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Abstract 
 
Some open theoretical questions are addressed on how the mind and brain represent and 
process concepts, particularly as they are instantiated in particular human languages. 
Recordings of neuroimaging data should provide a suitable empirical basis for 
investigating this topic, but the complexity and variety of language demands appropriate 
data-driven approaches. In this review we argue for a particular suite of methodologies, 
based on multivariate classification techniques which have proven to be powerful tools 
for distinguishing neural and cognitive states in fMRI. A combination of larger scale 
neuroimaging studies are introduced with different monolingual and bilingual 
populations, and hybrid computational analyses that use encoded implementations of 
existing theories of conceptual organisation to probe that data. We develop a suite of 
methodologies that holds the promise of being able to holistically elicit, record and model 
neural processing during language comprehension and production. 
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I. Introduction 
The question of how the human mind stores and represents the meanings of concepts, and 
of the words we use to describe them, remains something of an enigma. Historically, 
approaches range from the metaphysical, such as Platonic models that assume an inherent 
and universal organisation of reality (e.g. Wilkins, 1668), to the highly empirical, such as 
purely data-driven approaches that derive conceptual spaces from arbitrary web-text 
(Lund & Burgess 1996; Landauer & Dumais 1997; Griffiths et al 2007; Carlson et al 
2010; Murphy et al 2012a). Contemporary debate revolves around questions such as 
taxonomic membership, whether concepts are represented by concrete exemplars or 
abstract prototypes, embodied/symbolic encodings, and whether property representations 
are holistic, or composed of distributed activations or atomic features (see Murphy, 2004 
for a comprehensive overview).  
 In this review we will argue for a particular suite of methodologies to investigate 
these questions: that is a combination of larger scale neuroimaging studies with different 
monolingual and bilingual populations, and hybrid computational analyses that use 
encoded implementations of existing theories of conceptual organisation to probe the 
neural data. In particular we present experiments that look at how to deal with variation 
seen in the neural signatures associated with broad semantic classes (animals and tools) 
from recording to recording, depending on the presentation modality of the stimulus 
(written vs spoken words), and the language used (in Japanese/Chinese, and 
Chinese/Korean bilinguals). We present some methodological innovations that aid this 
aim, and finish with a discussion of how a comprehensive investigation of these broader 
questions may proceed.  
 

II. Language and Conceptual Organisation 
Two questions in particular are of current interest to the cognitive science and 
neuroscience communities. One is whether meaning is encoded entirely with abstract 
symbols, or entirely in terms of direct embodied experience (see section below), with 
less extreme positions taking elements of both approaches. Another is the extent to which 
conceptual organisation is determined by a shared genetic endowment and so universal; 
or shaped by different life experience, and so culturally specific. 
 Embodiment Theory asserts that the meaning of words is grounded and situated in 
our experience world in which we live, rather than being encoded in amodal abstract 
symbols (see Meteyard et al 2012 for a critical review). The neuro-physiological 
significance of this theory consists in a simulation semantics, which claims that  
conceptual processing of a word is performed by activating the perceptuo-motor system 
in the brain to virtually experience a context of its referent. Support for embodiment 
theory can be seen in some neuroimaging data (e.g. Pulvermüller 2005). For instance, 
concepts which involve a motor action as part of their core semantics, such as hand-tools, 
may elicit activity in the motor areas activated during their use (see Figure 1). 
 Recordings of brain activity have a unique advantage when it comes to investigating 
the mind, since  they are a real-space and real-time recording of mental processes. 
However brain data recording techniques are limited, in that none of them 
comprehensively capture the activity of the whole brain in action, in effect aggregating 
and blurring the activity of individual neurons over time and over space. Existing 



methods are vulnerable to various kinds of environmental and instrumental noise, and 
involve a trade-off between good spatial resolution (e.g. fMRI) or good temporal 
resolution (e.g. EEG). No current or projected methods approach a clean and 
comprehensive recording of the whole brain in action, which is comprised by the 
simultaneous activations of tens of billions individual neurons. Furthermore, brain 
imaging data can be expensive and cumbersome to collect, meaning that the datasets used 
in cognitive neuroscience research are typically very small (e.g. 30-60mins of activity 
from each of 10-20 participants). This has proven sufficient to answer many basic 
questions of cognitive function, typically using an artificial and targetted task that homes 
in on a single aspect of psychology at a time, using manipulated and carefully controlled 
sets of stimuli. A working assumption of such studies is often that human participants are 
homogeneous, so that cognitive processing is assumed to be basically uniform in kind 
across genders, age groups, cultures and other groupings. 
 Such an approach may not be appropriate for complex higher-level cognitive systems 
(Newell 1973), and may be especially ill-suited to investigations of language. Human 
languages are based in cultural experience, and there is some evidence (though still 
controversial, see e.g. Nevins et al 2009) that nurture partially determines conceptual 
organisation of constructs including number, time and colour terms (e.g. Regier et al 2007; 
Frank et al 2008). Further, mental vocabularies consist of tens of thousands of lexemes, 
expressing many thousands of concepts1. Even the core syntax of well-studied languages 
such as English have defied comprehensive treatment in theories that take a reductionist 
approach (e.g. Chomsky 1981). 
 

III. Data-Driven Analysis of Neuroimaging Data 
Important progress has been made in cognitive neuroscience by applying partially data-
driven computational approaches to recordings of brain activity. Machine learning 
methods, often termed multivariate pattern analysis (MVPA), particularly in the fMRI 
community, have several advantages over conventional contrastive analyses, summarized 
below.  
 Increased Sensitivity and Adaptivity: data-driven analyses may identify 
unanticipated patterns in the data, rather than those hypothesised by those who carry out 
experiments. 
 Individual Stimulus Analysis: increased sensitivity can make analysis of the neural 
signatures of individual stimuli possible, e.g. single words, or images. 
 Individual Participant Analysis: the same sensitivity enables analysis of data from 
single human participants. 
 Within-Study Replication: when cross-validated machine learning is used, there is 
a degree of replication, in that the patterns of activity identified during training are 
validated on unseen data. 
                                                 
1
 For instance, WordNet, a large scale computational lexicon of contemporary English, 
contains over 200 thousand word-sense entries. See 
http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html.  

http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html


 Multi-factor Modelling of Stimuli: rich meaningful stimuli (even stories and films) 
can be comprehensively modelled, as an alternative to attempts at balance of confounds. 
 Haxby et al (2001) was perhaps the first successful machine learning analysis of 
fMRI data. Using a simple two-fold data partition method, the study took odd and even 
runs of the presentation of visual object stimuli in several categories (e.g. shoes, houses, 
chairs). A transparent pattern identification method found reasonably stable neural 
signatures – that is distributed patterns of activity associated with a particular stimulus or 
psychological state. After learning these neural signatures, the visual category of unseen 
trials of fMRI data could be discriminated using a simple nearest-neighbour classifier. 
 A further advance was represented by Mitchell et al (2008), which succeeded in 
modelling contentful stimuli (a concept, represented by a line-drawing and its word-label) 
in terms of dimensions of meaning. A simple vector space feature model described the 
semantics of each concept, and a linear regression model was used to decompose whole-
brain activity to learn neural signatures for these individual dimensions. So, for example, 
that study was able to identify the distributed pattern of activity typical of objects which 
were edible (fruit, vegetables and certain animals).  In this way, the study demonstrated 
the ability to extrapolate beyond the limited set of stimuli that can be presented in a 
single neuroimaging session. Specifically, using a leave-two-out cross-validation partition, 
it could discriminate which of two concepts (e.g. horse and car) a participant was 
thinking about, even though neither of those concepts had been present in the training 
data. 
 One consequence of the increased sensitivity of data-driven methods is that they 
adapt to idiosyncrasies in particular participants (e.g. of anatomy, or timing in processing), 
or recording sessions (e.g. environmental noise). This can make generalisations over 
multiple participants and session more challenging (conventional analyses typically 
correct for this with strategies involving temporal and spatial averaging and smoothing). 
Haxby et al (2011) introduced a new method for cross-participant normalisation, based on 
richer, more ecologically valid stimulus: popular film. The hyperalignment method also 
used regression-based techniques to identify a set of voxels in one participant whose 
collective activity corresponded to that of the participant group. This was done on the 
assumption that popular film (in this case the Steven Spielberg feature, Indiana Jones and 
the Temple of Doom), drives neural activity such that whole-brain activations should be 
synchronised across individuals. Hyperalignment takes advantage of this to provide a 
functional mapping between the individual participants and the group at large, enabling 
much more effective cross-group learning of neural signatures. 
 

IV. Variation in Neural Signatures across Participants and Experiments 
In principle, one would hope that the neural signatures observed for a particular concept 
would exhibit a large degree of stability in repeated experimental measurements.  
 Whether conceptual representations are shared across individuals, language 
populations and communicative tasks is a central question for embodiment theories and 
for the question of language universality/relativity. At the same time, there are reasons to 
believe there is some degree of commonality. Neuroimaging and lesions studies confirm 
that at a macro-scale, cortical localisation of principal cognitive functions is largely 
shared across individuals (at least when limited to certain homogeneous populations, e.g. 



those with shared handedness, developmental stage, and health status). Arguments of 
cognitive and physiological economy suggest that the brain would develop in such a way 
as to avoid redundantly replicating conceptual information associated with different 
modalities such as vision, speech, and writing (though competing pressures of speed of 
processing, and robustness to cognitive degradation would encourage some degree of 
redundancy). Further, individuals switch easily between tasks and modalities, bilingual 
individuals switch languages, and groups of people communicate, all suggesting a 
partially shared semantic base. 
 Even if conceptual organisation was identical in all situations and participants, more 
prosaic differences would obscure them. Cortical anatomy varies considerably across 
individuals, in terms of shape, size, and local cortical folding, and this is only partially 
compensated for with image registration methods. And the temporal profile of activations 
may be modulated by the task, physiological arousal, and attentional state.  
 In the experiments presented here (Akama et al 2012; Akama et al 2014), we 
demonstrate some of these issues. In Figure 2, we show the binary average decoding 
accuracy for a mammal/tool classification task (mammal/tool, using ANOVA feature 
selection from full-brain data, and regularised logistic regression – see Methods section 
for full details) from a series of within-participant analyses of Experiment I. Chance 
performance is 50%, and accuracies above 55.8% were significant (at p<0.05, binomial 
test over independent trials, chance 50%, n=240). Note that experimental results are 
presented throughout this review, and our methods are described at the end. 
 As can be seen there is some variation already between different individual 
participants (P1-P5). Task effects are seen in two ways. Overall, when cross-validated 
training and testing data come from the same session, the auditory condition (audio-audio: 
spoken word stimulus) seems more easily decodable than the orthographic one (ortho-
ortho: written word stimulus). And when we test and train across two tasks from the same 
participant (training using the auditory-condition session and testing with the 
orthographic-condition session, or vice versa), decoding performance is further degraded, 
suggesting systematic differences in the neural signatures observed. 
 This variation has numerous possible causes, but differences in spatial and temporal 
localisation appear to contribute. Figure 3 performs the same analysis as in Figure 2, but 
using only a single fMRI trial volume at a time as input to the classifier (corresponding to 
a single second of data recorded in the first 20 seconds after stimulus presentation). 
Interestingly, the temporal profile of classification accuracy, which corresponds to the 
availability of discriminative information in the recorded signals, is isomorphic with the 
default hemodynamic function used in packages such as SPM. However there is 
considerable variation across participants (dotted lines), and the auditory-stimulus task 
seems to elicit a stronger and longer lasting neural signature, relative to the orthographic-
stimulus task. 
 Informative voxels are also widely spatially distributed. In Figure 4 we see the 
proportion of voxels that were chosen by an ANOVA feature ranking within selected 
functional/anatomical regions according to the AAL atlas (Tzourio-Mazoyer et al, 2002), 
averaged over all ten recorded sessions in Experiment I. When we differentiate by task 
modality, these spatial concentrations vary also, as Figure 5 illustrates. While there is 
some commonality, the auditory-stimulus data has an stronger concentration in parietal-
temporal areas, and the orthographic-stimulus data in occipital areas.  



 If we attempt to train and test classifiers across different participants these problems 
of transferability of learning become more pronounced. In Experiments IIa and IIb 
(Akama et al 2014), we recorded 28 sessions in total, 2 each from 14 participants. Single 
session cross-validated classifications, and within-participant cross-session classifications 
gave similar results to those seen in Figure 2. Figure 6 shows cross-session classification 
accuracies for all pairs of sessions. Cross-participant accuracies are clearly lower than 
within-participant analyses. As an aside, a strong language-specific effect was not 
observed – i.e., it is not the case that training and testing within the subgroups (early 
Korean-Chinese bilinguals, and late Chinese-Japanese bilinguals) was substantially easier, 
confirming that the patterns used by the algorithm are not based in language-specific 
word-forms, but rather in a some cross-language representation, presumably semantics.  
 Figure 7 shows the corresponding classification performance if we train on a whole 
group of participant sessions, and test a single left-out participant. The increase in data 
quantity, and generality of the neural patterns observed, improves generalisation across 
individuals. But it does not completely eliminate the cross-participant learning penalty. 
Figure 8 summarizes the results so far from Experiments IIa and IIb so far: the right-most 
bar plots show the average classification accuracy for within-subject analyses (>90%), 
which drops dramatically for cross-participant learning (~65%, corresponding to the 
results in Figure 6). Taking advantage of larger groups of participants helps only 
somewhat, yielding ~75% accuracy. 
 

V. Multivariate Solutions to Data Variability 
As we have seen up to this point, neural signature learning can be most successful when 
performed on data that comes from a single recording session (in a cross-validated 
fashion, avoiding double-dipping; see Kriegeskorte et al, 2009). Even if the data comes 
from a single participant, and a very similar task, there is a considerable decoding 
performance penalty, in the 5-10% range in the experiments described here (Figures 2 
and 8). When we train across pairs of participants the penalty increases dramatically, and 
is only partly offset when we expand and generalise the training data to draw from groups 
of participant sessions.  
 One solution to this issue to that has already been introduced is the hyperalignment 
method from Haxby et al (2011). This uses a parallel time-courses of fMRI data from two 
or more participants/sessions, driven by an engaging task such as movie watching. Linear 
regression is used identify subgroups of voxels which are collectively correlated, 
resulting in a cross-session mapping.  In effect this makes no assumptions about spatial 
correspondence across sessions, but rather demands temporal alignment of the activation 
profile.  
 An alternative approach is to abstract away from the temporal and spatial particulars 
of a particular recording, only representing the mutual similarity relationships among 
neural signatures (Kriegeskorte et al 2008a; Raizada & Connolly 2012), in a similar way 
to the word-spaces mentioned at the beginning of this article. With such a method we 
might discover for example that similarity measures between “cat” and “dog” are higher, 
than to “cow”, and that this pattern is shared across sessions, participants, tasks, 
recording modalities, and even species (Kriegeskorte et al 2008b). 
 In Akama et al (2014) we introduce another method for cross-session and cross-
group learning of neural signatures. Crucially this method requires the training data to 



include some data from the target session, avoiding double-dipping by keeping a separate 
partition of the target data held-out for testing. While this may not be suited to many real 
world applications (e.g. Brain-Computer-Interaction) for basic cognitive neuroscience 
research it does not present problems. And as Figure 8 demonstrates, both variants of the 
approach, JRFS (joint ranking feature selection) and DJFS (disjoint feature selection) 
come close to eliminating the cross-participant penalty, if not the cross-session penalty.  
 

VI. Closing Discussion 
In this review we point to some open theoretical questions on how the mind and brain 
represent and process concepts, particularly as they are instantiated in particular human 
languages. Recordings of neuroimaging data should provide a suitable empirical basis for 
investigating this topic, but the complexity and variety of language demands appropriate 
data-driven approaches. Conventional contrastive analyses of neuroimaging data 
successfully generalise over groups of participants, but usually at the cost of radical 
simplification of the theoretical questions (cf. the concerns of Newell, 1973).  
 Multivariate approaches can provide a solution to the limitations of contrastive 
analyses, in that they can be tailored to the granularity of the question at hand. 
Furthermore they can integrate existing models of language (e.g. lexicon, syntax) to 
comprehensively test a complete instantiation of a theory. This can have the additional 
benefit of increasing the generality of the results obtained – a case in point is the data-
driven decomposition of fMRI brain activity in Mitchell et al (2008), which used a web-
corpus derived semantic space to identify neural signatures for individual components of 
meaning, and so make the models capable of accounting for concepts/stimuli that have 
not been encountered during training (so called “zero-shot” learning). While multivariate 
approaches have a potential drawback in their ability to generalise across sessions, 
participants and tasks2, proposals have also been made by ourselves and others 
(Kriegeskorte et al 2008a; Haxby et al 2011; Akama et al 2014) to deal with this 
effectively. Over the past few years a significant progress is being made in this field, and 
it is worthwhile to emphasize that the involvement of widespread cortical areas were 
elucidated by using Multivariate approaches to multilingual processing (Lei et al., 2014; 
Pliatsikas et al, 2016). 
 
Looking to the future, the sophistication of behavioural paradigms and multivariate 
analyses continues to advance. There is an increased use of “naturalistic” and 
“ecologically valid” tasks, which try to engage participants and elicit brain activity in a 
more realistic way, e.g. through the use of film (Hasson et al 2008) or stories (Brennan et 
al 2012). These paradigms also enable more realistic and comprehensive models of 
language processing: for instance Wehbe et al (2014a) combines data-driven learning of 
temporal profiles in fMRI, cross-subject adaptive learning, and multi-strata modelling of 
word, sentence and narrative level representations and their interaction. And more 
                                                 
2
 It should be remembered that conventional contrastive analyses generalise at the cost 
of fidelity to the original data. They usually use a variety of spatial smoothing (using 
Gaussian filters), temporal smoothing (through use of a single assumed hemodynamic 
model) and averaging, which blurs real and partly systematic patterns in the data. 



explicit computational models of how word meanings combine to arrive at phrase and 
sentence meaning have been applied to fMRI data (Fyshe et al 2015; Anderson et al 
2016). Wehbe et al (2014b) applies non-linear effects and deep learning to a similar 
paradigm. Approaches such as these are now starting to be applied to electrophysiological 
data also (Dmochowski et al 2012; Wehbe et al 2014b) which enables analyses at the 
temporal scale of natural language (in spontaneous speech we typically produce 3-4 
words a second). And finally the modelling of the idiosyncratic semantic spaces of 
individual participants (Charest et al 2014) demonstrates that the subtle differences in 
concept meaning seen in different languages may be open to analysis, despite cross-
language similarities in neural representations (Buchweitz et al 2012; Zinszer et al 2016) 
These tools continue to provide further evidence on the amodal (Fairhall et al., 2013; 
Liuzzi et al., 2015) or embodied (Fernandino et al., 2015, 2016; Anderson et al., 2016) 
encoding of meaning of the brain. 
 Together, we believe that this suite of methodologies holds the promise of being able 
to holistically elicit, record and model neural processing during language comprehension 
and production.  
 

Appendix 
Methods 
These experiments partially replicate the paradigm developed in Mitchell et al (2008), 
using fast whole-brain fMRI imaging, and a slow event-related property generation task. 
Details of the variations in the language and modality specific to each experiment are 
described below. In Experiment I, native Japanese speakers performed a monolingual 
task. In Experiments IIa and IIb, Korean-Chinese and Chinese-Japanese bilinguals 
performed a language switching task. 
 
Task and Stimuli 
    The same slow event-related design was used in all experiments. Each session had 6 
repeated runs for a total of 240 trials. In each trial, a concept was presented for 3 seconds 
followed by a fixation cross for 7 seconds. There were six additional presentations of a 
fixation cross of 40 seconds each, distributed just after each run, to establish a signal 
baseline for subsequent analysis. During the stimuli presentation, participants were asked 
to do a silent property generation task by thinking of appropriate features of the 
corresponding concept. During the fixation cross participants were asked to fixate their 
eyes on the cross silently and no response was required. 



 We employed a stimulus set representing concepts in the two categories of land-
mammals and work tools based on an earlier EEG experiment (Murphy et al 2011), with 
20 concepts in each of the two categories.3 For trials that used image stimuli, 40 
contrast-normalized grey-scale photographs were used. 
 In Experiment I (Akama et al 2012) five native Japanese speakers (ages 39-53 years) 
participated, each performing two separate scanning sessions on two different days 
separated by at least 1 week. The sessions alternated the language stimulus modality: first 
viewing pictures while listening to the spoken word describing the represented object (the 
auditory condition), and next viewing pictures with an accompanying caption (the 
orthographic condition). They were asked to silently enumerate properties that are 
characteristic of the presented concept. 
 In Experiment IIa and IIb (Akama et al 2014; see also Lei et al 2014) bilinguals 
performed the same property generation task, with an added language switch condition, 
which alternated between each of two sessions. All 14 participants were native speakers 
of Mandarin Chinese (aged 22 to 28). In experiment IIa, seven early Korean-Chinese 
bilinguals performed both Korean-Chinese and Chinese-Korean switch conditions (see 
Figure 9), and in experiment IIb seven late Chinese-Japanese bilinguals performed the 
corresponding switch conditions involving those two languages. The experimental stimuli 
used in both variants are summarized in Figure 10. 
 
Data Acquisition 
    Functional MRI scans were performed with a 3.0-T General Electric Signa scanner 
at Tokyo Institute of Technology, Japan with an 8-channel high- resolution head coil. 
Functional scanning was performed using an echo planar imaging sequence with a 1000-
ms repetition time (TR), 30-ms echo time (TE), and 60- degree flip angle (FA). Each 
volume consisted of 15* 6- mm- thick slices with an interslice gap of 1 mm; FOV: , 
20×*20 cm; size of acquisition matrix, 64×*64; NEX:, 1.00. The parameter values of the 
anatomical scans were TR=7.284 ms, TE=2.892 ms, FA=11 degrees, Band Width=31.25 
kHz, and voxel size=1 mm isotropic. Following the settings used by Mitchell et al. 
(personal communication), we set oblique slices in the sagittal view with a tilt of -20 to -
30 degrees such that the most inferior slice was passed above the eyes and through the 
posterior cerebellum. 
 
Preprocessing and Contrastive Group Analysis with GLM  
 fMRI initial data processing was performed with Statistical Parametric Mapping 
software (SPM8, Wellcome Department of Cognitive Neurology, London, UK). The data 
were motion corrected, co-registered to the anatomical images, segmented to identify 
grey matter, and normalized into standard Montreal Neurological Institute (MNI) space at 
                                                 
3
  The concepts used were the following: Mammals: anteater, armadillo, beaver, camel, deer, elephant, 
fox, giraffe, gorilla, hare, hedgehog, hippopotamus, kangaroo, koala, mole, monkey, panda, rhinoceros 
skunk, zebra. 
 Tools: Allen key, axe, chainsaw, craft knife, file, hammer, nail, paint roller, plaster trowel, pliers, 
plunger, power drill, rake, saw, scraper, scissors, screw sickle, spanner, tape measure. 
 The corresponding Chinese and Korean terms are detailed in Akama et al (2014). 
 
 



a resliced voxel size of 3x3x6 mm, coarse rendering for temporal resolution acuity. A 
General Linear Model (Friston et al., 1994) was used for conventional contrastive 
analyses (e.g. task > rest; mammal > tool – see Figure 1 for an example). Both single-
session analyses, and random-effects group analyses were performed. Some figures were 
produced using the XjView toolbox4 in addition to SPM8. 
 
Machine Learning Analyses 
 The PyMVPA 2.0 package (Hanke et al 2009)5 was used for machine learning (ie 
multivariate pattern) analyses. The realigned, co-registered, segmented, and grey-matter-
masked (but not smoothed) images of each participant in each session were used. The 
time-course of each voxel was z-normalized and detrended, and unless otherwise noted, 
trialwise estimates were calculated with a boxcar average. In all analyses datasets were 
split into a training set and an evaluation set using a leave-one-out six-fold cross-
validation. The classifier used was a penalised logistic regression (PLR) using L2-norm 
regularization. The regularization term deals with both high dimensionality and 
redundancy in data, and its logistic function is optimized to fit discrete data categories. In 
decoding analyses a univariate feature-selection (ANOVA, which is monotonic with the 
t-statistic) preceded training, and performance was evaluated as the mean percentage 
correct classification of the semantic category (mammal or tool) of left-out data trials. In 
sensitivity analyses either the raw ANOVA feature selection ranking was used, or 
mammal/tool classification accuracy in a search-light sphere (Kriegeskorte et al, 2006).  
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Figure 1: Result maps of two contrasts (red : mammal > tool ; yellow : tool > mammal) 
computed by using a random effect analysis in SPM8 with p < 0.001 uncorrected from 10 
participant sessions. Mammal-specific activity is seen in inferior temporal cortex, and 
tool-specific activity is seen in motor areas 

Figure 2: mammal/tool classification accuracy for within-participant analyses from 
Experiment I, using whole-trial boxcar (Figure remade based on Akama et al 2012). 



Figure 3: Classification accuracy for within-session analyses from Experiment I, using 
single-volume sliding window (Figure remade based on Akama et al 2012). 

Figure 4: The 40 top mean ratios of these informative voxels to all the same-sized voxels 



attributed to each anatomical area in AAL brain atlas. Error bars represent standard error 
(data from Experiment I) 
 

 
Figure 5: Modality-specific distribution maps of the 1000 most informative voxels, 
Experiment I. 



Figure 6: Cross-session classification accuracies between participants comprising early 
Korean-Chinese bilinguals ('e', Experiment IIa), and late Chinese-Japanese bilinguals ('l', 
Experiment IIb). The diagonal (within-session analysis) is not populated. The off-
diagonals show the higher accuracy seen for within-participant analyses. (Replicated 
from Akama et al., 2014). 

Figure 7: Groupwise classification accuracies, training on a set of Korean-Chinese 
bilinguals ('e', Experiment IIa), and late Chinese-Japanese bilinguals ('l', Experiment IIb), 



and testing on a single left-out participant. (Replicated from Akama et al., 2014). 

Figure 8: Summary of average classification accuracies for a range of analysis settings in 
Experiments IIa, IIb. JRFS and DJFS refer to feature selection strategies introduced in the 
next section. (Replicated from Akama et al., 2014). 

Figure 9: ‘Language A → Language B’ indicates that the participant was presented with 
stimuli captions in language A and was asked to perform covert property generation in 
language B. 



Figure 10: Trial structure and stimulus format for experiments IIa and IIb. 
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