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Abstract—Clustering techniques have been applied to 
neuroscience data analysis for decades. New algorithms keep 
being developed and applied to address different problems. 
However, when it comes to the applications of clustering, it is 
often hard to select the appropriate algorithm and evaluate the 
quality of clustering results due to the unknown ground truth. It 
is also the case that conclusions might be biased based on only 
one specific algorithm because each algorithm has its own 
assumption of the structure of the data, which might not be the 
same as the real data. In this paper, we explore the benefits of 
integrating the clustering results from multiple clustering 
algorithms by a tunable consensus clustering strategy and 
demonstrate the importance and necessity of consistency in 
neuroimaging data analysis. 
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I.  INTRODUCTION 
The advances in data collection and storage have generated 

huge amount of data in research fields such as neuroscience. 
Clustering has gained great popularity in exploring and 
identifying the natural distribution of these datasets [1]–[5]. 
Being different from supervised classification, clustering 
techniques are designed to separate the input dataset into 
several categories without explicitly training the classifier 
using labeled training data. This nature of clustering makes it a 
powerful tool when researchers explore a new dataset. 
However, despite a lot of clustering algorithms having been 
developed [6], clustering itself is an ill-posed problem whose 
solution violates at least one of the common assumption 
regarding cluster consistency, richness, and scale invariance 
[7]. Almost every clustering algorithm explicitly or implicitly 
assumes a certain data model based on which the data is 
clustered [8]. Without a priori knowledge, each clustering 
algorithm could produce plausible results based on its 
underling assumption of the data structures that might not be 
satisfied by the input data. To match the assumed data model 
and the true input data structure, it is crucial to obtain the 
correct a priori information to obtain good clustering results; 
however, such a priori information is hard to obtain even from 
experts. A recent main criticism relies on the wide variety of 
analysis strategies, combined with small sample sizes, used to 
investigate regional brain activity measured with functional 

magnetic resonance imaging (fMRI) and leading to 
inconsistent findings [9]. 

To address the aforementioned problems, clustering 
ensemble techniques [8], [10] were proposed. An ensemble 
clustering technique uses various strategies to combine 
multiple clustering results from different algorithms to improve 
the overall quality of results such as stability, robustness, and 
consistency. Besides, an ensemble clustering technique will 
also benefit from the fact that it could reuse the existing results 
from individual algorithm without rerunning the experiment 
from the beginning. Even a total experiment reset is needed, 
the jobs can be spread to different computing facilities with 
each one handling one or several clustering experiments, since 
different algorithms do not need to communicate with each 
other during the single clustering experiment period. This 
feature would help significantly to reduce the computation time 
and requirement of computation power when analysing the 
neuroimaging data with increasing size and volume these days 
[11]. 

To demonstrate the necessity of employing an ensemble 
clustering technique in neuroimaging data analysis, we used a 
recently published tunable consensus clustering paradigm 
called Binarization of Consensus Partition Matrices (Bi-
CoPaM) [2] to combine the clustering results on a real 
functional magnetic resonance imaging data by k-means, 
hierarchical, and self organizing map (SOM). The results show 
that there are obvious differences among the results by 
different clustering algorithms combination. while Bi-CoPaM 
can not only find the objects that consistently belong to same 
cluster across many clustering experiment but also is able to 
extract the clusters according to their tightness (quality) 
through tuning the consensus level. These selected clusters 
have very strong inner similarity as well as relatively large 
amount of members, making it more reliable to draw 
conclusions from ensembled clustering results. 

The rest of the paper is organized as follows. In section II, 
we describe the fMRI data and briefly introduce the published 
methods used in this paper. The setup of the clustering 
experiment is described in section III. In section IV, the results 
of comparisons between different method combination are 
shown. We then had a discussion about the method and its 
benefit  and draw conclusions in section V. 
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II. METHOD 

A. fMRI data 
The fMRI data comes from an experiment studying human 

brain responses to music with different preference and 
emotions, i.e. liked happy category (LH) [this represents the 
case of when a participant considers the music is “happy” and 
“likes” it], liked sad category (LS) [this represents the case of 
when a participant considers the music is “sad” and “likes” it], 
disliked happy category (DH) [this represents the case of when 
a participant considers the music is “happy” and “dislikes” it], 
and disliked sad category (DS) [this represents the case of 
when a participant considers the music is “sad” and “dislikes” 
it]. A total of 13 musicians and 16 non-musicians participated 
in the fMRI scanning sessions. The whole fMRI experiment for 
one participant has 450 scans (TR = 2s) including 32 music 
categories with each one repeated twice and each scan contains 
228,453 voxels after preprocessing. In total, there are 1856 
fMRI data segments corresponding to 1856 (= 29 × 64) 
listening trials. The study was approved by the ethical 
committee of the Helsinki University Central Hospital and 
complied with the Helsinki Declaration. The dataset is a subset 
of a larger data collection, parts of which have been published 
in [12], [13]. 

B. Bi-CoPaM 
The binarisation of consensus partition matrices (Bi-

CoPaM) method is a tunable consensus clustering method that 
utilises various single clustering algorithms while considering 
various datasets to identify the subset of objects that are 
consistently correlated across many clustering experiments.  
Figure 1 demonstrates the procedure of Bi-CoPaM. For L 
datasets and C clustering algorithms, the typical Bi-CoPaM 
pipelines includes the following four steps: 

1) Partition generation. This step generates the clustering 
results by single clustering algorithm. Note that this step can be 
skipped if one decides to reuse the existing results as discussed 
in the introduction part. 

2) Relabeling. This step aligns the numbering of the 
clusters in each partition. After this step, the cluster numbers 
correspond across different partitions so that the same number 
represents the same cluster. 

3) Fuzzy consensus partition matrix (CoPaM) generation. 
This step averages the relabeled partition matrices to produce 
the fuzzy consensus matrix where each object has a fuzzy 
membership value ranging from 0 to 1 with 0 representing 
absolutely no consistency and 1 representing absolute 
consistency. 

4) Binarisation. This step binarise the fuzzy membership 
value to 0 and 1 in CoPaM in step 3) using Different threshold 
binarisation (DTB) technique by the thresholds δ with δ = 0 
yielding the least tight clusters and δ = 1 yielding the tightest 
clusters. 

One important feature of Bi-CoPaM is that the results are 
tunable and clusters with different tightness can be obtained by 
tuning the parameter δ. Users can generate consensus clusters 
based on their needs for the tightness ranging from high to low 
in terms of cluster inner similarity. 

 
Figure 1. Flowchart of Bi-CoPaM 

C. Extracting Clusters with Good Quality 
Bi-CoPaM combines clustering results from different 

clustering algorithms and different clustering parameters such 
as the number of cluster, 𝑘. The M-N scatter plot technique 
[14] is applied applied to optimize the final cluster results. 
Each time that Bi-CoPaM is applied with different k values, 
DTB binarisation is performed with a range of δ values (e.g. 
from 0.0 to 1.0 with 0.1 steps). All of the individual clusters 
appearing in the results are plotted on a 2-D plot where the 
vertical axis (N) represents the logarithm of the number of 
voxels in the cluster and the horizontal axis (M) represents the 
average mean square error (MSE) values of the cluster over all 
of the dataset. Figure 2 is an example of the scatter plot. 

 
Figure 2. Example of M-N scatter plot 

 
The cluster closest to the top left corner of the plot is 

selected as the best cluster (blue dot). This cluster consists of a 
large number of voxels (high vertical axis value), yet tight with 
high correlation (low horizontal axis value). Then the selected 
cluster and all of the other clusters that have overlaps with it, 
are removed from the plot. For the remaining clusters (dots), 
the closest remaining cluster to the top left corner of the plot is 
selected as the second best distinct cluster. The steps of 
selecting clusters and removing those with overlaps with the 
selected ones are repeated iteratively up to a preset maximum 
number of clusters or earlier when the scatter plots are empty. 



III. CLUSTERING EXPERIMENT 
The k-means, Hierarchical, and Self Organizing Map 

(SOM) were applied on each of 1856 excerpts data (normalized 
to 0 mean and unit variance) was clustered by with k equals to 
10, 25, 50, and 100. These clustering results generated by 
different algorithms with four different cluster numbers were 
combined using the Bi-CoPaM paradigm for each possible 
combination of three methods and selected by the M-N scatter 
plot, yielding the consensus clustering results. In total, seven 
sets of final clustering results were obtained, i.e. clustering 
results from k-means, hierarchical, SOM, k-means and 
hierarchical, k-means and SOM, hierarchical and SOM, and all 
three methods. The brain regions within clusters were extracted 
out by using automated anatomical labeling (AAL) atlas [15] 
and these regions names were used to identify the neuroscience 
background of clusters. 

Two types of filtering were used in order to make the 
results more reliable. The original clusters were first filtered by 
discarding those voxels with weak responses (voxels whose 
time series have a small variance), since the data used to be 
clustered were normalized and thus, to some extent, lost the 
signal magnitude information. In this analysis, the voxels 
whose variance corresponded to less than half of the mean of 
the variance for all the voxels from one subject were discarded. 
Note that the chosen threshold does not necessarily mean this is 
the optimal value. It only serves as removing the voxels with 
weak signal change. After repeating this process for all the 
subjects, we obtained 29 thresholded partitions. Then if more 
than seventy percent of the subjects showed a strong response 
at a certain voxel, this voxel was retained for the following 
analysis. After this step, the clusters only contained voxels 
having strong blood oxygen level dependent (BOLD) 
responses. Secondly, the resulting clusters from the previous 
step were filtered by using the hypergeometric distribution test 
which discarded isolated voxels, i.e., any voxel above the p 
value threshold of 0.001. 

The M-N scatter plot was used to select the first 20 clusters 
for each CoPaM generated by corresponding combination of 
methods. For each combination of methods, we picked out the 
final clusters covering three important brain regions, namely 
visual area, reward system and auditory system. Then 
comparisons among different method combination were made 
regarding each of the three important clusters. Then in order to 
give a straightforward demonstration on the differences among 
different clustering combinations, we visualize some of the 
final cluster results in 3D space to see the brain areas that 
consistently have highly correlated BOLD activities. 

 

IV. RESULTS 
Jaccard index was used to compare the similarity of two 

clusters. Table I shows the Jaccard index between different 
method combinations for cluster covering visual area. Table II 
shows the Jaccard index between different method 
combinations for cluster covering reward system and Table III 
shows the Jaccard index between different method 
combinations for cluster covering auditory system. 

 

From the three Tables, it is easy to spot the differences 
between any combinations of two or three clustering 
algorithms on all three important clusters. Note that for those 
methods or method combinations having all zeros Jaccard 
index, it means this method or method combination was not 
able to detect the corresponding cluster. For example, in Table 
III, the method combination of k-means and hierarchical 
clustering (KM & HC) did not group the voxels within the 
auditory system into a cluster. So, all the members for clusters 
covering the visual areas end up producing a value of zero in 
the Jaccard index between KM & HC and any other method 
combinations. 

TABLE I. JACCARD INDEX FOR CLUSTER COVERING VISUAL AREA. 

 
TABLE II. JACCARD INDEX FOR CLUSTER COVERING REWARD SYSTEM. 

 
TABLE III. JACCARD INDEX FOR CLUSTER COVERING AUDITORY SYSTEM. 

 

There are in total 18 final clusters with 7 representing visual 
areas, 6 representing reward system, and 5 representing 
auditory system by different single methods and method 
combinations. To save the space and make a brief 
demonstration of how different these clustering results look 
when they are mapped on to the three dimensional human brain 
model, we illustrated only 6 different clustering results by six 
different method combinations as shown in Table II. In Figure 
3, the red parts represent the cluster covering the reward system 
by six different method combinations.  

 

V. DISCUSSION AND CONCLUSION  
Clustering has gained great popularity in exploring and 

identifying the natural distribution in neuroimaging data. 
However, clustering itself is an ill-posed problem whose  



 
Figure 3. 3D illustrations of final clusters generated by six different method 
combinations. 
 
solution violates at least one of the common assumption 
regarding cluster consistency, richness, and scale invariance. 
Thus it is often very hard to determine an optimal clustering 
algorithm for a specefic problem. In this paper, we utilised a 
tunable consensus clustering paradigm Bi-CoPaM to combine 
the clustering results on a real functional magnetic resonance 
imaging data with multiple clustering algorithms to improve 
the consistency and stability performance of clustering in 
neuroimaging data analysis. The results show that the proposed 
method has great capability and potential to help address the 
consistency issue in neuroimaging data analysis. 

From Table 1 to Table 3, which show the mutual 
differences between any two method combinations, and the 
three dimensional demonstration of one set of clusters covering 
the reward system in human brain, we can see the obvious 
differences among different clustering schemes. For the cluster 
covering the visual system, although all of the method 
combinations were able to detect this area, details of the 
regions such as the size and shape vary among each other. For 
the cluster covering the reward system and another cluster 
covering the auditory system, not only the results are different 
from each combination of clustering algorithms but also some 
single methods failed to detect the important brain structures 
based on their BOLD response time profiles. However, when it 
comes to the results obtained from any combined results from 
different single methods, these two important clusters could be 
identified even though one method failed to form the 
corresponding important cluster. This demonstrates the 
powerfulness of integrating the results from multiple clustering 
methods. Furthermore, the Bi-CoPaM paradigm distinguishes 
from existing clustering ensemble techniques. It features the 
capability of tuning the tightness of generated clusters and in 
conjunction with the M-N scatter plot technique, one can 
obtain the non-trivial clusters with high inner similarity and a 
large number of objects within the cluster. Such clusters often 
include very important information regarding the structure and 
underlying distribution of the data from which these clusters 
are formed. 

In real clustering applications, due to the lack of sufficient a 

priori information, it is hard for the researchers to determine 
which clustering result is the best. Although one can try to run 
the clustering experiment exhaustively to find the optimal 
solution, this approach becomes more and more infeasible 
when the size of the neuroimaging data keeps increasing [16]. 
In addition, in neuroimaging studies, the signal to noise ratio is 
often very low [17], making it hard to draw any conclusion 
based on a single or even several experiments. The Bi-CoPaM 
used in this paper manages to exploit the results from single 
clustering method and find the clusters having consistent 
patterns across many clustering algorithms and many datasets. 
By integrating the results from many independent clustering 
processes means that the results are reproducible. Indeed, if 
certain clusters would only appear in few clustering trials, then 
it is very likely that the appearance of these clusters is due to 
random error or other factors and would not be included in the 
final results. This ensures that the final clusters from Bi-
CoPaM are more stable and robust than the results from single 
method, so that researchers can be more confident on the 
interpretations or conclusions made from the data.  
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