
Journal of Business Research xxx (2016) xxx–xxx

JBR-09215; No of Pages 24

Contents lists available at ScienceDirect

Journal of Business Research
Critical analysis of Big Data challenges and analytical methods

Uthayasankar Sivarajah ⁎, Muhammad Mustafa Kamal, Zahir Irani, Vishanth Weerakkody
Brunel University London, Brunel Business School, UB8 3PH, United Kingdom
⁎ Corresponding author at: Brunel University London
Social Sciences, Brunel Business School, UB8 3PH, United

E-mail addresses: Sankar.Sivarajah@brunel.ac.uk (U. S
Muhammad.Kamal@brunel.ac.uk (M.M. Kamal), Zahir.Iran
Vishanth.Weerakkody@brunel.ac.uk (V. Weerakkody).

http://dx.doi.org/10.1016/j.jbusres.2016.08.001
0148-2963/© 2016 The Authors. Published by Elsevier Inc

Please cite this article as: Sivarajah, U., et al.,
http://dx.doi.org/10.1016/j.jbusres.2016.08.0
a b s t r a c t
a r t i c l e i n f o
Available online xxxx
 Big Data (BD), with their potential to ascertain valued insights for enhanced decision-making process, have re-
cently attracted substantial interest from both academics and practitioners. Big Data Analytics (BDA) is increas-
ingly becoming a trending practice that many organizations are adopting with the purpose of constructing
valuable information from BD. The analytics process, including the deployment and use of BDA tools, is seen by
organizations as a tool to improve operational efficiency though it has strategic potential, drive new revenue
streams and gain competitive advantages over business rivals. However, there are different types of analytic ap-
plications to consider. Therefore, prior to hasty use and buying costly BD tools, there is a need for organizations to
first understand the BDA landscape. Given the significant nature of theBDandBDA, this paper presents a state-of-
the-art review that presents a holistic view of the BD challenges and BDA methods theorized/proposed/
employed by organizations to help others understand this landscape with the objective of making robust invest-
ment decisions. In doing so, systematically analysing and synthesizing the extant research published on BD and
BDA area. More specifically, the authors seek to answer the following two principal questions: Q1 –What are the
different types of BD challenges theorized/proposed/confronted by organizations? and Q2 – What are the different
types of BDA methods theorized/proposed/employed to overcome BD challenges?. This systematic literature review
(SLR) is carried out through observing and understanding the past trends and extant patterns/themes in the
BDA research area, evaluating contributions, summarizing knowledge, thereby identifying limitations, implica-
tions and potential further research avenues to support the academic community in exploring research
themes/patterns. Thus, to trace the implementation of BD strategies, a profiling method is employed to analyze
articles (published in English-speaking peer-reviewed journals between 1996 and 2015) extracted from the
Scopus database. The analysis presented in this paper has identified relevant BD research studies that have
contributed both conceptually and empirically to the expansion and accrual of intellectual wealth to the BDA
in technology and organizational resource management discipline.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The magnitude of data generated and shared by businesses, public
administrations numerous industrial and not-to-profit sectors, and
scientific research, has increased immeasurably (Agarwal & Dhar,
2014). These data include textual content (i.e. structured, semi-
structured as well as unstructured), to multimedia content (e.g. videos,
images, audio) on a multiplicity of platforms (e.g. machine-to-machine
communications, social media sites, sensors networks, cyber-physical
systems, and Internet of Things [IoT]). Dobre and Xhafa (2014) report
that every day the world produces around 2.5 quintillion bytes of data
(i.e. 1 exabyte equals 1 quintillion bytes or 1 exabyte equals 1 billion
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gigabytes), with 90% of these data generated in theworld being unstruc-
tured. Gantz and Reinsel (2012) assert that by 2020, over 40 Zettabytes
(or 40 trillion gigabytes) of data will have been generated, imitated, and
consumed. With this overwhelming amount of complex and heteroge-
neous data pouring from any-where, any-time, and any-device, there
is undeniably an era of Big Data – a phenomenon also referred to as
the Data Deluge. The potential of BD is evident as it has been included
in Gartner's Top 10 Strategic Technology Trends for 2013 (Savitz, 2012a)
and Top 10 Critical Tech Trends for the Next Five Years (Savitz, 2012b). It
is as vital as nanotechnology and quantum computing in the present
era. In essence, BD is the artefact of human individual as well as collec-
tive intelligence generated and sharedmainly through the technological
environment, where virtually anything and everything can be docu-
mented, measured, and captured digitally, and in so doing transformed
into data – a process that Mayer-Schönberger and Cukier (2013) also
referred to as datafication.

In line with the datafication concept and ever increasing technolog-
ical advancements, advocates assert that in the future amajority of data
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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will be generated and shared throughmachines, asmachines communi-
cate with each other over data networks (Van Dijck, 2014). Regardless
of where BD is generated from and shared to, with the reality of BD
comes the challenge of analysing it in a way that brings Big Value.
With so much value residing inside, BD has been regarded as today's
Digital Oil (Yi, Liu, Liu, & Jin, 2014) including the New Raw Material of
the 21st century (Berners-Lee & Shadbolt, 2011). Appropriate data
processing and management could expose new knowledge, and
facilitate in responding to emerging opportunities and challenges in a
timely manner (Chen et al., 2013). Nevertheless, the growth of data in
volumes in the digital world seems to out-speed the advance of the
many extant computing infrastructures. Established data processing
technologies, for example database and data warehouse, are becoming
inadequate given the amount of data the world is current generating.
The massive amount of data needs to be analyzed in an iterative, as
well as in a time sensitive manner (Jukić, Sharma, Nestorov, & Jukić,
2015). With the availability of advanced BD analysing technologies
(e.g. NoSQL Databases, BigQuery, MapReduce, Hadoop, WibiData and
Skytree), insights can be better attained to enable in improving business
strategies and the decision-making process in critical sectors such as
healthcare, economic productivity, energy futures, and predicting natu-
ral catastrophe, to name but a few (Yi et al., 2014).

As evident, much has been written on the BD phenomenon. The
majority of academic research articles reviewed are analytical in nature
(also evident from thefindings – see Figs. 10 and 11) that is either focus-
ing on using experiments, simulations, algorithms and or mathematical
modelling techniques in tackling BD. Regardless of their research
approach, these articles present BD as a source that when appropriately
managed, processed and analyzed, have the potential to generate new
knowledge thus proposing innovative and actionable insights for
businesses (Jukić et al., 2015). There is an ever-growing discourse
about BD offering both Big Opportunities and Big Challenges through
the plethora of sources from different domains; extending from enter-
prises to sciences. For instance, the opportunities include value creation
(Brown, Chui, & Manyika, 2011), rich business intelligence for better-
informed business decisions (Chen & Zhang, 2014), and support in
enhancing the visibility and flexibility of supply chain and resource
allocation (Kumar, Niu, & Ré, 2013). On the other hand, the challenges
are significant such as data integration complexities (Gandomi &
Haider, 2015), lack of skilled personal and sufficient resources (Kim,
Trimi, & Chung, 2014), data security and privacy issues (Barnaghi,
Sheth, & Henson, 2013), inadequate infrastructure and insignificant
data warehouse architecture (Barbierato, Gribaudo, & Iacono, 2014),
and synchronising large data (Jiang, Chen, Qiao, Weng, & Li, 2015). Ad-
vocates such as Sandhu and Sood (2014) perceive that the potential
value of BD cannot be unearthed by simple statistical analysis. Zhang,
Liu et al. (2015) support this perspective and state that to tackle the
BD challenges, advanced BDA requires extremely efficient, scalable
and flexible technologies to efficiently manage substantial amounts of
data – regardless of the type of data format (e.g. textual andmultimedia
content).

1.1. Research scope

BD and BDA as a research discipline are still evolving and not yet
established, thus, a comprehensible understanding of the phenomenon,
its definition and classification is yet to be fully established. The extant
progress made in BD and BDA not only revealed a lack of management
research in the field but a distinct lack of theoretical constructs and
academic rigor – perhaps a function of an underlying methodological
rather than academic challenge. At large, there has also been a lack of
research studies that comprehensively addresses the key challenges of
BD, or which investigates opportunities for new theories or emerging
practices (e.g. George, Haas, & Pentland, 2014). Thus, there exists the
need to culminate the BD challenges and associated BDA methods to
allow signposting to take place. Following the earlier limited normative
Please cite this article as: Sivarajah, U., et al., Critical analysis of Big Data c
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research studies conducted by Polato, Ré, Goldman, and Kon (2014) –
mainly focusing on Apache Hadoop; Frehe, Kleinschmidt, and
Teuteberg (2014) – BD logistics; Eembi, Ishak, Sidi, Affendey, and
Mamat (2015) – on data veracity research for profiling digital news
portal, and Abdellatif, Capretz, and Ho (2015) – on software analytics
(a distinct branch of BDA), this paper attempts to broaden the scope of
their reviews by further investigating and assessing the different types of
BD challenges and the analytical methods employed to overcome the
challenges. Although these research studies provideworthy understand-
ing on some aspects of BD and BDA area, there seems to be a lack of
comprehensive andmethodical approaches to understand the phenom-
enon of BD – more precisely the types of BDA methods thus an aide
memoir will act as a suitable frame of reference. Moreover, explicitly
in respect of the conclusions offered by these existing review articles,
this research specifically aims to:

analyze, synthesize and present a state-of-the-art structured analysis of
the normative literature on big data and big data analytics to support
the signposting of future research directions.

1.2. Academic challenge

This SLR research aims to evaluate the existing research published
on BD and BDA by employing an established profiling approach and to
investigate and analyze different BD challenges and BDA technologies,
techniques,methods and or approaches. To identify the relevant articles
through the Scopus database, the following keywords search criteria
was used:

• Big Data OR Big Data Analytics OR Big Data Analysis AND Challenge OR
Challenges OR BarrierOR Barriers OR Obstacle OR ObstaclesOR Problem
OR Problems OR Impediment OR Impediments AND Technology OR
Technologies OR Technique OR Method OR Methods OR Approach OR
Approaches.

Through using the abovementioned list of keywords and focusing on
four subject areas that is business and management, computer science,
decision science, and social science; initially 433 journal articles were
identified from the Scopus database and relating to articles published
during the period from 1996 to 2015. However, from period 1996
until 2002, there were no papers recorded on BD and BDA in these
four subject areas. After assessing the 434 articles (from refereed
journals), 206 papers were discarded, and finally 227 papers were
selected and taken forward for further interrogation. As reflected in
Fig. 9, contributors from across the world have made contributions to
the BD and BDA area. Nevertheless, given the limitations in the existing
BD andBDA literature review studies (as reported earlier in Section 1.1),
the rationale for undertaking this research is to provide a systematic
state-of-the-art literature analysis of the BD and BDA area. In doing so
to better understand the different types of BD challenges and associated
BDA methods. Thus, the two underlying academic challenges orientate
around identify the:

• different types of BD challenges theorized/proposed/discussed/
confronted by organizations.

• different types of BDA methods theorized/proposed/discussed/
employed to overcome BD challenges.

To supplement this research and the above objectives, the authors
also identified the:

• yearly publications from 1996 until 2015.
• geographic location of each publication (this includes the geographi-
cal location of each author as well as the co-author(s) in each paper
reviewed).
hallenges and analytical methods, Journal of Business Research (2016),
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• types of publication (e.g. research or technical paper, literature
review, viewpoint).

• types of research methods employed (e.g. case study, mixed method,
analytical).

This type of profiling research is necessary to develop an under-
standing of the BD and BDA area and the state-of-the-art growth in
the theory and application of BD and BDA within different sectors and
disciplines. This paper is predominantly descriptive and inductive in
nature, as the authors were interested in understanding the perspec-
tives of BD and BDA and its distinctiveness as practiced across different
sectors.

2. A normative perspective of Big Data: challenges and
analytical methods

The concept of big is problematic to pinpoint, not least because a
dataset that appears to be massive today will almost surely appear
small in the near future (MIT Technology Review, 2013). Adding to
the complexity of the BD itself, some practitioners argue that massive
datasets are not always complex and small data sets are always simple,
thus highlighting that the intricacy of a dataset is a significant factor in
determining whether it is big. In this section, the authors provide
some theoretical conceptions related to Q1 and Q2.

2.1. Big Data Challenges – related to Q1

Though the benefits of BD are factual and substantial, there remain a
plethora of challenges that must be addressed to fully realise the poten-
tial of BD. Some of these challenges are a function of the characteristics
of BD, some, by its existing analysis methods and models, and some,
through the limitations of current data processing system (Jin, Wah,
Cheng, & Wang, 2015). Extant studies surrounding BD challenges have
paid attention to the difficulties of understanding the notion of BD
(Hargittai, 2015), decision-making of what data are generated and col-
lected (Crawford, 2013), issues of privacy (Lazer et al., 2009) and ethical
considerations relevant to mining such data (Boyd & Crawford, 2012).
Tole (2013) asserts that building a viable solution for large andmultifac-
eted data is a challenge that businesses are constantly learning and then
implementing new approaches. For example, one the biggest problems
regarding BD is the infrastructure's high costs (Wang & Wiebe, 2014).
Hardware equipment is very expensive even with the availability of
cloud computing technologies.
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Furthermore, to sort through data, so that valuable information can
be constructed, human analysis is often required. While the computing
technologies required to facilitate these data are keeping pace, the
human expertise and talents business leaders require to leverage BD
are lagging behind, this proves to be another big challenge. As reported
by Akerkar (2014) and Zicari (2014), the broad challenges of BD can be
grouped into three main categories, based on the data life cycle: data,
process and management challenges:

• Data challenges relate to the characteristics of the data itself (e.g. data
volume, variety, velocity, veracity, volatility, quality, discovery and
dogmatism).

• Process challenges are related to series of how techniques: how to
capture data, how to integrate data, how to transform data, how to
select the right model for analysis and how to provide the results.

• Management challenges cover for example privacy, security, gover-
nance and ethical aspects.

Fig. 1 shows the classification of BD challenges – as adapted from
Akerkar (2014) and Zicari (2014). The SLR findings for Q1 are based
on three categories of BD challenges.

2.2. Big Data analytical methods – related to Q2

To facilitate evidence-based decision-making, organizations need
efficient methods to process large volumes of assorted data into mean-
ingful comprehensions (Gandomi & Haider, 2015). The potentials of
using BD are endless but restricted by the availability of technologies,
tools and skills available for BDA. According to Labrinidis and Jagadish
(2012), BDA refers to methods used to examine and attain intellect
from the large datasets. Thus, BDA can be regarded as a sub-process in
the whole process of insight extraction from BD. It is certain that for BD
to realise its objectives and progress services in business environment,
it requires the correct tools and approaches to be analyzed and classified
effectively and proficiently (Al Nuaimi, Al Neyadi, Mohamed, & Al-
Jaroodi, 2015). The potential value of BD is solved simply when
leveraged to the drive decision-making process. Extant research studies
have demonstrated that substantial value and competitive advantage
can be attained by businesses from taking effective decisions based on
data (Davenport & Harris, 2007). But, BDA is more perplexing than
merely tracing, classifying, comprehending, and quoting data.
Davenport and Dyché (2013) emphasize that large organizations
regularly gather BD and exploit analytics for support in decision-
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making as part of their usual procedures, and SMEs are the ones pres-
ently struggling to enhance top management decisions while adding
more data for the analysis process. Aligning the people, technology,
and organizational resources to become a data-driven company is
problematic (Weill & Ross, 2009). Given BD can enhance the decision-
making and increase organizational output; this is possible when a
selection of analytical methods is used to extract sense from the data,
such as:

• descriptive analytics scrutinizes data and information to define the cur-
rent state of a business situation in a way that developments, patterns
and exceptions become evident, in the formof producing standard re-
ports, ad hoc reports, and alerts (Joseph & Johnson, 2013);

• inquisitive analytics is about probing data to certify/reject business
propositions, for example, analytical drill downs into data, statistical
analysis, factor analysis (Bihani & Patil, 2014);

• predictive analytics is concernedwith forecasting and statisticalmodel-
ling to determine the future possibilities (Waller & Fawcett, 2013);

• prescriptive analytics is about optimization and randomized testing to
assess how businesses enhance their service levels while decreasing
the expenses (Joseph & Johnson, 2013); and

• pre-emptive analytics is about having the capacity to take precaution-
ary actions on events that may undesirably influence the organiza-
tional performance, for example, identifying the possible perils and
recommending mitigating strategies far ahead in time (Szongott,
Henne, & von Voigt, 2012).

Advocates assert that these types of analytical methods support in
improved decision-making and organizational performance by making
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everythingmore translucent and quantifiable, while further uncovering
inconsistencies as well as potential concerns and opportunities. Fig. 2
illustrates the classification of BDA methods and the SLR findings for
Q2 are based on these five categories.
3. Research methodology

In an attempt to better understand and provide more detailed
insights to the phenomenon of big data and bit data analytics, the
authors respond to the special issue call on Big Data and Analytics in
Technology and Organizational Resource Management (specifically focus-
ing on conducting – A comprehensive state-of-the-art review that presents
Big Data Challenges and Big Data Analytics methods theorized [in extant
research literature], proposed [by research scholars], and employed [by
organizations]) through a SLR methodology as opposed to narrative or
descriptive reviews (Tranfield, Denyer, & Smart, 2003; Kitchenham &
Charters, 2007; Wang, Gunasekaran, Ngai, & Papadopoulos, 2016). In
support of the former approach, Lettieri, Masella, and Radaelli (2009)
report that SLR is a rational, transparent and reproducible research
methodology for the analysis of extant literature. Kitchenham and
Charters (2007) also highlight that SLR is a form of secondary study
and it is a distinct approach to establish, explore and deduce accessible
proof associated to a particular research question (e.g. Q1 and Q2) in a
way that is unprejudiced and (to a certain degree) repeatable. Alterna-
tively, meta-based-approaches can be used to conducting a literature
review and include the work of Mishra, Gunasekaran, Papadopoulos,
and Childe (2016), which adopt a bibliometric and network analysis
approach to obtain and compare influential work in a specific domain
(in this example, Big Data in Supply Chains).
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There are several motivating reasons for conducting a systematic
literature review (Kitchenham & Charters, 2007) such as including
among other, these are to:

• précis current evidence around a technology or a treatment, such as to
summarize the evidence of the benefits and drawbacks of an explicit
map technique;

• determine research gaps within the extant research to propose areas
for further research activities;

• recommend a frame of reference to identify current research trajecto-
ries and potential research themes.

Based on the focus of this research, the first two reasons fit the
purpose of a SLR. The scope and applicability of BD and BDA phenome-
non clearly indicates that this area has the potential to support organi-
zations, for instance, at the strategic, organizational, operational as
well as technological level. This SLR offers an enhanced descriptive
and thematic awareness of the resulting body of knowledge, enabling
the BD research area to further develop in a more cognizant and
multidisciplinary approach.

Delbufalo (2012) asserts that a SLR is designed to: (a) support in
generating a sense of joint effort, importance and openness between
the research studies in order to impede unproductive recurrence of
effort, (b) support in connectingpotential research to thequeries and is-
sues that have beenmodelled by previous research studies (e.g. most of
those paper reviewed as part of this research exercise) and, (c) develop
the approaches employed to assemble and synthesize preceding prag-
matic evidence. In the interest of parsimony, a meticulous though not
exhaustive SLR was carried out through following a three-phase
approach as described by Tranfield et al. (2003) and Kitchenham and
Charters (2007) and diagrammatically illustrated in Fig. 3:

• Phase I – Planning the Review Process –Defining the research aim and
objectives (I.1); formulating the proposal (I.2) and developing the
review protocol (I.3);

• Phase II – Conducting the Review Process – Identifying, selecting,
evaluating and synthesizing the pertinent research studies; and

• Phase III – Reporting and Dissemination of the Overall Research
Results – Descriptive reporting of results and thematic reporting of
journal articles.

Following the three-phase approach, the next subsection 3.1
summarizes the research protocol (Phase I.3) as the defining of the
aim and objectives including the proposal (I.1 and I.2) have already
been presented in the introduction (under subsections 1.1 and 1.2).
Sub-section 3.2 describes the Scopus database searching process of the
relevant articles (Phase II). Finally, the reporting and dissemination
the overall results (Phase III) will be discussed in Section 4 and with
Section 5 concluding the paper.

3.1. The research protocol (phase I.3)

In this paper, the authors commenced this systematic search by
using an established detailed reviewprotocol based on the guidingprin-
ciples and procedures of the SLR (Tranfield et al., 2003; Kitchenham &
Charters, 2007). This protocol identifies the background review, search
strategy, research questions as outlined in the abstract (i.e. Q1 and
Q2), data extraction, criteria for study selection and data synthesis –
based on the prescriptive three phased approach. The research ques-
tions and background of this review are described above, while the fol-
lowing sections provide details about other elements. As this literature
review focuses on analysing, synthesizing and presenting a comprehen-
sive structured analysis of the normative literature on BD and BDA, it
was necessary to considered the domains for this research synthesis
as both conceptual and empirical (including qualitative, quantitative
Please cite this article as: Sivarajah, U., et al., Critical analysis of Big Data c
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and mixed method) papers. The research protocol for this literature
review paper provides details on the following two points, as also
followed by Delbufalo (2012) and Kamal and Irani (2014):

• Point I – Conceptualizing BD and BDA research discipline, including
challenges of BD and related BDA methods (as discussed in Sections
2.1, and 2.2).

• Point II – Typology of research studies to be considered in this review
exercise and the appropriate measures.

Given the above, several selections in relation to the typology of
research studies to be counted in and the suitability conditions (i.e.
the inclusion and exclusion measures) have been made (Point II), as
presented below.

• Condition I – The review was conducted by searching the Scopus
databases. The reason for choosing the Scopus database was that it
covers nearly 18,000 plus titles from over 5000 international
publishers, including coverage of around 16,500 peer-reviewed
journals on different areas. Therefore, it is possible to search for and
locate a significant proportion of the published material in the BD
and BDA area.

• Condition II – To focus on enhancing quality control (David & Han,
2004) only published peer-reviewed journal (including articles in
press and therefore accepted post peer-review) were considered by
selecting Article and Articles in Press option from the Document Type
option. Other document/source types such as conferences, trade
publications, books series, book or book chapter, and editorials were
omitted.

• Condition III – Following David and Han's (2004) enhancing quality
control policy, only those articles were selected that were published
between 1996 and 2015.

• Condition IV – Articles from subject areas such as Business and
Management, Computer Sciences, Decision Sciences and Social
Sciences and published in the English language were only selected,
excluding the articles published in Chinese, French, Korean, Spanish,
German, Japanese, Portuguese and Russian. This is a recognised
limitation.

• Condition V – It was ensured that the selected articles were not only
empirical (i.e. case-study, results, analytical, etc.) but also those
articles that were essentially conceptual so as to identify conceptual
research developments in BD and BDA.

• Condition VI – Articles' applicability was confirmed by requiring that
selected articles contained a number of key phrases (as listed in
Section 1.2) throughout the paper, including, title, abstract, keywords
and the thereafter the whole paper. In essence, the identified articles
were reviewedwith particular attention given to those section(s) that
explicitly referred to BD and BDA. In doing so, to extract relevant
perspectives on the type of BD challenges and BDA methods.

• Condition VII – Final substantive applicability was confirmed by read-
ing the remainingwhole article for essential research perspective and
satisfactory empirical data. The latter process forced the alignment
between the selected articles and the research review objectives.

The abovementioned conditions itemized in seven points were all
prescriptively followed so as to conduct an effective and reproducible
database examining process as pronounced in the following subsection.

3.2. Scopus database searching process and results – Phase II

According to Delbufalo (2012), there are four stages of database
searching process. This section reports on these steps and activities of
the process, demonstrating the outcomes both descriptively and syn-
thetically by searching for relevant articles throughout the Scopus
database.
hallenges and analytical methods, Journal of Business Research (2016),
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• Phase II.1 – A number of keywords were entered into the Scopus
database (as stated in Section 1.2) following conditions 2, 3 and 4 in
Section 3.1. This process resulted in 2360 publications, of which 433
were left as relevant after filtering according to the barring conditions.

• Phase II. 2 – A title, abstract and thorough article analysis was thereaf-
ter conducted on the extracted articles based on conditions 5 and 6.
Some further articles (i.e. 206) were discarded during this stage. At
the end of this process, 227 articles were considered for further
investigation.

• Phase II.3 – For this step, the authors followed the quality criteria ma-
trix as adopted by Pittaway et al. (2004). In this step, the selected 227
articleswere further scanned, searching for both conceptual aswell as
empirical studies through the criteria highlighted in conditions 6 and
7. By doing so, all articles were grouped into two categories (i.e.
BD_CH refers to BD challenges and BDA_MTH refers to BDAmethods:
○ Category BD_CH was defined to incorporate all the studies as cer-
tainly pertinent because each article either reported or discussed
or evaluated the BD challenges. So for this category all the 227 pa-
pers resulted as productive.

○ Category BDA_MTH was defined for those studies that were rele-
vant for extracting information on the types of BDA methods
discussed/proposed. After thoroughly analysing the 227 articles,
around 115 articles discussed or proposed some form of method
for BDA.

As a result of the above two categories, all 227 articles were consid-
ered applicable for responding to Q1 and Q2. The applicability assess-
ment was considered as relative, to the degree that the authors'
decrees were focused on facets defined within the scope of the review
process.

• Phase II.4 – Herein, beginning within the BD_CH category and follow-
ed by BDA_MTH category, the full-text version of 227 articles were
thoroughly read by the first and second author. In order to save
time, both the authors divided the articles among themselves and
reviewed them for BD_CH (i.e. here the authors thoroughly reviewed
the articles to identify the different types of BD challenges – either
theorized/proposed/discussed/confronted by different sector organi-
zations), and BDA_MTH (i.e. here the authors examined the articles
thoroughly to identify the different types of methods discussed, pro-
posed and or employed by organizations to overcome BD challenges),
so as to confirm substantive relevance both conceptually and empiri-
cally as mentioned in conditions 6 and 7. In order to respond to each
Q1 and, Q2 questions, we reviewed each paper to identify the BD
challenges (Q1) and BDA methods (Q2) at the same time and noted
the findings on a spread sheet.

This latter analysis was conducted descriptively, using a standard
template adapted from the works of Delbufalo (2012). This descriptive
investigation also produced graphs and tables designed to contain the
yearly publications, geographic region of the first author and co-
author(s), type of publications, and research methods employed, for
all 227 articles.

4. Big Data and Big Data Analytics: findings and analysis

The findings of this study are now presented under different subsec-
tions. Each of the six subsections discuss on the findings in relation to a
particular variable as set in Section 1.2.

4.1. Types of Big Data Challenges

Among themanyBDchallenges (as reported in Figs. 1 and4), the large
datasets (in terms of size and complexity) and the ability to process vast
amount of data remains a critical challenge for outdated data processing
Please cite this article as: Sivarajah, U., et al., Critical analysis of Big Data c
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applications and, relational database management systems (Jiang et al.,
2015). According to TDWI Predictive Analytic Study (Russom, 2013),
there are several BD challenges posing a peril to organizations – among
these are, integrating complex and large datasets, getting started with
the right BD project, developing and implementing infrastructure for
managing and processing BD and a lack of skilled personnel or staff
with analytics skills to make sense of BD.

Figs. 4, 5, and 6 illustrates the frequency at which the data, process
andmanagement (all three related to BD) challenges are discussed/pro-
posed/theorized in the articles reviewed through the SLR process, as
presented in Fig. 1.

4.1.1. Data challenges
Data challenges are the group of the challenges related to the charac-

teristics of the data itself. Different researchers have distinct under-
standings towards the data characteristics – such as some say 3Vs
[volume, velocity and variety] of data (e.g. Shah, Rabhi, & Ray, 2015),
others reported 4Vs [volume, velocity, variety, and variability] of data
(e.g. Liao, Yin, Huang, & Sheng, 2014) and 6Vs [volume, velocity, variety,
veracity, variability, and value] of data (Gandomi & Haider, 2015). In
analysing the different articles reviewed in this SLR, the authors identi-
fied 7Vs – seven characteristics of data [volume (DC_VOLM) → C = 90
(39.64% of 227 articles), variety (DC_VART)→ C = 59 (25.9%), veracity
(DC_VERT) → C = 44 (19.4%), value (DC_VALE) → C = 30 (13.2%),
velocity (DC_VELO) → C = 18 (7.9%), visualization (DC_VISU) → C =
6 (2.6%) and variability (DC_VARB) → C = 4 (1.8%)] and these features
are illustrated in Fig. 4 and discussed as follows:

• Volume (e.g. large data-sets consisting of terabytes, petabytes, zettabytes
of data – or even more): Large scale and the sheer volume of data is a
big challenge in its own right. The latter argument is also supported
by Barnaghi et al. (2013) that state the heterogeneity, ubiquity, and
dynamic nature of the different data generation resources and de-
vices, and the enormous scale of data itself, make determining, re-
trieving, processing, integrating, and inferring the physical world
data (e.g. environmental data, business data, medical data, surveil-
lance data) a challenging task. This colossal increase of large-scale
data (e.g. Facebook daily generates over 500 terabytes of data, and
Walmart collectsmore than 2.5 petabytes of data every hour from its cus-
tomer transactions) sets brings new challenges to data mining tech-
niques and requires novel approaches to address the big-data
problem (Zhao, Zhang, Cox, Duling, & Sarle, 2013).

• Variety (e.g. multiple data formats with structured and unstructured
text/image/multimedia content/audio/video/sensor data/noise): Data
challenges related to the variety (i.e. diverse and dissimilar forms) of
data are also deemed a challenge. These articles revealed that the
enormous volume of data is not consistent nor does it follow a specific
template or format – it is captured in diverse forms and diverse
sources e.g.: messages (text, email, tweets, blogs) – user generated
content, transactional data (e.g. web logs, business transactions), sci-
entific data (e.g. data coming from data-intensive experiments – ge-
nome and healthcare data), web data (e.g. images posted on social
media; sensor data readings), and much more (Chen, Chiang &
Storey, 2012; Chen et al., 2013). These different forms and quality of
data clearly indicate that heterogeneity is a natural property of BD
and it is a big challenge to comprehend and manage such data
(Labrinidis & Jagadish, 2012). For instance, during the Fukushima
Daiichi nuclear disaster, when the public started broadcasting radio-
active material data, a wide variety of inconsistent data, using diverse
and uncalibrated devices, for similar or neighboring locations was
reported – all this add to the problem of increasing variety of data.

• Veracity (e.g. increasingly complex data structure, anonymities,
imprecision or inconsistency in large data-sets): This is not merely
about data quality – it is more about understanding the data, as
there are integral discrepancies in almost all the data collected. IBM
came up with this characteristic of data, which represents the
hallenges and analytical methods, Journal of Business Research (2016),
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untrustworthiness inherent in many sources of structured as well as
unstructured data. Akerkar (2014) and Zicari (2014) refer veracity
to as coping with the biases, doubts, imprecision, fabrications,
messiness and misplaced evidence in the data. Veracity feature mea-
sures the accuracy of data and its potential use for analysis
(Vasarhelyi, Kogan, & Tuttle, 2015). For instance, every customer
opinion on different social media networks and web is different and
unclear in nature, as it involves human interaction (Sivarajah, Irani,
& Weerakkody, 2015). Moreover, the web, more specifically, is a soft
medium to publish and broadcast fabricated information across mul-
tiple sources and, so it is essential to isolate the wheat from the chaff
when presenting quality data. Thus, the necessity to deal with inaccu-
rate and ambiguous data is another facet of BD, which is addressed
using tools and analytics developed for management and mining of
unreliable data (Gandomi & Haider, 2015).

• Velocity (e.g. high rate of data inflow with non-homogenous structure):
The challenge of velocity comes with the requisite to manage the
high influx rate of non-homogenous data, which results in either cre-
ating new data or updating the existing data (Chen et al., 2013). This
mainly applies to those datasets that are generated through large
complex networks including data generated by the proliferation of
digital devices, which are positioned ubiquitously resulting in driving
the need for real-time analytics and evidence-based planning (Lu,
Zhu, Liu, Liu, & Shao, 2014). For instance, Wal-Mart processes more
than a million transactions each hour (Cukier, 2010). The data stem-
ming from mobile devices and flowing through mobile apps or by
using store cards (e.g. Sainsbury's card for collecting nectar points)
generates floods of information that can be brought to use through
producing real-time, personalized offers for customers. These data
also provide sound information about customers, such as their
geospatial location, buying behaviour and patterns, which can be
analyzed in real-time to generate value for customers (Gandomi &
Haider, 2015).

• Variability (e.g. datawhosemeaning is constantly changing): Among the
seven pillars of BD, variability is another extremely essential feature
but is often confused with variety. For instance, Google or Facebook
repository stores and generates many different types of data. At the
same time, if from these different types of data, one of them is brought
to use for mining and making sense out of it but every time the data
offers a differentmeaning – this is variability of data –whosemeaning
is constantly and rapidly changing. The volumes of machine and
human-generated data constitute much greater and their rates of
change and variability higher than process-mediated data. Variability
is also related in performing sentiment analyzes. For example, in (al-
most) the same tweets a word can have a totally different meaning.
In order to perform a proper sentiment analyzes, advocates assert
that algorithms need to be able to understand the context and be
able to decipher the exact meaning of a word in that context
(Zhang, Hu et al., 2015). Nevertheless, this is yet still very challenging.

• Visualization (e.g. presenting the data in a manner that is readable):
Visualising data is about representing key information and knowledge
more instinctively and effectively through using different visual for-
mats such as in a pictorial or graphical layout (Taheri, Zomaya,
Siegel, & Tari, 2014). For instance, eBay has millions of users and
from these many million users, even more millions of goods are sold
every month – this generates a lot of data. To make all these data ex-
plicable, eBay considered the BD visualization tool – Tableau, which is
capable of transforming large and complex datasets into spontaneous
depictions. Based on these interactive results, eBay employees can vi-
sualize search relevance and quality, to monitor the latest customer
feedback and conduct sentiment analysis. Chen and Zhang (2014)
argue that for many existing BD applications that have poor perfor-
mances in functionalities, scalability and response time, it is mainly
problematic when conducting data visualization. This reason for this
is a consequence of large sizes and high dimension of BD.

• Value (e.g. extracting knowledge/value from vast amounts of structured
Please cite this article as: Sivarajah, U., et al., Critical analysis of Big Data c
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and unstructured data without loss, for end users): Storing BD is com-
plex. For instance, significant values can be extracted from the stream
of clicks left behind by the internet users – and this is becoming a
backbone of the internet economy. Big data researchers consider
value as an essential feature, as somewhere within that data, there is
valuable information – extracting golden data (high-valued data),
though most of the pieces of data independently may seem insignifi-
cant (Zaslavsky, Perera, & Georgakopoulos, 2012). Regardless of the
number of dimensions used to describe BD, organizations are still
faced with challenges of storing, managing and predominantly
extracting value from the data in a cost effective manner (Abawajy,
2015).

4.1.2. Process challenges
Process challenges are the group of challenges encountered while

processing and analysing the data that is from capturing the data to
interpreting and presenting the end results. As large datasets are usually
non-relational or unstructured, thus processing such semi-structured
data sets at scale poses a significant challenge; possibly more so than
managing BD (Kaisler, Armour, Espinosa, & Money, 2013). In analysing
the different articles reviewed the authors identified several data
processing related challenges that can be grouped into 5 steps that is
data acquisition and warehousing (PC_DAW) → C = 97 (42.7%), data
mining and cleansing (PC_DMC) → C = 38 (16.7%), data integration
and aggregation (PC_DAI)→ C = 29 (12.8%), data analysis and model-
ling (PC_DAM) → C = 25 (11%) and data interpretation
(PC_DI)→ C=15 (6.6%). As illustrated in Fig. 5, datamining and cleans-
ing appears to be a vital step during processing the large scale unstruc-
tured data, as 97 articles out of 227 specifically discussed and
highlighted the importance of this step.

• Step 1 – Data Acquisition andWarehousing: This challenge is related to
acquiring data from diverse sources and storing for value generation
purpose. The integral complexity of BD and exponentially growingde-
mands develop unprecedented problems in BD engineering such as
data acquisition and storage (Wang & Wiebe, 2014). The latter argu-
ment is supported by Paris, Donnal, and Leeb (2014) who assert that
one of the prime barriers to the analysis of BD arises from a lack of
data provenance, knowledge and discrepancies of scale inherent in
data collection and processing. This further restricts the speed and
resolution at which data can be captured and stored. As a result, this
affects the capability to excerpt actionable information from the data
(Chen & Zhang, 2014). To capture related and valuable information,
smart filters are required that should be robust and intelligent to cap-
ture useful information and discard useless that contains imprecisions
or inconsistencies – this is a challenge in itself. For the latter, efficient
analytical algorithms are required to understand the provenance of
data and process the vast streaming data and to reduce data before
storing (Zhang, Hu et al., 2015; Zhang, Liu et al., 2015).

• Step 2 –DataMining and Cleansing: This challenge relates to extracting
and cleaning data from a collected pool of large scale unstructured
data. Advocates of BD and BDA perceive that in identifying a better
way to mine and clean the BD can result in big impact and value
(Chen, Chen et al., 2012). Due to its strident, vibrant, diverse, inter-
related and unreliable features, the mining, cleansing and analysis
proves to be very challenging (Chen et al., 2013). For instance, in the
UKNational Health Service (NHS) there aremanymillions of patients'
records comprising of medical reports, prescriptions, x-ray data, etc.
Physicians make use of such data – if for instance incorrect informa-
tion is stored this may lead to physicians wrongly diagnosing condi-
tions, resulting in inaccurate medical records. In order make use of
this huge data in a meaningful way, there is a need to develop an ex-
traction method that mines out the required information from un-
structured BD and articulate it in a standard and structured form
that is easy to understand. According to Labrinidis and Jagadish
hallenges and analytical methods, Journal of Business Research (2016),
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(2012) developing and maintaining this extraction method is a con-
tinuous challenge.

• Step 3 – Data Aggregation and Integration: This process challenge re-
lates to aggregating and integrating clean data mined from large un-
structured data. BD often aggregates varied online activities such as
tweets – retweets, microblogging, and likes on Facebook that essen-
tially bear diverse meanings and senses (Edwards & Fenwick, 2015).
This characteristically amorphous data naturally lacks any binding in-
formation. Aggregating these data evidently goes beyond the abilities
of current data integration systems (Carlson et al., 2010). According to
Karacapilidis, Tzagarakis, and Christodoulou (2013), the availability of
data in large volumes and diverse types of representation, smart inte-
gration of these data sources to create new knowledge – towards
serving collaboration and improved decision-making – remains a
key challenge. Halevy, Rajaraman, and Ordille (2006) assert that the
indecision and provenance of data are also a major challenge for
data aggregation and integration. Another challenge relates to ag-
gregated data in warehouses – in line with this argument,
Lebdaoui, Orhanou, and Elhajji (2014) report that to enable deci-
sion systems to efficiently respond to the real world's demands,
such systems must be updated with clean operational data.

• Step 4 – Data Analysis and Modelling: Once the data has been cap-
tured, stored, mined, cleaned and integrated, comes the data anal-
ysis and modelling for BD. Outdated data analysis and modelling
centers around solving the intricacy of relationships between
schema-enabled data. As BD is often noisy, unreliable, heteroge-
neous, dynamic in nature; in this context, these considerations do
not apply to non-relational, schema-less databases (Shah et al.,
2015). From the perspective of differing between BD and tradition-
al data warehousing systems; Kune, Konugurthi, Agarwal,
Chillarige, and Buyya (2016) report that although these two have
similar goals; to deliver business value through the analysis of
data, they differ in the analytics methods and the organization of
the data. Consequently, old ways of data modelling no longer
apply due to the need for unprecedented storage resources/capac-
ity and computing power and efficiency (Barbierato et al., 2014).
Thus, there is a need for newmethods to manage BD for maximum
impact and business value. It is not merely knowing about what is
currently trendy, but also need to anticipate what may happen in
the future by appropriate data analysis and modelling (Chen
et al., 2013).

• Step 5 – Data Interpretation: This step is relatively similar to
visualising data and making data understandable for users that is
the data analysis and modelling results are presented to the deci-
sion makers to interpret the findings for extracting sense and
knowledge (Simonet, Fedak, & Ripeanu, 2015). The astounding
growth andmultiplicity of unstructured data have intensely affect-
ed the way people process and interpret new knowledge from
these raw data. As much of these data both instigate and reside
as an online resource, one open challenge is defining how Internet
computing technological solutions have evolved to allow access,
aggregate, analyze, and interpret BD (Bhimani & Willcocks,
2014). Another challenge is the shortage of people with analytical
skills to interpret data (Phillips-Wren & Hoskisson, 2015).

4.1.3. Management challenges
Management challenges related to BD are a group of challenges en-

countered, for example while accessing, managing and governing the
data. Data warehouses store massive amounts of sensitive data such
as financial transactions, medical procedures, insurance claims, diagno-
sis codes, personal data, etc. Organizations and businesses need to en-
sure that they have a robust security infrastructure that enables
employees and staff of each division to only view relevant data for
their department. Moreover, there must be some standard privacy
laws that may govern the use of such personal information and strict
Please cite this article as: Sivarajah, U., et al., Critical analysis of Big Data c
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observance to these privacy regulations must be applied in the data
warehouse. In analysing the different articles reviewed in this SLR, the
authors identified several data management related challenges that
can be grouped into seven areas (Fig. 6) such as privacy
(MC_P) → C = 23 (10.1%), security (MC_S) → C = 17 (7.5%), data and
information sharing (MC_D&IS) → C = 10 (4.4%), cost/operational ex-
penditures (MC_C&OE) → C = 7 (3.1%), data governance
(MC_DG) → C = 4 (1.8%), and data ownership (MC_OG) → C = 3
(1.3%).

• Privacy: BD poses big privacy concerns and how to preserve privacy in
the digital age is a prime challenges. Huge investments have been
made in BD projects to streamline processes; however, organizations
are facing challenges in managing privacy issues, and recruiting data
analysts, thus hindering organizations in moving forward in their
efforts towards leveraging BD (Krishnamurthy & Desouza, 2014). In
a smart city environment where sensory devices gather data on citi-
zen activities that can be accessed, several government and security
agencies pose significant privacy concerns (Barnaghi et al., 2013).
Among such privacy related challenges, location-based information
being collected by BD applications and transferred over networks is
resulting in clear privacy concerns (Yi et al., 2014). For example,
location-based service providers can identify subscriber by tracking
their location information – which is possibly linked to their office
or residential information. Then there is the challenge of protecting
privacy – Machanavajjhala and Reiter (2012) report that failure to
protect citizens' privacy is illegal and open to relevant Government
oversight bodies.

• Security: Security is a major issue and is identified by Lu et al. (2014)
who argue that if security challenges are not appropriately addressed
then the phenomenon of BDwill not receive much acceptance global-
ly. Securing BD has its own distinctive challenges that are not pro-
foundly different to traditional data. Among the several BD related
security challenges are the distributed nature of large BD which is
complex but equally vulnerable to attack (Yi et al., 2014), malware
has been an ever growing threat to data security (Abawajy, Kelarev,
& Chowdhury, 2014), lack of adequate security controls to ensure
information is resilient to altering (Bertot, Gorham, Jaeger, Sarin, &
Choi, 2014), analysing logs, network flows, and system events for
forensics and intrusion detection has been a challenge for data
security (Cárdenas, Manadhata, & Rajan, 2013), lack of sophisticated
infrastructure that ensures data security such as integrity, confidenti-
ality, availability, and accountability, and data security challenges be-
come magnified when data sources become ubiquitous (Demchenko,
Grosso, De Laat, & Membrey, 2013).

• Data Governance: As the demand for BD is constantly growing,
organizations perceive data governance as a potential approach to
warranting data quality, improving and leveraging information,main-
taining its value as a key organizational asset, and support in attaining
insights in business decisions and operations (Otto, 2011). According
to Intel IT Centre (2012), ITmanagers highly support the presence of a
formal BD strategy, this especially makes sense, since the issue of data
governance for describing what data is warehoused, analyzed, and
accessed is termed as one of the three top challenges they face
(besides data growth and data centre infrastructure and the ability
to provide scalability). du Mars (2012) state that a significant
challenge in the process of governing BD is categorizing, modelling
and mapping the data as it is captured and stored, mainly due to the
unstructured and complex nature of data. Moreover, effective BD gov-
ernance is essential to ensure the quality of data mined and analyzed
from a pool of large datasets (Hashem et al., 2015).

• Data and Information Sharing: Sharing data and information needs to
be balanced and controlled tomaximise its effect, as this will facilitate
organizations in establishing close connections and harmonisation
with their business partners (Irani, Sharif, Kamal, & Love, 2014). How-
ever, where organizations store large scale datasets that have
hallenges and analytical methods, Journal of Business Research (2016),
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potential analysis challenges, it also poses an overwhelming task of
sharing and integrating key information across different organizations
(OSTP, 2012). Al Nuaimi et al. (2015) also state that sharing data and
information between distant organizations (or departments) is a
challenge. For instance, each organization and their individual depart-
ments typically own a disparate warehouse (developed based on dif-
ferent technological platforms and vendors) of sensitive information
and several departments are often reluctant to share their patented
data governed by privacy conditions. According to Khan, Uddin,
and Gupta (2014) the challenge here is to ensure not to cross the
fine line between collecting and using BD and guaranteeing user
privacy rights. The is also related to a smart city environment
that entails a plethora of sectors and in such context, smart city
technological systems will need to reduce the barriers to achieve
seamless information sharing and exchange among different
entities (Su, Li, & Fu, 2011).

• Cost/Operational Expenditures: The constantly increasing data in all
different forms has led to a rising demand for BD processing in
sophisticated data centers. These are generally dispersed across
different geographical regions to embed resilience and spread
risk, for example Google having 13 data centers in eight countries
spread across four continents (Gu, Zeng, Li, & Guo, 2015). The
significant resources have been allocated to support the data intensive
operations (i.e. acquisition, warehousing, mining and cleansing,
aggregation and integration, processing and interpretation) – all this
lead to high storage and data processing big costs (Raghavendra,
Ranganathan, Talwar, Wang, & Zhu, 2008). Researchers assert that
cost minimization is an emergent challenge (Irani, Ghoneim, & Love,
2006; Irani, 2010), with Gu et al., 2015 explaining the challenges of
processing BD across geo-distributed data centers. Advocates of BD
search for cost-effective and efficient ways to handle the massive
amount of complex data (Sun, Morris, Xu, Zhu, & Xie, 2014). The cost
of data processing and other operational expenditures of the data cen-
ter are a sensitive issue that may also impact in the way organizations
adopt and implement technological solutions (Al Nuaimi et al., 2015).

• Data Ownership: Besides privacy,Web (2007) asserts that ownership of
data is a complex issue – as big as the data itself – while sharing real
time data. Kaisler et al. (2013) also claim that data ownership presents
a critical and continuing challenge, specifically in the social media con-
text such as who owns the data on Facebook, Twitter or MySpace – are
the userswho update their status or tweet or have any account in these
social networks (Sivarajah et al., 2015; Sivarajah, Irani, & Jones, 2014). It
is generally perceived that both view they (the users and the social
media provider) own the data. Kaisler et al. (2013) argues that this di-
chotomy still needs to be settled. With ownership arise the issue or
controlling and ensuring its accuracy. For instance, Web (2007) states
that sensor data is too sensitive and can result in mounting errors –
this may further result in capturing and revealing inconsistent data
– but then who owns that data. Data ownership is a much deeper so-
cial issue. These concerns are beyond the focus on several applica-
tions, for example SensorMaps by Web (2007) requires more
research since they may have deep implications.

Like other data related management challenges, data ownership is
essentially vital and its issues much be addressed to realise the promise
of BD.

4.2. Types of Big Data analytical methods

BD comprising of large raw data set on its own does not offer a lot of
value in its unprocessed form. If its [BD] potential value is to be
unlocked, businesses need efficient processes and methods to turn
high volumes of structured and unstructured data to analyze these
raw datasets. Analytics in this context refers to themethods used to an-
alyze and acquire intelligence fromBD.As a result, BD analyticsmethods
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can be viewed as a sub-process within the overall process of insight ex-
traction from BD. Despite the hype about varying BDA methods, using
analytics is still a labour intensive undertaking. As Assunção, Calheiros,
Bianchi, Netto, and Buyya (2015) highlight the reason for this is that
current solutions for analytics are often based on proprietary appliances
or software systemsbuilt for general purposes. As a result, organizations
need to put in significant effort to customize such BDA solutions to their
individual needs, whichmight require integrating different data sources
and setting up the software on the organization's hardware.

In analysing the different articles reviewed in this SLR, a total of 115
papers out of the 227 papers analyzed discusses and proposes some
form of BDAmethods and tools. The extant literature highlights a num-
ber of analytical processes and methods – such as text analytics, audio
analytics, video analytics, social media analytics, predictive analysis of
data (Gandomi & Haider, 2015) and others reported of descriptive ana-
lytics, inquisitive analytics, prescriptive analytics and pre-emptive data
analytics (Assunção et al., 2015; Rehman, Chang, Batool, & Teh, 2016).
Within these various BD analytics methods, the SLR highlights that
there are a number of off the shelf software tools [e.g. Hadoop,
MapRecuce, Dyrad] (Chen, Chen et al., 2012; Chen, Chiang et al., 2012;
Jiang et al., 2015), that have been built using and extending off-the-
shelf existing software [e.g. Hadoop based e-book conversion system,
MapReduce-based Big Data Processing on Multi-GPU systems)] (Jiang
et al., 2015) and finally novel solutions to tackle BD analysis [e.g.
DEMass – A New Density Estimator for Big Data] (Ting, Washio, Wells,
Liu, & Aryal, 2013). In studying the analyzed papers, the authors identi-
fied and classified analytics methods into 3 groups – such as descriptive
analytics, predictive analytics and prescriptive analytics; however,
nothingwas specifically noted for inquisitive and pre-emptive analytics
(Fig. 7).

4.2.1. Descriptive analytics
Descriptive analytics are the simplest form of BDA method, and in-

volves the summarization and description of knowledge patterns
using simple statistical methods, such asmean,median, mode, standard
deviation, variance, and frequency measurement of specific events in
BD streams (Rehman et al., 2016). Often, large volumes of historical
data is used in descriptive analytics to identify patterns and createman-
agement reports that is concerned with modelling past behaviour
(Assunção et al., 2015). Watson (2014) asserts that descriptive analyt-
ics, such as reporting, dashboards, scorecards, and data visualization,
have been widely used for some time, and are the core applications of
traditional business intelligence. Descriptive analytics are considered
backward looking and reveal what has already occurred. However, a
trend that is being adopted in descriptive analytics now is to make use
of the findings from predictive analytics, such as forecasts of future rev-
enues, on dashboards/scorecards. Spiess, T'Joens, Dragnea, Spencer, and
Philippart (2014) highlights root cause analysis and diagnostics are also
form of descriptive analysis which involve both the passive reading and
interpretation of data, as well as initiating particular actions on the
system under test, and reading out the results. The authors discuss
that root cause analysis is an elaborate process of continuous digging
into data, and correlating various insights such as to determine the
one or multiple fundamental causes of an event (Spiess et al., 2014).

Another form of descriptive analysis, pointed out by Banerjee,
Bandyopadhyay, and Acharya (2013) is the use of dashboard sort of ap-
plication when a business routinely generates different metrics includ-
ing data to monitor a process or multiple processes across times. For
example, this sort of application could be useful to understand in
terms of the financial strength of a business at a given point of time or
to compare it with others or its own across different point of time. In de-
scriptive analytics, there is a need for analysts to nurture the skill of
reading facts from figures, connecting them with the relevant
decision-making process and finally taking a data-driven decision
from a business perspective. Most of the BDA is commonly descriptive
(exploratory) in nature and the use of descriptive statistical methods
hallenges and analytical methods, Journal of Business Research (2016),
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(datamining tools) allows businesses to discover useful patterns or un-
identified correlations that could be used formaking business decisions.

4.2.2. Predictive analytics
This analytics is concernedwith forecasting and statisticalmodelling

to determine the future possibilities based on supervised, unsupervised,
and semi-supervised learningmodels (Joseph& Johnson, 2013; Rehman
et al., 2016; Waller & Fawcett, 2013). Gandomi and Haider (2015) as-
serts the need to develop new solutions for predictive analytics for
structured BD. Predictive analytics are principally based on statistical
methods and seeks to uncover patterns and capture relationships in
data. Gandomi and Haider (2015) categorised predictive analysis into
two groups – regression techniques (e.g., multinomial logit models)
and machine learning techniques (e.g., neural networks). The authors
highlight that some approaches, such as moving averages, attempt to
identify historical patterns in the outcome variable(s) and extrapolate
them to the future. Others, such as linear regression, seek to capture
the interdependencies between outcome variable(s) and explanatory
variables, and use them to make predictions. Hasan, Shamsuddin, and
Lopes (2014) proposed a machine learning BD framework that
envisaged the broad picture of machine learning in dealing with BD
problems. The framework included the presentation of multi-structure
input varieties from different sources, followed by the pipeline pre-
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processing phase prior to machine learning knowledge discovery. The
authors implement the parallelism on machine learning approaches of
BD predictive knowledge discovery based on Neural Network (NN)
algorithms; Multiple Backpropagation (MBP) and Self-Organizing Map
(SOM) using GPUMLib. In sum, predictive analytics aims to predict the
future by analysing current and historical data. For example, determina-
tion of customers' propensity to churn, by correlating behaviour over a
period of time with network event data such as usage records and
fault indicators (Spiess et al., 2014).

4.2.3. Prescriptive analytics
This type of analytics is performed to determine the cause-effect re-

lationship among analytic results and business process optimization
policies. Thus, for prescriptive analytics, organizations optimize their
business process models based on the feedback provided by predictive
analytic models (Bihani & Patil, 2014). Although difficult to deploy,
prescriptive analytics contribute to handling the information shift and
the continuous evolution of business process models (Rehman et al.,
2016). There are very limited examples of good prescriptive analytics
in the real world. One of the reasons for this shortage is that most data-
bases are constrained on the number of dimensions that they capture
(Banerjee et al., 2013). Therefore the analysis from such data provides,
at best, partial insights into a complex business problem. Few initial
hallenges and analytical methods, Journal of Business Research (2016),
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studies have applied the simulation optimization methods to the BDA.
For instance, Xu, Zhang, Huang, Chen, and Celik (2014) proposed a
framework called multi- fidelity optimization with ordinal transforma-
tion and optimal sampling (MO2TOS). The framework provides a foun-
dation for descriptive and prescriptive analytics under the BD
environment. In the MO2TOS framework, two set of high- and low-
resolution models were developed. The authors highlighted that the
high resolution model development can be very slow due to the large
amount of data. On the other hand, the low-resolution models were
much faster and can be developed using only a sample of data. The pro-
posed MO2TOS framework is able to efficiently integrate the both the
resolution models to optimize targeted systems under the BD
environment.

In general, prescriptive solutions assist business analysts in decision-
making by determining actions and assessing their impact regarding
business objectives, requirements, and constraints. For example, what
if simulators have helped provide insights regarding the plausible
options that a business could choose to implement in order to maintain
or strengthen its current position in the market.

4.3. Yearly publications

Using the keywords as stated in Section 1.2, initial search resulted in
2360 articles from1996 until 2015 based on the number of subject areas
including material sciences, energy, neuroscience, chemistry, etc. How-
ever, this research focused on only four subject areas such as business
andmanagement, computer science, decision science and social science
(that directly relate to the special issue theme (i.e. Big Data and Analytics
in Technology and Organizational ResourceManagement) – and following
the systematic literature review steps (explained and illustrated in
Section 3 and Fig. 3, respectively) – this research resulted in 227 articles.
As presented in Fig. 8, the largest number of publicationswere recorded
for year 2015 (with C = 114, 50.2%), followed by year 2014 (with C =
63, 27.7%) and year 2013 (with C= 43, 18.9%).With fewer publications
(i.e. below the 5mark)were recorded from2009until 2012 and zero ar-
ticles recorded from 1996 to 2008.

Fig. 8 illustrates an abrupt increase in number of journal articles in
the BD and BDA research area from 2013 onwards until 2015. Even
through the initial search for articles (resulting in 2360 articles), there
are more articles published from 2012 (e.g. 99 articles noted) until
2015 (e.g. 1156 articles noted). Regardless, the rapid increase in the ar-
ticles highlights the awareness and importance of this area among the
academic community, practitioners, and even governments worldwide
(see e.g. Chen, Chen et al., 2012; Chen, Chiang et al., 2012; Joseph &
Johnson, 2013). Despite the increase in the number of articles on BD
and BDA, this research domain is still emerging (e.g. as noted from
Scopus Database that from January 2016 to-date so far 295 articles
have been published). With the significance of BD and BDA from a stra-
tegic perspective and the increasing number of articles, it appears that
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this research domain requires further in-depth conceptual as well as
empirical, especially case study and survey based research studies.

4.4. Number of regions (geo-spatial coverage)

Fig. 9 highlights that the number of articles published on BD and BDA
area represent 42 different geographical regions across the globe be-
tween 1996 and 2015. The total number of regions of the 227 articles
is 790 as it takes into account of the geographical regions of the co-
authors as well. It was considered appropriate to include the regions
of the co-authors in order to avoid misrepresenting that each paper
was single authored. From the total number of articles (i.e. 227) ana-
lyzed, the largest number of scholarly contributions came from the Chi-
nese region (C= 241 scholars, representing 30.51%) – the 241 figure is
the total number of authors and co-authors from China across all the
227 publications. This is followed by USA (C = 145, 18.35%), and then
there is Australia (C = 51, 6.45%), UK (C = 49, 6.20%), and Korea
(C = 37, 4.68%). The results in Fig. 5 evidently specify that China and
USA have a lead on BD and BDA research area that is the upward trends
in the first three to four regions noticeably indicate that there are clear
signals of the growing interest in the BD and BDA area in those regions.

Whereas, from Belgium (with C = 1, 0.12%) to Italy (with C = 17,
2.15%) there is slow increase in the number of papers on BD and BDA.
Nevertheless, the huge difference between two extremes clearly raises
a vital research agenda for BD and BDA researchers and practitioners
to explore: whether this position is a result of a global sector based BD
and BDA divide or whether it is due to a lack of essential knowledge
and proficiency to undertake BD and BDA research within such coun-
tries (i.e. more specifically those regions with five or less publications).
In either case, the problem of a potential global BD and BDA area needs
to be further studied (and or creating awareness) among the academics
from countries such as the Belgium, Czech Republic, Denmark, Hong
Kong, Norway and Russia. Researchers and scholars from China, USA,
Australia, UK, Korea and Spain for instance should contemplate
collaborating with researchers from under-represented regions so as
to undertake more productive research and contributes towards the
extant BD and BDA research area.

4.5. Types of publications

This section categorizes the list of 227 papers based on the publica-
tion type. The authors employed a analogous list of publication types
as employed by Dwivedi and Mustafee (2010). This list is also similar
to those identified by the publisher – Emerald. The data presented in
Fig. 10 demonstrates that the vast majority of the publications are re-
search papers (C = 159, 70.04%), followed by general review (with
C = 27, 11.89%) and technical and conceptual papers (with C = 15,
6.60% andC=9, 3.96%, respectively). A large number of researchpapers
clearly indicate the significance of the BD and BDA area in different
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sectors (e.g. healthcare, government, and telecommunication). Howev-
er, most of these research papers are analytical in nature (as explained
in the following section) mainly focusing on experiments, performing
simulations and proposing algorithms. The authors perceive that there
is a need for more research considering using in-depth case studies in
different sector organizations. Researchers and practitioners need to
focus on developing and proposing sound solutions to BD challenges
(Chen & Zhang, 2014).

4.6. Types of research methods employed

The researchmethods employed by the BD researchers in the select-
ed 243 papers and were coded under different categories as suggested
by Dwivedi, Kiang, Lal, and Williams (2008) and Dwivedi and
Mustafee (2010). The findings suggest that although a total of 11 differ-
ent types of researchmethodswere recorded fromour data analysis, the
majority of studies were analytical in nature (C = 103, 45.37%). This
was then followed by articles that are either conceptual/descriptive or
theoretical in nature (C = 64, 28.19%), and design research (C = 12,
5.28%) methods. With regard to the analytical methods (with C =
103, 45.37%)– itwas denoted as a combination offive differentmethods
such as statistics, computer programming, simulation, algorithm and
mathematical modelling, as also followed by Dwivedi and Mustafee
(2010) and Kamal and Irani (2014). A big proportion of analytical arti-
cles clearly indicate that conducting experiments and simulations and
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or proposing algorithms have emerged as an alternative powerful
meta-learning tool to accurately analyze the massive volume of data
generated by modern applications (Chen, Chen et al., 2012; Chen,
Chiang et al., 2012).

A small number of the selected articles employed interview and
survey research approach to conduct their study – perhaps this is due
to the nature of the BD and BDA research discipline that requires tech-
nical and methodical analysis of the huge type and format of data in-
volved. Most of the studies reported using survey as tool to study the
literature (i.e. secondary research) as opposed to seeking responses
from the respondents (e.g. Chen,Mao, & Liu, 2014). The other categories
with their associated counts and percentages are presented in Fig. 11.

5. Conclusions

The authors of this paper have presented a holistic view of BD prac-
tices and application of BDA methods as presented in a normative slice
of literature. Based on the findings from existing research studies, the
presented research has sought to analyze, synthesize and present a
comprehensive structured analysis on BD and BDA to support the
signposting of future research directions. The SLRmethodology adopted
demonstrated to be a convenient tool for conducting a descriptive
literature reviews, with contributions including the synthesis of core
conclusions of the literature, the literature voids, and the formation of
a foundation for future research. The findings of this structured
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literature review will assist both BD and BDA academics and
practitioners to develop new solutions based on the challenges
identified in this paper. BD is still an emerging phenomenon but in the
recent past years its significance in different industries and countries
(as evident from Fig. 9) makes it a pertinent research area for academic
andmanagement studies. It is evident from the review conducted that it
has significantly changed the data management landscape with scope
for further profound changes.

This SLR paper has revealed the past and current state of BD and BDA
research published, thereby focusing on the past trends and current pat-
terns in BD and BDA practices. Following Tranfield et al. (2003) and
Kitchenham and Charters (2007) Systematic Review Approach, this
paper extracted and reviewed 227 journal articles from 1996 to 2015
from the Scopus database – as a result fulfilling the aim of this literature
review paper (as indicated in Section 1.1). Figs. 4 to 11 clearly indicate
the past trends and current patterns in the number of articles published
on BD and BDA. Moreover, the continuing interest (as indicated from
Fig. 8 – increasing number of BD and BDA articles over the years)
specifies that in future research studies; academics, researchers and
practitioners may focus on the BD challenges to further propose robust
solutions to the challenges of acquiring and storing, mining and
cleansing, aggregating and integrating, analysis and modelling and
interpreting data. The intention in conducting this detailed investiga-
tion was to provide a useful and usable resource of information for
future researchers.

5.1. Research implications to research and practice

• Implications to Research: This SLR offered a number of useful insights
into the extant status of research into BD and BDA, how it is defined
and conceptualised, and the key types of research methodologies
employed to date. The prime emphasis of these SLR based articles
has been on using analytical and or conceptual/descriptive/theoretical
research methods; however, due to the emerging nature of this area,
there is a need to develop and understand BD and BDA in an intensive
way using case studies and survey based research where appropriate.
The authors assert thatmore practical insights into BD and BDA can be
attained by utilising the findings of this SLR to enlighten and direct
research towards a more holistic view of the BD as a research
discipline. In this paper the authors have not restricted their focus
on identifying specific lines of enquiry on BD and BDA, but rather fo-
cused on synthesizing and presenting a comprehensive analysis of
the normative literature on BD challenges and the types of BDA
methods discussed, proposed and or employed by organizations.
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This paper extends the research stream on BD and BDA by demon-
strating and analysing the key trends related to the challenges of BD
and BDA methods.

• Implications to Practice: The authors of this paper have presented the
practice community with an insight to the plethora of BD and BDA
methods available and, insight to their application. While there is no
one advocated robust approach, the descriptive insight presented
will offer an opportunity for practitioners and applied researchers to
align their approached to the application pursued by others.

5.2. Limitations

The authors recognise that our study has limitations, and readers
and future academics and researchers should be aware of these and in-
deed interpret thematerial presented in this paperwithin the context of
the limitations. By explanation, a meta-analysis rest on the existing as
well as accessible research studies (both conceptual and empirical).
While the authors conducted a thorough literature search through the
Scopus database to identify all possible relevant articles, it is possible
that some research articles could have been missed in this review
from some other leading databases (i.e. Web of Science and EBSCO).
So to avoid duplication, every effort was exhausted to acquire and
analyze all relevant information essential, regarding the two questions
(i.e. Q1 and Q2) from the articles reviewed from the Scopus database.
Additionally, the analysis and synthesis are based on the research
team interpretation of the selected articles. The authors attempted to
avoid these issues by cross-checking papers independently and thus
deal with embedded bias but errors might have occurred but this re-
search is considered robust as every effort to mitigate error was taken.

5.3. Suggestions for future research

Building upon the rich underpinning of the research findings de-
scribed and overall understanding acquired in this paper, the authors
presents the concerns that merit further research and anticipate that
these issues may hold the potential in contributing towards the future
research studies. The analysis of the selected articles reveals that the
opportunity clearly exists to strengthen empirical research based on
in-depth case study based qualitative and survey based quantitative
approach, as most of the articles analyzed followed an analytical ap-
proach. Furthermore, there is need for stronger infusion of generic the-
ory into the BD and BDA debate. BD is a cross-cutting theme, and many
hallenges and analytical methods, Journal of Business Research (2016),
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connections exist with established topics across computing, engineer-
ing, mathematics, business and management, social sciences, etc. It
would be valuable to expand the scope of the subject area and to repeat
this exercise to identify and draw linkswith established theoretical con-
tributions in other different associated areas. A publication based on
such analysis would provide an extremely valuable platform for the
BD and BDA research and practitioners' community.

Appendix A
SL

Paper
code
S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SL

SL

S

S

S

S

Please ci
http://dx
Citation
SL
LR_1
 Jacobs. A., (2009). The pathologies of bis data. Communication: of the
ACM. 52(8), 30–44.
LR_2

SL
Li. X. Lillibridge, M. & Uvsal. M. (2011). Reliability analvsis of
deduplicated and erasure-coded $torse.e. ACMS1GMETRICS Perfor-
mance Evaluation Review. 38(3). i-9.
SL
LR_3
 Reddi, V.J. Lee. B.C. Chflimbt. T. Sc Vaid. K. (2011). Mobile processors for
energy-efficient web search. ACM Transactions on Computer Svstems
(TOCS). 29(3). 9.
SL
LR_4
 Chen, H. Chians. R. H Sc Storey. V. C. (2012). Business Intelligence and
Analytics: From Big Data to Big Impact. Quanerh. 35(4). 1105-11SS.
SL
LR_5
SL
Chen. G. Clien. K. Jians. D. Ooi. B. C. Shi. L. Vo. H. I. 8c Wu. S. (2012). E3:
an elastic execution ensme for scalable data processins. Journo! of
Information Processing. 20(1). 05–70.
LR_6
SL
Longley, P. A. (2012). Geodemosraphics and die practices of seosraphic
information science. International Journal of Geographical Information
Science. 25(12), 2227–2237.
LR_7

SL
Doersch.C.: Sinsh. S. Gupta. A., Sivic. J. Sc Efros. A. A. (2012). What
makes Pari3 look like Paris0. Communications of die ACM. 58(12),
pp. 103–110.
LR_8

SL

SL
Riedel. M.AVittenburg. P. Reetz, J. yan de Sanden. M.,Rybkki, J. von St
Vieth. B. Fiameni, G. Martani, G., Michelini. A., Cacctari. C. & Hbers. W.
(2013). A data infrastructure reference model with applications: to-
wards realization of a ScienceTube vision wrth a data replication ser-
vice. Journo! of Internet Serf ices and Applications. 4(1). 1–17.
IR_9
SL
Mershad. K. Altai. H. Sashir. M. Hajj. H. & Awad. M. (2013). A mathe-
matical model to analyze the utilization of a doud datacenter
middleware. Journal ofXetworkand Computer Applications.
39.399–415.
LR_10

SL
Huans. G. . Sons. S. Gupta. J. N. & Wu. C. (2013). A second order cone
prosrammins approach for semi-supervised leamins. Pattern Recogni-
tion. 45(12). 354S\\355S.
LR_11
SL
Lin. J. Yin. J. Cai. Z. Liu. Q. Li. K. & Leune. V. (2013). A s ecure and practical
mechanism of out30urdns extreme leamins machine in doud
computms. IEEE Intelligent Systems. 28(6). 35–3 S.
LR_12
 Kim. K. J. Hons. S. P. Sc Kim. J. Y. (2013). A study of privacy protection
from risk of hijackins data. Internationa! Journal of Multimedia and
Ubiquitous Engineering. 5(1), 235–244.
LR_13
SL
Chen. Z. Xiao. N. & Liu. F. 2013. An SSD-based accelerator for directory
parsins in storage systems containing massive files. Peer-to-Peer Net-
working and Applications. 5(4). pp.39″\\40S.
SL
LR_14
 Fischer. F. Fuchs. J. Mansmann. F. & Keim. D. A. (2013). BANKSAFE:
Visual analytics for big data in large-scale computer uetworks. Infor-
mation Visualization. 74(1). 51–61.
SL
LR_15
 Ln. J. Sc Li. D. (2013). Bias correction in a small sample from big data.
IEEE Transactions on Knowledge and Data Engineering: 25(11).
265S-2663.
SL
R_16
 Joseph. R. C. Sc Johnson. N. A. (2013). Big data and transformational
government. IT Professional. 15(6). 43-4S.
R_17

SL
Sukumar. S. R. Sc F errell. R. K. (2013). ‘Big Data’ collaboration:
Exploring, recording and sharing enterprise knowledge. Information
Servkes and Use. 33(3–4). 257–270.
SL
LR_I8
 Weber. S. (2013). Big data privacy and security challenges. In
Proceedings of the ACM Works hop on Building Anahs is Datasets and
Gathering Experience Returns for Securing pp. 1–2.
SL
LR_19
SL
Hone. T. H. Yun. C. H. Park. J. W., Lee. H. G. Jung. H. S. &Lee. Y. V. (2013).
Big data processing with MapReduce for E-book. Internationa! Journal
of Multimedia and Ubiquitous Engineering. 5(1). 151–162.
LR_20
SL
Choo. J. Sc Paik. H. (2013). Customizing computational methods for
visual analytics with big data. Computer Graphks andApplkations. IEEE.
33(4). 22–28.
LR_21
 Crowe. J. Sc Candhsh. J. R. (2013). Data analytics: the next bis thing m
information. Proceeding: of the 14* International Conference on Grev L
her azure. Rome. Italy, pp. 139–142.
te this article as: Sivarajah, U., et al., Critical analysis of Big Data cha
.doi.org/10.1016/j.jbusres.2016.08.001
continued)ppendix A (continued)
Paper
code
llenges a
Citation
R_22
 Grolinget. K. Higashino. W. A. Tiw'ari. A. .Sc Capretz. M. A. (2013).Data
management in doud environments: NoSQL andNewSQL data stores.
Journal of Cloud Computing:. idxances. Systems and.ipp!kaiions. 2(1).
1–24.
R_23
 Miller. H. (2013). Bia-Data in Cloud Computing: A Taxonomv of Risks.
Information Research. 18(1).
R_24
 Tme. K. M. Washio. T. Wells, J. R. Liu. F. T. Sc. Arval. S. (2013). DEMass: a
new density estimator for bis data. Knowledge and Information
Svstems. 33(3). 493–524.
R_25
 Shen. Y. Sc VarveL, V. E. (2013). Developing data management services
at the Johns Hopkins University. The Journal Of Academic
Librarianship. 39(6). 5 52–5 57.
R_26
 Mansell. R. (2013). Employing digital crowdsourced information
resources: Managing the emerging information commons.
International Journal of the Commons. 7(2), 255–277.
R_27
 Kraska. T. (2013). Finding the needle in the big data svstems haystack.
IEEE Internet Computing. 1. S4-S6.
R_28
 Bamaghi. P. Sheth A. & Henson. C. (2013). From Data to Actionable
Knowledge: Big Data Challenges in die Web of Things [Guest Editors'
Introduction]. IEEE Intelligent Svstems. 28(6). 6–11.
R_29
 Kumar. A., Niu, T. & Re. C. (2013). Hazy: Making it easier to build and
maintain brg-data analytics. Communkaiions of the ACM, 55(3). 40–49.
R_30
 Rabkm. A. Sc Katz. R. H. (2013). HowHadoop dusters break. IEEE Soft-
ware. 30(4), SS-94.
R_31
 Baumgarten. M. Mulvama, M. Rooney, N. & Reid. J. (2013).
Kevword-Based Sentiment Mining using Twitter. Imernarional Journal
ofAmbient Computing and Intelligence. 5(2). 56–69.
R_32
 Yang. Y. Long, X. Sc Jiang. B. (2013). K-Meams method for grouping in
hybrid MapReduce duster. Journal of Computers. 5(10). 2648–2655.
R_33
 Xia. S. Xie. J., Dai. D. Zhang. H. Nie. Q. Kawata. S. & Zhang. W. (2013).
Rum combined with Hadoop application based-on cpse-bio. Journal of
Next Generation Information Technology. 4(3). 160.
R_34
 Lee. C. H. Sc Chien. T. F. (2013). Leveraging microblogging big data with
a modified density-based clustering approach for event awareness and
topic ranking. Journal of Information Science. 39(4). 523–543
R_35
 Zhao. Z., Zhang. R. Cox. J. Dulmg. D. Sc Sarle. W. (2013). Masstvdy
parallel feature selection: an approach based on variance preservation.
Machine Learning. 92(1). 195–220.
R_36
 Yfldtrim, E Kim. J. Sc Kosar. T. (2013). Modelling throughput sampling
size for a doud-hosted data scheduling and optimization service. Future
Generation Computer Svstems. 29(7). 1795-1S07.
R_37
 Ouzounis. G. K, Syrris. V. & Pesaresi. M. (2013). Multiscale quality as-
sessment of Global Human Settlement Laver scenes against reference
data using statistical learning. Pattern Recognition Letters. 34(14).
1636–1647.
R_38
 Karacapilidis. X. Tzagarakis. M. Sc Christodonlou. S. (2013). On a
meaningful exploitation of machine and human reasoning to tackle
data-mtensive decision miking. Intelligent Decision Technologies. 7(3),
225–236.
R_39
Wen, D. Guo-min. G., Tian-jun, W., & XLn-ju, Y. (2013). Organization
and Management of Meteorological Sensor Network Collected BigData.
Information Technolog}’ Journal, 12(22), 6636–6640.
R_40
 Deng, S. G, Huang, L. T., Wu, B. & Xiong. L. R. {2013). Parallel optimiza-
tion for data-intensive service composition. Journal of Internet
Technology, 14(5), 817–824.
R_41
 Procter. R., Crump. J. Karstedt. S. Voss, A, & Cantijoch,M. (2013). Reading
the riots: What were the Police doing on Twitter?. Policing and Society,
23(4). 413–436.
R_42
 Procter. R. Vis, F. & Voss, A (2013). Reading the riots on Twitter: meth-
odological innovation for the analysis of big data. International Journal
of Social Research Methodology’, 16(3), 197–214.
R_43
 Qin. H. F. & Li. Z. H. (2013). Research on the Method of Big Data Analysis.
Information Technology? Journal, 72(10), 1–7.
R_44
 Small. S. G. &. Medsker, L. (2013). Review of information extraction
technologies and applications. Neural Computing and Applications.
25(3–4), 533–548.
R_45
 Tan, W., Blake, M.B., Saleh, I., & Dustdar. S. (2013). Social-network-sourced
big data analytics. IEEE Internet Computing, 5,62–69.
R_46
 Yang, H. (2013). Solving problems of imperfect data streams by
incremental decision trees. Journal of Emerging Technologies in Web
Intelligence, 5(3), 322–331.
R_47
 Wang. W. Lu, D. Zhou.X., Zhang, B.,& Mu, J. (2013). Statistical
wavelet-basedanomalv detection in big data with compressive sensing.
EURASIP Journal on Wireless Communications and Networking,
2013(1), pp. 1–6.
nd analytical methods, Journal of Business Research (2016),

http://dx.doi.org/10.1016/j.jbusres.2016.08.001


( (A A

19U. Sivarajah et al. / Journal of Business Research xxx (2016) xxx–xxx
continued)ppendix A (continued)
Paper
code
SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

Please ci
http://dx
Citation
R_48
 Hu, B., Carvalho, N.,& Matsutsuka. T. (2013). Towards Big Linked Data: A
Large-Scale, Distributed Semantic Data Storage. International Journal of
Data Warehousing and Mining (TJDWM), 9(4), 19–43.
SL
R_49
 Jimei, L., Yuzhou. H., & Meijie, D. (2013). XBRLinthe Chinese Financial
Ecosystem. IT Professional, 15(6), 36–42.
R_50

SL
Chen. J., Chen, Y.Du. X. Li, C. Lu. J. Zhao. S. & Zhou. X. (2013). Big data
challenge: a data management perspective. Frontiers of Computer
Science, 7(2), 157–164.
SL
R_51
SL
Lee, B., & Jeong,E.{2014). A design of a patient-customize dhealthcare
svstenbased on the Hadoopwithtextmining{PHSHT) for an efficient
disease management and pre diction. Imernaiional Journal ofSoftware
Engineering & Applications, #(8), 131–150.
R_52
 Faria, F. A. Dos Santos, J. A. Rocha. A. & Torres. R. D. S. (2014). A frame-
work for selection and fusion of pattern classifiers in multimedia rec-
ognition. Pattern Recognition Letters, 39, 52–64.
SL
R_53

SL
Chen. Z. Lu. Y., Xiao.N. and Liu. F. 2014. Ahvbrid memory built bv SSD
and DRAM to support in-memorv Big Data analvtics. Knowledge and
Information Systems, 41(2). 335–354.
SL
R_54
 Lin. C. Y., & Liao. J. K (2014). A fob-oriented load-distribution scheme for
cost-effective NameNode service in HDFS. International Journal of Web
and Grid Services, 10(4). 319–337.
SL
R_55
SL
Antonie, A,Marjanovic,M.,Pripuzic, K., & Zarko, I. P. (2014). Amobile
crowd sensing ecosystem enabledby CUPUS: doud-basedpublish’
subscribemiddleware forthe internet of things Future Generation Co
mp uier Systems, 56,607–622
R_56
SL
Ulltveit-Moe,N. (2014). A roadmap towards improving managed secu-
rity services from a privacy perspective. Ethics and Information
Technology, 16(3), 227–240.
R_57
SL
Fahad. A., Ashatn, N. Tari, Z.: Aamri, A., Khalil, I., Zomava, A.Y.,Foufou, S.,
Bouras, A (2014). A survey of clustering algorithms for big data: Tax-
onomy and empirical analysis. IEEE Transactions on Emerging Topics in
Computing, 2(3), 267–279.
R_58

SL
Liu. S. Cui. W. Wu, Y. & Liu, M. (2014). A survey on information visual-
ization: recent advances and challenge s. The Visual Computer. 39(12).
1373–1393.
R_59

SL
Zhang. F. Cao. J. Khan, S. U. Li. K. & Hwang. K. (2015). A task-level adaptive
MapReduce framework for real-time streaming data in healthcare applica-
tions. Future Generation Computer Systems. 43. 149–160.
R_60

SL
Hofrnan, W., & Rajagopal, M. (2014). A technical framework for data
sharing. Journal of Theoretical and Applied Electronic Commerce
Research, 9(3), 45–58.
R_61

SL
Kuang. L.,Hao,F. Yang. L. T. Lin. M.Luo. C. &Min, G.
(2014).Atensor-basedapproachforbig data representation and
dimensionality reduction. IEEE Transactions on Emerging Topics in
Computing, 2(3), 280–291.
SL
R_62
 Lebdaoui. I. Qrhanou. G. & Elhajfi, S. (2014). An Integration Adaptation
for Real-Time Datawarehousing. Internationa! Journal of Software En-
gineering and its Applications, 2(11). 115–128.
SL
R_63
 AgrawaL D. (2014). Analvtics based decision making. Journal of Indian
Business Research, 6(4), 332–340.
R_64

SL
Song. M. Kim, M. C. Jeong. Y. K (2014). Analysing the political landscape
of 2012 Korean Pre sidential Ele ction in Twitter. IEEE Intelligent Sys-
tems. 29(2), 18–26.
R_65

SL
Liu, C., Chen, J., Yang.L. T, Zhang, X, Yang, C,& Rao,K (2014). Authorized
public auditing of dynanicbig datastorage on cloud with
efficientverifiable fine-grained updates. IEEE Transactions on Parallel
and Distributed Systems, 25(9), 2234–2244.
SL
R_66
SL
Gandomi. A. & Haider. M. (2015). Bevondthe hvpe: Big data concepts,
methods, and analytics. International Journal of Information
Management. 35(2), 137–144.
R_67
SL
Tinati. R. Halford. S. Can. L. & Pope. C. (2014). Big data: methodological
challenges and approaches for sociological analysis. Sociology.48(4),
663–681.
R_68
 Yin, H. Jiang. Y. Lin. C. Luo, Y. & Liu. Y. (2014). Big data: transforming the
design philosophy of future internet. IEEE Network, 28(4), 14–19.
SL
R_69
 Krishnamurthv.R., & Desouza, K C.{2014). Big data analytics: The case of
the social security administration. Information Polity, 19(3,4), 165–178.
R_70

SL
Diamantoulakis. P. D., Kapinas. V. M.,& Karagiannidis. G. K_ (2015). Big
data analytics for dynamic energy* management in smart grids. Big
Data Research, 2(3), 94–101.
R_71

SL
Wang, Y., & Wiebe, V. J. (2014). Big Data Analvtics on the Characteristic
Equilibrium of Collective Opinions in Social Networks. International
Journal of Cognitive Informatics and Natural Intelligence, 8(3), 29–44.
R_72
 Fernandez, A, del Rio, S., Lopez, V′., Bawakid, A, del Jesus, M. J., Benitez, J.
M.,& Herrera, F. (2014). BigData with Cloud Computing: an insight on
te this article as: Sivarajah, U., et al., Critical analysis of Big Data cha
.doi.org/10.1016/j.jbusres.2016.08.001
continued)ppendix A (continued)
Paper
code
llenges a
Citation

the computing environment, MapReduce, and programming frame-
works. Wilev Interdisc iplinarv Reviews: Data Mining and Knowledge
Discovery, 4(5), 3 80–409.
R_73
 Bertot, J. C., Gorham, U., Jaeger, P. T., Sarin, L. C, & Choi, H. (2014). Big
data, open government and e-Govemment: Issues, policies and recom-
mendations. Information Polity, 29(1,2), 5–16.
R_74
 Kim. G. H., Trimi, S., Chung, J. H. (2014). Big-data applications in the
government sector. Communications of the ACM, 57(3), 78–85.
R_75
 Yi, X., Liu. F. Liu, J., & Jin, H. (2014) Building a network highway for big
data: architecture and challenges. IEEE Network, 28(4), 5–13.
R_76
 Zhang, Y., Chen, M., Mao. S. Hu. L. & Leung. V. (2014). Cap: Community
activity prediction based on big data analysis. IEEE Netw ork. 28(4).
52–57.
R_77
Leeflang. P. S. Verhoef. P. C. Dahlstrom. P. & Freundt T. (2014).
Challenges and solutions for marketing: in a diaital era. European Man-
agement Journal. 32(1). 1–12.
R_78
 Imran. A. SrZoha. A. (2014). Challenges in 5G: howto empower SON
with big data for enabling 5G. IEEE Network. 26(6). 27–33.
R_79
 Hu. R. Dou. W„ & Liu, J. (2014). ClubCF: A Clusterms-Based Collaborative
Filterina Approach for Big Data Application. IEEE Transactions on
Emerging Topics in Computing. 2(3), 302–313.
R_80
 Hurlburt. G. Bojanova. 1. & Berezdivm. R. (2014). Computational
Networks: Challenging Traditional Proaram Management IT Profes-
sional. 16(6). 66–69.
R_81
 Li. Z. Sharaf. M.A. Sitbon. L. Du. X. & Zhou. X. (2014). Core: a
context-aware relation extraction mediod for relation completion. IEEE
Transactions on Knowledge and Data Engineering. 26(4). S36-S49.
R_82
 Zen?. D. Gu. L. & Guo. S. (2015). Cost minimization for bis data proces
sins in seo-distributed data centers. In Cloud ‘Networking for Big Data.
Sprmser International Publi3hins. pp. 59–7 S.
R_83
 Chen. C. P. & Zhsns. C. Y. (2014). Dana-intensive applications,
challenses. Techniques and technologies: A survey on Bis Data. Infor-
mation Sciences. 275.314–347.
R_84
 Kirn. Y. Shim. K_. Kim. M. S. 5c Lee. J. S. (2014). DBCURE-MR: an efficient
densitv-based dusterins alsorithm for larse data using MapReduce. In-
formation Svs terns. 42.15–35.
R_85
 Jung. B. & Lim. S. (2014). Designing a Smart Consumption Tracking
Model. International Journal of Software Engineering and its
Applications, 6(10). 167–178.
R_86
 Bkimsni. A. & WBlcocks. L. (2014). Digitisation. “Bis D ata and die trans
formation of accounting information. Accounting and Business Re-
search. 44(4). 469–490.
R_87
 Ryiavy, S. J. Bromlev. D. & Daggett. V. (2014). DIVE: A eraph-based
visual-anal’,lies framework for big data. Computer Graphics and,-
Applications. IEEE. 34(2). 26–37.
R_88
 Sn, Y. Agrawal. G. Woodrmg. J. Myers, K. Wendelberger. J. & Ahrens. J.
(2014). Effective and efficient data sampling using bitmap indices.
Cluster Computing. 17(4), 10S1–1100.
R_89
 Guo. T. Papaioannon. T. G. 5c Aberer. K. (2014). Efficient Indexing and
Query Processing of Model-View Sens or D ata in die Cloud. Big Data
Research. 1. 52–65.
R_90
 Ellis. J. Fokoue. A. Hassanzadeh. O. Kementsietsidis. A. Srinivas. K. &
Ward. M. J (2015). Exploring Big Data with Helix: Finding Needles in a
Bia Haystack ACMSIGMOD Record. 43(4). 43–54.
R_91
 Sim, N. Moms. J.G. Xu. J. Zhu. X. & Xie. M. (2014). iC ARE: A framework
for big data-based bankmg customer anal\tics. IBM Journal of Research
and Development. 56(5.6). 1–9.
R_92
 Dobre. C. Sc Xhafa. F. (2014). Intelligent sendees for big data science.
Future Generation Computer Systems. 37. 267–281.
R_93
 Meng. S. Dou. W._ Zhang. X. & Chen. J. (2014). Kasr: A keyword -aware
service recommendation mediod on MapReduce for big data applications.
IEEE Transactions on Parallel and D is iribuied Systems, 25(12), 3221–3231.
R_94
 Abawgjv. J. H. Kelarev. A. Chowdhury. M. (2014). Large iterative
multitier ensemble classifiers for security of big data. IEEE Transactions
on Emerging Topics in Computing. 2(3). 352–363
R_95
 Hasan. S. Shamsuddin. S. M. Sc Lopes. N. (2014). Machine learning big
data framework and anal’,tics for big data problems. International
Journal of Advances in Soft Computing and its Applications, 6(2). 1–14.
R_96
 Goldberg.D. Olivares. M. Li. Z. and Klein A.G. 2014. Maps &. GIS data
libraries m the era of big data and doud computing. Journal of Map &
Geography Libraries. 10(1). pp. 100–122.
R_97
 Bravo-Marquez. F. Mendoza. M. Sc Poblete. B. (2014). Meta-level senti-
ment models for big social data analysis. Knowledge-Based Systems, 69.
86–99.
(continued on next page)
nd analytical methods, Journal of Business Research (2016),

http://dx.doi.org/10.1016/j.jbusres.2016.08.001


( (A A

20 U. Sivarajah et al. / Journal of Business Research xxx (2016) xxx–xxx
continued)ppendix A (continued)
Paper
code
S

SL

SL

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Please ci
http://dx
Citation
SL
LR_98
SL
Otji, U. A. Remscrim, Z., Schantz. C., Donna]. J., Paris. J. Gillman. M.,
Surakitbovom, K, Leeb. S. B.; & Kirtley. J. L. (2015). Non-intm3ive in-
duction motor speed detection. Electric Power Applications. 1ET Elec-
tric Power Applications. 9(5), 3SS-39i6.
SL
R_99
 Taheri. J. Zomava. A. Y., Siegel. H. J. & Tari. Z. (2014). Pareto frontier for
job execution and data transfer tune in hybrid clouds. Future
Generation Computer Systems. 37. 321–334.
SL
R_100
 Barbierato. E. Gribaudo. M. Sc laoono. M. (2014). Performance
evaluation of NoSQL big-data applications using multi-formalism
models. Future Generation Computer Systems. 37. 345–353.
SL
LR_101
 Ma. S. Meng. X. Sc Wang. F. (2014). Report on the Sixth International
Workshop on Cloud Data Management. A CM SIGMOD Record. 43(2).
53–56.
SL
LR_102
SL
Ji. C. Li. Z. Qu. W.Xu. Y., Sc Li, Y. (2014). Scalable nearest neighbour
query processing based on Inverted Grid Index. Journal of Network and
Computer. ipplications. 44.172–182.
LR_103
SL
Chelmis. C. Wu. H. S crathia. V. Sc Prasanna. V. K (2015). Semantic sodal
network analysis for die enterprise. Computing andInformancs. 33(3).
479–502.
LR_104
 Kourtesis. D. Alvarez-Rodriguez. J. M. 8c Paraskakis. I. (2014).
Semantic-based QoS management in doud systems: current 3tatu3 and
future challenges. Future Generation Computer Systems. 32.307–323.
SL
LR_105
SL
Wang. C’. Li. X. Zhou. X. Wang. A. Sc Xedjah. N. (2015). Soft computing
in big data intelligent transportation systems,. ippliedSoft Computing.
38,1099-110S.
LR_106
 Jardak. C. Mahdnen. P. Sc Riihijarvi. J. (2014). Spatial bie data and
wireles s networks: experiences. Applications, and res earch challenges.
IEEE Network. 28(4). 26–31.
SL
LR_107
 He. B. Li. Y. Husns. H. Sc Tang. H. (2014). Spatial-temporal compression
and recovery in a wireles s sensor network in an underground tunnel
environment. Knowledge and Information Systems. 47(2). 449–465.
LR_108

SL
Liu. Z.,Li. J. Li. J, Jia. C bang. J., Yuan. K. (2014). SQL-based fuzzy query
medianism over encrypted database. International Journal of Data
Warehousing and Mining (1JDWM). 70(4). 71–87.
LR_109

SL
Lee. T. Lee. H. Rhee. K. H. Sc Shin. U. S. (2014). The efficient
implementation of distributed indexing with Hadoop for digital
investigations on Big Data. Computer Science and Information Systems.
17(3). 103 7–1054.
SL
LR_110
 Lu, R., Zhu. H. Liu. X. Liiu, J. K. & Shao. J. (2014). Towards efficient and
privacy-preserving computing in big data era. IEEE Network, 26(4). 46–50.
LR_111

SL
Takaishi. D. Xishivama. H. Kato. N., Sc Miura. R. (2014). Towards energy
efficient big data gathering in densely distributed sensor networks. IEEE
Transaction: on Emerging Topic: in Computing. 2(3). 388–397.
LR_112

SL
Zliobaite. I. Holmen. J. Koskmen. L. & Teittmen. J. (2015). Towrards
hardw are- driven design of low-energy algorithms for data analysis.
ACM SIGMOD Record. 43(4). 15–20.
SL
LR_113
 Watson. H. J. (2014). Tutorial: Big data anal’,lies: Concepts,
technologies, and applications. Communications of the Association for
Information Systems. 34(1). 1247–1268.
SL
LR_114
 Zhang. F. Liu. M. Gui. F. Shen. W. Shami. A. & Ma. Y. (2015). A distributed
frequent itemset mining algorithm using Spark for Big Data analytics.
Cluster Computing. 76(4). 1493–1501.
SL
LR_115
 Jun. S. Lee. S. J. &Rvu. J. B. (2015). A Divided Regression Analysis for Big
Data. Imernationa! Journal ofSoftware Engineering and its. Applica-
tions. 9(5). 21–32
SL
LR_116
 Xing. J., Sc Sieber. R. E. (2015). A land use land cover change gecspatial
cyberinfrastmctnre to integrate big data and temporal topology.
Internationa! Journal of Geographical Information Science. 39(3). 573–593.
SL
LR_117
 Kim. 1. (2015). A Study on the Development of Next Generation Intelli-
gent Integrated Security Management Model using Big Data Technolo-
gy. International Journal ofSecurity and it: Applications, 9(6). 217–226.
SL
LR_118
 Zhang. X. Hu. Y. Xie. K. Zhang. W„ Su. L. & Liu. M. (2015). An
evolutionary trend reversion model for stock trading rule discovery.
Knowledge-Based Systems. 79,27–35.
SL
LR_119
 Juhic. N. Shaima. A. Nesterov, S. & Jukic. B. (2015). Augmenting Data
Warehouses with Big Data. Information Systems Management. 32(3),
200–209.
LR_120

SL
Jara. A. J., Genoud,D., & Bocchi. Y. (2015). Big data for smart cities
withKNIME a real experience in the SmartSantander testbed. Software:
Practice and Experience. 4 5(S). 1145–1160.
LR_121
 Li, H., Lu, K, & Meng, S. (2015). Bigprovision: A provisioning framework
for big data analytics. IEEE Network, 29(5), 50–56.
SL
LR_122
 Zhang, S., Yin. D., Zhang, Y., & Zhou, W. (2015). Computing on Base
Station Behaviour Using Erlang Measurement and Call Detail Record.
IEEE Transactions on Emerging Topics in Computing, 3(3), 444–453.
te this article as: Sivarajah, U., et al., Critical analysis of Big Data cha
.doi.org/10.1016/j.jbusres.2016.08.001
continued)ppendix A (continued)
Paper
code
llenges a
Citation
R_123
 Miller H J, & Goodebild, M. F. (2015). Data-driven geography. Geo
Journal, 60(4), 449–461.
R_124
 Cao, M., Chychyla, R., & Stewart, T. (2015). Big Data analytics in financial
statement audits. Accounting Horizons, 29(2), M423–429.
R_125
 Wang. F. Hu, L., Zhou. D., Sun., R., Hu, J., & Zhao. K. (2015). Estimating
online vacancies in real-time roadtraffic monitoring with traffic sensor
data stream. AdHoc Networks, 35,3–13.
R_126
 Farahat, A. K,Elgoharv, A., Gho dsi, A., & Kamel, M. S. (2015). Greedy
column subset selection for large-scale data sets. Knowledge and Infor-
mation Systems, 45(1), 1–34.
R_127
 Shah. T., Rabhi, F. & Ray, P. (2015). Investigating an ontology-based
approach for Big Data analysis of inter-dependent medical and oral
health conditions. Cluster Computing, 76(1), 351–367.
R_128
 Neish, P. (2015). Linked data: what is it and why should you care? The
Australian Library Journal, 64(1), 3–10.
R_129
 Ashraf, J. Hussain, O. K_, & Hussain, F. K_ (2015). Making sense from Big
RDF Data: OUSAF for measuring ontology usage. Software: Practice and
Experience, −75(8), 1051–1071.
R_130
 La ebb e eke. C. &Picot,A. (2015). Reflections on societal
andbusmessmodel transformation arising from digitization andbig data
analytics: A research agenda. The Journal of Strategic Information
Systems, 24(3), 149–157.
R_131
 Otero. C. E. & Peter, A (2015). Research Directions for Engineering Big
Data Analytics Software. IEEE Intelligent Systems, 36(1), 13–19.
R_132
 Triguero,I.: del Rio. S., Lopez, V. Bacardit.J, Benitez, J. M.,& Herrera. F.
(2015). ROSEFW-RF: the winner algorithm for the EC BDL’ 14 big data
competition: an extremely imbalanced big data bioinformatics prob-
lem. Knowledge-Based Systems, 87,69–79.
R_133
 Cicotti, G, Coppalino,L.,D'Antonio, S., & Romano, L. (2015).
RuriimeModel Checking for SLACompliance Monitoring and QoS Pre-
diction Journal of Wireless Mo bile Networks, Ubiquitous Computing,
and Dependable Applications. 6(1), 4–20.
R_134
 Benatallah. B. & Motahan-Nezha cL H. R. (2015). Scalable graph-based
OLAP analytics over process execution data. Distributed and Parallel
Databases. 34(3). 379–423.
R_135
 Jiang. H. Chen, Y., Qiao, Z., Weng, T. H., & Li, K_ C (2015). Scalingup
MapReduce-basedbig data processing onmulti-GPU systems. Cluster
Computing, 76(1), 369-3S3.
R_136
 Sandhu. R. & Sood, S. K. (2015). Scheduling ofbig data applications on
distributed doudbased on QoS parameters. Cluster Computing, 76(2),
S17\\82S.
R_137
 Xu, J. Huang, E. Chen, C. H.,& Lee, L. H. (2015). Simulation optimization:
a review and exploration in the new era of cloud computing and big
data. Asia-Pacific Journal of Operational Research, 32(3), 1–34.
R_138
 Kitcbin. R., & Lauriault, T. P. (2015). Small data in the era ofbig data.
GeoJournal, 60(4), 463–475.
R_139
 Buhalis,D. & Foerste, M. (2015). SoCoMo marketing for travel and
tourism: Empowering co-creation of value. Journal of Destination Mar-
keting di Management, 4(3), 151–161.
R_140
 Kune, R., Konugurthi, P. K_, Agarwal, A, Chillarige, R. R. & Buyya, R.
(2015). The anatomy ofbig data computing. Software: Practice and
Experience, 46(1), 79–105.
R_141
 Wang,Z., Chen, H., Fu, Y.,Liu, D., & Ban, Y. (2015). Workload balancing
and adaptive resource management for the swift storage system on
cloud. Future Generation Computer Systems, 51,120–131.
R_142
 Hu, W., & Jia, C. (2015). A bootstrapping approach to entity linkage on
the Semantic Web. Web Semantics: Science, Services and Agents on the
World Wide Web,34, 1–12.
R_143
 Lin, W, Dou, W., Zhou, Z. & Liu, C. (2015). A cloud-based framework for
Home-diagnosis service over big medical data. Journal of Systems and
Software, 102, 192–206.
R_144
 Chen, Z.Xu, G. Mahalingam. V., Ge.L. Nguyen. J. Yu, W. and Lu, C.; 2015. A
Cloud Computing Based Network Monitoring and Threat Detection
System for Critical Infrastructures. Big Data Research.
R_145
 Xu. G. Yu. WT. Chen. Z. Zhang. H. Moulema. P., Fu.X. & Lu. C. (2015).
Acloud computing b asedsv stanfor cyber se curitv management
International Journal of Parallel, Emergent and Distributed Systems, 3
Of1). 29–45.
R_146
 Smowton, C., BaHa. A, Antoruades.D.,Miller. C., Pallis, G., Dikaiakos,M.-
D.,&Xmg. W. (2015). A cost-effective approachto improving perfor-
mance ofbig genomic data analyses in clouds. Future Generation
Computer Systems.
R_147
 Simonet, A, Fedak, G., &Ripeanu, M. (2015). Active Data: A program-
ming model to manage data life cycle across heterogeneous systems
and infrastructures. Future Generation Computer Systems, 53,25–42.
nd analytical methods, Journal of Business Research (2016),

http://dx.doi.org/10.1016/j.jbusres.2016.08.001


( (A A

21U. Sivarajah et al. / Journal of Business Research xxx (2016) xxx–xxx
continued)ppendix A (continued)
Paper
code
SL

SL

SL

SL

SL

SL

SL

SL

SL
SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

Please ci
http://dx
Citation
R_148
SL
Zhang, F, Cao, J., Hwang, K, Li. K. & Khan, S. U. (2015). Adaptive
Workflow Scheduling on Cloud Computing Platforms with Iterative
Ordinal Optimization. IEEE Transactions on Cloud Computing, 3(2),
156–168
R_149

SL
Merino, J., Caballero, I., Rivas, B., Serrano, M., &. Piattini, M. (2015). A
Data Quality in Use model for Big Data. Future Generation Computer
Systems.
R_150

SL
□ie-Zudor,E.Ekart, A.,Kemenv, Z. Buckingham. C. Welch. P. & Monostori.
L. (2015). Advancedpiedictive-analvsis-based decision support for
collaborativelogistics networks.Supply Chain Management: An Inter-
national Journal, 26(4), 369–388.
SL
R_151
 Wang, Y., & Ma. X. (2015). A General scalable and elastic content-based
publish1 sub scribe service. IEEE Transactions on Parallel and Distribut-
ed Systems, 26(8), 2100–2113.
SL
R_152
SL
Bhattadiaijee, S., Rahim, L. B. A, & Aziz, I. B. A. (2015). ALossless
CompressionTeehniquetc Increase Robustnessin Big Data
TransmissionSvstem. International Journal of Advances in Soft Com-
puting & its Applications, 7(3), 126–145.
R_153

SL
Phillip s-Wren. G., & Hoskisson. A. (2015). An analytical joumev to-
wards big data. Journal of Decision Systems. 24(1). 87–102.
R_154

SL
Rexit,R.,Tsui, F. R., Espino, J., Cbiysar!his,P·K_, Wesaratdialdt, S.,& Ye, Y.
(2015). An analytics appliance for identifying (near) optimal
over-the-counter medicine products as health indicators for influenza
surveillance. Information Systems, 48.151–163.
R_155
SL
Kolomvatsos. K_, Ana gno stop oulos, C. & Hadjiefthvmiades, S. (2015).
An Efficient Time Optimized Scheme for Progressive Analytics in Big
Data. Big Data Research, 2(4), 155–165.
SL

R_156
A1 Nuaimt- E. A1 Neyadi. H. Mohamed. N., & Al-Jaroodt. J. (2015).
Applications of big data to smart cities. Journal of Internet Services and
Applications. 6(1). 1–15.
R_157

SL
Xardulli. P. F. Althaus. S. L. & Haves. M. (2015). A Progressive
Supervised-leaming Approach, to Generating Rich Civil Strife Data.
SociologicalMethodology: 43(1). 14S\\1S3.
R_158

SL
Dens. Z. Hu. 1. Zhn. M. Huang. X. Sc Du. B. (2015). A scalable and fast
OPTICS for clustering trajectory bie data. Cluster Computing. 13(2).
549–562.
R_159

SL
Baek. J. Vu. QH Ltu. J. K. Huang. X. & Xiang. Y. (2015). A secure cloud
computing based framework for big data information management of
smart grid. IEEE Transactions on Cloud Computing. 3(2), 233–244.
SL
R_160
 Tang. Z. Jiang, L. Zhou. J. Li. K. & Li. K. (2015). A self-adaptive scheduling
algorithm for reduce start time. Future Generation Computer Systems.
43. 51–60.
R_161

SL
Zhang. Q.T. Liu. Y. Zhou. W. Sc Yang. Z.W. (2015). A Sequential P. egress
ion Model for Big Data with Attributive Explanatory Variables. Journal
of the Operations Research Society of China. 3(4). 475-4SS.
R_162

SL
Tans. C. Liu. C. Zhang. X. Nepal. S. & Chen. J. (2015). A time efficient
approach for detecting errors in big sensor data ondoud. IEEE Transac-
tions on Parallel and Distributed Systems. 26(2). 329–339.
R_163

SL
Hong. S. Kan. H. Kim T. & Chang. J. (2015). A User Access Control
Scheme for Reducing Authentication Kevs in Cloud Systems. Interna-
tional Journal of Security and its Applications. 9(4). 217–228.
R_164

SL
Crosas. M. King. G. Honaker. J. Sc Sweeney. L. (2015). Automating Open
Science for Big Data. The .4XN.4LS of the American Academy of Political
and Social Science. 659(1). 260–273.
R_165

SL
Chandler. D. (2015). A world without causation: big data and die com-
ing of age of posthumanism. Millennium-Journal of Internationa! Stud-
ies. 43(3). S33-S51.
R_166
SL
Brown-Liburd. H. Issa. H. & Lombardi. D. (2015). Behavioral
implications of Big Data's impact on audit judgment and
decisionmaking and future research directions. Accounting Horizons.
29(2). 451–468.
R_167

SL
Zoomers. A. Getter. A. & Schafer. M. T. (2015). Between two hypes: Will
“big data1 help unravel blmd spots in understanding the “global
landrush?” Geoforum. 69. 147–159.
SL
R_168
 Daniel. B. (2015). Big Data and analvtics in higher education:
Opportunities and challenges. British Journal of Educational
Technology. 46(5). 904–920.
SL
R_169
 Vasarhelvi. M. A. Kogan. A. Sc Tutde. B. M. (2015). Big data in
accounting: An overview. Accounting Horizons. 29(2). 381–396.
R_170

SL
Chan. A. (2015). Bie data interfaces and the problem of indusion. Media.
Culture & Society. 37(7). 107S\\10S3.
R_171
 Zuboff. S. (2015). Big other: surveillance capitalism and the prospects of
an information civilization. Journal of Information Technology, 30(1), 7
5–89
R_172
 Hindman. M. (2015). Building better models prediction, replication,
te this article as: Sivarajah, U., et al., Critical analysis of Big Data cha
.doi.org/10.1016/j.jbusres.2016.08.001
continued)ppendix A (continued)
Paper
code
llenges a
Citation

and machine Learning in die social sciences. The ANNALS of the
American Academy of Political and Social Science. 659(1). 4S-62.
R_173
 Kumar. M. Sc Radi. S. K (20i5). Classification of microarrav using
MapReduce based proximal support vector machine classifier.
Knowledge-Based Systems. 39,584–602.
R_174
 Yue. X. Cat. H. Yan. H. Zou. C. Sc Zhou. K. (2015). Cloud-assisted indus-
trial cvber-physical systems: An insight Microprocessors and
Microsystems. 39(S). 1262–1270.
R_175
 Kumar. X. Misra. S. Rodrigues. J. X. 3c Obaidat. M. S. (2015). Coalition
games for spatio-temporal big data in internet of vehicles environment:
a comparative analysis. IEEE Internet of Thing: Journal. 2(4). 310–320.
R_176
 Abawajv. J. (2015). Comprehensive analysis ofbig data variety
landscape. International Journal of Parallel Emergent
andDktributedSystems. 30(1), 5–14.
R_177
 Silva. A. 3c Antunes. C. (2015). Constrained pattern mining in the new
era Knowledge and Information Systems. 47. 489–516.
R_178
 Tans. H. & Fong. S. (2015). Countering die concept-drift problems in bie
data bv an incrementally optimized stream mining model. Journal of
Systems and Software. 102.15S-i66.
R_179
 Earley. C. E. (2015). Data analvtics in auditing: Opportunities and
challenges. Business Horizons. 53(5),493–500.
R_180
 Ramirez-Gallego. S. Garda. S., Mourmo-Talm. H., Martmez-Rego. D.,
Bolon-Canedo. V., Alonso-Betanzos. A. Benitez, J. M., Sc Herrera. F.
(2015). Data discretization: taxonomy and big data challenge. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Dkcoverv. 6(1).
5–21.
R_181
 Strauti. S. (20,150- Datafication and the Seductive Power of Uncertainty -
A Critical Exploration of Big Data Enthusiasm. Information. 6(4). S36-S47.
R_182
 Zhang, S. Z. Qu, X. K. & Sim. J. B. (2015). Data Integration and Minins
based on Web Big Data. International Journal of Multimedia and
Ubiquitous Engineering, 10(6). 123–130.
R_183
 Abdullah. X. Ismail. S. A. Sophiavati. S. and Sam. S.M. 2015. Data Quality
in Big Data: A Review. International Journal of Advances in Soft Com-
puting & Its Applications. 7(3).
R_184
 Easton-Calabria. E. Si Allen. W. L. (2015). Developing ethical approaches
to data and civil society: from availability to acces sibditv. Innovation:
The European Journal of Social Science Research. 23(1). 52–62.
R_185
 Edwards. R. Sc Fenwick. T. (2015). Digital analytics in professional work
and learning. Studies in Continuing Education. 1–15.
R_186
 O'Brien. D T. Sampson. R. J. & Winship. C. (2015). Ecometrics m the Age
of Big Data Measuring and Assessing “Broken Windows” Using
Large-scale Administrative Records. Sociological Methodology 43(1).
101–147.
R_187
 Ma. M, Wang. P. Chu. C. H. & Liu. L. (2015). Efficient Multipattem Event
Processing Over High-Speed Train Data Streams. IEEE Internet of Thing:
Journal. 2(4). 295–309.
R_188
 Jiang. D. Chen. G. Ooi. B. C. Tan. K. L. Si Wu. S. (2014). epiC: an extensible
and scalable svstem for processing big data. Proceedings of the VLDB
Endowment. 7(7), 541–552.
R_ 89
 Liu. C. Yane. C. Zhang. X. & Chen. J. (2015). External integrity verification
for outsourced big data in cloud and IoT: A big picture. Future Genera-
tion Computer Systems. 42, 58–67.
R_190
 Hesse. B. W, Moser. P. P. & Rilev. W. T. (2015). From Big Data to Knowl-
edge in die Social Sciences. The ANNALS of the. Imerkan Academy of
Political and Social Science. 659(1). 16–32.
R_191
 Chow-White. P. A. MacAulay. M. Charters, A., Chow. P. (2015). From die
bench to the bedside in die big data age: ethics and practices of consent
and privacy for clinical genomics and personalized medicine. Ethics and
Information Technology. 17(3). 189–200.
R_192
 Zhao. L. Chen. L. Ranjan. R. Choo. K K R. & He. J. (2015). Geographical
information svstem parallehzation for spatial big data processing: A
Review. Cluster Computing. 1–14.
R_193
 Lee. J. G. & Kang. M. (2015). Geospatial Big Data: Challenges and
Opportunities. Big Data Research. 2(2), 74—S1.
R_194
 Song. J. Guo. C. Wang. Z. Zhang, Y. Yu, G. & Pierson. J. M. (2015). HaoLap:
a Hadoop based OLAP svstem for big data. Journal of Systems and
Software. 102.167–181
R_195
 Qian. J.Lv.P. Yue. X. Liu. C. 3c Jing. Z. (2015). Hierarchical attribute
reduction algonduns for big data using MzpRsiv.ee. Knowledge-Based
Systems. 73. 18–31.
R_196
 Dou. W. Zhang. X. Liu. J. &Chen. J. (2015). HireSome-EI: Towards
privacy-aware cross-cloud service composition for big data applica-
tions. IEEE Transactions on Parallel and Distributed Systems. 26(2).
455–466.
(continued on next page)
nd analytical methods, Journal of Business Research (2016),

http://dx.doi.org/10.1016/j.jbusres.2016.08.001


( (A A

22 U. Sivarajah et al. / Journal of Business Research xxx (2016) xxx–xxx
continued)ppendix A (continued)
Paper
code
S

S

S

S

S

S

S

S

S

S

S

S

S

SL

S

S

S

S

S

S

S

S

S

S

S

Please ci
http://dx
Citation
SL
LR_197
 Tavlor. L. & Schroeder. R. (2015). Is bigger better? Hie emergence of big
data as a tool cor international development policy. Geo Journal. 30(4).
503–518.
SL
LR_198
 Mohebt. A. Aghabozorgi. S. Ying Wah. T. Herawan. T., Sc Yahvapour. R.
(2015). Iterative big data clustering algorithms: A Review. Software:
Practice and Experience. 46(1). 107–129.
SL
LR_199
 Wu, X. Fan. W, Peng. J. Zhang. K. Sc Yu. Y. (2015). Iterative sampling
based frequent items et mining for big data International Journal of
Machine Learning and Cybernetics. 6(6). S75-SS2.
SL
LR_200
 Kolilert. M. Sc Kbnig. A. (2015). Large, high-dimensional, heteroge-
neous multi-sensor data analysis approach for process yield optimiza-
tion m polymer film industry. Neural Computing and Applications.
26(3). 581–588.
SL
LR_201
SL
Berrar. D. (2015). Learning from automatically labeled data: case studv
on dick fraud prediction. Knowledge and Information Systems. 46(2).
477–490.
LR_202
 Hsn. C. H. Slagter. K D. Sc Chung. Y. C. (2015). Locality and Loading
aware virtual machine mapping techniques for optimizing communi-
cations in MapReduce applications. Future Generation Computer Sys-
tems. 33.43–54.
LR_203
 Liao. Z., Yin. Q. Huang. Y., Sc Sheng. L. (2015). Management and
application of mobile big data. International Journal of Embedded
Systems. 7(1). pp.63–70.
LR_204
 Chen. Y. Li. F. Sc Fan. J. (2015). Mining association rules in big data with
NGEP. Cluster Computing. 13(2). 577-5S5.
LR_205
 Nita, M. C. Pop. F. Voicu. C. Dobre. C., & Xhafa. F. (2015). MOMTH:
multi-objective scheduling algorithm of manv tasks m Hadoop. Cluster
Computing. 13(3). 1011–1024.
LR_206
 F eniminella. M. Xunzi. E. Reali. G. Sc Valocchi. D. (2015). Networking
issues related to delivering and processing genomic big data.
Internationa! Journal of Parallel. Emergent and Dktributed Systems.
30(1). 46–64.
LR_207
 Constantiou. I. D, & Kallmikos. J. (2015). New games, new rules: big data
and the changing context of strategy. Journal of Information Technolo-
gy. 30(1). 44–57
LR_208
 Li. F. He. J. Hnang. G. Zhang. Y. Shi. Y. Sc Zhou. R. (2015). Node-coupling
dustering approaches for link prediction. Knowledge-Based Systems.
39.669-6S0.
LR_209
 W:alkowiak. K. W:oiniak. M. Khnkowski. M. Sc Kmiecik. W. (2015).
Optical networks for cost-effident and scalable provisioning ofbig data
traffic. Inter. Journal of Parallel, Emergent & Distributed Systems. 30(1).
15-2S.
R_210
 Ludwig. N. FeuemegeL. S. & Neumann D. (2015) Putting Big Data
analvtics to work: Feature selection for forecasting electricrtv prices
using the LAS SO and random forests. Journal of Decision Systems.
24(1). 19–36
LR_211
 Bolon-Canedo. V. Sanchez-Marono. X. Sc Alonso-Betanzos. A. (2015).
Recent advances and emerging challenges of feature selection in die
context ofbig data. Knowledge-Based Systems. 36. 33–45.
LR_212
 Qtu. J. L. (2015). Reflections on Big Data: ‘Just because it is accessible
does not make it ethical’. Media. Culture & Society: 37(7), 1089–1094.
LR_213
 Ma. Y. Wu. H. Wans. L. Hums. B. Ranjan. R. Zomava. A. & Jie. W. (2015).
Remote sensing big data computing: Challenges and opportunities.
Future Generation Computer Systems. 51.47–60.
LR_214
 V as lie. M. A. Pop. F. Tumesnu. R. I. Cristea. V. Sc Kolodztej. J. (2015).
Resource-aware hvbnd scheduling algcnthm m heterogeneous distrib-
uted computing. Future Generation Computer Systems, 51. 61–71.
LR_215
 Barkhordari. M. Sc Xiamanesh. M. (2015). ScaDiPaSi:. An effective
scalable and distributable MapReduce-based method to fmdpatient
similarity on huge healthcare networks. BigData Research. 2(1). 19–27.
LR_216
 Sun. M. Zhuang. H. Li. C. Lu. K. & Zhou. X. (2015). Scheduling algorithm
based on prefetching in MapReduce clusters. Applied Soft Computing.
33.1109-111S.
LR_217
 Jin. X. Wah. B.W. Cheng. X. & Wang, Y. (2015). Significance and
challenges ofbig data research. Big Data Research. 2(2). 59–64.
LR_218
 Zezula. P. (2015). Similarity Searching for die Big Data. Mobile
Networks and Applications. 20(4). 4S7–496.
LR_219
 Anshari. M. and Alas. Y. 2015. Smartphones habit3, necessities, and big
data challenges. The Journal of High Technology Management Research.
26(2). 177–185.
LR_220
 Wans. J. Sc Li. X (2015). Task scheduling for MapReduce in heteroge-
neous networks. Cluster Computing. 1–14.
LR_221
 Skeggs. B. Sc YuiL S. (2015). The methodology of a multi-model project
examining how Facebook infrastructures social relations. Information.
Communication & Society. 1–17.
te this article as: Sivarajah, U., et al., Critical analysis of Big Data cha
.doi.org/10.1016/j.jbusres.2016.08.001
continued)ppendix A (continued)
Paper
code
llenges a
Citation
R_222
 Hashem. I. A. T. Yaqoob. 1. Anuar. N. B. Mokhtar. S. Gani. A. Sc Khan. S. U.
(2015). The rise of “big data” on doud computing: Review and open
research issues. Information Systems. 47.98–115.
R_223
 Martmez-Prieto. M. A. Cuesta. C. E. Arias. M. & Fernandez. J. D. (2015).
The solid architecture for real-time management ofbig semantic data.
Future Generation Computer Systems. 47. 62–79.
R_224
 Romero. O. Herrero. V. Abeho. A. & Ferrarons. J. (2015). Tuning small
analytics on Big Data: Data partitioning and secondary indexes in die
Hadoop ecosystem. Information Systems. 54.336–356.
R_225
 Xiang. Z. Schwartz. Z. Gerdes. J. H. Sc UysaL M. (2015). What can big
data and text analvtics tell us about hotel guest experience and
satisfaction? International Journal ofHospitalin Management.
44.120–130.
R_226
 Li. Y. & Guo. Y. (2016). W'iki-Health: from quantified self to
self-understanding. Future Generation Computer Systems. 56. 333–359.
R_227
 Ahmad. N. B. Ishak. M. K. Alias. U. F. & Mohamad. N. (2015). An
Approach for E-Leaming Data Analytics using SOM Clustering. Interna-
tional Journal of Advances in Soft Computing & its Applications. 7(3),
94–112.
References

Abawajy, J. (2015). Comprehensive analysis of big data variety landscape. International
Journal of Parallel, Emergent and Distributed Systems, 30(1), 5–14.

Abawajy, J. H., Kelarev, A., & Chowdhury, M. (2014). Large iterative multitier ensemble
classifiers for security of big data. IEEE Transactions on Emerging Topics in
Computing, 2(3), 352–363.

Abdellatif, T. M., Capretz, L. F., & Ho, D. (2015). Software analytics to software practice: a
systematic literature review. Proceedings of the 1st International Workshop on BIG Data
Software Engineering – IEEE Press (pp. 30–36).

Agarwal, R., & Dhar, V. (2014). Editorial – big data, data science, and analytics: the oppor-
tunity and challenge for is research. Information Systems Research, 25(3), 443–448.

Akerkar, R. (2014). Big data computing. Florida, USA: CRC Press, Taylor & Francis Group.
Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data

to smart cities. Journal of Internet Services and Applications, 6(1), 1–15.
Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big Data com-

puting and clouds: trends and future directions. Journal of Parallel and Distributed
Computing, 79, 3–15.

Banerjee, A., Bandyopadhyay, T., & Acharya, P. (2013). Data analytics: hyped up aspira-
tions or true potential. Vikalpa. The Journal for Decision Makers, 38(4), 1–11.

Barbierato, E., Gribaudo, M., & Iacono, M. (2014). Performance evaluation of NoSQL big-
data applications using multi-formalism models. Future Generation Computer
Systems, 37, 345–353.

Barnaghi, P., Sheth, A., & Henson, C. (2013). From data to actionable knowledge: big data
challenges in the web of things. IEEE Intelligent Systems, 28(6), 6–11.

Berners-Lee, T., & Shadbolt, N. (2011). There's gold to be mined from all our data. The
Times, London 1:1–2. Online Available at: http://www.thetimes.co.uk/tto/opinion/
columnists/article3272618.ece [Accessed on 21st April 2016].

Bertot, J. C., Gorham, U., Jaeger, P. T., Sarin, L. C., & Choi, H. (2014). Big Data, open govern-
ment and e-government: issues, policies and recommendations. Information Polity,
19(1, 2), 5–16.

Bhimani, A., & Willcocks, L. (2014). Digitisation, Big Data and the transformation of ac-
counting information. Accounting and Business Research, 44(4), 469–490.

Bihani, P., & Patil, S. T. (2014). A comparative study of data analysis techniques.
International Journal of Emerging Trends & Technology in Computer Science, 3(2),
95–101.

Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural,
technological, and scholarly phenomenon. Information, communication & society,
15(5), 662–679.

Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of Big Data? The
McKinsey Quarterly, 4, 24–35.

Cárdenas, A. A., Manadhata, P. K., & Rajan, S. P. (2013). Big Data analytics for security. IEEE
Security and Privacy, 6, 74–76.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E., Jr., & Mitchell, T. (2010). To-
ward an architecture for never-ending language learning. Proceedings of the Confer-
ence on Association for the Advancement of Artificial Intelligence (pp. 1306–1313).

Chen, C. L. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques
and technologies: a survey on big data. Information Sciences, 275, 314–347.

Chen, G., Chen, K., Jiang, D., Ooi, B. C., Shi, L., Vo, H. T., & Wu, S. (2012b). E3: an elastic ex-
ecution engine for scalable data processing. Journal of Information Processing, 20(1),
65–76.

Chen, H., Chiang, R. H., & Storey, V. C. (2012a). Business intelligence and analytics: From
Big Data to big impact. MIS Quarterly, 36(4), 1165–1188.

Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., & Zhou, X. (2013). Big data challenge: a data
management perspective. Frontiers of Computer Science, 7(2), 157–164.

Chen, M., Mao, S., & Liu, Y. (2014). Big Data: a survey. Mobile Networks and Applications,
19(2), 171–209.
nd analytical methods, Journal of Business Research (2016),

http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0005
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0005
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0010
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0010
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0010
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0015
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0015
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0015
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0020
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0020
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0025
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0030
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0030
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0035
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0035
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0035
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0040
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0040
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0045
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0045
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0045
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0050
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0050
http://www.thetimes.co.uk/tto/opinion/columnists/article3272618.ece
http://www.thetimes.co.uk/tto/opinion/columnists/article3272618.ece
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0055
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0055
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0055
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0060
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0060
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0065
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0065
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0065
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9000
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9000
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9000
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0070
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0070
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0075
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0075
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0080
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0080
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0080
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0085
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0085
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0090
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0090
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0090
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0095
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0095
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0100
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0100
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0105
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0105
http://dx.doi.org/10.1016/j.jbusres.2016.08.001


23U. Sivarajah et al. / Journal of Business Research xxx (2016) xxx–xxx
Crawford, K. (1 April, 2013). The hidden biases of big data. Harvard Business Review Blog.
Available at: http://blogs.hbr.org/2013/04/the-hidden-biases-in-big-data/ (accessed
5 January 2016)

Cukier, K. (2010). The economist, data, data everywhere: A special report on managing
information. Online Available at http://www.economist.com/node/15557443
(Accessed on 20th April 2016).

Davenport, T. H., & Dyché, J. (2013). Big data in big companies. International Institute for
Analytics. Available Online at http://www.demonish.com/cracker/1431316877_
1217a9641e/bigdata-bigcompanies-106461.pdf (Accessed 5th January 2016).

Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new science of winning.
Harvard Business Press.

David, R. J., & Han, S. K. (2004). A systematic assessment of the empirical support for
transaction cost economics. Strategic Management Journal, 25(1), 39–58.

Delbufalo, E. (2012). Outcomes of inter-organizational trust in supply chain relationships:
a systematic literature review and a meta-analysis of the empirical evidence. Supply
Chain Management: An International Journal, 17(4), 377–402.

Demchenko, Y., Grosso, P., De Laat, C., &Membrey, P. (2013). Addressing big data issues in
scientific data infrastructure. IEEE international conference on collaboration technolo-
gies and systems (CTS) (pp. 48–55).

Dobre, C., & Xhafa, F. (2014). Intelligent services for big data science. Future Generation
Computer Systems, 37, 267–281.

Dwivedi, Y. K., &Mustafee, N. (2010). Profiling research published in the Journal of Enterprise
Information Management. Journal of Enterprise Information Management, 23(1), 8–26.

Dwivedi, Y. K., Kiang, M., Lal, B., & Williams, M. D. (2008). Profiling research published in
the Journal of Electronic Commerce Research. Journal of Electronic Commerce Research,
9(2), 77–91.

Edwards, R., & Fenwick, T. (2015). Digital analytics in professional work and learning.
Studies in Continuing Education (pp. 1–15).

Eembi, N. B. C., Ishak, I. B., Sidi, F., Affendey, L. S., & Mamat, A. (2015). A systematic review
on the profiling of digital news portal for Big Data veracity. Procedia Computer Science,
72, 390–397.

Frehe, V., Kleinschmidt, T., & Teuteberg, F. (2014). Big data in logistics-identifying poten-
tials through literature, case study and expert interview analyzes. In GI-Jahrestagung,
173–186.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and an-
alytics. International Journal of Information Management, 35(2), 137–144.

Gantz, J., & Reinsel, D. (2012). The Digital Universe in 2020: Big data, bigger digital
shadows, and biggest growth in the Far East. IDC – EMC Corporation. Online Avail-
able at http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-
2020.pdf (Accessed 16th January 2016).

George, G., Haas, M. R., & Pentland, A. (2014). Big Data and management. Academy of
Management Journal, 57(2), 321–326.

Gu, L., Zeng, D., Li, P., & Guo, S. (2015). Cost minimization for big data processing in geo-
distributed data centers. In Cloud Networking for Big Data (pp. 59–78). Springer Inter-
national Publishing.

Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: The teenage years. Pro-
ceedings of the 32nd International Conference on Very Large Data Bases (pp. 9–16).

Hargittai, E. (2015). Is bigger always better? Potential biases of big data derived from social
network sites, The ANNALS of the American Academy of Political and Social Science,
659(1), 63–76.

Hasan, S., Shamsuddin, S. M., & Lopes, N. (2014). Machine learning big data framework
and analytics for big data problems. International Journal of Advance Soft Computing
Application, 6(2), 1–14.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise
of big data on cloud computing: Review and open research issues. Information
Systems, 47, 98–115.

Intel IT Center (2012). Big Data Analytics: Intel’s IT Manager Survey on How Organiza-
tions Are Using Big Data. Available at: http://www.intel.co.za/content/www/za/en/
big-data/data-insights-peer-research-report.html [Accessed 5 Jan. 2016]

Irani, Z. (2010). Investment evaluationwithin projectmanagement: an information systems
perspective. Journal of the Operational Research Society, 61(6), 917–928.

Irani, Z., Ghoneim, A., & Love, P. E. (2006). Evaluating cost taxonomies for information sys-
tems management. European Journal of Operational Research, 173(3), 1103–1122.

Irani, Z., Sharif, A., Kamal, M. M., & Love, P. E. (2014). Visualising a knowledge mapping of
information systems investment evaluation. Expert Systems with Applications, 41(1),
105–125.

Jiang, H., Chen, Y., Qiao, Z., Weng, T. H., & Li, K. C. (2015). Scaling upMapReduce-based big
data processing on multi-GPU systems. Cluster Computing, 18(1), 369–383.

Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data
research. Big Data Research, 2(2), 59–64.

Joseph, R. C., & Johnson, N. A. (2013). Big data and transformational government. IT
Professional, 15(6), 43–48.

Jukić, N., Sharma, A., Nestorov, S., & Jukić, B. (2015). Augmenting data warehouses with
Big Data. Information Systems Management, 32(3), 200–209.

Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013). Big data: Issues and challenges
moving forward. 46th Hawaii International Conference on System Sciences (HICSS)
(pp. 995–1004).

Kamal, M. M., & Irani, Z. (2014). Analysing supply chain integration through systematic
literature review: a normative perspective. Supply Chain Management: An
International Journal, 19(5/6), 523–557.

Karacapilidis, N., Tzagarakis, M., & Christodoulou, S. (2013). On a meaningful exploitation
of machine and human reasoning to tackle data-intensive decision making. Intelligent
Decision Technologies, 7(3), 225–236.

Khan, M. A., Uddin, M. F., & Gupta, N. (2014). Seven Vs of Big Data understanding Big Data
and extract value. Proceedings of 2014 Zone 1 Conference of the American Society for En-
gineering Education (ASEE Zone 1) – IEEE (pp. 1–5).
Please cite this article as: Sivarajah, U., et al., Critical analysis of Big Data c
http://dx.doi.org/10.1016/j.jbusres.2016.08.001
Kim, G. H., Trimi, S., & Chung, J. H. (2014). Big-data applications in the government sector.
Communications of the ACM, 57(3), 78–85.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic review pro-
cess research in software engineering. Online Available at http://www.citeulike.
org/group/14013/article/7874938 (Accessed on 19th December 2015).

Krishnamurthy, R., & Desouza, K. C. (2014). Big data analytics: the case of the social secu-
rity administration. Information Polity, 19(3/4), 165–178.

Kumar, A., Niu, F., & Ré, C. (2013). Hazy: making it easier to build and maintain big-data
analytics. Communications of the ACM, 56(3), 40–49.

Kune, R., Konugurthi, P. K., Agarwal, A., Chillarige, R. R., & Buyya, R. (2016). The anatomy
of big data computing. Software: Practice and Experience, 46(1), 79–105.

Labrinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data.
Proceedings of the VLDB Endowment, 5(12), 2032–2033.

Lazer, D., Pentland, A., Adamic, L., Aral, S., Baraba´si, A., Brewer, D., ... Van Alstyne, M.
(2009). ‘Computational social science’. Science, vol. 323(no. 5915), 721–723.

Lebdaoui, I., Orhanou, G., & Elhajji, S. (2014). An integration adaptation for real-time
Datawarehousing. International Journal of Software Engineering and its Applications,
8(11), 115–128.

Lettieri, E., Masella, C., & Radaelli, G. (2009). Disaster management: findings from a sys-
tematic review. Disaster Prevention and Management: An International Journal, 18(2),
117–136.

Liao, Z., Yin, Q., Huang, Y., & Sheng, L. (2014). Management and application of mobile big
data. International Journal of Embedded Systems, 7(1), 63–70.

Lu, R., Zhu, H., Liu, X., Liu, J. K., & Shao, J. (2014). Toward efficient and privacy-preserving
computing in big data era. IEEE Network, 28(4), 46–50.

Machanavajjhala, A., & Reiter, J. P. (2012). Big privacy: protecting confidentiality in big
data. XRDS: Crossroads. The ACM Magazine for Students, 19(1), 20–23.

du Mars, R. (2012). Mission impossible? Data governance process takes on big data. On-
line Available at http://searchdatamanagement.techtarget.com/feature/Mission-
impossible-Data-governance-process-takes-on-big-data (Accessed on 9th January
2016).

Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how
we live, work, and think. Boston, MA: Eamon Dolan/Houghton Mifflin Harcourt.

Mishra, D., Gunasekaran, A., Papadopoulos, T., & Childe, S. J. (2016). Big Data and supply
chain management: a review and bibliometric analysis. Annals of Operations
Research. http://dx.doi.org/10.1007/s10479-016-2236-y.

MIT Technology Review (2013). The Big Data Conundrum: How to define it? Available
Online at https://www.technologyreview.com/s/519851/the-big-data-conundrum-
how-to-define-it/ (Accessed 19th May 2016).

Office of Science and Technology Policy (OSTP), Executive Office of the President
(2012O). Big data press release final 2. Available http://www.whitehouse.gov/
sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf (Accessed on
7th October 2015).

Otto, B. (2011). Organizing data governance: findings from the telecommunications in-
dustry and consequences for large service providers. Communications of the
Association for Information Systems, 29(1), 45–66.

Paris, J., Donnal, J. S., & Leeb, S. B. (2014). NilmDB: the non-intrusive load monitor data-
base. Smart Grid, IEEE Transactions on, 5(5), 2459–2467.

Phillips-Wren, G., & Hoskisson, A. (2015). An analytical journey towards big data. Journal
of Decision Systems, 24(1), 87–102.

Pittaway, L., Robertson, M., Munir, K., Denyer, D., & Neely, A. (2004). Networking and in-
novation: a systematic review of the evidence. International Journal of Management
Reviews, 5(3‐4), 137–168.

Polato, I., Ré, R., Goldman, A., & Kon, F. (2014). A comprehensive view of Hadoop research – a
systematic literature review. Journal of Network and Computer Applications, 46, 1–25.

Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., & Zhu, X. (2008). No power strug-
gles: coordinated multi-level power management for the data center. In ACM
SIGARCH Computer Architecture News, 36(1), 48–59.

Rehman, M. H., Chang, V., Batool, A., & Teh, Y. W. (2016). Big data reduction framework
for value creation in sustainable enterprises. International Journal of Information
Management (Accepted).

Russom, P. (2013). Managing Big Data. Available Online at: The Data Warehousing Insti-
tute. [Accessed 5th January 2016] https://tdwi.org/articles/2013/10/01/executive-
summary-managing-big-data.aspx

Sandhu, R., & Sood, S. K. (2014). Scheduling of big data applications on distributed cloud
based on QoS parameters. Cluster Computing, 18, 1–12.

Savitz, E. (2012a). Gartner: Top 10 strategic technology trends for 2013. Online Available
at http://www.forbes.com/sites/ericsavitz/2012/10/23/gartner-top-10-strategic-
technology-rends-for-2013/ (Accessed on 3rd March 2016).

Savitz, E. (2012b). Gartner: 10 critical tech trends for the next five years. Online Available
at http://www.forbes.com/sites/ericsavitz/2012/10/22/gartner-10-critical-tech-
trends-for-the-next-five-years/ (Accessed on 3rd March 2016)

Shah, T., Rabhi, F., & Ray, P. (2015). Investigating an ontology-based approach for Big Data
analysis of inter-dependent medical and oral health conditions. Cluster Computing,
18(1), 351–367.

Simonet, A., Fedak, G., & Ripeanu, M. (2015). Active Data: A programming model to man-
age data life cycle across heterogeneous systems and infrastructures. Future
Generation Computer Systems, 53, 25–42.

Sivarajah, U., Irani, Z., & Jones, S. (2014). Application ofWeb 2.0 technologies in E-Govern-
ment: A United Kingdom case study. 2014 47th Hawaii International Conference on
System Sciences (pp. 2221–2230).

Sivarajah, U., Irani, Z., &Weerakkody, V. (2015). Evaluating the use and impact ofWeb 2.0
technologies in local government. Government Information Quarterly, 32(4), 473–487.

Spiess, J., T'Joens, Y., Dragnea, R., Spencer, P., & Philippart, L. (2014). Using big data to im-
prove customer experience and business performance. Bell Labs Technical Journal,
18(4), 3–17.
hallenges and analytical methods, Journal of Business Research (2016),

http://blogs.hbr.org/2013/04/the-hidden-biases-in-big-data/
http://www.economist.com/node/15557443
http://www.demonish.com/cracker/1431316877_1217a9641e/bigdata-bigcompanies-106461.pdf
http://www.demonish.com/cracker/1431316877_1217a9641e/bigdata-bigcompanies-106461.pdf
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0120
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0120
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0125
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0125
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0130
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0130
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0130
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0135
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0135
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0135
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0140
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0140
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0145
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0145
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0150
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0150
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0150
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0155
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0155
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0160
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0160
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0160
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0165
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0165
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0165
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0170
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0170
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0180
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0180
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0185
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0185
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0185
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0190
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0190
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9010
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9010
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9010
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0195
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0195
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0195
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0200
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0200
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0200
http://www.intel.co.za/content/www/za/en/big-data/data-insights-peer-research-report.html
http://www.intel.co.za/content/www/za/en/big-data/data-insights-peer-research-report.html
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0205
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0205
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0210
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0210
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0215
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0215
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0215
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0220
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0220
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9025
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9025
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0225
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0225
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0230
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0230
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0235
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0235
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0235
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0240
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0240
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0240
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0245
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0245
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0245
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0250
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0250
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0250
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0255
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0255
http://www.citeulike.org/group/14013/article/7874938
http://www.citeulike.org/group/14013/article/7874938
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0265
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0265
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0270
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0270
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0275
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0275
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0280
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0280
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9030
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0285
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0285
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0285
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0290
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0290
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0290
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0295
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0295
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0300
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0300
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0305
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0305
http://searchdatamanagement.techtarget.com/feature/Mission-impossible-Data-governance-process-takes-on-big-data
http://searchdatamanagement.techtarget.com/feature/Mission-impossible-Data-governance-process-takes-on-big-data
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0315
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0315
http://dx.doi.org/10.1007/s10479-016-2236-y
https://www.technologyreview.com/s/519851/the-big-data-conundrum-how-to-define-it/
https://www.technologyreview.com/s/519851/the-big-data-conundrum-how-to-define-it/
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0335
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0335
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0335
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0340
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0340
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0345
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0345
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9035
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9035
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9035
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0350
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0350
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0355
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0355
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0355
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0360
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0360
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0360
http://https://tdwi.org/articles/2013/10/01/executive-summary-managing-big-data.aspx
http://https://tdwi.org/articles/2013/10/01/executive-summary-managing-big-data.aspx
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0365
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0365
http://www.forbes.com/sites/ericsavitz/2012/10/23/gartner-top-10-strategic-technology-rends-for-2013/
http://www.forbes.com/sites/ericsavitz/2012/10/23/gartner-top-10-strategic-technology-rends-for-2013/
http://www.forbes.com/sites/ericsavitz/2012/10/22/gartner-10-critical-tech-trends-for-the-next-five-years/
http://www.forbes.com/sites/ericsavitz/2012/10/22/gartner-10-critical-tech-trends-for-the-next-five-years/
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0380
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0380
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0380
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0385
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0385
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0385
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9045
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9045
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9045
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9050
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf9050
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0390
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0390
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0390
http://dx.doi.org/10.1016/j.jbusres.2016.08.001


24 U. Sivarajah et al. / Journal of Business Research xxx (2016) xxx–xxx
Su, K., Li, J., & Fu, H. (2011). Smart city and the applications. IEEE International Conference
on Electronics, Communications and Control (ICECC) (pp. 1028–1031).

Sun, N., Morris, J. G., Xu, J., Zhu, X., & Xie, M. (2014). iCARE: A framework for big data-
based banking customer analytics. IBM Journal of Research and Development, 58(5/
6), 4-1.

Szongott, C., Henne, B., & von Voigt, G. (2012). Big data privacy issues in public social
media. 6th IEEE international conference on digital ecosystems technologies (DEST)
(pp. 1–6).

Taheri, J., Zomaya, A. Y., Siegel, H. J., & Tari, Z. (2014). Pareto frontier for job execu-
tion and data transfer time in hybrid clouds. Future Generation Computer
Systems, 37, 321–334.

Ting, K. M., Washio, T., Wells, J. R., Liu, F. T., & Aryal, S. (2013). DEMass: a new density es-
timator for big data. Knowledge and Information Systems, 35(3), 493–524.

Tole, A. A. (2013). Big data challenges. Database Systems Journal, 4(3), 31–40.
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evi-

dence-informed management knowledge by means of systematic review. British
Journal of Management, 14(3), 207–222.

Van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific
paradigm and ideology. Surveillance & Society, 12(2), 197–208.

Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: an overview.
Accounting Horizons, 29(2), 381–396.

Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a
revolution that will transform supply chain design and management. Journal of
Business Logistics, 34(2), 77–84.

Wang, G., Gunasekaran, A., Ngai, E.W., & Papadopoulos, T. (2016). Big data analytics in lo-
gistics and supply chain management: certain investigations for research and appli-
cations. International Journal of Production Economics, 176, 98–110.
Please cite this article as: Sivarajah, U., et al., Critical analysis of Big Data c
http://dx.doi.org/10.1016/j.jbusres.2016.08.001
Wang, Y., &Wiebe, V. J. (2014). Big Data Analytics on the characteristic equilibrium of col-
lective opinions in social networks. International Journal of Cognitive Informatics and
Natural Intelligence (IJCINI), 8(3), 29–44.

Watson, H. J. (2014). Tutorial: big data analytics: Concepts, technologies, and applications.
Communications of the Association for Information Systems, 34(1), 1247–1268.

Web, G. (2007). SensorMap for wide-area sensor webs. Embedded computing. Online
Available at http://www.fengzhao.com/pubs/embcomp.pdf (Accessed on 13th
March 2016)

Weill, P., & Ross, J. W. (2009). IT savvy: What top executives must know to go from pain to
gain. Harvard Business Press.

Xu, J. S., Zhang, E., Huang, C. -H., Chen, L. H. L., & Celik, N. (2014). Efficient multi-fidelity
simulation optimization. Proceedings of 2014 winter simulation conference. GA:
Savanna.

Yi, X., Liu, F., Liu, J., & Jin, H. (2014). Building a network highway for big data: architecture
and challenges. IEEE Network, 28(4), 5–13.

Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2012). Sensing as a service and big data.
International Conference on Advances in Cloud Computing (ACC-2012), Bangalore,
India (pp. 21–29).

Zhang, F., Liu, M., Gui, F., Shen, W., Shami, A., & Ma, Y. (2015a). A distributed frequent
itemset mining algorithm using Spark for Big Data analytics. Cluster Computing,
18(4), 1493–1501.

Zhang, X., Hu, Y., Xie, K., Zhang, W., Su, L., & Liu, M. (2015b). An evolutionary trend rever-
sion model for stock trading rule discovery. Knowledge-Based Systems, 79, 27–35.

Zhao, Z., Zhang, R., Cox, J., Duling, D., & Sarle, W. (2013). Massively parallel feature selec-
tion: an approach based on variance preservation.Machine Learning, 92(1), 195–220.

Zicari, R. V. (2014). Big Data: Challenges and Opportunities. (2014) In R. (Ed.), Big data
computing (pp. 103–128). Florida, USA: CRC Press, Taylor & Francis Group.
hallenges and analytical methods, Journal of Business Research (2016),

http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0395
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0395
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0400
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0400
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0400
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0405
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0405
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0405
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0410
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0410
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0410
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0415
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0415
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0420
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0425
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0425
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0425
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0430
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0430
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0435
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0435
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0440
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0440
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0440
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0445
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0445
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0445
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0450
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0450
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0450
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0455
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0455
http://www.fengzhao.com/pubs/embcomp.pdf
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0465
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0465
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0470
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0470
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0470
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0475
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0475
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0480
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0480
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0480
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0485
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0485
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0485
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0490
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0490
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0495
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0495
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0500
http://refhub.elsevier.com/S0148-2963(16)30488-X/rf0500
http://dx.doi.org/10.1016/j.jbusres.2016.08.001

	Critical analysis of Big Data challenges and analytical methods
	1. Introduction
	1.1. Research scope
	1.2. Academic challenge

	2. A normative perspective of Big Data: challenges and analytical methods
	2.1. Big Data Challenges – related to Q1
	2.2. Big Data analytical methods – related to Q2

	3. Research methodology
	3.1. The research protocol (phase I.3)
	3.2. Scopus database searching process and results – Phase II

	4. Big Data and Big Data Analytics: findings and analysis
	4.1. Types of Big Data Challenges
	4.1.1. Data challenges
	4.1.2. Process challenges
	4.1.3. Management challenges

	4.2. Types of Big Data analytical methods
	4.2.1. Descriptive analytics
	4.2.2. Predictive analytics
	4.2.3. Prescriptive analytics

	4.3. Yearly publications
	4.4. Number of regions (geo-spatial coverage)
	4.5. Types of publications
	4.6. Types of research methods employed

	5. Conclusions
	5.1. Research implications to research and practice
	5.2. Limitations
	5.3. Suggestions for future research

	Appendix A
	References


