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Abstract: The unique parameters of graphene (GN)—notably its considerable electron mobility,
high surface area, and electrical conductivity—are bringing extensive attention into the
wearable technologies. This work presents a novel graphene-based electrode for acquisition of
electrocardiogram (ECG). The proposed electrode was fabricated by coating GN on top of a metallic
layer of a Ag/AgCl electrode using a chemical vapour deposition (CVD) technique. To investigate
the performance of the fabricated GN-based electrode, two types of electrodes were fabricated with
different sizes to conduct the signal qualities and the skin-electrode contact impedance measurements.
Performances of the GN-enabled electrodes were compared to the conventional Ag/AgCl electrodes
in terms of ECG signal quality, skin–electrode contact impedance, signal-to-noise ratio (SNR), and
response time. Experimental results showed the proposed GN-based electrodes produced better ECG
signals, higher SNR (improved by 8%), and lower contact impedance (improved by 78%) values than
conventional ECG electrodes.

Keywords: graphene; electrocardiogram (ECG); long-term monitoring; dry electrodes; contact
impedance; Raman spectroscopy

1. Introduction

Cardiovascular diseases are the leading cause of death worldwide, killing more than 15 million
people every year [1]. Continuous and real-time monitoring of the heart activities with well-established
medical test electrocardiography (ECG) plays a very important role in early diagnosis and treatment
of cardiovascular diseases. The ECG waveform that reflects the electrical activity of the heart is widely
used for early detection and management of heart problems. Traditionally, the most commonly used
bioelectrodes are of the gel-type disposable Ag/AgCl electrodes [2] and these are simple, reliable, and
cost effective during cardiac monitoring. These standard wet-type electrodes typically have three main
parts: Ag/AgCl layer for sensing; conductive gel to maintain good electrical contact with the skin;
and a connector part for conducting the electrical signal through third-party devices for monitoring
purposes. On the other hand, it is not suggested to use these wet electrodes in long-term cardiac
monitoring due to skin irritation and allergic reactions. Studies have showed that using adhesive
gel on wet Ag/AgCl electrodes can trigger dermal irritation and cause potential signal degradation
in long-term measurements [3]. Therefore, the demand for comfortable and easy-to-use electrodes
has resulted in fabrication of dry or gel-less ECG electrodes that eliminate the need for gel and even
skin preparation.
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Several attempts have been made in fabrication of dry-contact ECG electrodes made of metallic
and silicon substrates that penetrate the skin surface for electrophysiological measurements [4–6].
Although this method is clinically invasive and gel-less contact with the skin, it is difficult to satisfy
electrical stability between skin and the electrode. Therefore, the applications with dry-contact ECG
electrodes need to be investigated further for long-term measurements. Another promising approach
is based on capacitive coupling using non-contact type dry ECG electrodes [7,8]. These types of
electrodes are classified as a non-contact because the electrodes are isolated with an insulating layer
from the skin with hair, clothing, air, or other synthetic or textile fabrics. In non-contact electrodes,
the risk of skin irritation and preparation is eliminated; the deployment of the electrodes to the skin
is easy and safe, and integration with other conductive fabrics or textile is possible. However, they
have issues with contact impedance and motion artifacts throughout capacitive-coupling ECG signal
from the body [9]. To overcome these limitations of dry electrodes, researchers have investigated
the use of nanomaterial-based electrodes in long-term ECG sensing due to their properties of high
electrical conductivity and flexibility for better wearable electronics. Myers et al. [10] developed a silver
nanowire-based (AgNW) dry electrode for ECG monitoring where the NWs were integrated below
the surface of the polydimethylsiloxane (PDMS) layer on the dry electrode. The electrode was used
on a wristband with a conductivity of ~5 × 105 S/m at 50% tensile strain. The skin–electrode contact
impedance was decreased by applying a mild pressure onto the AgNW electrode, and the results
demonstrated that the AgNW/PDMS dry electrode outperformed the pregelled Ag/AgCl electrodes
with fewer motion artifacts when the subject was swinging their arms and jogging. Due to interesting
mechanical and electrical properties of carbon-based nanomaterials, carbon nanotubes (CNTs) are
selected to disperse into the flexible polymer substrates to make a better conductive ECG electrode.
Lee and his colleagues [11] fabricated a dry ECG electrode by dispersion of CNT into the PDMS layer
to investigate the effects of CNT concentration and robustness to motion and sweat. Tests showed that
there was no sign of signal degradation after continuously wearing the CNT/PDMS electrodes after
exercise (in the presence of sweat), and for 7 days. In addition, the results revealed that there was no
skin irritation after wearing the electrodes on the forearms for 7 days. However, the main point for
developing flexible electrodes lies in flexible substrate and conductive material. Conventional methods
such as gel, contact, and non-contact dry-type of ECG electrodes tend to have low charge carrier density,
thus causing low conductivity and lower signal quality. Although nanomaterials-based electrodes
provide a better signal-to-noise ratio (SNR) with flexibility, and eliminate skin irritation problems,
there are still shortcomings to be resolved in long-term ECG monitoring for better accuracy. Previous
studies indicated that metals deposited on PDMS exhibited wrinkles and cracks frequently [12,13].
Additionally, it is difficult to achieve a proper mixing process due to the stickiness of polymer. Besides,
an experiment showed that the adhesion between metallic layers and PDMS substrate is poor [14].
More importantly, the conductivity of the conductive polymer is not as good as a metal conductor
(80 S/m versus 5 × 105 S/m) [5]. For further development of conductive and flexible electrodes into
wearables, it is important to use highly conductive (~107 S/m) and thin metals in such a reliable, stable,
and long-term ECG sensing application.

Graphene (GN), a single-layer two-dimensional structure nanomaterial, exhibits exceptional
physical, electrical, and chemical properties that lead to many applications from electronics to
biomedicine. The unique parameters of GN—which has notably the highest electron mobility
(~200,000 cm2·V−1·s−1), the highest thermal conductivity (5300 W·m−1·K−1), the highest surface
area to volume ratio (2630 m2/g), the fastest moving electrons (~106 m/s), and is the best conductor of
electricity (resistivity of 10−6 Ω·cm) in any material—are bringing heightened attention into biomedical
applications [15]. In this study, we fabricated a dry electrode by growing GN within copper (Cu)
substrate on top of a silver (Ag) layer of a commercial ECG electrode using a chemical vapour
deposition (CVD) method. Based on this technique, we produced a GN-based ECG electrode for the
first time on the development of ECG electrodes with GN substrates. We measured contact impedance
according to frequency changes and compared the results with those of conventional Ag/AgCl
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electrodes. Furthermore, we measured ECG signals and quantitatively compared the performance of
the new GN-based ECG electrodes against wet electrodes. To determine the feasibility of long-term
monitoring, we studied the influence of GN-based electrodes on 10 people. We tested these electrodes
for one person in each week and demonstrated their robustness in ECG monitoring.

2. Materials and Methods

2.1. Fabrication Process

A number of different algorithms for synthesizing GN have been reported since first obtained
in 2004 by Novoselov and Geim, including mechanical exfoliation, liquid-based exfoliation, epitaxial
growth on silicon carbide, and chemical vapour deposition (CVD) growth GN on metal substrates
such as silicon, nickel, and copper [15]. To fabricate a GN-enabled conductive electrode, we have used
the CVD approach (Figure 1) for coating GN on top of a metallic substrate of the commercial ECG
electrode. This has advantages on transition into different metals such as Ni, Cu, and Si substrates,
and CVD-grown GN is inexpensive and a feasible method for single-layer GN synthesis compared to
other production techniques.
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Figure 1. Schematic diagram showing coating process for synthesizing graphene-coated electrode.

We coated GN as a layer onto the target electrodes after GN growth on a metallic substrate
and transfer processes, which were carried out by a specialist graphene company [16]. The GN
was produced utilising hydrogen (H2) and methane (CH4) gases based on the chemical vapour
deposition (CVD) growth procedure, similar to those used elsewhere in the literature on copper (Cu)
substrates [17–19] to yield monolayer graphene films. These films were subsequently transferred to a
Ag layer of the target electrodes via a wet chemical approach to etch away the Cu substrate, involving a
spin-coated Polymethyl methacrylate (PMMA) support layer which is later removed from the GN–Ag
substrate form with solvents, akin to work carried out elsewhere [20,21]. The details of growth and
transfer processes can be seen in Figure 1, which shows the fabricated electrode within a very thin GN
layer—which was about 3.7 Å (0.37 nm)—for ECG sensing applications. Electrical properties of the
GN-coated electrodes were measured at room temperature with a two-probe method using a digital
multimeter (0.1 Ω–2.8 Ω). The electrical conductivity (σ) of the electrode before and after GN coating
was measured as 2.48 × 102 S/m and 6.94 × 104 S/m, respectively.

2.2. Raman Spectroscopy and SEM Images

GN coating process can be repeatable on a variety of common metallic crystals such as copper (Cu),
nickel (Ni), silicon dioxide (SiO2), platinum (Pt), gold (Au), and silver (Ag). Cu is ideal metallic crystal
for GN growth because of its low carbon solubility, and the carbon dissolution at high temperature
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into the bulk helped in self-termination of monolayer growth [22]. Furthermore, Cu is selected here for
fabrication of the ECG electrodes due to the high deposition of GN while transferring GN onto the Ag
substrates of the electrodes. Raman spectroscopy and scanning electron microscopy (SEM) analyses
were done in order to confirm the presence of the coating of GN on the fabricated electrode after
completing the transferring process. SEM analysis was done by the Zeiss Supra field emission electron
gun (FEG)-SEM and Raman spectroscopy analysis was done using a confocal Raman spectrometer
that was available at 2-D Tech [16].

As can be seen from Figure 2, GN has expanded through almost the entire cross-section of
the electrode, and which was designed to increase the contact area between the electrode and skin.
These porous structure layers were observed under the SEM before and after GN coating process. SEM
images of GN-coated electrode were taken after several experimental studies. Because of this, patterns
of residual points were detected just above the GN layer on the surface of the electrode (as white colour
in the Figure 2). These images further show that GN coating has smoothed the surface and hence can
improve the skin-to-electrode contact and detect better ECG signals.
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Figure 2. Scanning electron micrographs (SEMs) showing: (a,b) SEM of dry electrode before coating;
(c,d) graphene-coated dry electrode.

Optical detection relying on light scattering is especially attractive because it is fast, sensitive,
and nondestructive. In particular, Raman spectroscopy analysis is the most powerful technique
available for the characterization of carbon nanostructures such as nanotubes and graphene [23].
The Raman spectrum of carbon-based materials shows two main peaks, the G- and D-peaks, which
lie at around 1580 cm−1 and 1360 cm−1, respectively (Figure 3b). The G-peak corresponds to the
E2g phonon at the Brillouin zone center. The D-peak is due to the breathing modes of sp2 atoms
and requires a defect for its activation [24]. However, the most prominent feature in graphene is the
second order of the D-peak: the 2D-peak. This lies at around 2700 cm−1 (Figure 3b) and it is always
seen, even when no D-peak is present, since no defects are required for the activation of second-order
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phonons. A supplementary material file has been added to this work as it shows the Raman analysis
of bare Ag/AgCl electrode and Graphene-coated electrode respectively in Figure S1, and Figure S2
in-detail for detecting 2D band in 10 measurements. Its shape and position distinguishes single-layer
from multilayer samples. Regarding our tests, the Raman spectra of GN and GN-coated sample was
measured by taking 10 point measurements across the whole sample surface at 488 nm excitation. In an
attempt to get clearer data and rule out any fluorescence signals from the underlying substrate, 10 data
points were subsequently obtained using a 514 nm laser. Figure 3 shows the Raman spectrum of GN
grown on Cu (Figure 3a) and for both GN-coated electrode and bare Ag/AgCl electrode (Figure 3b)
obtained from the 488 nm laser. As can be seen from the images, three important bands (G, D, 2D)
were observed in Raman spectrum and separately 2D-peaks were selected to be analysed.
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Figure 3. Raman analysis of graphene (GN) and bare Ag/AgCl electrode. (a) Raman spectrum of
graphene grown on Cu after chemical vapour deposition (CVD); and (b) Raman spectrum for the
GN-coated electrode and conventional Ag/AgCl bare electrode.

According to Figure 3a, Raman spectra was measured for the single-layer graphene (GN) area for
the sample which was grown on Cu after CVD. A shift in the 2D-peak position of single-layer GN has
been observed in the range of 2711–2723 cm−1. The value of full width at half maximum varies in the
range of 25–31 cm−1 which represents the single layer of GN [25]. The ratio of 2D/G also indicates
that the sample was grown by single-layer GN, and this ratio for this sample has been varied in the
range of 5–7. Figure 3b shows the comparison of Raman spectra for the GN-coated electrode and
conventional bare Ag/AgCl electrode. As can be seen from this figure, the presence of the 2D-peak in
the GN-coated electrode (in red square) differentiates the presence of GN from the bare electrode.
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2.3. Measurements of ECG Acquisition System

ECG signals were separately measured from proposed GN-based electrodes and conventional
pre-gelled Ag/AgCl electrodes (Ambu) via ECG acquisition system (e-Health and Arduino) using
3-leads to allow measurements from multiple biopotential electrodes. Figure 4 shows both types of
electrodes (GN-based and conventional pre-gelled ECG electrodes) used in the experiments. In order
to obtain the electrocardiogram, ECG lead-1 configuration was conducted throughout experimental
testing of ECG electrodes on a 29 year old male; two active electrodes were attached to the left and right
chest and the other driven-right-leg (DRL) electrode was attached onto the left waist for referencing.
ECG signals were filtered between 0.5 and 100 Hz and an additional notch filter was applied at 50 Hz
cutoff frequency during sampling and amplifying of ECG signals at the signal acquisition system,
which is shown in Figure 4. We have coated GN on two types of electrodes which were (1) slightly
bigger Ambu type of electrode and (2) smaller size Covidien type of electrode. Figure 4a,b shows the
Ambu type of electrode just before and after GN coating, respectively. This type of electrode has a
diameter of 38 mm and a thickness of 1 mm. Likewise, the Covidien type of electrode is shown in
Figure 4c,d just before and after GN coating, respectively, and this type of electrode has diameter of
24 mm and a thickness of 1 mm. ECG signals were measured after amplifying, filtering, and sampling
processes using a data acquisition platform which is also shown in Figure 4e.
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Figure 4. Experimentally used electrodes and data acquisition system. Bigger size of electrode (Ambu)
before GN coating in (a), and after GN coating in (b); smaller size of electrode (Covidien) before GN
coating in (c), and after GN coating in (d); data acquisition unit in (e).

The mechanism of graphene-based electrode is shown in Figure 5a as a separate graphene layer
and Ag layer before and after the coating process. Graphene layer is designed for the purpose of the
skin–electrode contact area to get the utmost ECG signal even from behind the ear location. Graphene
was coated onto the dry type of Ag layer electrode. The use of graphene on dry ECG electrodes has
several advantages: technically less complex (without having gel); physically attached to non-hair
regions, hence more suitable for long term use; and user friendly, as there is no need to remove the
top garment. On the other hand, the conventional Ag/AgCl electrode for ECG monitoring works
with electrolyte gel which works as a conductive layer between the skin and electrode to lower
skin–electrode contact impedance and stablise reception of the signal. However, the electrolyte gel is
undesirable for long-term ECG monitoring due to its causing skin-related problems such as dermatitis.
Moreover, the electrolyte gel dries out with time, which could result in degradation of signal quality
and so prevents body movements for the patient at the same time. To overcome the drawbacks,
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the graphene-coated dry electrodes are suggested for long-term ECG monitoring with wirelessly
transmission ECG data in this concept (see Figure 5b).Nanomaterials 2016, 6, 156 7 of 16 

 

 

Figure 5. The graphene-electrode mechanism: (a) The mechanism of graphene-coated electrode; (b) 

the schematic illustration of the developed system while ear-lead electrocardiogram (ECG) was tested 

on the subject, including a wireless ECG data acquisition system. 

Furthermore, the skin–electrode contact impedance of the GN-coated electrode was measured 

and compared with that of the conventional Ag/AgCl pre-gelled electrode by an impedance analyser 

(Wayne Kerr 6500B (Wayne Kerr Electronics, West Sussex, UK)). It is known that a better ECG signal 

would give lower skin-to-electrode contact impedance because of high quality signal acquisition 

comprised of minimal noise. Results will be specified later, demonstrating the attractive performance 

of the GN-enabled electrode for measurements of the ECG and skin–electrode contact impedance. 

3. Experimental Results and Discussion 

3.1. Simulation of Electroplating Graphene 

Since the Ag layer has already been placed on the electrode, we wanted to electroplate graphene 

(GN) on top of electrode to increase the surface electrical properties and to see the differences using 

finite element software Comsol Multiphysics. Figure 6 draws the design of skin model with each 

layer of the skin. Considering the fact that physiological systems are very complex in nature, here we 

only considered the following parameters in the construction of our skin model: (1) Stratum 

Corneum; (2) Epidermis; (3) Dermis; and (4) Muscle. ECG can be required by placing electrodes on a 

person’s skin, and coupling between electrode and skin could be described as a resistor and a 

capacitor in parallel [26]. The skin–electrode contact impedance is dependent on electrical 

conductivity or resistivity of each layer. Here, we assigned the electrical conductivity values of 

Stratum Corneum, Epidermis, Dermis, and Artery (Blood) as 0.0005 S/m, 0.95 S/m, 0.2 S/m, and 0.8 

S/m (see in Table 1), respectively, in simulation of the mode; these values were obtained from [27]. 

As can be seen from the figure, there is a bottom layer of the electrode called referenced graphene. 

We filled in that layer with Cu first, and then graphene in order to compare the electrical 

characteristics. Again, simulations were performed for two types of electrodes: conventional 

Ag/AgCl and graphene-coated Ag/AgCl. The values of electrical conductivity were applied as 6 × 107 

S/m and 1 × 109 S/m for Cu and GN, respectively. 

  

Figure 5. The graphene-electrode mechanism: (a) The mechanism of graphene-coated electrode;
(b) the schematic illustration of the developed system while ear-lead electrocardiogram (ECG) was
tested on the subject, including a wireless ECG data acquisition system.

Furthermore, the skin–electrode contact impedance of the GN-coated electrode was measured
and compared with that of the conventional Ag/AgCl pre-gelled electrode by an impedance analyser
(Wayne Kerr 6500B (Wayne Kerr Electronics, West Sussex, UK)). It is known that a better ECG signal
would give lower skin-to-electrode contact impedance because of high quality signal acquisition
comprised of minimal noise. Results will be specified later, demonstrating the attractive performance
of the GN-enabled electrode for measurements of the ECG and skin–electrode contact impedance.

3. Experimental Results and Discussion

3.1. Simulation of Electroplating Graphene

Since the Ag layer has already been placed on the electrode, we wanted to electroplate graphene
(GN) on top of electrode to increase the surface electrical properties and to see the differences using
finite element software Comsol Multiphysics. Figure 6 draws the design of skin model with each layer
of the skin. Considering the fact that physiological systems are very complex in nature, here we only
considered the following parameters in the construction of our skin model: (1) Stratum Corneum;
(2) Epidermis; (3) Dermis; and (4) Muscle. ECG can be required by placing electrodes on a person’s skin,
and coupling between electrode and skin could be described as a resistor and a capacitor in parallel [26].
The skin–electrode contact impedance is dependent on electrical conductivity or resistivity of each
layer. Here, we assigned the electrical conductivity values of Stratum Corneum, Epidermis, Dermis,
and Artery (Blood) as 0.0005 S/m, 0.95 S/m, 0.2 S/m, and 0.8 S/m (see in Table 1), respectively,
in simulation of the mode; these values were obtained from [27]. As can be seen from the figure, there
is a bottom layer of the electrode called referenced graphene. We filled in that layer with Cu first, and
then graphene in order to compare the electrical characteristics. Again, simulations were performed
for two types of electrodes: conventional Ag/AgCl and graphene-coated Ag/AgCl. The values of
electrical conductivity were applied as 6 × 107 S/m and 1 × 109 S/m for Cu and GN, respectively.
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Figure 6. Initial skin model with two electrodes constructed in Comsol.

Table 1. Electrical conductivity and relative permittivity values of each layer in Comsol modelling.

Layers of Modelling Electrical Conductivity (S/m) Relative Permittivity

Graphene (GN) 1.18 × 109 11.5
Ag-Silver 61.6 × 106 3.4

Stratum Corneum 0.0005 1
Epidermis 0.95 1

Dermis 0.2 1
Artery 0.8 1

After GN electroplating, the concentration distribution of the electromagnetic field was depicted
in Figure 7. The electrical field effect showed the electrical distribution of an artery, which is drawn
in Figure 7, and the capture effect of the GN-filled electrode on top of the skin layer within current
density lines. It was also analysed in Comsol that the surface charge density of the GN-coated bottom
layer was higher than the Ag-filled electrode, thus capturing more electrical potential from the surface
(see Figure 7a,b). The electromagnetic field and distribution was also depicted by measuring surface
electric displacement field. It was visible that the GN deposition at the bottom of the electrodes was
capturing electrical potential due to higher current density.
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3.2. Measurement of Skin-Electrode Contact Impedances

Skin–electrode contact impedance measurement has always been of interest due to proving
the reliability of the collected biopotential. Skin conductivity varies according to variations of the
conditions of either the stratum corneum (whether hair is on skin or not) or sweat proportions.
In order to get a high-quality signal acquisition with minimal noise, the impedance measurement
of skin–electrode should be small and stable. To characterize the impedance of the graphene-coated
electrode, a measurement setup was constructed based on earlier techniques reported in the
literature [4,5]. Here, we measured the electrode–skin contact impedance of three GN-coated electrodes
with different sizes, and compared with that of the conventional Ag/AgCl electrode (see Figure 8). Both
the conventional Ag/AgCl electrodes and the proposed GN-coated electrodes were placed adjacent to
each other on a person’s forearm (between the wrist and the elbow), and both electrodes were attached
so as to maintain the same distance (3 cm). Each measurement was carried out just after attaching the
electrodes (in period of 45 s) and after removal of skin moisture. The impedance measurements were
recorded in the frequency range of 20 Hz to 1 kHz. According to these measurements, the trend of
impedances with varying frequencies was improved by graphene coating when compared to that of
Baek’s [5] and Meng’s [4] results. Figure 8 shows the impedance values of conventional Ag/AgCl
electrode ranges from 445.05 kΩ (at 20 Hz) to 13.82 kΩ (at 1 kHz), which are similar to results reported
in the literature [4,5], and the impedance of the graphene-coated electrode varies from 65.82 kΩ
(at 20 Hz) to 5.10 kΩ (at 1 kHz). The results show that the graphene-coated electrode has lower
skin–electrode contact impedance compared to the conventional Ag/AgCl electrode, resulting in less
noise and a higher quality ECG signal, which is shown in Figure 9. Another interesting point from
Figure 8 is that the contact impedance decreases as the size of the electrode increases (as mentioned
earlier, Ambu type electrode is slightly bigger than Covidien type), which results from the increased
contact area between the electrode and the skin.
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Figure 8. The skin–electrode contact impedance of Ambu (bigger) and Covidien (smaller) types
of conventional Ag/AgCl electrode (shown as ImpedanceAmbu and ImpedanceCovidien) and
graphene-coated electrodes (shown as ImpedanceGNAmbu and ImpedanceGNCovidien).

3.3. Measurements of ECG Signals

Electrocardiogram (ECG) signals were recorded using two types (Ambu and Covidien) of
conventional Ag/AgCl electrodes and the newly developed GN-based electrodes at the lead I position.
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The typical ECG signals from each electrode are shown in Figure 9. In comparison with the ECG signals
obtained with the conventional Ag/AgCl and GN-based electrodes, it is observed that there was no
significant difference between the two signals, but only that the waveforms of the ECG signal from
GN-coated electrode were much more stable than conventional electrodes. The P-wave, QRS-complex
(QRS-complex is the combination of the Q-wave, R-wave and S-wave and represents ventricular
depolarization), and the T-wave were clearly visible in both waveforms and both Ambu and Covidien
types of electrodes. It is also shown that electrodes with larger sizes exhibit less noise due to a larger
skin-electrode contact area. The GN-based Covidien type (smaller size) electrode provided ECG
signals that are comparable to Ambu type (larger size) conventional Ag/AgCl electrode. In particular,
the results of both types of GN-coated electrode demonstrated the potential use of these electrodes in
clinical settings.
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Figure 9. Chest-based ECG signals from the Ag/AgCl electrode and from the GN-based electrode
using Ambu (larger size) and Covidien (smaller size) types of electrodes (a–d).

To further evaluate and compare the performance of the GN-coated and Ag/AgCl electrodes,
the ear-lead electrode position was suggested to put into the system to see whether the signals are still
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stable, due to easy for use and simplicity for ECG setup and monitoring. Normally, it is quite difficult to
measure an ECG signal near the ear due to weak surface conduction when compared to lead I position,
and the body movement has a significant effect on the ECG signal. However, GN-enabled electrodes
have shown a great effect on coupling ECG signals from behind-the-ear location when compared to
Ag/AgCl electrodes. Here, the first electrode of a three-electrode setup was placed behind the ear;
the second electrode was attached on the upper neck area, and the last electrode, called reference
electrode, was placed on the left waist. Again, we also examined the effect of the size of electrodes,
as Ambu and Covidien types of electrodes were used. Figure 10a,c illustrates the ECG signals of the
Ag/AgCl electrode and of the GN-enabled electrode using Ambu-type electrodes located behind the
ear. Likewise, we also measured the signals of Ag/AgCl electrode and of the GN-coated electrode
using the Covidien type of electrode, and ECG waveforms are shown in Figure 10b,d, respectively.
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using Ambu (larger size) and Covidien (smaller size) types of electrodes (a–d).

As can be seen from the figure, it was discovered that there are no significant changes on the ECG
signals using Ambu type of electrodes, but on the other hand, acquired ECG signals were distorted in
the case of the Covidien type of electrode, and we could not identify the P- and T-waves from there
(see Figure 10c). However, we were able to observe the P-wave, QRS-complex and the T-wave within
Covidien type GN-based electrode as shown in Figure 10d. Moreover, due to increased contact area
with the larger size of electrode (Ambu type of electrode), the quality of ECG waveforms was better
than that of the Covidien type of electrode when Figure 10a–c is compared to Figure 10b–d.

Furthermore, we evaluated the performance of the electrodes, and ECG signals were analyzed to
calculate signal-to-noise ratio (SNR) using the following equation [14]:

SNR = 20 log(S/(S′− S)) (1)

where S is the filtered ECG signal with a frequency ranging from 0.5 Hz to 100 Hz, and S’ is defined
as ECG signal without filtering. Before calculation, the power line interference (50 Hz) was removed
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from both signals. Table 2 summarizes the SNR of eight different ECG results, which are represented
in Figures 9 and 10, between a–d, respectively.

Table 2. Signal-to-noise ratios (SNRs) of electrocardiography (ECG) signals obtained with different
electrodes and placements.

Electrode Placement Ambu Type Electrode Covidien Type Electrode

GN-based Ag/AgCl GN-based Ag/AgCl
Chest-lead 27.03 25.21 25.32 21.23

Ear-lead 22.96 17.27 21.74 15.34

Results clearly revealed that the proposed GN-based electrode within both Ambu and Covidien
type electrodes provide better signal quality and performance than traditional Ag/AgCl electrodes.
Another point from the results is that GN-based electrode presents a comparable SNR and ECG signal
even from behind the ear, which is a quite useful location for the patients in wearable healthcare. These
results also pointed out that SNRs agreed with the results taken from ECG signals (Figures 9 and 10),
skin–electrode contact impedance (Figure 8), simulation in Comsol (Figure 7), and the electrical
conductivity values to realise the effect of GN. Meanwhile, we have also compared acquired ear-lead
ECG signals by the proposed GN-based electrode with recently published work by Da He [28] who
reported ECG signals obtained by Ag/AgCl gel electrodes using a behind-the-ear device. In the results
reported, only R-waves appeared clearly including various noisy data, however, our results clearly
identify P-waves, QRS-complex, and T-waves with less noise (see in Figure 11). The critical point
here is that Da He used two active electrodes because of the limited skin area near the ear, thus DRL
(reference) electrode was omitted in his experiments.
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Figure 11. Comparison of ECG signals recorded by different electrodes. (a) ECG signals recorded by
Ag/AgCl electrode in Da He’s report using ear-lead position (only R-peaks are visible); (b) ECG signals
recorded by GN-based electrode using ear-lead position (all P-QRS-T morphology is identified).
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In addition, we also evaluated and compared the performance of the GN-based and Ag/AgCl
electrodes by giving a power spectrum of the recorded ECG signals using the built-in KST (KST is a
data plotting and analysis program) function [29] with a Hamming window. Figure 12a,b show the
power spectral density (PSD) of the ECG signals from the both Ag/AgCl and GN-based electrodes,
respectively. It is clearly seen that frequency response curves for the GN-based electrodes illustrate a
better power spectrum than Ag/AgCl electrodes where the critical P-QRS-T morphology of the ECG
in the 0–40 Hz frequency range is accurately captured. Analysis of the PSD also confirms that the low
frequency fluctuations occur for the Ag/AgCl electrodes in the 2–5 Hz range, however the noise signal
is observed after 40 Hz frequency range for the GN-based electrode. This noise signal is acceptable and
caused by very low fluctuations during the ECG recording. The trend of PSD with varying frequencies
was similar to that of Yapici’s PSD results [30]. According to their results, the PSD of ECG signals
showed that the noise signal was minimized using Welch periodogram filtering method which is
built into Matlab. Yapici et al. [30] investigated the effect of GN for fabricating a textile electrode in
an ECG recording system and they analysed the characterization of electrode frequency response for
further evaluation.
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for the Ag/AgCl electrode; (b) PSD of ECG recordings (from Figure 8c) for GN-based electrode.

To investigate the stability and reliability of the GN-based electrode in long-term monitoring,
we continued the experiment using our GN-based electrode on 10 different subjects for 2 months.
Although same GN-based electrodes were used, we were able to clearly observe a typical ECG
waveform including P-waves, QRS-complex and T-waves. Each time, the electrodes were cleaned with
acetone and prepared to be tested with the next subject. After experiments with testing GN-based
electrodes on 10 different subjects, we measured the resistance of the electrode to examine if such
residues or microcracks affect the electrical properties of the electrode. The electrical resistances of
the three electrodes were measured, and they were 0.076 ± 0.019, 0.064 ± 0.024, and 0.089 ± 0.129 Ω,
respectively. Even though a small increase of resistance was discovered, the electrode still had good
electrical conductivity with 416 S/m after 2 months of experiments. These experimental results showed
that the GN-enabled electrode is wearable for more than 2 months and that this electrode can be used
on different patients for use in long-term ECG monitoring.
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4. Conclusions

In this paper, a novel graphene (GN)-coated ECG electrode was developed and its performance
was tested in terms of quality-of-signal and durability. The electrodes were obtained by CVD grown
on Cu method and the structures were transferred through Ag substrates. The experimental results
clearly showed improved performance with graphene-coated electrodes. The signal-to-noise ratio
has improved by 8%, significantly due to GN coating; the shape of the signal has been much better
with GN-coated electrodes than that of electrodes without GN coating. Thus, ECG signal had less
low-frequency fluctuation and high-frequency noise with GN-coated versus uncoated. It was also
found that quality of GN-coated electrodes was not significantly degraded even after multiple uses
(10 times).

The characteristics of graphene coating on the conventional electrode was also investigated
experimentally using SEM images, Raman spectroscopy, and impedance measurements. The
measurements/observations from these experiments have evidently showed the improvement due to
graphene coating. The SEM images show the smoother surface of GN coating, which would increase
skin-to-electrode contact. The Raman spectroscopy measurement confirms that there is no presence of
the 2D-band before GN coating process, however, Raman spectrum consists of a pronounced 2D-peak
of comparable intensity to the G-peak and a pronounced reduction in the full width at half maximum
(FWHM) of the D- and G-bands (see in Figure 3a,b). As mentioned earlier, these Raman spectroscopy
measurements fit with single-layer GN deposition onto the substrate, evidencing separation of itself
from the case of graphite or multiple-layer GN deposition. Impedance measurements of the ECG
electrodes have shown reduced impedance due to the GN coating compared to that of electrodes
without coating, which would increase the sensitivity of the electrode.

A finite element modelling (FEM) of skin–electrode was also developed to understand the
electrical activities of skin–electrode contact. The simulation results also suggest that the GN coating
has improved the current density and electric field in the region of interest, where electrode connects
to the skin. These results hold promise for further development of the new nanomaterial-enabled
dry electrodes for electrophysiological sensing in wearable technologies. Therefore, the GN-based
electrode reflects potential application in not only cardiac activity ECG monitoring systems, but also
muscular (EMG) and neural activity (EEG).

Supplementary Materials: The following are available online at www.mdpi.com/2079-4991/6/9/156/s1.
Figure S1: Raman analysis of bare Ag/AgCl electrode for detecting 2D band in 10 measurements, Figure S2:
Raman analysis of Graphene-coated electrode for detecting 2D band in 10 measurements. Although weak peaks
occurred during tests, 7/10 peaks presented in 2D band appearances.
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