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 

Abstract—This paper describes a new maximum-power-point-

tracking method for a photovoltaic system based on the Lagrange 

Interpolation Formula and proposes the particle swarm 

optimization method. The proposed control scheme eliminates 

the problems of conventional methods by using only a simple 

numerical calculation to initialize the particles around the global 

maximum power point. Hence, the suggested scheme will utilize 

fewer iterations to reach the maximum power point. The 

proposed algorithm is verified with the OPAL-RT real time 

simulator and the Matlab Simulink tool, with several simulations 

being carried out, and compared to the Perturb and Observe 

method, the Incremental Conductance method, and the 

conventional Particle Swarm Optimization based algorithm. The 

simulation results indicate the proposed algorithm can effectively 

enhance stability and fast tracking capability under fast-

changing non-uniform insolation conditions.  

 

Index Terms—Photovoltaic (PV) systems, maximum power 

point tracking (MPPT), Perturb and Observe (P&O) Method, 

Incremental Conductance (IncCond), OPAL-RT, particle swarm 

optimization (PSO), partial shading conditions (PSC). 

I.  INTRODUCTION  

he power–voltage (P–V) characteristic of a photovoltaic 

(PV) module dictates its optimum operating point, the 

point at which it can deliver maximum power; this is 

known as the maximum power point (MPP). This point is not 

constant, but dependent on weather conditions and load 

impedance. Therefore, maximum-power-point tracking 

(MPPT) methods are required for a PV system to maintain 

efficient operation of the PV panels present, at their MPP [1], 

[2]. Recently, a number of authors offered different 

explanations for the problems associated with the MPPT 

controller. Several MPPT methods have been developed thus 

far, ranging from the simple to the more complex, and 

dependent on the weather conditions and the control strategies 

used. Among these are the Perturb and Observe (P&O) 

method [1] and [3] and the Incremental Conductance 

(IncCond) method [4], [5]. These algorithms have the 

advantage of working independently, as knowledge of PV 

generator characteristics is not critical. Although such 

methods are simple to implement [7], they are unable to track 

the MPP accurately in circumstances where levels of solar 

radiation are changing rapidly. Furthermore, they cannot 

                                                           
The authors are with The College of Engineering, Design and Physical 

Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, U.K. 

(e-mail: Ramdan.Koad@Brunel.ac.uk ; azobaa@ieee.org; 

aahmed@georgiasouthern.edu). 

 

 

operate the system at the MPP under partial shading 

conditions (PSC), because they lack differentiation between 

the local MPP and its global peak (GP) [8]- [10].  

Reference [11] describes a PV system under PSC, 

illustrating that the use of a conventional MPPT algorithm 

under partial shadowing conditions could result in significant 

power losses. According to [12], the efficiency of MPPT 

controllers is reduced under PSC, because most MPPT 

controllers operate such that there is only one point at which 

the PV module can produce maximum power within the range 

of its P–V characteristic. However, when PSC occurs, the P–V 

characteristic becomes more complex, exhibiting multiple 

peaks, which in turn affect the performance of the controller, 

reducing the entire output power of the system as a result [6], 

[7]. Recently, numerous modified MPPT methods have been 

proposed in the literature to ensure the accurate tracking of 

MPP, to improve dynamic system response and minimize the 

system hardware [14], [16]. These methods differ in their 

complexity, accuracy, and speed. Even if tracking were done 

perfectly using these methods, the dynamic response speed of 

the system would still be low [2], [6], [11]. An alternative 

optimization technique applied to the MPPT controller of a PV 

system, operating under PSC, is the Particle Swarm 

Optimization (PSO) algorithm [9], [15]-[18].  

The PSO technique exhibits considerable potential, due to 

its easy implementation, fast computation capability, and its 

ability to determine the MPP irrespective of environmental 

conditions. It can also perform a search that is more random 

than searches performed as part of other evolutionary 

techniques, such as the Genetic Algorithm (GA). The 

difference between the PSO algorithm and conventional 

techniques is that with the PSO method, the updating of the 

duty cycle based on the particle velocity is not fixed, while 

when employing other techniques the duty cycle is perturbed 

by a fixed value. The result is that oscillations occur around 

the MPP in a steady state, as reported in [9] and [15]-[17]. In 

standard PSO, particles are usually initialized randomly 

following uniform distribution over the search space. This 

requires large time delays to enable the particles to converge 

towards the MPP, thereby resulting in long computation times 

[6], [11]. However, a proper initialization of the particles can 

improve PSO efficiency, resulting in the detection of superior 

solutions with faster convergence. 

As the initialization of the swarm in PSO is a crucial issue 

affecting performance, the authors of [14] proposed a two-

stage algorithm. First, they applied the P&O method to 

identify the nearest local maximum, and then used the PSO 

method in the second stage to reach the GP. However, the 

P&O technique requires longer to determine the MPP. 
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Moreover, the P&O technique can become confused under 

exposure to rapidly changing weather conditions.  

In [9], the random numbers of the standard PSO 

acceleration factors were removed to reduce the search time. 

However, the change in particle velocity needed to be 

restricted, as while a low velocity value would impose a need 

for more iterations to reach the GP, with a large value it may 

escape the GP.  

A re-initialised PSO-IncCond process is suggested in [18]. 

The IncCond process is employed to discover the locality of 

MPP. After this, the averages of the function cycle and the 

output power within the IncCond technique are employed to 

re-initialise the standards for identifying the finest duty cycles 

and the highest power rate in the PSO process in that order. 

Despite the benefits of precise tracking that are possible when 

using PSO-founded techniques, tracking takes a lot longer 

than when using traditional processes, particularly under PSC, 

which is a key drawback.  

Ref [19] projected a novel MPPT, founded on the PSO 

algorithm by adding extra coefficients to model PSO 

equations to enhance the algorithm computational load. 

Nevertheless, it is not apparent whether the algorithm will 

track the right MPP continually, because within the PSO 

algorithm, as the particles reach the MPP, their speed falls to 

extremely low or nil. One of the frequently encountered 

difficulties with the PSO algorithm is that underneath 

conditions of slow difference in solar emissions, the alteration 

of the duty cycle needs to be small to track the MPP 

accurately. Nevertheless, this leads to a definite amount of 

power needing to be utilized during the investigative process, 

and determines that the conversion towards the MPP will be 

gradual. In contrast, if the adjustment to the duty cycle is 

large, it is then not possible to trace the novel MPP accurately.  

In view of these drawbacks, this paper offers a novel 

approach to augment the MPPT method for the PV system, 

based on the Lagrange Interpolation (LI) formula and the PSO 

method. Initially, the LI method is used to determine the 

optimum value of the duty cycle in the case of the MPP 

according to the operating point. Starting from that point, the 

PSO method will then be used to search for the true GP. The 

proposed MPPT controller essentially initializes the particles 

around the MPP, thereby providing the initial swarm with 

information concerning the best position. This can thereby 

improve PSO efficiency and lead to faster convergence, with 

zero steady-state oscillations. Additionally, there is no need to 

restrict particle velocity, because the initial values are closer to 

the MPP. Thus, the proposed technique aims to increase 

efficiency without adding any extra complexity, thereby 

substantially enhancing possible tracking speeds, while also 

reducing the steady-state oscillation (practically to zero) once 

the MPP is located. This offers considerable improvements 

over the conventional PSO method, in which new operating 

points are too far from the MPP requiring additional iterations. 

II.  TERMINAL CHARACTERISTICS OF PHOTOVOLTAIC CELLS 

The equivalent circuit of the PV module is shown in Fig. 1. 

 
Fig. 1. Single-diode PV cell model with 𝑹𝑺 and 𝐬𝐡 [16]. 

The corresponding current–voltage (I–V) characteristic 

equation can be written as follows: 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜  { [exp(
q(V+I𝑅𝑠

𝐴𝐾𝑇
 ) − 1} − 

V+I𝑅𝑠

𝑅𝑠ℎ
                      (1) 

 For the study, the selected PV module is the BP Solar SX 

150S PV module, and the proposed system uses the Cùk 

converter. Equation (2) gives the relationship between the 

output and input voltages and the duty cycle of the Cùk 

converter: 

 
𝑉𝑙𝑜𝑎𝑑

𝑉𝑝𝑣
=

𝐷

1−D
 (2) 

III.  EFFECT OF THE PARTIAL SHADING CONDITIONS  

The solar cells in the practical system have been connected 

in series or parallel configurations to form modules/arrays and 

generate the desired voltage values. However, the PV module 

output voltage is determined by the output current generated. 

This depends chiefly on the solar radiation conditions, as these 

are directly proportional to irradiance. Therefore, in an 

application, where there are multiple PV modules working 

under different irradiance conditions, there will be an 

opportunity to implement different maximum output power 

points, instead of a single MPP. This may result in a 

substantial reduction in output power for the entire system, as 

the controller might not find the true operating point for the 

MPP. This condition can occur where there is a partial shading 

condition [16]-[19]. 

 

 
Fig. 2. V-P curve of the PV array under PSC. 

 

The simulated PV module is the MSX60, connected in the 

series-parallel (4 × 1) configuration. The resulting P–V curve 

is shown in Fig. 2, when some of the modules in the PV array 

are shaded. It can be observed that the P–V curve on the PV 

array exhibits multiple MPPs under this condition. 

IV.  OVER VIEW OF THE PARTICLE SWARM OPTIMIZATION 

ALGORITHM 

The PSO algorithm is an optimization technique that can be 

applied using multivariable function optimization with many 

local optimal points, as presented by Kennedy and Eberhart in 
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1995 [9] and [14]. The principle of the PSO algorithm was 

inspired by observations of natural social behaviour, such as 

bird flocking and fish schooling. The key differences between 

the PSO and other global optimization approaches were the 

easy implementation and fast convergence of the former. As a 

result, PSO has received growing attention from researchers 

studying its use with MPPT in PV systems.  

Following the aforementioned flocking analogy, PSO 

modelled several cooperative “birds,” termed particles in this 

case, acting together in a “flock,” otherwise known as a 

swarm. Each particle in the swarm has a fitness value mapped 

by an objective function and an individual velocity, which the 

particle uses to determine the direction and distance of the 

movement. Each particle exchanges the information obtained 

through its respective search processes [10], [13] and [14]. 

The position of a particle is influenced by two variables: the 

best solution found by the particle itself (pbest), which is stored 

for use as individual best position, and the best particle in the 

neighbourhood (gbest), which is stored as the best position for 

the swarm. The particle swarm uses this method to move 

towards the best position, continuously revising its direction 

and velocity as needed; following this approach, each particle 

ultimately moves toward an optimal point or close to a global 

optimum [14]. The standard PSO method can be defined 

according to the following equations: 

 

 𝑣𝑖(𝑘 + 1) = 𝑤𝑣𝑖(𝑘) + 𝑐1𝑟1. (𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘)) + 𝑐2𝑟2. (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘)) (2) 

 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)  (3) 

 

i = 1, 2, …, N 

 

Where xi and vi are the velocity and position of particle i, 

respectively, k represents the iteration number, w is the inertia 

weight, r1 and r2 are random variables whose values are 

uniformly distributed in the range [0, 1], and c1 and c2 

represent the cognitive and social coefficients, respectively. 

pbest,i is the individual best position of particle i, and gbest,i is the 

best position of all the particles in the swarm. If the 

initialization condition (5) is satisfied, the method is updated 

according to (4): 

 

pbesti = xik (4) 

 

f(xik) > f(pbesti) (5) 

 

where f represents the objective function that should be 

maximized. The basic PSO algorithm can be explained in five 

steps: 

Step 1: Initialization of the particle position and velocity 

randomly.  

Step 2: Objective function evaluation.  

Step 3: pbest and gbest evaluation.  

Step 4: Updating of the velocity and position.  

Step 5: Repetition of steps 2–4 until the criteria are met. 

V.  MPPT ALGORITHM BASED ON NUMERICAL CALCULATION 

In order to find the MPP quickly, and to overcome the 

problems posed by conventional MPPT algorithms, speed, 

stability and accuracy, a novel maximum power point tracking 

controller based on the Lagrangian Interpolation (LI) and a 

PSO method is proposed. The scheme proposed in this study 

estimates the voltage value (Vmpp) of the PV module I–V 

characteristic in the first step, using the constant voltage (CV) 

method approximation. The CV method algorithm is the 

simplest MPPT controller, and usually triggers a quick 

response. This technique assumes the value of Vmpp at 

different irradiance points is approximately equal, as shown in 

Fig.3 [11], [14] and [15].  

where Voc represents the open circuit voltage of the PV panel, 

the ratio between the PV module maximum output voltage, 

and its open circuit voltage, which are equal to constant K, and 

assuming that it slightly changed with the solar radiation. A 

number of authors have suggested good values for K within 

the range 0.7–0.92 [1]. 

 
𝑉𝑚𝑝𝑝

𝑉𝑜𝑐
=  K                                                                                      (6) 

 

 
Fig. 3. I-V Characteristic of a photovoltaic cell 

 

The working principle of the algorithm is as follows: 

The algorithm begins by obtaining the present value of V(k) 

and using the previous value, stored at the end of the 

preceding cycle, V(k-1). Then the value of the duty cycle 

𝑑𝑚𝑝𝑝at (𝑉𝑚𝑝𝑝) is estimated, using the Lagrangian interpolation 

formula, for which four points selected from the (I-V) 

characteristic are used.  Fig.3. represents the PV module (I-V) 

curve, which is described by the quadratic interpolation 

function. The interpolation nodes 𝑥1 and 𝑥2 represent the 

voltage values at the two sampling points (𝑉1  and𝑉2), while 

𝑥0 represents the voltage  𝑉0 of the short circuit current, which 

is equal to zero, and 𝑥3 represents the open circuit voltage 

provided by the PV module data sheet. The function values 𝑦1 

and 𝑦2 correspond to the voltage values, representing the duty 

cycle (𝑑1  , 𝑑2), the values of the sampling points, and 𝑦0 and 

𝑦3 represent the duty cycle (𝑑|𝐼𝑠𝑐
 and 𝑑|𝑉𝑜𝑐

)  at the 𝐼𝑠𝑐 𝑎𝑛𝑑 𝑉𝑜𝑐 

points, which are equal to 1 and 0, respectively. Once the 

values of  𝑉0, 𝑉1, 𝑉2 and 𝑉𝑜𝑐 have been obtained using the 

aforementioned process, the value of the duty cycle at MPP 

𝑑𝑚𝑝𝑝 at (𝑉𝑚𝑝𝑝) can be estimated using the Lagrangian 

interpolation formula. Eq 7 below gives the interpolation 

formula for 𝑑𝑚𝑝𝑝corresponding to𝑉𝑚𝑝𝑝: 

 

𝒚(𝒙) =
(𝒙−𝒙𝟏)(𝒙−𝒙𝟐)(𝒙−𝒙𝟑)

(𝒙𝟎−𝒙𝟏)(𝒙𝟎−𝒙𝟐)(𝒙𝟎−𝒙𝟑)
 𝒚𝟎+. . +

(𝒙−𝒙𝟎)(𝒙−𝒙𝟏)(𝒙−𝒙𝟐)

(𝒙𝟑−𝒙𝟎)(𝒙𝟑−𝒙𝟏)(𝒙𝟑−𝒙𝟐)
 𝒚𝟑        (7)                   

where x is the value of Vmpp.       
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Thus, the algorithm for determining the value of 

𝑑𝑚𝑝𝑝 corresponds to 𝑉𝑚𝑝𝑝. Therefore, the PSO algorithm will 

trigger the optimisation with an initial value close to the MPP. 

A.  The Proposed Algorithm 

Unlike conventional techniques, where perturbing and 

observing power are used to track the PV MPP resulting in 

long computations time, the proposed algorithm computes the 

value of initial particles’ 𝑑𝑀𝑃𝑃 (duty cycle at MPP) based on 

the voltage at maximum power. Therefore, the algorithm can 

start the optimization process with an initial value that is 

already close to the MPP. The initial value of particles can be 

defined as: 

  

𝑑𝑖
𝑘
 = [d1, d 2 , d3 ,........, dN]                                         (8) 

 

where N is the number of particles and k is the number of 

iterations. 

To commence the process, the algorithm transmits three duty 

cycles d1, d2, and d3 to the Cùk converter; these values are 

taken as the pbest in the first iteration, and the value closer to 

the MPP (fitness value) is taken as the gbest value. The duty 

cycle velocity and position is then updated accordingly. 

Consequently, when applying the PSO principle, the duty 

cycle will be perturbed by a small value in the next iteration as 

a result of comparing the present fitness value with the 

previous one. This process continues until all particles reach 

the MPP (a best fitness value) where the velocity is nearly 

zero.   

Since the value of d2  is an estimated value computed using 

(7), and d1 and d3 are calculated by adding and subtracting a 

value of dx from d2 to get the upper and lower boundaries, this 

method leads to a fast dynamic response and accurate 

tracking. Therefore, a new set of duty cycles can be defined 

as: 

d i new=   d2 – dx , d2 , d2 + dx (9) 

 

where dx is chosen to be equal to velocity. 

The duty cycles d2 computed using (7) will be very close to 

the optimum duty cycle. Additionally, because of the earlier 

PSO exploration, one of di (i = 1, 2, 3) will always be very 

close to the best duty cycle. Hence, this allows the PSO to 

track the new GP rapidly. The two particles (d1 and d3) which 

represent pbest, are too close to gbest (d2), and so no large 

change in their velocity is required to come closer to d2. If a 

sudden change in weather conditions occurs, the duty cycle is 

then re-initialized, using (9) to set a new duty cycle, which can 

track a new MPP correctly. The complete flowchart for the 

proposed method is shown in Fig. 4 and the proposed 

algorithm uses the following basic principles: 

Step 1. Parameter selection: For the proposed MPPT 

algorithm, the calculated duty cycle of the converter in (9) is 

defined as the particle position, and PV module output power 

is chosen as the fitness value evaluation function. 

Step 2. PSO initialization: In a standard initialization, PSO 

particles are usually randomly initialized. For the proposed 

MPPT algorithm, the particles are initialized at fixed, 

equidistant points, positioned around the GP. 

Step 3. Fitness evaluation: The fitness evaluation of particle i 

will be conducted after the digital controller sends the PWM 

command according to the duty cycle, which also represents 

the position of particle i. 

Step 4. Determination of individual and global best fitness: 

The new calculated individual best fitness (Pbest) and the 

global best fitness (gbest) of each particle value are compared 

with previous ones. They are then replaced according to their 

positions, where necessary. 

Step 5. Updating the velocity and position of each particle: 

The velocity and position of each particle in the swarm is 

updated according to (2) and (3). 

Step 6. Convergence determination: The convergence criterion 

is checked. If the end criterion is met, the computation will 

terminate. Otherwise, the iteration is increased by one rerun of 

Steps 2 through 6. 

Step 7. Reinitialization: The convergence criteria in the 

standard PSO algorithm aim to find the optimal solution or the 

success of the maximum number of iterations. However, in a 

PV system, the optimum point is not constant, as it depends on 

both weather conditions and load impedance. Therefore, the 

proposed LI-PSO algorithm will reinitialize and search for the 

new MPP whenever the following conditions are satisfied: 

 

|v_(i+1) |< Δv                                                         (10) 

 

(p_i (k+1)-p_i (k))/(p_i (k) )  > Δp                       (11) 

 



 5 

Start

Pbest=di(1,2,3..,N)

vi=0,w=o.4,c1=0.8,c2=1.2

i=1

Send three duty cycle to the 

converter d1,d2and d3 using Eg 9

Calculate the Output Power 

P(i)=I(i)*V(i)

Current Power > Pbest

Pbest > gbest

i > N

Ubdate vi and xi using eq.(2) and (3)

Convergence criteria met ?

Send the duty cycle of gbest

Is insolation change ?

Obtain the value of dmpp ,using the 

Lagrangian interpolation formula  as 

discussed in section IV.

Pbest = Current 

Power
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No
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No

Yes

No

Yes

Fig. 4. MPSO algorithm flowchart 

where p_i (k+1) is the new PV power, p_i (k) is the 

previous PV power at maximum point. Equations (10) and 

(11) stand for the agent’s convergence detection and abrupt 

alteration of insolation, correspondingly. As already accounted 

for in [16], there are two matters associated with ΔV choice: 

1) lesser values lead to better MPPT firmness but a poor 

tracking reaction, and 2) superior values result in a faster 

tracking reaction at the cost of greater oscillations. Therefore, 

a balanced rate must be selected. Nevertheless, when the ΔP is 

great, the subsequent constraint (11) might not be fulfilled due 

to lesser variations in real power; therefore, the agents’ rate of 

initialization is minor. In accordance with [16] and real-time 

investigational explorations, the approach to conquering these 

restrictions and to attaining better tracking performance, is to 

employ excessive values for ΔV and ΔP, which must be 

avoided to warrant MPPT stability. 

VI.  TESTING THE PROPOSED MPPT ALGORITHM  

Figure 5 depicts the main circuit of the hardware-in-loop 

(HIL) testing platform for the photovoltaic grid-connected 

inverter. To verify the validity of the proposed MPPT 

algorithm, the HIL close-loop testing scheme published in [22] 

is used. The three components of the HIL close-loop testing 

platform include the RT-LAB simulator. RT-LAB software is 

used to perform a simulation on the main computer and 

controller of an inverter connected to a T- type photovoltaic 

grid. The DSP chip is used with the controller and the digital 

and analog I/O boards, to join it to the RT-LAB simulator. The 

PWM pulse is produced by the controller and then travels via 

the digital input board to the simulator, activating the inverter 

assembly connected to a 3 level T type photovoltaic grid [20]. 

 

 
Fig.5 Circuit of hardware-in-loop testing platform 

 

The proposed system was tested in the HIL close-loop, 

under rapidly changing solar radiation conditions (300 to 

1000) Fig.6, and then when the PV array is partially shaded, as 

shown in Fig.7 
 

 
Fig.6. OPAL-RT results of LI-PSO MPPT controller (current, voltage, and 

power) 

The model runs in real-time, with a time-step of 10µs for 

the purpose of control and 135ns for the electrical circuit. The 

PWM pulse was generated at 50 kHz. The result was recorded 

after 250ms at 300 and 250ms at 1000.  Figure 6, shows the 

PV module output current, voltage, and power, under rapidly 

changing solar radiation conditions (300 to 1000). It can be 

seen that the proposed algorithm tracked the maximum power 

level effectively and accurately.  
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Fig.7. OPAL-RT results of LI-PSO MPPT controller under PSC (current, 

voltage, and power) 

 

From Fig. 7, it is clear that when partial shading occurs, the 

LI-PSO algorithm was tracked the true GP P4 (118 W). 

VII.  DESIGN AND SIMULATION OF MPPT ALGORITHMS 

The proposed system was developed using the 

Matlab/Simulink and consists of a PV module, and the Ćuk 

converter, which was chosen as the power interface. The 

MPPT controller, where the output voltage and current from 

the PV module are fed into the MPPT algorithm, and 

subsequently the output of the PWM signal, are used to drive 

the switch of the Ćuk converter to execute the MPPT from the 

PV module. There are a number of benefits to this system (1). 

The entire control mechanism is simplified (2) and so the time 

taken to perform calculations is decreased (3). Furthermore, 

there is no requirement to tune PI gains, which enables the 

system to achieve a fast, dynamic response and reduces its 

complexity considerably.  

 
Fig. 8. Simulink model of the MPPT system 

To verify the effectiveness of the tracking algorithm and its 

response time, the proposed system was simulated in Matlab, 

and the response time for the proposed algorithm was analysed 

and compared to the P&O and IncCond methods, and the 

conventional Particle Swarm Optimization-based MPPT 

(PSO-MPPT) algorithm. P&O and IncCond periodically 

update the duty cycle d (k) applying a fixed step-size of (0.02). 

The switching frequency of the converter was set to 50 kHz. 

To implement the PSO algorithm and the proposed scheme, 

the following parameters were used: C1 = 0.8, C2 = 1.2, w = 

0.4, Δ𝑃 =1%, and ΔV = 0.4.  

  Firstly, the proposed system was simulated with the Matlab 

model under constant weather conditions, at (1000 W/m2, 25 

°C) and (200 W/m2, 25 °C); this was repeated when the PV 

array was partially shaded, as shown in Fig. 2.  Finally, the 

dynamic performance of the system was studied according to 

the test conditions addressed in European Standard EN 50530 

[22].  

 
Fig. 9. The PV module output power (W) simulated with Matlab at G = 1000 

W/m2 and constant T = 25 °C 

In Fig. 9, it can be observed that the MPP value for the 

selected PV module is 60.5 W, while it is 60.64 W with the 

proposed algorithm. The optimization time for the latter was 

less than 2 ms, and the convergence speed was also very fast, 

because the LI-PSO moves the operating point close to the 

optimal point in a single step. This is unlike conventional 

techniques where the perturbation and observation of the PV 

module output power are used to track the MPP. By contrast, 

the conventional PSO yielded 60.52 W and required 24 ms to 

settle to a new MPP. In that time, the P&O and IncCond 

methods yielded values of only 57.76 W and 59.21 W, 

respectively. It is clear from the simulation result that the 

proposed algorithm set the operating point for the MPP ast 

zero oscillations in a steady state after three iterations.  

Figure 10 shows the behaviour of the system under low 

solar radiation (G = 200 W/m2, T = 25 °C). It can be seen that 

the MPP value of the selected PV panel is 11.5 W, while it is 

11.64 W with the LI-PSO algorithm, and the convergence 

speed is very fast; the conventional PSO was 11.53 W and its 

optimization time 35 ms. In that time, the P&O and IncCond 

methods yielded values of just 10.04 and 10.85 W, 

respectively. In terms of convergence speed, the proposed 

method is faster than the conventional PSO algorithm, as the 

conventional method requires completion of a comprehensive 

search to set a new MPP. 

 
Fig. 10. The PV module output power (W) simulated with Matlab at G = 200 

W/m2 and constant T = 25 °C 

 

Fig. 11, shows the behaviour of the system when the solar 

radiation levels for the PV modules were changed from 300 

W/m2 to 500 W/m2 at a constant temperature of 25°C. The 

theoretical value of the MPP, which can be generated from the 

selected PV module in these cases, is 17.67 W and 30.35 W, 

respectively. The changes in solar irradiation occurred at 0.03 

s intervals, and Fig. 12 shows the output power of the system 

when the radiation was reduced from 800 W/m2 to 500 W/m2. 

Figs. 11 and 12 show PSO provides an unsuitable response 

in short periods when there is a gradual change in radiation; 

this is a common problem affecting the original PSO 

algorithm.  

The dynamic responses of the system output power under 

varying temperatures of 0°C, 25°C, 70°C, and 50°C are shown 

in Fig. 13. It is evident that in the case of the LI-PSO MPPT 

technique, the time taken to set the operating point of the 

system at its MPP was less than 2 ms and its tracking 

efficiencies were higher than 99.94% in all test conditions, 

while the conventional PSO was 0.004 s. The proposed 

technique has provided excellent performance in comparison 

with other methods; in terms of both dynamic and steady-state 

responses. 
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Figure 11: The dynamic response of the output power during rapidly 

increasing radiation levels. 

 
Figure 12: The dynamic response of the output power during rapidly 

decreasing radiation levels. 

 

 
Figure 13: The PV module output power (W) simulated with MATLAB 

during rapidly changing temperature, G = 1000 W/m2. 

 

Table I, summarizes the simulation results for tracked 

power in (W) between the studied MPPT for different 

temperatures. It is clear that the power generated when using 

the proposed algorithm was greater than 98% under all test 

conditions. 

 
Table I: Comparison of the studied methods for different temperatures 

T (°C ) P&O INC PSO LI-PSO 
Theoretical 

value of PV 

0 56.32 62.95 67.88 68.22 66.45 

25 57.76 59.21 60.52 60.64 60.5 

50 42.65 48.85 49.52 52.84 53.08 

75 35.59 41.68 41.04 45.62 46.18 

According to the findings attained, higher efficiency is 

promoted by either the P&O or the IncCond technique, which 

both have a fixed step perturbation structure. Nevertheless, in 

comparison to P&O, IncCond produced a slightly better 

efficiency (98.3% vs. 98.5%). However, at low levels of 

insolation, both techniques performed poorly, particularly 

IncCond, which yielded efficiency levels below 95% on 

numerous occasions. Hence, to increase efficiency to 100%, it 

is necessary to employ adaptive MPPT techniques, which are 

faster and have minimal fluctuation around the MPP. 

The following table provides a comparison of the tracked 

power in (W), between the theoretical value of the PV module 

and the MPPT studied for high and low levels of solar 

radiation. It is clear that the yield energy of the proposed 

algorithm is above 99.5 % under all test conditions. 

 
Table II: Comparison of the methods studied 

  G 

W/m2
 

P&O INC PSO LI-PSO 
Theoretical 

value of PV 

200 10.04 10.85 11.18 11.67 11.5 

400 14.22 19.78 24.16 24.29 24.26 

600 33.62 33.68 36.51 36.58 36.52 

800 42.6 43.35 48.05 48.76 48.68 

1000 57.76 59.21 60.22 60.64 60.5 

 

Fig. 14 illustrates the output power of the techniques 

studied and proposed under PSC. Initially, the PV was 

operated at a maximum power of 240 W, and at t = 0.03 s, 

some of the PV modules in the array were shaded, resulting in 

four peaks P1, P2, P3, and P4, where P4 (118 W) is the GP. 

 
Fig. 14. The PV Module Output Power (w) simulated with the MATLAB 

Model under PSC. 

From Fig. 14, it is clear that when partial shading occurs, 

the operating point of the P&O was at P2 (53 W) as the MPP, 

while both PSO and IncCond are trapped close to the local 

peak P3 (98 W). However, LI-PSO tracked the true GP P4 

(118 W), because the first particle is set to the converged 

value from the first step, thereby allowing the particles to 

converge to the GP much faster. Although the conventional 

PSO-MPPT algorithm is fast and sets the operating point of 

the system accurately, it is at a disadvantage when searching 

for MPP with multiple peaks. In this case, however, it was 

possible when some of the modules were shaded, to track the 

local MPPs and enable the particles to track the global MPP. 

In traditional PSO algorithms, the three basic parameters (w, 

c1 and c2) must be tuned in order to accelerate convergence. 

As shown in Fig. 15, when the weight (𝑤) was set to a low 

value, it became apparent that the operating point of the 

system was at the local P3 (98 W). This is because a low value 

for 𝑤 might cause the particle to suffer from convergence 

problems, thereby tracking the local optimum instead of the 

GP. Thus, more iteration is needed to achieve a final solution, 

because of the distance to the GP.  However, as the number of 
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iterations increases, the value of 𝑤 gradually decreases. This, 

in turn, leads the particles’ movement decrease also, leading to 

a low tracking speed or the aforementioned tracking of a local 

optimum instead of the GP.  Therefore, the value of 𝑤 in 

conventional PSO needs to be set to a higher value during the 

initial search for a good exploration and then this needs to be 

reduced gradually to allow accurate optimization, while large 

values for c1, and c2 may cause convergence problems and 

increase tracking time. Therefore, learning factors and inertia 

weight in the conventional PSO must be modified when a PSC 

occurs. However, choosing the appropriate values is 

challenging, usually requiring experimentation. By contrast, 

when the PV characteristic changes the proposed algorithm 

sets the duty cycle close to the optimum in the first step and 

then PSO locates the GP in the next step, resulting in a shorter 

tracking time.    

 
Fig. 15. Tracking performance of PSO and LI-PSO under PSC at (𝑤=0.4 and 

𝑤=0.7). 

Fig.15 shows the operating point of the system when the 𝑤 

value is changed. It is evident that both the proposed scheme 

and the conventional PSO were able to operate the system at 

the exact GP when 𝑤 = 0.7, while the conventional PSO was 

tracked at the local peak instead of the GP when 𝑤 =0.4. This 

is because the inertia weight was used to control the velocity 

in the standard PSO, using a constant value of 𝑤. However, 

choosing value is an important parameter in PSO, as a large 

value facilitates a global peak, while a small value facilitates a 

local optimum. 

The test used to calculate the dynamic efficiency of MPPT 

in different environmental conditions involved using different 

ramp profiles over a fixed time interval.  Fig.16 shows the 

dynamic performance under two tests, and confirms that the 

proposed scheme shows the best performance in terms of 

stability and response time, while the conventional PSO 

provided better performance compared with P&O and 

IncCond methods. The P&O method provided the worst 

Performance, while the IncCond algorithm showed better 

performance than the P&O algorithm. However, it has a slow 

response time. It is very sensitive to the perturbation size when 

low radiation levels occur. Moreover, it is not stable when 

compared to LI-PSO and conventional PSO algorithms, which 

duffer from steady state fluctuations, as reported in several 

works [21, 22]. Both P&O and IncCond MPPT algorithms 

show weak ability to extract MPP when compared with PSO 

and LI-PSO, and their tracking efficiency was 97.09% and 

97.97% respectively.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.16. Dynamic MPPT performances from 30% to 100% irradiance. (a) P&O 

method. (b) IncCond method. (c) PSO method. (d)LI-PSO method 

 

Table III: Dynamic efficiency 

Efficiency   ( % ) 
MPPT 

P&O IncCond PSO LI-PSO 

  
S

lo
p

e 
 

[ 

W
/m

2
s]

 

20 89.05 91.95 99.87 99.94 

100 97.09 97.97 99.92 99.97 

 

As indicated in Table III the efficiency of PSO is somewhat 

lower than with the improved LI-PSO algorithms. Therefore, 

in this study, it can be confirmed that the best outcomes were 

acquired using the improved LI-PSO and PSO techniques. 

Additionally, it is noteworthy that 99.95% of dynamic 

efficiency was achieved by utilizing the irradiation slopes. The 

P&O and IncCond algorithms were found to share close 

similarity in terms of performance. Hence, a preference for 

one over the other would be based on simplicity. 

From the above figure, it is apparent that the efficiency of 

the InCond and P&O Algorithms is low and causes 

oscillations around the MPP in a steady state, due to the 

dynamics of the InCond and P&O Algorithms and the 

perturbation step size, which is not sufficient to follow the 

ramp as previously reported [21, 22]. Therefore, to improve 

their efficiency, adaptive MPPT methods with faster tracking 

speed should be used. However, they are limited by difficulty 

finding the closest local maximum power when the PV 

module is partially shaded, and the only factor in choosing 
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them is simplicity. The efficiencies of PSO and the proposed 

scheme are better when compared with the InCond and P&O 

Algorithms, and when tracking the MPP under all ramps. The 

LI-PSO algorithm results in slightly better performance and 

has 99.97% efficiency compare to 99.92% in PSO. 

From the simulation results, it is apparent that the 

conventional PSO is fast and accurate when searching for 

single peak values. Nonetheless, when a partial shading 

condition occurred, the conventional PSO tracking efficiency 

was low because of the weight (𝑤), which needs to be 

readjusted correctly. A greater step size in the weighting 

formula leads to an increase in the particle velocity while a 

decrease in 𝑤 causes particle movement to reduce, which 

enables the controller to locate the operating point for the 

MPP accurately. Therefore, the parameters of conventional 

PSO need to be modified when PSC occurs. The difference 

between the proposed algorithm and the standard PSO is that 

particles (the duty cycle) are initialised to their optimal value 

in relation to the MPP. Moreover, it is simple, more precise, 

and has a faster tracking speed than other methods, and can be 

implemented using a low-cost digital signal controller (DSC). 

VIII.  CONCLUSION 

In this paper, a mechanism was proposed by which particles 

can be initialized efficiently around the MPP to avoid both 

unnecessary and redundant searching and a situation in which 

the area being actively searched by the swarm becomes too 

small. The simulation results showed that the proposed LI-

PSO method results in a faster response rate than other 

methods. This is because the particles automatically migrate to 

the best position or move close to it when weather conditions 

change. As a result, this significantly reduces the time wasted 

by particle tracking in the wrong area; thereby substantially 

enhancing the system’s tracking speed, while also reducing the 

steady-state oscillation (practically to zero) once the MPP is 

located. This is a huge improvement upon the conventional 

PSO method, in which the new operating point is found too far 

from the MPP and more iterations are then required to reach 

the new MPP. 
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