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Abstract

The filtering of nonlinear continuous-discrete systems is widely applicable in real-life and

extensive literature is available to deal with such problems. However, all of these approaches

are constrained with the assumption that the current measurement is available at every time step,

although delay in measurement is natural in real-life applications. To deal with this problem, we

re-derive the conventional Bayesian approximation framework for solving the continuous-discrete

filtering problems. In practice, the delay is often smaller than one sampling time, which is the main

case considered here. During the filtering of such systems, the actual time of correspondence

should be known for a measurement received at the kth time instant. In this paper, a simple

and intuitively justified cost function is used to decide the time to which the measurement at kth

time instant actually corresponds. The performance of the proposed filter is compared with a

conventional filter based on numerical integration which ignores random delays for a continuous-

discrete tracking problem. We show that the conventional filter fails to track the target while

the modification proposed in this paper successfully deals with random delays. The proposed

method may be seen as a valuable addition to the tools available for continuous-discrete filtering

in nonlinear systems.

Keywords - Nonlinear filtering, Continuous-discrete Bayesian approximation framework for

nonlinear filtering, Delayed measurements, Negative Gaussian log-likelihood. integration.
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1 Introduction

The dynamic state space model of a system is said to be of continuous-discrete nature, if the process

model is in continuous time domain and the measurement model is in discrete time domain. The

filtering problems of continuous-discrete systems commonly appear in target tracking [1], navigation

[2], stochastic control [3] and in many other real-life estimation problems.

In the literature, the conventional extended Kalman filter (EKF) [1, 4], unscented Kalman filter

(UKF) [5–7] and cubature Kalman filter (CKF) [8, 9] are developed for the systems having discrete

dynamic state space model. Recently, these are extended to deal with continuous-discrete time do-

main. These extensions are reported in [10], [11] and [12]. In another development, the filtering

accuracy of continuous-discrete systems is enhanced in [13].

All the above mentioned continuous-discrete filters assume that the current measurement is avail-

able at every sampling time instant. But in practice, the measurements may be randomly delayed in

time due to the several factors like poor transmission speed of signals, large distance between the

target and the device capturing the signal, limited bandwidth etc. The first two factors dominate in the

target tracking and navigation applications [14] while the third one dominates in the filtering problems

related to stochastic control.

Although the extent of delay is mostly small for most real-life applications, ignoring it may result

in the loss of data or imperfect receipt of data. Subsequently, it may sharply reduce the estimation

accuracy or may even cause for divergence of the filter.

In context of linear filtering, the delayed measurement problems are often called as out of sequence

measurements (OOSM) and a few methods available for filtering which are highlighted by Mahmoud

et.al. in [15]. In a book [16] later published by the same author, a detail discussion on the sensor

captured data is highlighted and few nonlinear filtering techniques are also studied under no delay

condition. However in recent years, for conventional discrete time filters, enhancements have been

discussed in literature to make it enable to deal with the filtering problems with one or two steps

randomly delayed measurements on a discrete time scale; see [17] and [18], for example. N step

randomly delayed measurement on a discrete time scale means that the measurement received at kth

time instant might actually belong to kth or (k − i)th time step, where i = 1, 2, · · · , N .

From the above discussion, it appears that there are two gaps in the literature. The first is
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that, no algorithm is available which can deal with the randomly delayed measurements case in the

continuous-discrete time domain. The second and major gap is that the existing literature deals only

with an integer number of random delays in discrete time, i.e. a random delay which is a fraction of

sampling time is not addressed.

In this paper, we address these gaps by developing a new continuous-discrete filtering heuristics

for randomly delayed measurements, where the delay is a fraction of sampling time. As the delay

is usually small, we focus our discussion on the case when the delay is less than one sampling time,

although we will briefly outline the issues in dealing with delay exceeding one sampling time later

in the paper. Hence, the measurement received at kth time step may actually belong to (k − τ)th

time step with 0 ≤ τ < 1. The equality symbol at zero implies that delay is allowed to be zero. In

this regard, the major contribution of this paper can be considered as the proposition of a continuous-

discrete filtering framework to deal with the randomly delayed measurement problems. Moreover,

the proposed algorithm addresses a random delay which is a fraction of sample time, which is novel

in the nonlinear filtering literature.

The rest of the paper is organized as follows. The conventional Bayesian approximation frame-

work for continuous-discrete nonlinear filtering is outlined in section-2. In section-3, the conventional

Bayesian approximation framework for continuous-discrete nonlinear filtering is modified to deal with

the randomly delayed measurements. The proposed method is simulated and results are provided for a

nonlinear filtering problems where the delay in measurement is probable in section-4. The discussions

and conclusions are provided in section-5.

2 Bayesian approximation framework for continuous-discrete

filtering

In this section, we first define the dynamic state space model for continous-discrete systems and

outline the conventional discrete-time Bayesian approximation framework of filtering. Then we dis-

cuss its extension for the continuous-discrete systems with non-delayed measurements for the sake of

completeness; see [10–12] for more details.
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2.1 State space model for continuous-discrete systems

As discussed earlier, the process model of continuous-discrete systems is defined in continuous time

domain while the measurement model is of discrete nature.

The process equation can be expressed as a stochastic differential equation [12], i.e.

dx(t) = f(x(t), t)dt+
√
Qdβ(t), (1)

where x(t) is an n-dimensional state of a system at any time t; f : <n × < → <n is called drift

function and
√
Q is a symmetric, positive definite square root of positive definite matrix Q, which is

regarded as the diffusion matrix. β(t) is an n-dimensional standard Wiener process with increment

dβ(t).

The noisy measurement received at any time tk = kT ( T is the measurement sampling interval)

is

yk = γk(xk) + vk, (2)

where yk ∈ <d is the measurement at kth time instant, γ is an arbitrary function and measurement

noise vk ∈ <d is assumed to be Gaussian with zero mean and known covariance Rk.

2.2 Bayesian approximation framework of filtering

Under the Bayesian paradigm, the filtering is performed in two steps:

1. Prediction step: In this step, the prior probability density function is evaluated by using the

Chapman-Kolmogorov equation, i.e.

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (3)

2. Update step: In this step, the posterior probability density function is evaluated by using the

Baye’s rule, i.e.

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (4)

where the normalizing constant

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk. (5)
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During filtering, the conditional pdfs are assumed to be Gaussian. Under this assumption, the inte-

grals which appear in (3) and (4) reduce to expectations of nonlinear functions of normally distributed

random variables. Such integrals are intractable for most of the nonlinear systems and hence have to

be approximated. Before discussing a methodology for numerical approximation, we take a look at a

dynamic state space model of continuous-discrete systems.

In continuous-discrete filtering, the process model is dicretized at a smaller scale than the sampling

time T in order to capture the continuous property of the system.

2.3 Discretization of process model

The continuous-time process model is discretized using the Itô-Taylor expansion of order 1.5 [12,19].

Using this approximation method over time interval (t, t + δ), the process model could be written

as [12, 19]

x(t+ δ) = x(t) + δf(x(t), t) +
1

2
δ2(L0f(x(t), t)) +

√
Qw + (Lf(x(t), t))q, (6)

where

L0 =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
+

1

2

n∑
j,p,q=1

√
Qp,j

√
Qq,j

∂2

∂xp∂xq

and L =
n∑

i,j=1

√
Qi,j

∂

∂xi

with
√
Qi,j being the ith row and jth column of

√
Q. We can consider

fd(x(t), t) = x(t) + δf(x(t), t) +
1

2
δ2(L0f(x(t), t)) (7)

as the noise free process function. The process noise is given by n-dimensional correlated Gaussian

random variables, (w, q), which are independent of state vector x(t) and distributed with zero mean

and covariance matrices

E[wwT ] = δIn,

E[wqT ] =
1

2
δ2In,

and E[qqT ] =
1

3
δ3In.

Now, the filtering of continuous-discrete systems could be performed by recursively performing

two steps as outlined in Section 2.2: time update and measurement update.
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2.4 Time Update

After discretizing the process equation, to compute the predicted state and its error covariance at time

tk+1, an m-step iterations of length δ is performed over the time interval tk to tk+1. Hence m number

of intermediate time steps are considered between the two samples.

The expressions for mean and covariances at any intermediate time instant tk + jδ could be given

as

x̂jk|k = E[fd(xk+(j−1)δ)]

≈
∫
fd(xk+(j−1)δ)ℵ(xk+(j−1)δ; x̂

j−1
k|k ,P

j−1
k|k )dxk+(j−1)δ,

(8)

and

Pjk|k = E[(xk+jδ − x̂k+jδ|k)(xk+jδ − x̂k+jδ|k)T ]

=

∫
fd(xk+(j−1)δ)fd(xk+(j−1)δ)

Tℵ(xk+(j−1)δ; x̂
j−1
k|k ,P

j−1
k|k )dxk+(j−1)δ − (x̂j−1k|k )(x̂j−1k|k )T .

(9)

where P (·) and ℵ(·, ·) represent the probability density function and normal density function respec-

tively.

In the time update, x̂jk|k and Pjk|k are approximated recursively for increasing j. As j reaches to

m, the estimate and covariance are updated at time tk+1 as

x̂k+1|k = x̂mk|k,

and Pk+1|k = Pmk|k.

2.5 Measurement Update

In this step, the mean and covariance of measurements are evaluated as:

ŷk|k−1 = E[γk(xk) + vk]

≈
∫
γk(xk)ℵ(xk; x̂k|k−1,Pk|k−1)dxk,

(10)

and,

Pyyk|k−1 = E[(yk − ŷk|k−1)(yk − ŷk|k−1)T ]

≈
∫
γk(xk)γk(xk)

Tℵ(xk; x̂k|k−1,Pk|k−1)dxk − (ŷk|k−1)(ŷk|k−1)
T .

(11)
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Based on these values, the filter gain is determined as

Kk = Pxyk|k−1(Pyyk|k−1)
−1,

where

Pxyk|k−1 = E[(xk − x̂k|k−1)(yk − ŷk|k−1)T ]

≈
∫
xkγk(xk)

Tℵ(xk; x̂k|k−1,Pk|k−1)dxk − (x̂k|k−1)(ŷk|k−1)
T .

(12)

As the measurement is received at kth time instant, the mean and covariance is updated as:

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1), (13)

and Pk|k = Pk|k−1 −KkPyyk|k−1K
T
k . (14)

By recursively performing these two steps, the estimates and covariances are computed at every time

instant and filtering of continuous-discrete systems could be carried out. We get a closed-form solu-

tion if fd(·) and γk(·) are linear, and this solution is also optimal in the sense of minimizing variance

of the state estimates. If the system is nonlinear, the integrals in (9) to (13) are intractable in general

and have to be approximated numerically with the help of the sample points χi and corresponding

weights Wi where i = 1, 2, · · · , ns i.e. ns is number of sample points.

3 Bayesian approximation framework of filtering for continuous-

discrete systems with randomly delayed measurements

As discussed earlier, the random delay is caused due to many physical factors like the varying trans-

mission speed due to unknown on way disturbances, inappropriate bandwidth, large distance between

the target and receiver. To look at a few real life examples of such problems, we can consider under-

water target tracking problems, packet switching network etc. In under-water target tracking prob-

lems, the measurement is received as the disturbances caused in water flow due to the target motion,

however the actual disturbance is interrupted by many other unknown disturbances caused due to

weather factors, motion of giant fishes, motion of seller and fishing boats etc. which causes random

delay in measurement. In packet switching network [20], if the bandwidth is insufficient then many
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packets are queued and the time of queuing depends on the users and completely unknown for the

service provider which further causes the random delay in measurement.

A simple way to deal with the randomly delayed measurements filtering problems in continuous-

discrete environment is to reduce the sampling time which may reduce the loss of data. But the

sampling time is a hardware constraint and hence can not be changed easily or arbitrarily.

In this section, a theoretical aspect is discussed which enables to deal with such problems. As

the delay is small in practical applications, the maximum delay is considered to be less than one time

step. Then, the measurement received at (k+ 1)th time step may actually belong to (k+ 1− τ)th time

instant with 0 ≤ τ < 1.

To extract the information about the continuous delay and approximate the actual correspondence

time of the measurement received at (k + 1)th time step, we consider a sequence of m time steps

between tk = kT and tk+1 = (k + 1)T as tjk = tk + jδ, δ = T/m, j = 1, 2, · · · ,m. We consider

the same time scale for discretization of process model as well as for generating intermediate time

sequences to capture the continuous delay. Now, we can modify the previous statement and can say

that the measurement received at (k+ 1)th time step may actually belong to (k+ 1− (j− 1)δ)th time

instant where j = 1, 2, ...,m.

To model the delayed measurements, let us assume βk = [β1k β2k ... βmk] be a set of Bernoulli

random variables. Here, βk is independently generated at different time steps i.e. βk is independent

to βi ∀ i 6= k. Moreover, each entry of βk (i.e. βjk ∀ j = 1, 2, · · · ,m) will be either 0 or 1 with

probability

P (βjk = 1) = pj = E[βjk],

P (βjk = 0) = 1− pj,

and E[(βjk − pj)2] = pj(1− pj).

(15)

For any specific k, only one entry of βk will be unity and all the remaining will be zero. The unity

value at jth entry represents that the measurement received at kth time step actually belongs to (k −

(j − 1)δ)th time instant. Hence, the delayed measurement model can be expressed as

yk = βjkγ(xk−(j−1)δ) + vk−(j−1)δ. (16)

To this end, we define a probability vector Ψ = [p1, p2 , ..., pm] where pj = P (βjk = 1) represents
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the probability that the jth element of βk is unity i.e. the probability that the measurement received at

(k+1)th time step actually belongs to (k+1− (j−1)δ)th instant of time. Hence, p1 is the probability

of no delay.

In later part of this section, we will see that the delayed measurement model appeared in (16)

is not required for implementation of the proposed framework. However, the model is required for

simulation purpose to generate the measurements in lack of real-time data.

Remark 1. The probability of higher delay will always be less in practice. Hence, p1 < p2 < ... <

pm.

In practice, the majority of measurements are received with no delay in time. In the most poor

case, one out of two measurements can be considered to be delayed i.e. the probability of delay should

not exceed 0.5. In the vector of delay probabilities, p1 represents the probability of no delay while

the probability of delay could be expressed as (p2 + p3 + ... + pm). Hence the numerical value of p1

should usually be higher than 0.5.

To perform the filtering of the defined system, we modify the conventional Bayesian approxima-

tion framework of filtering. In the modified framework which is capable of dealing with the randomly

delayed measurements, the filtering is carried out in four steps unlike the two steps used in conven-

tional approach. The intractable integrals which appear during the filtering are approximated with the

help of numerically chosen set of sample points and their corresponding weights

3.1 Time update

This is the first step used in the proposed method. In this step, the estimate and covariance of the

states are predicted at a time step next to that for which the latest measurement is available.

To perform this step, the intractable integrals appeared in equations (8) and (9) are approximated

numerically with the help of deterministically chosen points and weights. There are many filtering

methods like UKF [5], CKF [8], GHF [21] etc. which uses different numerical techniques for gener-

ating the points set and corresponding weights. As discussed earlier, any of these conventional filters

can be extended in the proposed framework. Let us consider, for a filter, the ith sample point is ξi and

the corresponding weight is Wi; i = 1, 2, ..., ns (for example, see: [5–8, 21]). Then, the estimate of
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states at (kT + jδ)th instant of time could be approximated as

x̂jk|k =
ns∑
i=1

Wiχ
j
i,k|k

where χji,k|k = fd(S
j−1
k|k ξi + x̂j−1k|k ).

Now, let us represent

χjk|k = [χj1,k|k − x̂
j
k|k χj2,k|k − x̂

j
k|k ... χjns,k|k − x̂

j
k|k]Ws,

where Ws is a diagonal matrix of size ns × ns so that ith diagonal element is
√
Wi. Then, the square-

root of predicted covariance matrix, Sjk|k can be approximated as [12]

Sjk|k = Tria
[
χjk|k

√
δ(
√
Q+ δ/2)Lf(x̂j−1k|k , kT + jδ)

√
T 3/12Lf(x̂j−1k|k , kT + jδ)

]
.

where ’Tria[.]’ is an operator such that Tria[A]=B if A = BTB and B is lower triangular matrix.

Remark 2. x̂jk|k and Sjk|k are computed repeatedly for increasing j. As j reaches to m, we get the

predicted values x̂k+1|k and Sk+1|k at (k + 1)th time instant.

To compute the updated estimate and the square-root factor of the covariance matrix, x̂jk|k and

Sjk|k are computed repeatedly for increasing j. As j reaches to m, x̂k+1|k and Sk+1|k are obtained. In

conventional approach, these parameters are directly used to update the measurement at tk+1. But in

case of the randomly delayed measurements, before proceeding to the measurement update, we need

to predict the intermediate time step whose likelihood corresponding to the measurement at time tk+1

is maximum.

3.2 Predicting the actual correspondence time for measurement received at

time tk+1

This prediction is the most challenging task during filtering of continuous-discrete systems with a

random delay in measurement. In this paper, we use negative Gaussian log-likelihood to choose a time

instant to which the measurement corresponds, from a set of candidate time instants. To implement

this heuristic, the estimate of measurements as well as its error covariance should be known at each

intermediate time step.
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At any intermediate time instant tk + jδ, the measurement estimate can be given as

ŷjk|k =
ns∑
i=1

Wiψ
j
i,k|k,

where

ψji,k|k = γ(Sjk|kξi + x̂jk|k).

At the same time, the error covariance for the measurements can be given as

Pjyy,k|k = (ψjk|k)(ψ
j
k|k)

T +R

where

ψjk|k = [ψj1,k|k − ŷ
j
k|k ψj2,k|k − ŷ

j
k|k ... ψjns,k|k − ŷ

j
k|k]Ws.

Now, at each intermediate time step, the negative Gaussian log-likelihood could be computed as

Ljk+1(yk+1) = log(det(Pjyy,k|k)) + (yk+1 − ŷjk|k)
T (Pjyy,k|k)

−1(yk+1 − ŷjk|k) (17)

Remark 3. As the conditional density of measurements are assumed to be Gaussian, the negative

Gaussian log-likelihood is a natural choice for choosing the most likely prior instant for measurement

sampled at time tk+1.

Before receipt of the measurement yk+1 at time instant tk+1, it’s negative Gaussian log-likelihood

is available at each delayed intermediate time step. The measurement yk+1 is most likely to belong to

an intermediate time step for which the negative Gaussian log-likelihood is minimum. To this regard,

let j∗ be such that yk+1 = y(tk + j∗δ). Then we choose j∗ such that

j∗ = arg min
j∈[0,m]

Ljk+1(yk+1). (18)

As the measurement received at tk+1 time instant actually belongs to the time instant tk + j∗δ, the

measurement yk+1 can be used to approximate the posterior estimates at the intermediate time step

tk + j∗δ, but not at tk+1.
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3.3 Measurement update at intermediate time step

In this step, the measurement update is performed at the intermediate time instant (tk + j∗) and based

on that, the posterior estimates of states are obtained at this instant. To perform this step, we need the

updates of state belonging to the same time step. It could be directly recalled from the time update

step as x̂j
∗

k|k and Sj
∗

k|k.

At the intermediate step tk + j∗, the estimate of measurement could be approximated as

ŷj
∗

k|k =
ns∑
i=1

Wiγ(χj
∗

i,k|k),

where

χj
∗

i,k|k = Sj
∗

k|kξi + x̂j
∗

k|k.

Let us say

χj
∗

k|k = [χj
∗

1,k|k − x̂
j∗

k|k χj
∗

2,k|k − x̂
j∗

k|k ... χns,k+1|k − x̂k+1|k]Ws

and

Y j∗

k|k = [γ(χ1,k|k)
j∗−ŷj

∗

k|k γ(χ2,k|k)
j∗ − ŷj

∗

k|k ... γ(χns,k|k)
j∗ − ŷj

∗

k|k]Ws.

Then, the covariance matrices of measurement can be given as

Pj
∗

yy,k|k = (Y j∗

k|k)(Y
j∗

k|k)
T +R

and

Pj
∗

xy,k|k = (χj
∗

k|k)(Y
j∗

k|k)
T .

Let us assume  G11 0n×d

G21 G22

 = Tria

 Y j∗

k|k

√
R

χj
∗

k|k 0n×d

 .

Hence,  Pj
∗

yy,k|k Pj
∗

yx,k|k

Pj
∗

xy,k|k Pj
∗

k|k

 =

 Y j∗

k|k

√
R

χj
∗

k|k 0n×d

 Y j∗

k|k

√
R

χj
∗

k|k 0n×d

T

=

 G11G
T
11 G11G

T
21

G21G
T
11 G21G

T
21 +G22G

T
22

 .
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Subsequently, the Kalman gain can be given as

Kj∗

k = Pj
∗

xy,k+1|k(Pj
∗

yy,k+1|k)
−1 = G21G

−1
11 . (19)

The updated state estimate can be given as

x̂j
∗

k|k+1 = x̂j
∗

k|k +Kj∗

k (yk+1 − ŷj
∗

k|k). (20)

The updated covariance matrix can be given as

Pj
∗

k|k+1 = Pj
∗

k|k −K
j∗

k Pj
∗

yy,k|k(K
j∗

k )T = (G22G
T
22).

Hence, the square-root of updated covariance can be given as

Sj
∗

k|k+1 = G22. (21)

The posterior estimates of states, x̂j
∗

k|k+1 and Pj
∗

k|k+1 belong to the time step tk + j∗δ. However, for

filtering we need to compute these estimates at tk+1. Hence, these parameters are further updated to

get the estimates at tk+1.

3.4 Updating the intermediate estimates to approximate next step estimates

To obtain x̂k+1|k+1 and Sk+1|k+1, the following steps can be performed in recursion, varying i from 1

to (m− j∗):

1. Transform the sample points with the known mean and covariance at tk + j∗δ:

Θj∗+i
i,k|k+1 = Sj

∗+i
k|k+1(ξi) + x̂j

∗+i
k|k+1

2. Update the sample points by propagating it through the discretized process equation (or state

equation):

χj
∗+i+1
i,k|k+1 = fd(Θ

j∗+i
i,k|k+1)

3. Compute the estimate of state at the intermediate time step:

x̂j
∗+i+1
k|k+1 =

ns∑
i

Wiχ
j∗+i+1
i,k|k+1
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4. Compute the square-root factor of covariance matrix:

Sj
∗+i+1
k|k+1 = Tria

[
χj

∗+i+1
k|k+1

√
δ(
√
Q+ δ/2)Lf(x̂j

∗+i
k|k+1, kT + δ(j∗ + i))√

T 3/12Lf(x̂j
∗+i
k|k+1, kT + δ(j∗ + i))

]
where

χj
∗+i+1
k|k+1 = [χj

∗+i+1
1,k|k+1 − x̂

j∗+i+1
k|k+1 χj

∗+i+1
2,k|k+1 − x̂

j∗+i+1
k|k+1 ... χj

∗+i+1
ns,k|k+1 − x̂

j∗+i+1
k|k+1 ]Ws

As i reaches to (m − j∗), we get the next step estimate and square-root factor of covariance i.e.

x̂k+1|k+1 and Sk+1|k+1 respectively.

The filtering of continuous-discrete systems with randomly delayed measurements could be car-

ried out by performing these four steps in recursion.

Remark 4. The proposed algorithm can conceptually be employed to deal with delays which exceed

one sampling time, up to a fixed number of sampling times. For example, if the maximum possible

random delay is two sampling times, the measurement received at (k + 1)th time step may actually

belong to (k + 1 − (j − 1)δ)th time step where j = 1, 2, · · · , 2m. One can then carry out the time

update and find the most likely correspondence time using the methods outlined in sections 3.1 and 3.2

respectively. Once the measurement update parameters are computed by following the section 3.3, an

iterative update through the intermediate steps will be required from j? to 2m, similar to the section

3.4. This will, however, ignore the measurement y(k) in constructing x̂k+1|k+1, which is obviously not

desirable.

Remark 5. In practice, the exact approximation of the probability of delay i.e. pi ∀ i ∈ [1,m] is

very difficult. The proposed approach does not use these values during filtering. In this particular

sense, the proposed method is ‘model-free’ when it comes to dealing with random delays, which may

be seen as a major advantage.

4 Simulation

In this paper, the proposed method is applied to solve a nonlinear filtering problem with continuous-

discrete dynamic state space model and the results are compared with the existing approach which

15



ignores the possible delay in measurements. The problem considered here is an air-traffic control

problem, trajectory of which is described in [12].

The state space equation of the aircraft is

dx(t) = f(x(t))dt+
√
Qdβ(t), (22)

where x =
[
ε ε̇ η η̇ ζ ζ̇ ω

]T
is a seven-dimensional state vector with ε, η and ζ representing

positions, ε̇, η̇ and ζ̇ representing velocities in three dimensional X, Y and Z Cartesian coordinates re-

spectively, and ω representing the turn rate. The drift function is f(x) =
[
ε̇ −ωη̇ η̇ ωε̇ ζ̇ 0 0

]T
,

which shows that the motions in horizontal.

The noise vector is β(t) = [β1(t) β2(t) ... β7(t)]
T , where βi(t) is standard Brownian motion

independent of βk(t). It accounts for modeling error appeared due to the wind forces, turbulance etc.

The motion is severely nonlinear and the degree of nonlinearity depends on the turn rate parameter,

ω. After applying Itô-Taylor expansion of order 1.5 to (22), the discretized process model could be

obtained as

xj+1
k = fd(x

j
k) +

√
Qw + (Lf(xjk)q, (23)

where

fd(x) =



ε+ δε̇− δ2

2
ωη̇

ε̇− δωη̇ − δ2

2
ω2ε̇− δ2

2
σ1σ2

η + δη̇ + δ2

2
ωε̇

η̇ + δωε̇− δ2

2
ω2η̇ + δ2

2
σ1σ2

ζ + δζ̇

ζ̇

ω


,

Lf(x) =



0 σ1 0 0 0 0 0

0 0 0 −σ1ω 0 0 −σ2η̇

0 0 0 σ1 0 0 0

0 σ1ω 0 0 0 0 σ2ε̇

0 0 0 0 0 σ1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,
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and, Q = diag
[
(0 σ2

1 0 σ2
1 0 σ2

1 σ2
2)
]T

is the diffusion matrix for process noise given as with

σ1 =
√

2m, σ2 = 2.85× 10−7 o/sec.

The trajectory of the target is plotted in Fig. (1), for two different values of ω. To plot the

trajectory, we consider the number of iteration per second as 100 and x0 = [1000 0 2650 150 200 0

ω]T .

The measurements obtained at regular interval of time T = 1sec is
rk

θk

φk

 =


√
ε2k + η2k + ζ2k

tan−1
(
ηk
εk

)
tan−1

(
ζk√
ε2k+η

2
k

)
+ vk.

The radar is located at origin and is equipped to measure the range r, the azimuth angle θ and the

elevation angle φ. The measurement noise is given as vk ∼ ℵ(0, R) with R = diag(
[
σ2
r σ2

θ σ2
φ)
]
,

where σr = 0.1m, σθ = 0.1o and σφ = 0.1o are standard deviations for range, azimuth and elevation

respectively.

The simulation is performed considering the initial estimate x̂0|0 as normally distributed with mean

x0 and covariance P0|0=diag([100 10 100 1 0 0 (
√

0.1deg/s)2]). During the simulation, the number

of iterations per sampling interval is considered as m = 10.

To compare the performance, we have considered two different scenarios with different probability

vector as

Scenario 1: Ψ = [0.60 0.10 0.06 0.05 0.04 0.03 0.03 0.03 0.03 0.03],

Scenario 2: Ψ = [0.50 0.20 0.1 0.05 0.04 0.03 0.03 0.03 0.02 0.00].

As discussed earlier, the probability of no delay should not be less than 0.5. Hence the first entry of

probability vector should not be chosen below 0.5. Further, it is reasonable to assume that probability

of a longer delay is no more than that of a shorter delay in all cases, which is reflected in our choice

of Ψ. As soon as Ψ is defined, βjk ∀ j = 1, 2, · · · ,m could be generated and hence the delayed

measurement could be obtained using equation (16).

The simulation is carried out for continuous-discrete extensions of UKF, CKF and recently intro-

duced CQKF [22, 23]. Under no delay condition, these filters are abbreviated as UKF-CD, CKF-CD

and CQKF-CD respectively. However, UKF-CD RD, CKF-CD RD and CQKF-CD RD represents

their extensions under the proposed framework.
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The simulation is performed for a period of 100sec and 100 Monte-Carlo runs are performed to

ensure the performance. To compare the results, the root mean square error (RMSE) of radial position

and velocity are calculated along the steps. For ω = 2o/sec and ω = 3o/sec, the RMSE plots of range

and velocity are shown in figure-2 to figure-5, under two different scenarios mentioned earlier. In

every figure, zoomed plot of RMSEs of UKF-CD RD, CKF-CD RD and CQKF-CD RD are shown

between 30 to 60 seconds.

The RMSEs of UKF-CD, CKF-CD and CQKF-CD are very high while the RMSEs due to UKF-

CD RD, CKF-CD RD and CQKF-CD RD seem to be touching the zero axis. The high RMSEs of

UKF-CD, CKF-CD and CQKF-CD show that the conventional approach fails to track the path of the

target, if the measurement arrives to the filter with some delay. However, small RMSEs for UKF-

CD RD, CKF-CD RD and CQKF-CD RD assure that the proposed extension could enable the filters

to successively trace the target.

As mentioned earlier in Remark 4, the proposed algorithm can be implemented for higher delay

cases as well, although it ignores y(k) in constructing x̂k+1|k+1 which may lead to significantly re-

duced estimation accuracy. For a comparative study, the RMSEs of range and velocity for one delay

and two delay cases are plotted in figure-6. The two delay extensions of UKF, CKF and CQKF has

been abbreviated as UKF-CD 2RD, CKF-CD 2RD and CQKF-CD 2RD. For one delay case, the Ψ

was considered as the one used in Scenario 1 while for two delay case it was taken as Ψ = [3/5 1/20

1/20 0.03 0.03 0.025 0.025 0.02 0.02 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.01 0.01 0.01]

i.e. the probability of no delay was fixed at 0.6 (similar to one delay case). The RMSE for velocity

was similar for one and two delay cases. However, it was significantly higher in the two delay case

than in one delay case, for range. This can be expected as the intermediate measurement is ignored in

the two delay case.

5 Discussions and conclusions

In this paper, a novel approach is discussed to perform the filtering under the continuous-discrete time

domain if the measurement is expected to be randomly delayed on continuous time scale. In other

words, the measurement received at time tk+1 may belong to any time t so that tk < t ≤ tk+1. To
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the best of authors’ knowledge, for the first time the delay is introduced in the literature of nonlinear

filtering under continuous-discrete time domain. The proposed algorithm is based on an intuitively

appealing idea of using maximum likelihood to choose the time instant to which an observation might

actually belong.

For simulation purpose, a maneuvering target tracking problem is implemented. It is found that

the conventional approach fails to trace the path of the target, while the proposed method could track

it successfully. Due to the failure of conventional method in the delayed measurement environment,

the authors recommend the use of the proposed approach if a small delay is probable. Combining

this proposed algorithm with the existing methods for tackling delays which exceed the measurement

sampling time is a topic of current research.

The proposed algorithm works if the delay is a fraction of sampling time. While it can be used for

delays exceeding one sampling time, its performance is unsatisfactory due to ignored measurements.

Combining the proposed algorithm for dealing with a fractional delay with the existing methods for

dealing with integer number of delays, to tackle delays exceeding one measurement sampling time is

a topic of current research.
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Figure 1: Trajectories of motion of aircraft for varying turn rate, ω
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Figure 2: First scenario: RMSE plot for ω = 2o/s (a) range in m (b) velocity in m/sec
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Figure 3: First scenario: RMSE plot for ω = 3o/s (a) range in m (b) velocity in m/sec
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Figure 4: Second scenario: RMSE plot for ω = 2o/s (a) range in m (b) velocity in m/sec
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Figure 5: Second scenario: RMSE plot for ω = 3o/s (a) range in m (b) velocity in m/sec
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