(t)

...√
ξNt(t)e

jθNt (t)

 (2.56)

is a unit vector. Hence, the received signal at user k becomes

yk(t) = (hk(t)w(t))x(t) + nk(t) (2.57)
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where hk(t) represents the channel gain vector from the transmit antennas to user k

and is given as

hk(t) = [hk,1(t), ..., hk,Nt(t)] (2.58)

At user k, the total channel gain can be new written as

hk(t)w(t) =
Nt∑
l=1

√
ξl(t)e

jθl(t)hkl(t) (2.59)

As seen from Equation 2.59 that each transmit antenna is allocated a fraction of

power denoted as ξl(t), while θl(t) denotes the phase shift applied at transmit antenna

l to the signal. By varying the values of ξl(t), θl(t) over time (ξl(t) from 0 to 1 and θl(t)

from 0 to 2π), we obtain signals which are transmitted in a time-varying direction. In

other words, the overall channel is induced to fluctuate over time even if the channel

gains {hkl(t)} are physically flat faded (fluctuating very little). Then, the overall

SNR received by each user is fed back to the base station (e.g., user k feeds back

|hk(t)q(t)|2/No to the base station). According to these SNR values, the base station

will schedule transmission to users.

The variation rate of {ξl(t)} and {θl(t)} with time is considered as a system design

parameter. Adapting the values of these parameters is equivalent to changing the

transmit direction, i.e., w(t). Hence, in opportunistic beamforming technique, we

vary the values of powers and phases allocated to each transmit antenna in order to

obtain a beam which is randomly swept over time; base station schedules transmission

to the user which is currently as close to the beam as any other user. At any time,

the probability of finding a user with very close distance to the beam increases by

increasing the number of users in the system, and this leads to significantly maximize

the system data rate.
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2.6.2 MU-MIMO Broadcast Channel

Figure 2.8 shows the downlink channel, also known as broadcast channel (BC), of

a MU-MIMO system. The basestation has an array of Nt transmit antennas and

transmits the signal vector x ∈ CNt×1 simultaneously to K users, each user has Nr,k

receive antennas, k = 1, 2, ..., K. Let Hk ∈ CNr,k×Nt denotes the downlink channel

gain matrix from BS to the kth user. Hence, the received signal yk ∈ CNr,k×1 at the

kth user is given as

yk = Hkx + nk (2.60)

user 1

user 2

Kuser 

Basestation with 
transmit antennastN

rN

1
:

rN

1
:

rN

1
:

1H

2H

KH

Figure 2.8: MU-MIMO downlink channel: broadcast channel.

where nk ∈ CNr,k×1 is circularly symmetric complex Gaussian noise with zero mean

and covariance matrix as

E
{
nkn

H
k

}
= NoINr,k

(2.61)

Hence, all users can be expressed by a single vector equation as follows
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y1

y2

...

yK


︸ ︷︷ ︸

y

=


H1

H2

...

HK


︸ ︷︷ ︸

H

x +


n1

n2

...

nK


︸ ︷︷ ︸

n

(2.62)

2.7 Linear Transmission in MU-MIMO BC

The main advantage of linear transmission in downlink MU-MIMO systems is to

precancel the interuser interference (IUI) at the transmitter. This is achieved by mul-

tiplying the transmitted data symbols with a precoding matrix before transmission.

Channel knowledge must be available at the transmitter in order to design the pre-

coders. Consider the MUMIMO model shown in Figure 2.8 in which the base station

is equipped with Nt transmit antennas and communicates with K users, each user has

Nr,k antennas, k = 1, 2, ..., K. Let x̃k ∈ CNr,k×1, Wk ∈ CNt×Nr,k denote the transmit

signal and precoding matrix for the kth user. Hence, the actual transmit signal for

the kth user can be expressed as

xk = Wkx̃k (2.63)

The received signal yk ∈ CNr,k×1 at user k is given as

yk = HkWkx̃k +
K∑

j=1,j 6=k

HkWjx̃j︸ ︷︷ ︸
IUI

+nk (2.64)
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where Hk ∈ CNr,k×Nt is the channel from BS to user k and nk is the additive white

Gaussian noise vector.

2.7.1 Zero-Forcing Beamforming

In beamforming (BF), the data streams are passed through a beamformer before be-

ing transmitted over different antennas. The beamformer is a weight vector designed

with a specific amplitudes and phases in order to steer the transmitted beam in the

direction of intended users and, at the same time, cancel the interference caused by

the others [79]. More specifically, the beamformer will act to constructively accumu-

late the components in desired directions and destructively in non-desired directions.

This will enhance the received SNR at the terminal users and cancel interuser inter-

ference.

Consider a MIMO downlink system with one base station which communicates with

K users; each user has one receive antenna. The base station is equipped with Nt

transmit antennas and the channel model is assumed to be zero-mean circularly sym-

metric complex Gaussian random variable . At user k, the received signal is written

as

yk = hkx + nk (2.65)

where x ∈ CNt×1 is the transmitted symbol, hk ∈ C1×Nt is the channel vector from

the base station to the kth user, and yk is the signal received by user k. nk denotes

the noise described as AWGN with zero mean and variance No = 1. The transmitted

signal has a power constraint averaged as

E
{
xxH

}
≤ P (2.66)

and perfect knowledge of CSI is assumed at the base station.

In BF, each user stream is separated by a different beamforming direction. The
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transmitted signal is given as

x =
K∑
k=1

√
Pkwkx̃k (2.67)

where x̃k, wk are the data symbol and the beamforming vector, respectively, and

define

W = [w1, ...,wK ] (2.68)

The transmit power for user k is denoted as Pk such that

P = diag {P1, ..., Pk} (2.69)

Hence, the received signal at user k can be written as

yk =
√
Pkhkwkx̃k +

∑
j 6=k

√
Pjhkwjx̃j + nk (2.70)

The sum rate which can be obtained using this scheme is [82]

RBF = max
wk,Pk

K∑
k=1

log

(
1 +

∑K
j=1 Pj|hkwj|2

1 +
∑K

j=1,j 6=k Pj|hkwj|2

)
(2.71)

where Equation 2.71 is subject to

K∑
k=1

||wk||2Pk ≤ P (2.72)

In zero-forcing beamforming (ZFBF) [82], the beamformers have to satisfy

hkwj = 0 , j 6= k (2.73)

Now, let

H = [hT1 . . . hTK ]T (2.74)
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then the matrix W can be selected to be the pseudo-inverse of the channel matrix H

as

W = H†

= HH
(
HHH

)−1
(2.75)

Hence, Equation 2.71 becomes

RZFBF =
K∑
k=1

log (1 + Pk) (2.76)

and it is subject to
K∑
k=1

%−1k Pk ≤ P (2.77)

where

%k =
1

||wk||2
=

1[(
HHH

)−1]
k,k

(2.78)

denotes the effective channel gain specified to user k [81]-[83]. The amount of power

Pk can be optimally allocated by the use of waterfilling strategy explained previously

in section 3.

2.7.2 Block Diagonalization

As seen in Equation 2.64, user k receives IUI from other transmit antennas other

than the target one. This interference can be efficiently removed by the use of block

diagonalization (BD) precoding technique, which is proposed by [30]. BD imposes

the following constraint

HkWj = 0, for k 6= j (2.79)

where Wk must be a unitary matrix to meet the total transmit power constraint of

the system, i.e.

Wj ∈ U (Nt, Nr,k) (2.80)
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After eliminating all multi-user interference, Equation 2.35 can be written as

yk = HkWkx̃k + nk (2.81)

At this stage, all received signals are cleared of interference. Next, we can apply one

of the detection methods explained in the previous section in order to estimate x̃k.

Now, we explain how to design the precoders {W}Kk=1. Consider H̃k which can be

defined as

H̃k =
[
HH

1 , ...,H
H
k−1 HT

k+1, ...,H
H
K

]H
(2.82)

Note that H̃k contains all users’ channels except for the intended one, which is user

k. To satisfy the condition in Equation 2.36, Wj must lie in the null space of H̃k.

This is possible if

Nt >
K∑
k=1

Nr,k (2.83)

This implies that the total sum of all active users’ receive antennas is not more than

the total transmit antennas at the base station. This is to ensure that the null space

is not empty matrix and the IUI can be perfectly removed by BD precoding. We

define the singular value decomposition of H̃k as

H̃k = Ũk

[
Σ̃k,0τ̃k×(Nt−τ̃k)

] [
Ṽ

(1)

k , Ṽ
(0)

k

]H
(2.84)

where τ̃k is the rank of H̃ and is given as

τ̃k = min

(
K∑

j=1,j 6=k

Nr,j, Nt

)
(2.85)

and Σ̃k is a diagonal matrix which contains the singular values with dimension of

τ̃k × τ̃k, i.e.

Σ̃k = diag (σ1,k, ..., στ̃k,k) (2.86)

The matrices Ṽ
(1)

k , Ṽ
(0)

k contain the first τ̃k and the last Nt− τ̃k columns of the right

singular vectors, respectively. Multiplying H̃k with Ṽ
(0)

k , we obtain the following
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relationship

H̃kṼ
(0)

k = Ũk

[
Σ̃k,0

] (Ṽ
(1)

k

)H(
Ṽ

(0)

k

)H
 Ṽ

(0)

k

= ŨkΣ̃k

(
Ṽ

(1)

k

)H
Ṽ

(0)

k

= ŨkΣ̃k 0

= 0 (2.87)

As seen in Equation 2.45, the matrix Ṽ
(0)

k contains the null space vectors of H̃k.

Hence, the precoding matrix for the kth user can be expressed as

Wk = Ṽ
(0)

k (2.88)

where Ṽ
(0)

k has the dimension τ̃k × (Nt − τ̃k). The precoders for the remaining users

can be obtained by following the same procedure. After precoding, the received

signals are given as
y1

...

yK

 =


H1Ṽ

(0)

1 0
. . .

0 HKṼ
(0)

K




x̃1

...

x̃K

+


n1

...

nK

 (2.89)

which is equivalent to Equation 2.37. The sum rate capacity of the system can be

written as [71]

C =
K∑
i=1

log2 det

(
INr,k

+
P

NtNo

HkWkW
H
k HH

k

)

=
K∑
i=1

log2 det

(
INr,k

+
P

NtNo

HeffH
H
eff

)
, bits/s/Hz (2.90)
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where

Heff = HkWk (2.91)

denotes the effective (equivalent) channel of user k after precoding process. If No is

assumed unity, then Equation 2.90 can be expressed as

C =
K∑
i=1

log2 det

(
INr,k

+
P

Nt

HeffH
H
eff

)
, bits/s/Hz (2.92)

2.7.3 Iterative Precoder Design

The iterative precoder design is proposed by [31] as an alternative to the BD. Unlike

BD which uses the SVD, the iterative precoding method is based on QR decompo-

sition (QRD) to obtain the precoders for the MU-MIMO systems. As a result, this

method can be preferred to transmit data in MU-MIMO systems rather than BD be-

cause QRD has lower complexity than SVD. Consider matrix A ∈ Cp×q with p < q,

then AH can be written as

AH =
[
Q1q×p

Q2q×(q−p)

] [ R1p×p

0(q−p)×p

]
(2.93)

where R1 ∈ C(p×p) is an upper triangular matrix and Q2 ∈ Cq×(q−p) contains an

orthonormal basis vectors of the null space of matrix A, i.e.

AQ2 = 0 (2.94)

and

QH
2 Q2 = I (2.95)
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Note that the same conditions illustrated in Equations 2.79, 2.82, and 2.83 must be

satisfied in this method as well. To illustrate this precoding method, let us consider

finding the precoding matrix for user 1, which is denoted by F
(n)
1 at the ith iteration.

Initially, we set

F
(1)
1 = INt (2.96)

At step two, we have

F
(2)
1 = F

(1)
1 × null(H2F

(1)
1 )

= null(H2) (2.97)

After the ith iteration, we obtain F
(i)
1 such that

HkF
(i)
1 = 0 , ∀1 < k ≤ i (2.98)

In each step, F
(i)
1 can be found from F

(i−1)
1 in a recursive way, as follows

F
(i)
1 = F

(i−1)
1 G

(i)
1 (2.99)

where G
(i)
1 lies in N (HnF

(i−1)
1 ), where N (.) denotes the null space matrix. We can

obtain G
(i)
1 as follows

G
(i)
1 = null

(
HiF

(i−1)
1

)
(2.100)

where null
(
HiF

(i−1)
1

)
denotes an orthonormal basis of N (HiF

(i−1)
1 ) and can be ob-

tained using Gram-Schmidt orthogonalization (GSO). In the same way, we can obtain

other users’ precoder matrices recursively. Figure 2.9 describes the iterative precoder

design. Note that at the end of the iterations, we obtain the precoders for all users.

These precoders are obtained from those in previous iterations, i.e., in horizontal line.

Also note that the precoder of the last user (or diagonal line) is obtained from the

precoder of the last user in previous iteration, i.e., the gray colour in Figure 2.9. The

sum rate capacity of the system after precoding is given as [71]
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C =
K∑
i=1

log2 det

(
INr,k

+
P

NtNo

HkF
(n)
k F

(n)H
k HH

k

)

=
K∑
i=1

log2 det

(
INr,k

+
P

NtNo

HeffH
H
eff

)
, bits/s/Hz (2.101)

where,

Heff = HkF
(n)
k (2.102)

denotes the effective channel of user k after precoding process. Note that F
(n)
k is the

final precoding matrix of user k at n = K iterations as shown in Figure 2.9.

2.8 Summary

In this chapter, some issues which underlie the research work in this thesis have been

briefly explained. We firstly provided a simple introduction of MIMO techniques and

their advantages. Next, we studied the capacity of MIMO channel and the different

ways of power allocation used in the transmitter side. Then, we studied two common

methods used to linearly detect data at the receiver side in spatial multiplexing MIMO

systems. After that, we briefly studied MIMO channel correlation for narrowband

flat-fading channels. Finally, we moved to MU-MIMO systems and in this context we

investigated three different methods used for linear transmission.
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Figure 2.9: Iterative precoder design.
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Chapter 3

Transmit Antenna Selection for

Downlink MU-MIMO Systems

In this chapter, a greedy suboptimal transmit antenna seleciton algorithm for down-

link multiuser MIMO systems is proposed. The proposed algorithm selects an op-

timal subset of antennas among the total antennas available in the base station for

transmission in a descending order. Moreover, the proposed selection metric of the

algorithm is the product of eigenvalues of effective channels. The eigenvalues of each

user’s effective channel can be obtained from that of the prior iteration repeatedly

by the use of relationship between the principal angles of a specific subspace and its

eigenvalues. Simulation results show that the proposed algorithm achieves almost

identical performance as the exhaustive search algorithm with significant reduction

in complexity.

3.1 Introduction

One main issue with scaling up multiple-input multiple-output (MIMO) systems

relates to the cost and complexity of radio frequency (RF) components that are de-
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ployed with antenna elements [1]. To override this problem, antenna selection (AS)

technique comes to reduce the number of analog components required, likewise pre-

serves most of the advantages of MIMO systems such as diversity to improve the

reliability of the system, or spatial multiplexing to increase the sum data rate of the

system. The principal idea of AS scheme is to connect a limited number of RF chains

to a subset of antennas optimally selected among all available antennas in transmitter

and/or receiver. However, equipping MIMO with more antennas leads to increase the

complexity of the system due to the high number of computations required to achieve

optimal antenna selection.

Many algorithms of AS have been introduced to alleviate the computation process,

yet to keep the advantages of MIMO systems to a considerable extent, and researches

conducted with either transmit antenna selection (TAS), receive antenna selection

(RAS), or joint transmit/receive antenna selection [2]-[4]. Moreover, these studies

varied according to the purpose for which MIMO was designed, i.e. diversity or spa-

tial multiplexing. In the context of diversity with TAS or RAS, antennas with the

highest SNR have to be chosen [2] [3] [5] [6] . For TAS, this strategy corresponds to

beamforming and is also known as hybrid maximum ratio transmission, while in joint

transmit/receive AS the selection process is equivalent to choose a channel subma-

trix that can maximize the sum of the squared magnitudes of joint transmit/receive

channel SNR [3], [7]. On the other hand, antenna selection with SM involves various

criteria such as channel capacity [8]-[12], squared Frobenius-norm of effective channels

[13], channel’s minimum singular value [14], post processing SNR for the decesion-

feedback detector (DFD) [15] and so on. Furthermore, big interest has emerged

recently to analyse the performance of using antenna selection in large scale MIMO

systems. The problem of the maximum-SNR joint beamforming transmit antenna

selection for MIMO systems with a large number of transmit antennas has been con-

sidered and solved polynomially based on the maximum principal singular value as

a selection metric in [16]. The method exhibits a good performance for mobile users

with two receive antennas but it tends to be more challenging when the number of

receive antennas is increased. A suboptimal algorithm of AS based on the distribu-

tion of the mutual information to improve the energy efficiency of large scale MIMO
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systems is proposed in [17] where authors found that AS can be efficiently applied

only if the circuit power consumption of MIMO system is quite close or greater than

the transmit power.

Since optimum method of AS requires exhaustive search over all possible combi-

nations of antenna subsets which makes it impractical to use when there is a large

number of antennas, any algorithm of AS should be designed to reduce the complexity

of selection process as well as achieve the required level of efficiency. Motivated by

the idea of selecting users depending on the product of eigenvalues of their effective

channels which is introduced in [35], we propose a suboptimal TAS algorithm for

MU-MIMO downlink systems. At each iteration, the antenna which maximizes the

product of eigenvalues of effective channels obtained by a set of transmit antennas

is selected and deactivated. The selection process repeats till we reach the required

subset of antennas. The iterative precoding method introduced by [31] is applied to

cancel the interuser interference (IUI) in the precoding stage of the selection process.

This precoding method is used instead of the traditional block diagonalization (BD)

method which applies SVD to cancel IUI because the iterative method requires small

concatenated matrix size to generate the null space matrix. Moreover, to obtain

the null space matrix, the proposed algorithm applies the QR decomposition (QRD)

rather than SVD operation in order to reduce the computational burden through

selection process.

3.2 MU-MIMO Block Diagonalization System

3.2.1 System Model

Consider a single-cell downlink MU-MIMO system that has a base station (BS)

equipped with Nt, Ns transmit antennas and radio frequency chains, respectively. The

BS communicates simultaneously with K mobile users , each user is equipped with Nr

receive antennas. Under the assumption of perfect channel state information in the

43



W1

RF-Antenna 

Switch

x1 RF1

RFNs

RF2W2

WK

x2

xK

1

2

Nt

MU1

MU2

MUK

Nr

Nr

Nr

H1

H2

H
K

Figure 3.1: Proposed model for multiuser MIMO system with BD precoding tech-
nique. (Figure extracted from [97])

transmitter side, the channel propagation from BS to the kth user, k = 1, 2, ..., K, is

given as Hk ∈ CNr×Nt . Each user’s channel Hk is assumed to be independent from

other users’ channels and has full rank,

rank(Hk) = min(Nr, Nt) , Nt > Nr (3.1)

Therefore, the overall system channel ascertains full rank matrix, i.e.,

H = [HH
1 HH

2 ...H
H
K ]H (3.2)

For the kth user, a symbol vector xk ∈ CNr×1 is transmitted with an input covari-

ance matrix given as

Qk = E{xkxHk } (3.3)

and a total transmit power as

P =
K∑
k=1

trace(Qk) (3.4)

The transmitted signal is multiplied by a precoding matrix Wk ∈ CNt×Nr and

44



transmitted to users. Thus, the kth user receives [20]

yk = HkWkxk +
K∑

j=1,j 6=k

HkWjxj + zk (3.5)

where zk ∈ CNr×1 denotes the Additive White Gaussian Noise (AWGN) with

(0, No).

3.2.2 Iterative Precoder Design method

Block diagonalization intends to cancel IUI of MU MIMO channel and decompose

it into parallel lines of single user MIMO (SU MIMO) channels. For user k, the

precoder matrix has to satisfy the condition

HkWj = 0, ∀j 6= k (3.6)

where Wk must be a unitary matrix to satisfy the total transmitted power, i.e.,

Wk ∈ U (Nt, Nr) (3.7)

Moreover, Wk can be broken down into two matrices F and Λ that is

Wk = FkΛk (3.8)

where Fk is designed to nullify the IUI and Λk is to optimize data rate. Therefore,

Fk is designed to lie in the intersection of all other users’ nullspaces except user k,

i.e., N (H̃k), where

H̃k =
[
HT

1 , ...,H
T
k−1,H

T
k+1, ...,H

T
K

]T
(3.9)
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where N (H̃k) denotes the null space matrix of H̃k. An iterative method is proposed

in [31] to design Fk. The method applies the QR decomposition instead of SVD to

compute the nullspace matrix. Conceptually, let us describe the precoding matrix for

user 1, which is denoted by F
(i)
1 at the ith iteration. Initially, we set F

(1)
1 = INt . At

step two, F
(2)
1 = N (H2). After the ith iteration, we obtain F

(i)
1 such that

HkF
(i)
1 = 0 , for all 1 < k ≤ i (3.10)

In each step, F
(i)
1 can be found from F

(i−1)
1 in recursive way as follows:

F
(i)
1 = F

(i−1)
1 G

(i)
1 (3.11)

where G
(i)
1 is in N (HiF

(i−1)
1 ). Hence, G

(i)
1 can be taken as

G
(i)
1 = null

(
HiF

(i−1)
1

)
(3.12)

where null
(
HiF

(i−1)
1

)
denotes the matrix whose column vectors represent an or-

thonormal basis of N (HiF
(i−1)
1 ). In the same way, we can obtain other users’ pre-

coder matrices recursively.

To ensure nullity of H̃k, number of transmit antennas must be larger than the total

number of receive antennas of users which are simultaneously communicating with

BS, i.e.,

Nt >
K∑
k=1

Nr,k (3.13)

where Nr,k denotes the number of receive antennas of user k.

46



3.3 Multiuser Transmit Antenna Selection

Optimum transmit antenna selection is performed by exhaustively searching over

all possible antenna combinations, i.e.,

Soptimum = CNs

Nt
(3.14)

where S ⊂ {1, 2, ...,K} denotes a set of users which can be served simultaneously

by the BS. Hence, exhaustive search makes antenna selection technique impractical to

use when the number of transmit antennas is large. Many suboptimal AS algorithms

are proposed to reduce the computation complexity, also to achieve as close as possible

to the optimum method. In this section, we introduce two TAS algorithms that have

been verified to perform very close to the exhaustive search method with much lower

complexity.

To introduce the proposed algorithms, we begin by summarizing two definitions; the

principle angle between two subspaces and the orthonormal basis for the intersection

of two null spaces.

3.3.1 Angle Between Two Subspaces

Let A1, A2 ⊂ Cn with a1 = dim(A1) ≤ dim(A2) = a2. The principal angles

θ1, ..., θa1 ∈ [0, π/2] between A1, A2 are defined recursively by [19]

cos θj = max
u∈A1

max
v∈A2

u∗v

= u∗j vj j = 1, ..., a1 (3.15)
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subject to:

||u|| = ||v|| = 1

u∗ui = 0 i = 1, ..., j − 1

v∗vi = 0 i = 1, ..., j − 1 (3.16)

Let column vectors of matrices L1, L2, X1 and X2 be the orthonormal basis of the

subspaces A1, A2, A⊥1 and A⊥2 respectively. The two matrices A⊥1 and A⊥2 denote

the orthogonal complements of the subspaces A1 and A2, respectively. Then, the

principal angles can be obtained as follows [21] [99] [23]

1. Apply the SVD operation on LH1 L2 as

SVD
(
LH1 L2

)
= UΣVH (3.17)

where Σ = diag (σ1, ..., σj) are the singular values of LH1 L2. Then, the

principal angles between the two subspaces A1 and A2 are given as

cos θi = σi , ∀ i = 1, ..., j (3.18)

2. Or, alternatively, we calculate the SVD of LH1 X2 as

SVD
(
LH1 X2

)
= ǓΣ̌V̌

H
(3.19)

where Σ̌ = diag (σ̌1, ..., σ̌j).

The largest principal angle is obtained by either

θ = arccos (σj) (3.20)

or,

θ = arcsin (σ̌j) (3.21)
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where θ is the angle between the two subspaces A1 and A2.

If we suppose λi’s, i = 1, ..., j, are the eigenvalues of matrix LH
1 L2LH

2 L1, it follows

that

λi = cos2 θi (3.22)

where θi’s represent the principal angles. From the relationship between eigenvalues

and matrix determinant, equation (3.22) becomes

a1∏
i=1

cos θi =
√

det
(
LH1 L2LH2 L1

)
= cos] (A1A2) (3.23)

where ] (A1A2) refers to the product angle (or geometrical angel) between subspaces

A1 and A2 [22]. Geometrically, cos2 ] (A1A2) is the ratio between two volumes:

The volume of the parallelepiped spanned by projecting the basis vectors of L1 onto

L2, and the volume of the basis vectors of L1 [23].

3.3.2 Intersection of Null Spaces

Let H1 ∈ Cm×n and H2 ∈ Cp×n are two given subspaces, and the orthonor-

mal basis for null(H1) is U . Also, consider V is the orthonormal basis for matrix

null(H2U). Hence, the orthonormal basis for null(H1)
⋂

null(H2) can be obtained

as [19]

null (H1)
⋂

null (H2) = U null (H2 U)

= U V (3.24)

Equation (3.24) represents an economical method to calculate the orthonormal basis

for the intersection of two null spaces.
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Algorithm 1 Transmit antenna selection algorithm using product of eigenvalues of
effective channels
1: Let ∆ = {1, 2, ...,K} . Collect Hk ∀k ∈ ∆
2: Let Γ = {1, 2, ..., Nt}, Υ = ∅
3: repeat (Main loop)
4: for m ∈ Γ do
5: Temporarily, Let Γ̃ = Γ− {m}, Nt = Nt − 1

6: i = 1, F
(1)
1 = INt

7: Calculate δ
(1)
k = det

(
H
k,Γ̃

H∗
k,Γ̃

)
∀k ∈ ∆

8: repeat

9: F
(i+1)
i+1 = F

(i)
i ×N

(
HiF

(i)
i

)
10: H̄

(i+1)

i+1,Γ̃
= Hi+1F

(i+1)
i+1

11: δ
(i+1)
i+1 = det

(
H̄

(i+1)

i+1,Γ̃
H̄

(i+1)∗
i+1,Γ̃

)
12: for n = 1 : i do
13: Update F(i+1)

n = F(i)
n ×N

(
Hi+1F(i)

n

)
14: Λ(i)

n = row
(
HnF(i)

n

)
15: G(i+1)

n = N
(
Hi+1F(i)

n

)
16: δ(i+1)

n = δ(i)
n det

(
Λ(i)∗
n G(i+1)

n G(i+1)∗
n Λ(i)

n

)
17: end for
18: i = i+ 1
19: until i = K
20: Calculate αm =

∏
k∈∆

δ
(i)
k

21: end for
22: mdeactivated = arg max

m∈Γ
αm

23: Update Γ = Γ− {mdeactivated}
24: Update Υ = Υ + {mdeactivated}
25: Update Nt

26: until | Γ |= Ns
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3.3.3 Proposed Algorithm

The proposed transmit antenna selection algorithm is designed to greedily select an

optimal set of antennas for transmission. At each iteration, the algorithm removes

one antenna from the set of remaining antenna in the BS, which can mitigate the per-

formance degradation to the minimum extent. The removed antenna must optimize

a specific performance criterion which is the product of eigenvalues of users’ effective

channels obtained by the remaining set of antennas in each iteration. The following

is a brief summary of the metric. Let H̄
(i)
k denotes the effective channel matrix for

user k at the i-th iteration. The l-th eigenvalues of matrix H̄
(i)
k H̄

(i)H
k are denoted as

λ
(i)
k,p, where p = 1, ..., Nr. Hence, the product of eigenvalues of matrix H̄

(i)
k H̄

(i)H
k

can be obtained as

δ
(i)
k =

Nr∏
p=1

λ
(i)
k,p

= det
(
H̄

(i)
k H̄

(i)H
k

)
(3.25)

where δ
(i)
k denotes the product of λ

(i)
k,p’s. Using equation (3.24), it is possible to

calculate the eigenvalues of each user’s effective channel from that of the prior iteration

as [35]

δ
(i)
k = δ

(i−1)
k det

(
Λ

(i−1)H
k G

(i)
k G

(i)H
k Λ

(i−1)
k

)
= δ

(i−1)
k cos2 θk (3.26)

where δ
(i−1)
k denotes the product of eigenvalues of the kth user’s effective channel at

(i−1)th iteration. Moreover, θk denotes the product angles betweenR
(
HkF

(i−1)
k

)
and N

(
Hui

F
(i−1)
k

)
, where ui denotes the selected user at the i-th iteration. The

main steps to implement TAS by using product of eigenvalues of effective channels

are summarized in Algorithm 1, where ∆ is the set of users, Γ and Υ are the sets of

active antennas and deactivated antennas, respectively. In the beginning, we assume

that all transmit antennas are avctive, we collect Hk ∀k ∈ ∆.
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Table 3.1: search size comparison of different TAS algorithms.

Algorithm Search size

exhaustive
search

CNs
Nt

norm-based [97] (Nt +Ns + 1)
(
Nt−Ns

2

)
proposed K (Nt +Ns + 1)

(
Nt−Ns

2

)
The main loop of the algorithm starts by, temporarily, deactivating antenna m for

every m ∈ Γ. Hence, the temporal set of antennas Γ̃ at BS has Nt = Nt − 1 total

transmit antennas. Lines 8-17 iteratively calculate:

• users’ channel precoders using iterative precoding method explained earlier (line

9 and line 13);

• the product of eigenvalues of each user’s effective channel using (3.26) (line 11

and line 16).

The product of eigenvalues of users’ effective channels α is calculated in line 20 for

every Γ̃. Then, the antenna m that maximize α is selected and removed from the

set of transmit antennas Γ ( mdeactivated in line 22). Finally, we update Γ, Υ and

Nt. The main loop stops when the number of active transmit antennas reaches Ns.

The search size of this algorithm is

search size = K (Nt +Ns + 1)

(
Nt −Ns

2

)
(3.27)

Comparisons of search size of different transmit antenna selection algorithms is listed

in Table I.
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3.4 Simulation Results

To evaluate the performance of the proposed transmit antenna selection algorithm,

we compare it with the following algorithms:

• Exhaustive search algorithm (optimum method)

• Norm-based algorithm (suboptimal method [97])

The algorithm in [97] has been chosen for comparison for two reasons. First, the

selection metric in this algorithm depends on the Frobenius norm which can pro-

vide a considerable indication about the performance due to close relation between

Frobinius norm and the eigenvalues of users’ effective channels calculated after pre-

coding stage. Second, the Frobenius norm provides a robust lower bound on the

average sum capacity [75]

C =
K∑
k=1

log det

(
I +

1

No

HkWkQkW
H
k HH

k

)

≥
K∑
k=1

log

(
1 +

P

KNrNo

‖HkWk‖2
F

)

> log

(
1 +

K∑
k=1

P

KNrNo

‖HkWk‖2
F

)
(3.28)

As seen, maximizing the sum Frobenius norm of users leads to maximize the aggre-

gate capacity lower bound, Equation 3.28. All results are averaged over (1000-2000)

i.i.d. Rayleigh channel realizations.

In Figure 3.2, the sum rate capacity of the exhaustive search algorithm, norm-

based algorithm and the proposed algorithm is compared for different values of SNR,

with 2 users, 2 receive antennas per each user. We assumed the total number of

transmit antennas at the base station is 4 and the number of selected antennas is

4, i.e., Nt = 4, Ns = 4, respectively. We increased Nt while Ns is constant, i.e.,

Nt = 4, 6, 8, 10, 14, while Ns = 4. Clearly, the proposed algorithm outperforms

the norm-based algorithm and achieves very close to the exhaustive search method.
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Similarly, results in Figure 3.3, where in this case there are 2 users and 4 receive

antennas per each user, are clearly identical with those in the previous Figure. We

also notice that the average sum rate has increased , which is normal because the

number of receive antennas of each user has increased as well, i.e., Nr = 4 in this

case. In another case, which is shown in Figure 3.4, the number of users has increased

to 3 users, and each user is equipped with two receive antennas. In this case also,

the proposed algorithm achieves the same performance obtained in previous two Fig-

ures. Moreover, Figure 3.5 shows the average sum rate comparison with a constant

selection ratio, where the ratio of selected antennas to the total number of transmit

antennas is assumed fixed and equal to 50%. Clearly, results obtained with con-

stant selection ratio with those of previous Figures demonstrate that the proposed

algorithm has constant performance regardless of the number of selected antennas.

In addition, these four Figures show that selecting antennas in descending order can

achieve almost the same performance obtained by the exhaustive search algorithm,

after taking in account the performance metric used in the selection process. This

can be explained by noting that the selection process takes into consideration the

whole correlations among the columns of the original matrix channel before selecting

the first transmit antenna to deactivate.

Figures 3.6 and 3.7 show another significant comparison of the exhaustive, norm-

based, and proposed algorithms where the average bit error rate (BER) is calculated

for two users with two and four receive antennas per user, respectively. The im-

portance of this comparison is to show how reliable is the proposed algorithm with

compared to the brute search algorithm and norm-based algorithm. In both Figures,

we have used the zero-forcing detection at the receiver. Unlike the norm-based al-

gorithm, it is quite clear that the proposed algorithm provides a high degree of link

reliability which is very close to the exhaustive search algorithm. Moreover, we notice

that the average BER has increased in Fig 3.7 than in Fig 3.6 for the same number

of additional antennas for both users. This is normal since more information has to

be detected at each user, i.e., Nr = 4 in this case.
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Figure 3.2: Sum rate capacity of proposed, exhaustive, and norm-based transmit
antenna selection algorithms with 2 users, 2 receive antennas per user.

In Figures 3.8 and 3.9, the elapsed CPU time of the proposed algorithm, norm-based

algorithm, and exhaustive search algorithm is plotted against the number of additional

transmit antennas for two users, with two receive antennas and four receive antennas,

respectively. These results were attained by 3.4 GHz Core i7 CPU pc. As noted in

both figures, the CPU runtime of the proposed algorithm outperforms the exhaustive

search and achieves close to the norm-based algorithm which has the shortest runtime.

Clearly, these two figures demonstrate the search size comparison presented in Table

3.1 in which we have proved that the proposed algorithm differs from the norm-based

algorithm by only a factor of K. In summary, the proposed algorithm outperforms

the norm-based and achieves very close to the exhaustive search with acceptable limit

of complexity.
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Figure 3.3: Sum rate capacity of proposed, exhaustive, and norm-based transmit
antenna selection algorithms with 2 users, 4 receive antennas per user.

3.5 Summary

In this Chapter, we have studied the transmit antenna selection technique for mul-

tiuser MIMO downlink systems. Our objective is to design an algorithm of TAS which

can almost achieve the same throughput obtained by the exhaustive search algorithm

with lower complexity. As a prior stage of the selection process, we used the iterative

precoder design to obtain the precoders necessary to precancel interuser interference.

Also, we studied the principal angles, which represent the angles between subspaces,

and their relation to the eigenvalues. This relation could be exploited in order to

obtain the eigenvalues of a specific subspace iteratively from a prior stages using the

concept of intersection of null spaces. Simulation results show that the proposed

algorithm achieves very close to the optimum search algorithm with a considerable

reduction in complexity.
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Chapter 4

A User Selection Algorithm for

MU-MIMO Systems Using

Product of Singular Values of

Users’ Effective Channels

In this chapter, a suboptimal greedy user selection algorithm for downlink MU-

MIMO systems is proposed. In each iteration, the user that maximizes the product

of singular values of users’ effective channels is selected from a pool of users. Moreover,

the algorithm designs its precoders using the Gram-Schmidt Orthogonalization opera-

tion in order to precancel the interuser interference. The simulation results show that

the proposed algorithm achieves the throughput performance of the capacity-based

algorithm with significant reduction in complexity.
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4.1 Introduction

In modern wireless communications, significant attention has been directed toward

multiuser multiple-input multiple-output (MU-MIMO) systems due to their capabil-

ity of improving system throughput [24][25]. In the case that channel state infor-

mation (CSI) is available at the base station (BS), interuser interference (IUI) can

be precancelled using several efficient methods. Dirty paper coding (DPC) provides

optimal IUI cancellation, but its high complexity during coding and decoding makes

its application to large multiple antenna systems unrealistic [26] [27]. For practical

implementation, zero-forcing beamforming (ZF-BM) and block diagonalization (BD)

techniques are proposed instead of DPC as suboptimal preprocessing techniques for

MU-MIMO systems [28]. In ZF-BM, where each user has one receive antenna, the

transmitted signal is multiplied by a precoding matrix which represents the pseudo-

inverse of other users’ channels [29]. On the other hand, for users with multiple receive

antennas, BD designs each user’s precoding matrix to be in the null space of other

users’ channels. Consequently, BD preeliminates IUI from users and breaks down

the overall MU-MIMO channel into several independent parallel single user MIMO

(SU-MIMO) downlink channels [30].

The nullspace-based precoding matrix imposes the constraint that a BS must com-

municate with concurrent users which have a total number of receive antennas less

than that of transmit antennas for that BS. When there is a large number of users,

the BS may select a subset for communication in order to increase the total sum rate

capacity of the system. Optimum users are obtained by exhaustively searching over

all possible users combinations, which thus involves high complexity, in particular,

when there is a large number of users.

To reduce the complexity of user selection under the BD technique, considerable

research effort has been devoted to reducing the complexity of precoding stage. Re-

garding which, the conventional precoding design method which applies the singu-

lar value decomposition (SVD) iteratively to cancel IUI requires high computational

burden. Alternatively, an iterative precoder design method is introduced by [31] to
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alleviate the computational demand caused by repeated SVD. For user selection, one

strategy is to design a greedy suboptimal algorithm, whereby one user that maximizes

a specific performance metric is selected at each iteration. Many greedy suboptimal

user selection algorithms are proposed, which are based on various selection metrics.

A capacity-based algorithm (c-algorithm) is proposed in [32], which selects a user to

maximize the average sum rate of the system at each iteration. Despite the high level

of performance that the c-algorithm can provide, it requires high complexity due to

frequent use of SVD. Another approach to user selection under BD is proposed by

[33], which utilizes both backward and forward projection in order to select the most

orthogonal user channels optimally. This approach needs to find null space and spa-

tial correlation among users at each iteration, which raises the complexity of selection

for large number of users. Moreover, [34] proposes a low-complexity algorithm that

greedily selects users to maximize the channel volume which can be found by calcu-

lating the product of diagonal elements of the upper triangular matrix R produced

by performing QR factorization to the channel matrix. Another low complexity al-

gorithm which is based on the product of squared row norms of effective channels is

proposed by [31] to select an optimal set of users for BD systems. However, these low

complexity user selection algorithms have a low burden of computation, but perfor-

mance degradation is unavoidable. Under a high SNR regime, [35] proposes a user

selection algorithm based on the product of the eigenvalues of effective channels and

the idea of principle angles between subspaces. This algorithm provides good per-

formance, but its complexity depends on the maximum number of users that can be

simultaneously served by BS and total number of users in the system.

In this chapter, we propose a greedy suboptimal user selection algorithm for MU-

MIMO downlink systems and under high SNR regime. The proposed algorithm uti-

lizes the product of singular values of users’ effective channels as a selection metric.

The objective behind the proposed algorithm is to reach the performance achieved

by the capacity-based algorithm (c-algorithm) as well as to reduce the computational

load during the user selection process. To achieve high performance, we have designed

our selection metric to express the capacity of BD in a high SNR regime. In terms

of complexity, the QR decomposition (QRD) has been used to obtain the product of
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the singular values instead of SVD so as to reduce the computational effort at each

selection step. Further, to cancel IUI, the proposed algorithm applies Gram-Schmidt

Orthogonalization (GSO) operation in order to design the precoders. This precoding

scheme has been efficiently used in [32] and doesn’t require the use of SVD operation

that leads to reduction in computation burden.

4.2 MU-MIMO system with Block Diagonaliza-

tion

4.2.1 System Model

Consider a single-cell downlink MU-MIMO system with Nt transmit antennas at

the base station BS and K users which have an equal number of receive antennas

Nr. The channels are assumed to be independent and identically distributed (i.i.d)

flat fading channels. The channel propagation from BS to the kth user is given as Hk

∈ CNr×Nt , under the assumption of perfect channel information at the transmitter by

using either time-division duplexing (TDD) or frequency-division duplexing (FDD)

communication mode. Each user’s channel Hk is assumed to be independent of other

users’ channels and has full rank, i.e.,

rank(Hk) = min(Nr, Nt) , Nt > Nr (4.1)

Consequently, the overall system channel will ascertain a full rank matrix, i.e.,

H = [HH
1 HH

2 ...H
H
K ]H (4.2)

Let S ⊂ {1, 2, ...,K} denotes a set of users which can be served simultaneously

by the BS. For the kth user, a symbol vector xk ∈ CNr×1 is transmitted with an
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Figure 4.1: Proposed model for a MU-MIMO system with BD precoding technique.

input covariance matrix given as

Qk = E{xkxHk } (4.3)

The total transmit power is written as

P =
K∑
k=1

trace(Qk) (4.4)

Then, the transmitted signal is multiplied by a precoding matrix Wk ∈ CNt×Nr and

transmitted to users. Thus, the kth user receives [36]:

yk = HkWkxk +

|S|∑
j=1,j 6=k

HkWjxj + zk (4.5)

where zk ∈ CNr×1 denotes the Additive White Gaussian Noise (AWGN) with

(0, σ2).
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4.2.2 Precoders Design

Block diagonalization serves to cancel the IUI of a MU-MIMO channel and decom-

pose it into parallel SU-MIMO channels. For user k, the precoder matrix has to

satisfy the condition

HjWk = 0, ∀j 6= k (4.6)

The matrix Wk must be a unitary matrix so as to satisfy the total transmitted power,

i.e.,

Wk ∈ U (Nt, Nr) (4.7)

Moreover, Wk can be broken down into two matrices F and Λ. Hence, the matrix

Wk can be written as

Wk = FkΛk (4.8)

where Fk is designed to nullify the IUI and Λk in order to optimize the data rate

[37]. Therefore, Fk is designed to lie in the intersection of all other users’ nullspaces

except user k, i.e., N (H̃k), where

H̃k =
[
HH

1 , ...,H
H
k−1,H

H
k+1, ...,H

H
|S|

]H
(4.9)

To ensure nullity of H̃k, the number of transmit antennas must be larger than the

total number of receive antennas of users that are simultaneously communicating with

BS, that is

Nt >

|S|∑
k=1

Nr,k (4.10)

where Nr,k denotes the number of receive antennas of user k.

In order to obtain the null space of the channel matrix, we utilize the method used by

[32] which depends on Gram Schmidt Orthogonalization (GSO) procedure. To clarify

the method, assume H1 ∈ Cp×q with p < q. Then, the null space H̆1 ∈ Cq×q of

matrix H1 can be obtained as follows
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1. Find the transpose of matrix H1, i.e., HT
1 = transpose(H1)

2. Apply GSO procedure on matrix HT
1 to find H̀1

3. The null space H̆1 can be obtained as

H̆1 = I−
(
H̀
H

1 H̀1

)
(4.11)

where I, H̀
H

1 are q×q identity matrix and the hermitian matrix of H̀1, respec-

tively.

When the total number of users K is larger than the number of simultaneously sup-

portable users, K̂, i.e., K > K̂, we need to find the set of users S ⊂ {1, 2, ...,K}
that can maximize the total throughput of the system. The optimal subset of users

can be obtained by exhaustively searching for all possible user combinations, i.e.,

| S |= CK̂
K (4.12)

where C denotes the combination operation. The exhaustive search becomes pro-

hibitive when the number of users is large, i.e.,

K � K̂ (4.13)

Conceptually, it is necessary to find suboptimal user selection methods for realistic

use with acceptable efficiency.

4.3 Proposed User Selection Algorithm

In this section, we propose a greedy user selection algorithm, where the product

of the singular values of the effective channel matrices is considered as our selection

metric. For low complexity, the singular values can be obtained efficiently using QR

decomposition rather than SVD. In each iteration, the effective channels of selected
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users are updated recursively using the (n − 1)th previous effective channels to

eliminate the interference induced by the new selected user.

4.3.1 Extracting the singular values using QR Decomposi-

tion

The singular values of a matrix can be computed using the conventional SVD

method. The key weakness of SVD is that it is considered data dependent and

hence, it requires expensive calculations to obtain the diagonal elements of the sin-

gular values. In contrast, QRD can be used efficiently to extract the product of the

singular values instead of SVD and with lower complexity. Without loss of generality,

assume matrix A ∈ Cp×q with p < q, then A can be written as

AH = Q

[
R1

0

]
(4.14)

where Q ∈ Cq×q has orthonormal column vectors, and R1 ∈ Cp×p is the upper

triangular matrix. Note that in order to get the actual product of the singular values

for matrix A, we have used the hermitian matrix AH instead of A in (4.14). Then,

it is possible to obtain the product of the singular values, δ, as

δ =

∣∣∣∣∣
p∏
i=1

rii

∣∣∣∣∣
=

p∏
i=1

σi (4.15)

where rii are the entries of the diagonal of R1, and σi represent the singular values

of matrix A.
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4.3.2 Proposed Algorithm

In this subsection we briefly summarize the proposed algorithm of user selection,

where Algorithm 2 outlines the main operations of the proposed algorithm. The

sets of remaining and selected users are denoted by Ψ and Υ, respectively. Let

F
(n)
j denote the precoding matrix of the jth selected user at the nth iteration. Z

denotes the orthonormal basis of the null space of the rows of previously selected

users, which can be obtained by applying th Gram-Schmidt Orthogonalization (GCO)

procedure on the null space of the rows of earlier selected channel matrices. Initially,

the algorithm selects the first user that maximises the product of the singular values

δ(Hk) for k ∈ Ψ, k = {1, 2, ...,K}. We set the initial precoding matrix of the

first selected user to be the identity matrix and at the nth iteration, the algorithm

selects a new user as

un = arg max
j∈Ψ

δ(H̄j)︸ ︷︷ ︸
term1

∏
k∈Υ

δ(H̄k)︸ ︷︷ ︸
term2

 (4.16)

where,

• term1: constitutes the product of the singular values for the effective channel

of the user currently under investigation. (step 8)

• term2: constitutes the product of the singular values for the updated effective

channels of all previously selected users. (step 11)

More specifically, when there is a new user under investigation, the algorithm takes

into consideration the following. It calculates the precoding matrix of this investi-

gated user and its effective channel (line 7 and line 8 in Algorithm 1, respectively).

Next, the algorithm temporarily updates first the precoder matrix of each of the pre-

viously selected users so as to cancel the interference caused by the investigated user

and then their effective channels (lines 9-12 in Algorithm 1). After that, according
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to (4.16), a user that yields the maximum product of the singular values of effective

channels is selected from set Ψ (line 13 in Algorithm 2). After a new user is selected,

Z and F
(n)
k must be updated accordingly. The selection process repeats until the

required number of users K̂ is obtained.

• The Physical Meaning of Matrix Z in Algorithm 2:

In Figure 4.2, we provide a simple example to describe the matrix Z in Algo-

rithm 2 which is an orthonormal basis of all rows vectors of previously selected

users’ channels. Assume we have four users’ channel matrices H1 ∈ CNr×Nt ,

H2 ∈ CNr×Nt , H3 ∈ CNr×Nt , and H4 ∈ CNr×Nt , as shown in Figure 4.2. In

Figure 4.2(a), user 1 has already been selected according to a specific perfor-

mance metric; we apply GSO operation on H1 to obtain matrix Ξ1. Then, the

orthonormal basis of the rows of previously selected channel matrices is given

as

Z = Ξ1 (4.17)

The matrix which is perpendicular on Z can be obtained as

Z⊥ = INt − ZH Z (4.18)

where INt is Nt × Nt identity matrix. Next, we select user 3 as it has the

largest projection on Z⊥ among other users, i.e., H2 and H4. We denote the

projection of H3 onto Z⊥ as L1.

We repeat the procedure by applying GSO operation on L1 to obtain Ξ2. Next,

we update the orthonormal basis of all rows vectors of previously selected ma-

trices as

Z = [Z ; Ξ2]

= [Ξ1 ; Ξ2] (4.19)

where the brackets [; ] denote matrix concatenation. The matrix Z⊥ can be
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updated as

Z⊥ = INt − ZH Z (4.20)

In Figure 4.2(b), we note that Z⊥ is now perpendicular onto both H1 and H3

since the dot product between Z⊥ and H1 or H3 is zero. The matrix Z⊥ is also

known as the orthogonal basis of the intersection of null spaces of previously

selected users’ channel matrices. This procedure is repeated in order to update

the matrices Z and Z⊥ after selecting new users.

1H
1H

3H

Z
3H

2H

4H

2H

4H

(a) (b)

Z

Figure 4.2: Intersection of null spaces of users’ channel matrices (a) H1 is already
selected (b) H3 has been selected and added to H1.

73



Algorithm 2 User selection using the product of the singular values.

1: Ψ = {1, 2, ...,K}, Υ = ∅
2: Select the first user u1 = arg max

k∈Ψ
δ(Hk)

3: Set the precoding matrix of u1: F(1)
u1

= INt

4: Let Z =null(Hu1)
5: Update Ψ = Ψ− u1, Υ = Υ + u1, n = 2
6: for j ∈ Ψ do
7: Set Fj = Z

8: Calculate the effective channel matrix H̄
(n)

j = HjFj
9: for k ∈ Υ do
10: Find the precoder Ftemp,k

11: Update the effective channel matrices: H̄
(n)

k = HkFtemp,k
12: end for

13: Select the new user as: un = arg max
j∈Ψ

(
δ(H̄

(n)

j )
∏
k∈Υ

δ(H̄
(n)

k )

)
14: Update the orthonormal basis of the null spaces matrices of all previously se-

lected users Z
15: for k ∈ Υ do
16: Update F

(n)
k

17: end for
18: Update:Ψ = Ψ− un; Υ = Υ + un; n = n+ 1
19: end for
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Table 4.1: Comparison of the complexity order for different user selection algorithms.

Algorithm Complexity order

c-algorithm [32] O
(
KK̂2N3

t

)
psrn-algorithm [31] O

(
KK̂N3

t

)
pe-algorithm [35] O

(
KK̂N3

t

)
v-algorithm [34] O

(
K
4
K̂N3

t

)
proposed algorithm O

(
KK̂N3

t

)
4.3.3 Computational Complexity Analysis

In this subsection, we investigate the computational complexity of Algorithm 1 and

compare it with that of various suboptimal user selection algorithms. This complexity

is calculated by the number of flops as in [32] and a flop is defined as a real floating

point operation. For example, real addition, multiplication, or division is calculated

as one flop. For complex numbers, an addition and a multiplication operation involve

two and six flops, respectively. Multiplication of the two matrices A ∈ Cp×a and

B ∈ Ca×q requires 8paq flops. Moreover, the complexity of the QRD operation for

a matrix H ∈ Cp×q is approximated by 4q2(3p− q), as in [31].

Specifically, the proposed algorithm of user selection has the following complexity

analysis:

• To select the first user, we need 4KN2
r (3Nt −Nr) flops.

• To find the null space of the first user via GSO operation, we require 8N2
rNt−

2NrNt flops [35].

• For each j ∈ Ψ, n ≥ 2, we need

I 8NrNt(Nt − (n− 1)Nr) flops for H̄
(n)

j ;

I 16NrNt(Nt− (n− 2)Nr) + 4N2
r (3Nt− (n− 1)Nr) flops for Ftemp;

I 8Nr(Nt − (n− 1)Nr)(Nt − (n− 2)Nr) flops for H̄
(n)

k ;
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• To select a new user, we need 4nN2
r (3(Nt − (n− 1)Nr)−Nr) flops.

• To update the null space Z, we need 16NrNt(Nt−(n−2)Nr)+4N2
r (3Nt−

(n− 1)Nr) flops.

• Finally, for each k ∈ Υ, we need 16NrNt(Nt − (n− 2)Nr) + 4N2
r (3Nt −

(n− 1)Nr) flops to update the precoder F
(n)
k .

The total number of flops, ψ, of the proposed algorithm becomes

ψ ≈ 4KN2
r (3Nt −Nr) + 8N2

rNt − 2NrNt +

K̂∑
n=2

×{8NrNt(Nt − (n− 1)Nr)

+(n− 1)[16NrNt(Nt − (n− 2)Nr)

+4N2
r (3Nt − (n− 1)Nr)

+8Nr(Nt − (n− 1)Nr)(Nt − (n− 2)Nr)]

+4nN2
r (3(Nt − (n− 1)Nr)−Nr)}

+16NrNt(Nt − (n− 2)Nr)

+4N2
r (3Nt − (n− 1)Nr)

+(n− 1)[16NrNt(Nt − (n− 2)Nr)

+4N2
r (3Nt − (n− 1)Nr)]

≈ O
(
KK̂N3

t

)
(4.21)

Note that to simplify the above equation, we have assumed K̂Nr ≈ Nt. A compari-

son of the complexity order for different user selection algorithms is listed in Table 4.1.

Evidently, the proposed algorithm has a complexity order less than the c-algorithm

and the same as the psrn-algorithm and pe-algorithm, while the v-algorithm has the

lowest complexity order.
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Figure 4.3: Average sum rate of different user selection algorithms when SNR=20
dB, ρ = 0. (a) Nt = 4, Nr = 2, (b) Nt = 8, Nr = 2.
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Figure 4.4: Average sum rate of different user selection algorithms when SNR=20
dB, ρ = 0. (a) Nt = 8, Nr = 3, (b) Nt = 10, Nr = 3.
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4.4 Simulation Results

To evaluate the performance of the proposed user selection algorithm, we compare

it with the following algorithms:

• Capacity-based algorithm (c-algorithm) [32];

• Product of the squared row norms of the effective channel matrices-based algo-

rithm (psrn-algorithm) [31];

• Volume-based algorithm (v-algorithm) [34];

• Product of the eigenvalues of effective channel matrices from the angle between

subspaces (pe-algorithm) [35];

The numerical results have been averaged over 5,000 independent quasi-static fading

channel realizations. Further, the simulation assumed both uncorrelated and corre-

lated channels.

In Figure 4.3 the average sum rate of different user selection algorithms is plotted

against the number of total users K for ρ = 0 (uncorrelated channels), and SNR

=20 dB. It can be seen that for two different antenna scenarios, the proposed algo-

rithm outperforms the v-algorithm and the psrn-algorithm and has the same result

as the c-algorithm and pe-algorithm. More specifically, the c-algorithm achieves high

performance over other suboptimal user selection algorithms, because its selection

metric corresponds directly to the sum rate capacity of the BD channel. Similarly,

at high SNR, the throughput of an individual user is an increasing function of the

product of the eigenvalues of the effective channels [32]. Hence, taking in consider-

ation the relation between SVD and the eigendecomposition, the proposed selection

metric can achieve almost similar performance to the c-algorithm under a high SNR

regime. Also, we observe that the psrn-algorithm achieves better performance in Fig-

ure 4.3(b), which is because the number of effective transmit antennas has increased
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that lead to increase the product of squared row norms of the effective channels [31].

In Figure 4.4, the previous procedure of Figure 4.3 has been repeated except that we

increased the number of receive antennas of each user, i.e., Nr = 3. We note that the

proposed algorithm maintains the previous performance with respect to c-algorithm

and pe-algorithm. As seen in both Figures 4.4(a) and 4.4(b) that average sum rate

has increased with respect to Figure 4.3, which is due the increase in the number of

receive antennas of each user.

In Fig 4.5, we validate the performance results of different user selection algorithms

under a highly correlated MIMO channel (ρ = 0.95) and at high SNR. We model

the MIMO channel matrix according to the Kronecker model as [92]-[95]

Hk = Ω
1
2
k,rHk,iidΩ

1
2
k,t (4.22)

whereHk,iid is an independent and identically distributed complex Gaussian distribu-

tion with zero mean and unit variance and Ω
1
2
k,t denotes Nt×Nt transmit covariance

matrix, i.e., [38]

Ωk,t = Ω
1
2
k,tΩ

H
2
k,t (4.23)

The correlation matrix for the receive antennas is denoted by Ω
1
2
k,r and here is assumed

as the identity matrix (i.e., the receive antennas elements are uncorrelated) [39].

Under this assumption, the MIMO channel has a transmit correlation only and the

above model can be written as

Hk = Hk,iidΩ
1
2
k,t (4.24)

Simulation results are generated using the exponential correlation model which is

given as [96]

[Ωk,t]i,j = ρ
|i−j|
k (4.25)

where [ ]i,j is the entry of matrix Ωk,t with index (i, j), and ρk is the correlation

coefficient for user k defined as

ρk = ρejφk (4.26)
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where φk is i.i.d. and uniformly distributed over [0, 2π] [40] [41]. Clearly, the results

shown in Fig 4.5 indicate that the proposed algorithm outperforms the v-algorithm

and the psrn-algorithm, with almost similar performance to the c-algorithm and the

pe-algorithm. In addition, we notice that the proposed algorithm is less affected

by channel correlation than the psrn-algorithm and the volume-algorithm for the

same number of transmit antennas, which is expected since the proposed performance

metric corresponds directly to the data rate of BD in high SNR scenario. However,

as the channel correlation increases, the instantaneous channels of the users tend to

be more dependent (i.e., quasi-identical) and, as a result, the sum rate is reduced due

to loss in the spatial degrees of freedom. [42]–[44].

Figure 4.6 plots a comparison of the elapsed CPU time of various user selection

algorithms versus the number of total users for ρ = 0 (uncorrelated channels), and

SNR =20 dB. These results are attained by 3.4 GHz Core i7 CPU PC. In the first

scenario[Fig. 4.6(a)], where the maximum number of users that can be supported

by BS is two, the simulation time results show that the proposed algorithm needs

less run time than that of the pe-algorithm. In contrast, Fig. 4.6(b) presents the

run time comparison when Nt = 8, Nr = 2. In this scenario, we observe that

the running time of the proposed algorithm starts to be greater than that of the

pe-algorithm when the number of total users exceeds a particular limit (in this case

K = 15). In either way the proposed algorithm has less run time than the c-

algorithmn, while the volume-based has the shortest run time. This difference in

running time comes although the proposed algorithm has the same complexity order

with some other algorithms. This is because the complexity order is usually derived

using approximate calculations, as shown in section 4.3.3. In summary, the proposed

algorithm gives the same performance as the c-algorithm and pe-algorithm in high

SNR as seen in Fig 4.3 and 4.5. In terms of complexity, the proposed algorithm has a

shorter run time than the c-algorithm and pe-algorithm when the maximum number

of simultaneously supportable users, K̂, is two, but it becomes more dependant on

the total number of users, K, to whom data is transmitted by BS as seen in Fig. 4.6.
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Figure 4.5: Average sum rate of different user selection algorithms when SNR=20
dB, ρ = 0.95. (a) Nt = 4, Nr = 2, (b) Nt = 8, Nr = 2.
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Figure 4.6: Run time of different user selection algorithms when SNR=20 dB, ρ = 0.
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4.5 Summary

In this chapter, we have studied user selection technology for multiuser MIMO

systems. In the case that channel information is available at the transmitter side,

it is possible to precancel interuser interference before applying user selection tech-

nique. In this correspondence, we designed the precoders of the proposed algorithm

depending on the procedure of Gram-Schmidt Orthogonalization, by which IUI can

be completely removed.

As seen in the chapter, user selection algorithms may vary in their performance and

complexity according to the selection metric they adopt. Under high SNR regime,

we have proposed a suboptimal user selection algorithm which utilizes the product of

the singular values of users’ effective channel as a performance metric. The singular

values can be obtained using the QR decomposition operation. Simulation results

have been taken over correlated and uncorrelated channels. The results show that

the proposed algorithm achieve the same throughput performance of the c-algorithm

with lower complexity.
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Chapter 5

Proportional Fairness Scheduling

For Multiuser MIMO Downlink

Systems

In this chapter, we propose a proportional fairness (PF) scheduling algorithm for

multiuser MIMO (MU-MIMO) downlink system. Two selection metrics have been

proposed to achieve the scheduling process. Both metrics are designed using the up-

per triangular matrix obtained by applying the QRD on the users’ effective channel

matrices. The first proposed selection metric adopts the maximum entry of the upper

triangular matrix in order to achieve the selection process. On the other hand, the

second metric uses the ratio between the maximum and minimum entries of the upper

triangular matrix multiplied by the product of singular values of users’ effective chan-

nels in order to achieve the PF scheduling. Simulation results have been compared

to the results achieved by the algorithm proposed by [35] and they show considerable

degree of fairness.
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5.1 Introduction

With the availability of full CSI at the transmitter, increasing the number of simul-

taneous users, which have independent faded paths with base station, will increase the

probability to find one user with good channel condition at any time. By allocating

most of the shared channel resource to that user, the total throughput of the system

is significantly maximized [59] [68]-[72]. Hence, increasing the system throughput is

considered the main objective behind multiuser diversity technique.

The technique of multiuser diversity can be applied in a real system after taking into

account two matters: fairness and delay [68]. In the case of similar fading statistics

of users (ideal situation), communicating with the user whose channel condition is

the best will maximize the total throughput of the system as well as the individual

throughput of users. In real applications, users’ statistics can not be symmetric; some

users can be closer to BS which will enhance their average SNR and make it better;

there are some other users are stationary and others are moving; other users may

move in a scattering medium and others have no scatterers surrounding them. More-

over, the multiuser strategy concerns only with the long term average throughput; In

reality the latency requirements are an important issue to be considered in practice.

In other words, the average throughput taken over the delay time scale is considered

the metric of interest to evaluate the system performance. In this chapter, we aim

to handle these two issues in order to significantly exploit the multiuser diversity

gain in multiuser MIMO downlink system with independent and fluctuating channel

conditions.

5.2 Proportional Fairness Scheduling

The two constraints, fairness and delay, mentioned above can be meet by the use

of proportional fairness (PF) scheduler which allows, in the same time, to utilize

muliuser diversity. Based on the requested rates of users sent to the base station at
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each time slot, the scheduler selects a set of users to transmit information to. In the

same time, the scheduler repeatedly updates the average throughput R̄k(t) of each

user over a window of length tc. Let Rk(t) denotes the requested (instantaneous)

rate of user k at time slot t, where k = 1, ...,K. Hence, the base station receives the

instantaneous rates from all active users in the system. As a result, the scheduling

algorithm decides to transmit to user k? who has the largest [59]

Rk(t)

R̄k(t)
(5.1)

among all simultaneous users supported by the base station. The average throughput

R̄k(t) of each user can be repeatedly updated by using an exponentially weighted

low pass filter as follows [68]

R̄k(t+ 1) =


(
1− 1

tc

)
R̄k(t) + 1

tc
Rk(t), k = k?

(
1− 1

tc

)
R̄k(t), k 6= k?

(5.2)

Figures 5.1 and 5.2 are simple example about how this algorithm works. For two

users, the instantaneous data rates are plotted as a function of time slots, where each

sample path is taken over 240 time slots. In Figure 5.1, the two users experience

identical channel fading statistics. As a result, the average throughput R̄k(t) of each

user will converge to similar values [59]. Consequently, the scheduling process is re-

duced to always selecting the user whose requested rate is the highest among other

users. In other words, the algorithm picks the user with good channel conditions and

at the same time leads to fairness in scheduling process in the long-term.

In Figure 5.2, the channel of one of the users (the blue one) is stronger than the

other (the red one) on average, although both users are fluctuating due to multipath

fading. This perhaps caused by the difference in users’ distances from the base sta-

tion, i.e., the user in blue colour is closer to the base station than of the red colour.

Hence, selecting the user which has the highest instantaneous rate means allocating
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Figure 5.1: The two users have symmetric channel statistics. The scheduler reduces
to picking the user with the largest instantaneous rate. (Extracted from [59])

the whole system resources to the user with statistically stronger channel condition

and causes significant unfairness. On the contrary, adopting the previously described

scheduling algorithm will bring fairness among all users because the system resources

are allocated depending on requested rates of the users normalized by their average

throughput. More specifically, the average throughput R̄k(t) of the kth user with

statistically poor channel conditions in previous time slots is low; then this user will

have better chance to be scheduled in the next time slots. Hence, the scheduling algo-

rithm picks a user when the quality of its channel is high with respect to its average

channel condition through a specific time-scale, i.e., tc.

The parameter tc corresponds to the latency time-scale. In the case of large la-

tency time-scale, then the average throughput is taken over a longer time-scale and

the scheduler can give more tolerance in time and wait longer before a user being

scheduled when the peak of its channel is high.
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Figure 5.2: The two users have asymmetric channel statistics. In this case, the
scheduler picks a user when its channel reaches high peak. (Extracted from [59])

5.3 User Selection and Multiuser Diversity

In multiuser MIMO downlink system and when the number of total simultaneous

usersK is very large, the base station can select a set of users with good channel qual-

ity to communicate with in order to improve overall system throughput [82]. That

means the multiuser diversity has been exploited to improve the whole throughput of

the system through user selection technique [84] [87]-[91].

Many suboptimal user selection algorithms have been proposed which adopts vari-

ous selection metrics such as matrix determinant, Frobenius norm, chordal-distance,

and etc. Although these algorithms are designed to reduce the computation burden

of selection process, degradation in performance is inevitable. Moreover, these low

complexity user selection algorithms cannot be applied to provide proportional fair-

ness because the performance metrics they adopt are not directly related to data rate

[85]. The product of eigenvalues of effective channels matrices calculated by using

89



1x

2x

Kx

1W

2W

KW

1

rN

1

1

2

1

tN

1TU

2TU

KTU

rN

rN

Figure 5.3: The base station transmits to a total of K simultaneous users and the
channel quality of these users are different. This may happen for many reasons such
as the difference in distance from BS, availability of rich scatters environment, moving
or not, and etc.

angle between subspaces is proposed by [35] as a selection metric. The proposed

algorithm can achieve the same performance as that of the capacity-based algorithm

and with lower complexity, as shown in chapter four. In addition, the algorithm can

be modified to achieve PF scheduling through number of steps. In [31], the authors

have proposed the product of squared row norms of the effective channels matrices

as a user selection metric. The scheduling algorithm can provide a trade off between

complexity and performance, and can be modified to achieve PF scheduling.
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5.4 System Model

5.4.1 Multiuser MIMO System

Let us consider a multiuser MIMO downlink system which has a single base station

equipped withNt transmit antennas . The base station communicates withK mobile

users simultaneously, and each kth user is equipped with Nr,k receive antennas,

k = 1, 2, ...,K, as shown in Figure 5.3.

The sub-channels of the system are assumed to be independent and identically

distributed (i.i.d) flat fading channels. Hence, the channel propagation from BS to

the kth user is given as

Hk ∈ CNr,k×Nt (5.3)

where perfect channel state information (CSI) at the receiver and transmitter is as-

sumed. Each user’s channel Hk is assumed to be independent of other users’ channels

and has full rank, i.e.,

rank(Hk) = min(Nr,k, Nt) (5.4)

Then, the overall system channel is given as

H = [HH
1 HH

2 ...H
H
K ]H (5.5)

which ascertains a full rank matrix.

Let S ⊂ {1, 2, ...,K} denotes a set of users which can be served simultaneously

by the BS. For the kth user, a symbol vector xk ∈ CNr,k×1 is transmitted with an

input covariance matrix given as

Qk = E{xkxHk } (5.6)
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and a total transmit power as

P =
K∑
k=1

trace(Qk) (5.7)

where P denotes the total transmit power in the system. Then, the transmitted

signal to user k is multiplied by a precoding matrix Wk ∈ CNt×Nr,k before being

transmitted. Thus, the kth user receives [36]:

yk = HkWkxk +

|S|∑
j=1,j 6=k

HkWjxj + nk (5.8)

where nk ∈ CNr×1 denotes the Additive White Gaussian Noise (AWGN) with

(0, σ2).

5.4.2 Gram-Schmidt Orthogonalization

Block diagonalization serves to cancel the IUI of a MU-MIMO channel and decom-

pose it into parallel SU-MIMO channels. For user k, the precoder matrix has to

satisfy the condition

HjWk = 0, ∀j 6= k (5.9)

The matrix Wk must be a unitary matrix so as to satisfy the total transmitted power,

i.e.,

Wk ∈ U (Nt, Nr) (5.10)

Moreover, Wk can be broken down into two matrices F and Λ. Hence, the matrix

Wk can be written as

Wk = FkΛk (5.11)

where Fk is designed to nullify the IUI and Λk in order to optimize the data rate

[37]. Therefore, Fk is designed to lie in the intersection of all other users’ nullspaces
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except user k, i.e., N (H̃k), where

H̃k =
[
HH

1 , ...,H
H
k−1,H

H
k+1, ...,H

H
|S|

]H
(5.12)

To ensure nullity of H̃k, the number of transmit antennas must be larger than the

total number of receive antennas of users that are simultaneously communicating with

BS, that is

Nt >

|S|∑
k=1

Nr,k (5.13)

where Nr,k denotes the number of receive antennas of user k.

In order to obtain the null space of the channel matrix, we utilize the method used by

[32] which depends on Gram Schmidt Orthogonalization (GSO) procedure. To clarify

the method, assume H1 ∈ Cp×q with p < q. Then, the null space H̆1 ∈ Cq×q of

matrix H1 can be obtained as follows

1. Find the transpose of matrix H1, i.e., HT
1 = transpose(H1)

2. Apply GSO procedure on matrix HT
1 to find H̀1

3. The null space H̆1 can be obtained as

H̆1 = I−
(
H̀
H

1 H̀1

)
(5.14)

where I, H̀
H

1 are q×q identity matrix and the hermitian matrix of H̀1, respec-

tively.

When the total number of users K is larger than the number of simultaneously sup-

portable users, K̂, i.e., K > K̂, we need to find the set of users S ⊂ {1, 2, ...,K}
that can maximize the total throughput of the system. The optimal subset of users

can be obtained by exhaustively searching for all possible user combinations, i.e.,

| S |= CK̂
K (5.15)
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where C denotes the combination operation.

5.5 Proposed PF Scheduling Algorithm

In this section, we propose a PF scheduler depending on the user selection algorithm

proposed in chapter four. The product of singular values can be obtained using

QR decomposition (QRD) and, then, utilized to design the selection metric of the

proposed user selection algorithm as seen in chapter four. Further, the decomposition

process has been used to design the performance metric of the proposed PF scheduler

with tradeoff between complexity and performance as shown next.

5.5.1 Extracting the singular values using QR Decomposi-

tion

QR Decomposition (QRD) can be used efficiently to extract the product of the

singular values for a particular matrix. Without loss of generality, assume matrix

A ∈ Cp×q with p < q, then A can be written as

AH = Q

[
R1

0

]
(5.16)

where Q ∈ Cq×q has orthonormal column vectors, and R1 ∈ Cp×p is the upper

triangular matrix. Note that in order to get the actual product of the singular values

for matrix A, we have used the hermitian matrix AH instead of A in (4.14). Then,

it is possible to obtain the product of the singular values, δ, as

δ =

∣∣∣∣∣
p∏
i=1

rii

∣∣∣∣∣
=

p∏
i=1

σi (5.17)
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where rii are the entries of the diagonal of R1, and σi represent the singular values

of matrix A. Then, we can define the following two quantities

rmax = max
R1

rii , i = 1, ..., p (5.18)

rmin = min
R1

rii , i = 1, ..., p (5.19)

where rmax, rmin denote the maximum and minimum diagonal entries of matrix R1,

respectively. These two quantities have been efficiently utilized to design the selection

metric of the proposed PF scheduler.

5.5.2 Proposed Algorithm

In cellular network, users experience different channel conditions due to variation

in distance between them and base station. Moreover, some users may move in a

scattering medium and others have no scatterers surrounding them. Fair scheduling

tries to ensure fairness in throughput among users. In this section, we adapt the

proposed algorithm of user selection to tackle this problem. The optimal proportional

fairness (PF) of scheduling can be expressed [85] [118]

<PF = max
S⊂{1,2,...,K}

∑
k∈S

Rk(t)

R̄k(t)
(5.20)

with constraint

|S| ≤ K̂ (5.21)

where K, K̂ are the number of total users in the system and the number of selected

users, respectively. The set S contains the indexes of selected users. Under high SNR

regime, the scenario of equal power allocation can be considered nearly optimal [86].
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Let Ψ,Υ denote the sets of unselected and selected users, then

R
(j)
k ≈

Nr∑
i=1

log2

(
1 +

P

jNr

λ
(j)
k,i

)
(5.22)

where R
(j)
k denotes the instantaneous data rate of user k at the jth iteration. Here,

we have assumed that each user is equipped with equal number of receive antennas,

i.e.,

Nr = Nr,k (5.23)

For each k ∈ Υ, λ
(j)
k,i denotes the ith eigenvalue of the effective channel matrix of

that user at the jth iteration. The average throughput of user k can be repeatedly

updated as

R̄k(t+ 1) =


(
1− 1

tc

)
R̄k(t) + 1

tc
Rk(t), k ∈ Υ

(
1− 1

tc

)
R̄k(t), k /∈ Υ

(5.24)

1. First selection metric: we use Equation 5.18 to design the first selection

metric of the proposed PF scheduling algorithm. It has been noted that for a

set of users Ψ, the value of rmax,k for each k ∈ Ψ can be utilized to provide

general comparison among users regarding to their instantaneous data rate.

More specifically, by substituting Equation 5.18 in Equation 5.22 we obtain

R
(j)
comp1,k = log2

(
1 +

P

jNr

r
(j)
max,k

)
(5.25)

where R
(j)
comp1,k is a general indication about the instantaneous rate of user k

and it can be used for comparison between users. Here, rmax,k denotes the

maximum diagonal entry of matrix R1 for user k. We note that the proposed

Equation 5.25 has lower complexity than Equation 5.22 because we skipped the

summation and the process is approximately similar to finding the best receive

antenna (or mode) of user k. Then, the first proposed selection metric is given
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as

usel1,j = arg max
m∈Ψ

R
(j)
comp1,m

R̄m

+
∑
k∈Υ

R
(j)
comp1,k

R̄k

(5.26)

where usel1,j denotes the selected user at the jth iteration.

2. Second selection metric: The second proposed selection metric for the PF

scheduling algorithm is given as

$
(j)
k =

r
(j)
max,k

r
(j)
min,k

δ
(j)
k (5.27)

where r
(j)
max,k,r

(j)
min,k can be obtained from Equations 5.18 and 5.19 at the jth

iteration, respectively. δ
(j)
k is the product of singular values of the effective

channel matrices of user k at the jth iteration, which can be obtained using

Equations 5.16 and 5.17. Then, by substituting$
(j)
k in Equation 5.22 we obtain

R
(j)
comp2,k = log2

(
1 +

P

jNr

$
(j)
k

)
(5.28)

Similar to R
(j)
comp1,k, the value of R

(j)
comp2,k represents an indication which can

be used for comparison between users. Again, we have skipped the summation

process that leads to reduce the complexity of scheduling. Then, the second

proposed selection metric is given as

usel2,j = arg max
m∈Ψ

R
(j)
comp2,m

R̄m

+
∑
k∈Υ

R
(j)
comp2,k

R̄k

(5.29)

where usel2,j denotes the selected user at the jth iteration.

It is important to mention here that Equations 5.25 and 5.28 don’t provide the exact

instantaneous rate but a general indication about the rate of that user which can be

utilized for comparison with other users in the system.

Algorithm 3 and Algorithm 4 outline the main operations of the proposed PF

scheduling algorithm.
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Algorithm 3 The proposed PF scheduling algorithm

1: Ψ = {1, 2, ...,K}, Υ = ∅
2: Calculate δk ∀k ∈ Ψ
3: Select the first user as u1 = arg max

k∈Ψ

(
Rk(t)/R̄k(t)

)
4: Set the precoding matrix of u1: F(1)

u1
= INt

5: Let Z =null(Hu1)
6: Update Ψ = Ψ− u1, Υ = Υ + u1, n = 2
7: for j ∈ Ψ do
8: Set Fj = Z

9: Calculate the effective channel matrix H̄
(n)

j = HjFj
10: for k ∈ Υ do
11: Set Ftemp = F

(n−1)
k × null(HjF

(n−1)
k )

12: Update the effective channel matrices: H̄
(n)

k = HkFtemp
13: end for
14: Select a new user by using either Equation 5.26 or Equation 5.29
15: Update the intersection of the null spaces of all previously selected users: Z = Z
× null(HunZ)

16: for k ∈ Υ do
17: Update F

(n)
k = F

(n−1)
k × null(HunF

(n−1)
k )

18: end for
19: Update:Ψ = Ψ− un; Υ = Υ + un; n = n+ 1
20: end for
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Algorithm 4 obtaining the average throughput of each user after PF scheduling
process

1: Initiate the time window T
2: Initiate the time-scale parameter tc
3: Initiate the average throughput R̄j(t) for each j ∈ Ψ
4: for t = 1 : T do
5: Obtain users’ channels
6: Use Algorithm 3 to select users
7: Calculate the precoders of the selected users using block diagonalization method

explained earlier.
8: Calculate the effective channel matrices of the selected users
9: for k ∈ Υ do
10: Calculate the instantaneous date rate Rk(t)
11: end for
12: for j ∈ Ψ do
13: update average throughput R̄j(t) using Equation 5.24
14: end for
15: end for
16: for j ∈ Ψ do
17: Calculate the average data rate Rj(t) over the time window T
18: end for
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Figure 5.4: Average data rage of individual users with Nt = 8,Nr = 2. The
maximum number of selected users is 4.

5.6 Simulation Results

To evaluate the performance of the proposed PF scheduling algorithm, we compare

it with the algorithm proposed in [35] (pe-algorithm), in which the product of the

eigenvalues of effective channel matrices from the angle between subspaces is adopted

as a selection metric. We compare the proposed algorithm to this algorithm due to

the high performance it achieves. The numerical results have been averaged over

10,000 independent quasi-static fading channel realizations.

To obtain the performance of the proposed algorithm, we assume asymmetric SNRs

for the total users in the system before the start of selection process. More specifically,

Let the number of total users be K = 40. These users receive varying values of

SNRs that are according to the loglinear scale [31] [33] [82]. To perform that, we have

expressed the channel matrix for user k as

Hk =
√
ϑkHk,iid (5.30)
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Figure 5.5: Average data rage of individual users with Nt = 8,Nr = 3. The
maximum number of selected users is 4.

where Hk,iid is a matrix of independent and identically distributed complex Gaussian

entries with zero mean and unit variance. For each user k ∈ Ψ, the weighting factor

ϑk can be obtained from the loglinear scale from SNRmin = 0 dB to SNRmax = 20

dB, i.e.,

log10 (ϑk+1) =
SNRmax − SNRmin

K − 1
k + SNRmin (5.31)

for k = 0, 1, ...,K − 1

Further, the values of ϑk are normalized as

ϑk =
ϑk

ϑmax
, ∀k ∈ Ψ (5.32)

where ϑmax is the maximum value of ϑk’s in the set Ψ.

All plotted figures have fix number of K, i.e., K = 40. In Figure 5.4, the average

data rate of individual users is plotted against users’ index. In this Figure, we put
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Figure 5.6: Average data rage of individual users with Nt = 10,Nr = 2. The
maximum number of selected users is 5.

Nt = 8 and Nr = 2, hence the maximum number of selected users that can be

simultaneously supported by the base station is 4. As seen, the maximum sum rate

algorithms which are without PF scheduling, i.e., the blue and the magenta colours,

support the users with high SNR. More specifically, users 20 through 40 share most

of the throughput, while users 1 through 15 don’t receive data at all. By comparing

the proposed PF scheduling algorithm with the first selection metric, i.e., the red one,

to the PF pe-algorithm, we notice that both algorithms have almost similar degree

of fairness for users with high SNR, and they differ in that the proposed algorithm

gives some form of priority to users with lower SNR. In contrast, the proposed PF

algorithm with the second selection metric, i.e., the green colour, has almost the same

degree of fairness with the PF pe-algorithm for users with low SNR. The priority of

selection of the proposed PF scheduler with the second selection metric increases for

users with higher SNR.

In Figure 5.5, we have increased the number of receive antennas of each user, i.e.,

Nr = 3, while we fixed the number of transmit antennas, i.e., Nt = 8. In this
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case, the maximum number of selected users which are simultaneously supported by

the base station is 3. All algorithms almost follow the same pattern except that the

average sum rate is lower. This is normal since the number of selected users now is

less than that in Figure 5.4.

In Figure 5.6, we have increased the total number of transmit antennas Nt = 10,

while we fixed the number of receive antennas of each user, i.e., Nr = 2. In this

case, the maximum number of selected users that can be simultaneously supported

by the base station is 5. We notice that all algorithms have almost the same previous

pattern except that the total throughput have increased. This is because the number

of selected users which are simultaneously supported by the base station has increased.

5.7 Summary

In this chapter, we have studied the proportional fairness scheduling. We have seen

that multiuser diversity can be exploited to improve the system throughput through

user selection technology. The selection process may experience an important con-

straint which is fairness among users when applying selection. We have proposed a

PF scheduling algorithm with two selection metrics. Further, we studied the block

diagonalization method of precoding which can be used as an alternative of the itera-

tive precoding design in order to cancel the interuser interference in multiuser MIMO

downlink systems. By comparing the proposed algorithm to the algorithm which

adopts the product of eigenvalues of users’ effective channel matrices, we noticed that

a considerable degree of fairness has been achieved when applying the proposed two

selection metrics of PF scheduler.
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Chapter 6

Conclusion and Future Work

Due to rapid development of smartphone devices and their widespread integration in

everyday life, the demand of high data traffic is becoming more and more important

in wireless communications. Multiuser MIMO comes as one of the prime technologies

for increasing data rate transmission and improving link reliability in wireless systems.

This can be achieved by exploiting the degrees of freedom offered by deploying antenna

elements on both the transmitter and receiver sides and without the need of additional

power or bandwidth.

Transmit antena selection, user selection and proportional fairness scheduling tech-

nologies play essential role in reducing the complexity of MU-MIMO systems as well

as improving the total system throughput. In this thesis, MU-MIMO has been studied

according to these perspectives.

In this chapter, we summarise the main findings of the thesis and provide suggestions

for future research.
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6.1 Summary of Results

In chapter 3, we have studied transmit antenna selection technology for MU-MIMO

downlink systems. In this context, a greedy TAS algorithm is proposed. The pro-

posed algorithm selects an optimal set of antennas out of the total antennas deployed

in the base station for transmission. The selection process is achieved in a descending

order, where in each iteration the antenna which maximizes the product of eigenval-

ues of users’ effective channels is deactivated. The iterative precoding design method

is used to cancel the interuser interference that has to be done before starting selec-

tion. Simulation results demonstrate that the proposed algorithm achieves very close

performance to the exhaustive search algorithm with much lower complexity and has

high link reliability which is almost similar to that of the exhaustive search.

In chapter 4, we have investigated user selection technology for MU-MIMO systems.

In this correspondence, a greedy suboptimal user selection algorithm is proposed.

The key idea is that, for each iteration, the algorithm selects a user to maximize

the product of the singular values of the effective channels from a set of unselected

users. To evaluate its performance and complexity, the algorithm is compared to

four other algorithms. In terms of complexity, we demonstrated that the proposed

scheme is approximately equivalent to the psrn-algorithm and pe-algorithm and has

less complexity than that of the c-algorithm. More specifically, the algorithm has

a shorter run time than the pe-algorithm and is close to the psrn-algorithm if the

maximum number of users that can be simultaneously supported is two, but it be-

comes more dependant on the total number of users in the system when this figure is

greater than two. In either case, the proposed algorithm has less run time than the

c-algorithm. Furthermore, simulation results show that the proposed algorithm out-

performs the psrn-algorithm and v-algorithm as well as providing performance that

is the same as that of the c-algorithm and pe-algorithm under a high SNR regime,

for both correlated and uncorrelated channels.

In chapter 5, we have proposed a proportional fairness scheduling algorithm and two
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selection metrics. Both metrics are designed by utilizing the upper triangular matrix

obtained by applying the QR decomposition on the users’ effective channel matrices.

The first metric is designed using the maximum entry of the upper triangular matrix,

while the second metric is designed using the ratio between the maximum and mini-

mum entries of the triangular matrix multiplied by the product of singular values of

effective channels. Simulation results demonstrate that a considerable degree of fair-

ness is achieved when applying any of the proposed two metrics. However, compared

to PF pe-algorithm, the first metric gives some form of priority to users with lower

SNR. On the other hand, we noticed that the second metric provides slightly more

priority to users with high SNR compared to the PF pe-algorithm.

6.2 Future Work

In the context of transmit antenna selection, the thesis has assumed single cell MU-

MIMO downlink system. However, the issue can be extended into two other cases:

1. Multi-cell MU-MIMO networks, by which network capacity can be maximized

by using efficient methods of interference mitigation. In this case, nullifying

inter-cell interference (ICI) as well as IUI must be taken into consideration.

2. Massive MIMO systems, in which the BSs are equipped with a large number of

antenna elements. For such systems, selecting an optimal group of antennas for

transmission is considered a challenging task. This is because the search process

is achieved on a large number of antennas in order to select the required subset

among them. Hence, it is essential to find more practical algorithms of antenna

selection which can deal with such large number of antennas with more flexibility

and in the same time keep the diversity advantages of MIMO systems.

For user selection, possible work can be done to more alleviate the complexity of the

proposed algorithm. One idea to achieve that is by passing channel matrices into a

coarse filter before starting the selection process. For instance, subspace collinearity
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can be applied to obtain the dependency between any two subspaces (channels). The

preprocessing of channel matrices will help to find channels which are less correlated

to each other. Then, the remaining users after collinearity process will enter the

selection operation in order to find the final optimal group of users.

Another important issue which should be considered in future MU-MIMO systems is

the channel state information feedback. By scaling up MIMO systems, the need of

limited feedback becomes more crucial in order to reduce the computational burden on

user terminals. Hence, investigating both technologies of antenna selection and user

scheduling for massive MU-MIMO systems with limited channel state information is

considered a pioneering research work for massive MU-MIMO systems.
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Appendix A

A.1 Gram-Schmidt Orthogonalization

It is possible to convert a basis vectors {u1, u2, . . . , ur} into an orthogonal basis

{v1, v2, . . . , vr} by performing the following steps of computations: [116] [117]

Step 1. Set v1 = u1

Step 2. v2 = u2 − 〈u2,v1〉
‖v1‖2

v1

Step 3. v3 = u3 − 〈u3,v1〉
‖v1‖2

v1 − 〈u3,v2〉
‖v2‖2

v2

Step 4. v4 = u4 − 〈u4,v1〉
‖v1‖2

v1 − 〈u4,v2〉
‖v2‖2

v2 − 〈u4,v3〉
‖v3‖2

v3

...

(continue for r steps)

Then, to convert this orthogonal basis into an orthonormal basis {x1, x2, . . . , xr},
normalize the orthogonal basis vectors.

Note: the symbol 〈, 〉 refers to the inner product between two vectors.
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