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and clustering algorithms to identify regions of space where the properties of the sys-

tem constituents can be considered uniform. We show how this method can be used to

define collective variables and how these collective variables can be used to enhance the

sampling of nucleation events. We then show how this method can be used to analyze

simulations of crystal nucleation and growth by using it to analyze simulations of the

nucleation of the molecular crystal urea and simulations of nucleation in a semicon-

ducting alloy. The semiconducting alloy example we discuss is particular challenging

as multiple nucleation centers are formed. We show, however, that our algorithm is

able to detect the grain boundaries in the resulting polycrystal.

1 Introduction

Many interesting phenomena in materials science occur at the interface between different

phases. For example, when a material melts or freezes an interface between the solid and

liquid phases must form. When describing this scenario at the macroscopic level the two

phases are identified by finding the regions of space throughout which the physical properties

of the system are uniform both in terms of structure and composition. As such, whenever a

boundary between two phases is crossed, the local physical properties of the system change

discontinuously. This description works well when the volumes of the two phases are large

as the the ratio between the number of surface atoms and the number of bulk atoms is

then guaranteed to be exceedingly small. When the extents of the two phases involved are

on the order of nanometers, however, this assumption breaks down as the surface atoms

now constitute a substantial part of the system. When studying problems at these tiny

length scales atomistic molecular dynamics (MD) is an invaluable tool as it allows one to

monitor the static and dynamic properties of the atoms/molecules. One difficulty with this

method is extracting the pertinent information from the vast amount of data contained in

a molecular dynamics trajectory. Doing this effectively requires the use of a certain degree

chemical/physical intuition about the problem in question. So, for example, when studying
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an interface between the solid and liquid phases of a material one would really like to begin

by defining the extent of the two phases and the location of the interface between them. If,

as in MD, one is given just the positions of all the atoms in the system this is a non-trivial

problem, particularly for dense systems.

In this paper, we discuss a set of computational tools we have developed that can be used

both to detect clusters of one phase within a second phase and to enhance the rate at which

phase separation processes occur. Our method is based on a set of differentiable Collective

Variables (CV) that have been implemented in PLUMED 2.01,2 and that are therefore freely

available online. In what follows we first briefly discuss the essential theoretical background

of our approach in section 2. We then demonstrate how these CVs can be used in enhanced

sampling simulations to drive the condensation of a Lennard-Jones vapor into liquid droplets.

Next, we show the various ways we have used these tools to quickly implement new CVs that

can be used to analyze molecular dynamics trajectories in which phase separation events are

observed. In the last of these examples, we demonstrate that these methods can even identify

complex interfaces such as three-dimensional grain boundaries. This example is particularly

problematic as the phases in this particular system possess the same crystalline structure

with different orientations.

2 Methodology

As discussed in the introduction, a phase is a region of space in which local physical properties

of the system are reasonably uniform. This uniformity occurs because the local symmetry

around each of the atoms/molecules in any given phase is similar. There are differences in

the symmetry around each of the molecules due to thermal motions, but as these fluctuations

are small we can exploit the differences in the local symmetries around atoms/molecules in

the various phases when designing CVs to understand nucleation. In what follows we will

begin by discussing the formation of a solid from the melt in order to make our explanation
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clearer. We will then generalize the ideas and explain how these methods can be used in

other contexts.

Figure 1: Figure illustrating what a CV that establishes the extent of a solid-portion of
a two phase system must accomplish. In the figures above the red atoms differ from the
blue atoms in some way. They red atoms might be a different elemental type to the blue
atoms or they might just have different values for some symmetry function. As discussed in
the text a good CV should be able to differentiate the red atoms from the blue atoms. It
must then determine the largest subset of red atoms that are clustered together in a single
continuous region. If the CV only does the first of these tasks then it is not guaranteed that
it will distinguish the two phase system from the mixture shown above. Similarly if it only
determines if atoms are in a contiguous region it cannot distinguish a one phase system from
a two phase system.

Any CV that establishes the extent of the solid portion of a two phase system from the

positions of all the constituent atoms/molecules must do two things:

1. It must establish which of the atoms are solid-like.

2. It must determine the subsets of atoms/molecules from this set of solid-like atoms that

are clustered together into contiguous regions.

As shown in figure 1 if only the first of these steps is performed there is no guarantee that the

CV will be able to differentiate between a true two phase system and a mixture. Within our

CVs these two tasks are performed by two separate sets of functions. We determine the set

of solid-like atoms by calculating atom-centered symmetry functions for each of the atoms
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in our system. These symmetry functions are calculated based on the position of the central

atom and the positions of the atoms its first few coordination spheres. Similar functions

are used in a number of different computational frameworks, a particularly notable example

being the high-dimensional neural networks devised by Behler et al.3

The simplest symmetry function is the coordination number, which is frequently calcu-

lated using:

ci =
∑
j 6=i

1−
(
rij−d0
r0

)n
1−

(
rij−d0
r0

)m (1)

where rij is the distance between atom i and atom j and r0, d0, n and m are parameters that

determine how rapidly this function decays to zero. More complicated symmetry functions

include the cubic harmonics,4,5 directional order parameters that measure the relative ori-

entations of molecules,6 the Steinhardt order parameters7,8 and the local Steinhardt order

parameters8,9 all of which are available in PLUMED 2.02 and all of which can be used within

our method.

Figure 2: A figure illustrating how the graph reduction algorithms that are at the heart of
this work operate. A 10× 10 adjacency matrix is constructed based on the positions of the
atoms shown in the left hand side. The i, j element of this matrix tells you whether or not
atoms i and j are connected. The DFS algorithm takes this matrix as input and returns the
list of atoms that are in each of the four connected components of the corresponding graph
shown on the right.

The second element of our method is a graph reduction algorithm.10 The input for this
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algorithm is a symmetric adjacency matrix whose (i, j) element tells us whether or not the

ith and jth particles are connected. The elements of this matrix can be calculated by using

something as simple as a Heaviside step function acting on the distance, rij, between the

centers of mass of molecules i and j. In general, however, because each of these elements

equals either one or zero, we can illustrate the connectivity structure encoded in our matrix

using a graph as shown in figure 2. There are numerous algorithms11–14 that can then be

used to divide the nodes of this graph into the subsets of connected components shown in

figure 2. We choose to use the depth first search (DFS)10 graph reduction algorithm although

other clustering algorithms would work equally well.

The final step in our prescription is to calculate some function, g, of the sum of the values

of the symmetry functions for the atoms in each of the connected components we find. In

other words, we compute:

s =
M∑
i=1

g

(
Ni∑
j=1

cj

)
(2)

where M is the number of connected components. The second sum runs over the Ni atoms

in the ith connected component and cj is the value of the symmetry function for the jth

atom that forms part of the ith connected component. The value of s that we extract

using this formula is not continuous. However, as discussed in the next section, we have

found that we can use such quantities as the CV in umbrella sampling,15 steered MD16 or

metadynamics17,18 simulations and that we can use these variable to enhance the sampling of

rare events such as nucleation.19 The only caveat being that, when doing such calculations,

special care is required as the system must be prevented from entering regions of phase space

in which the CV defined by equation 2 changes discontinuously. With these technicalities

aside we will, in the following sections, demonstrate how this method can be used to study

nucleation of liquid from gas, nucleation of crystals from solution and to study nucleation

from the melt.
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3 Driving nucleation of liquid droplets from gas

Figure 3: Figure showing the manner in which the CV is calculated in section 3. The
first step involves computing the coordination numbers of all the atoms in the system. For
clarity, we have colored the atoms with a high coordination number in red in this figure. In
the second step, an adjacency matrix is constructed in which element i, j tells you whether
or not atoms i and j are within some cutoff distance. The connected components in the
graph corresponding to this matrix are then computed using the DFS algorithm. In the final
step, only the atoms in the largest connected component are considered and the sum of the
coordination numbers for these atoms is evaluated.

The first transformation we chose to analyze with our method is the nucleation of argon

droplets from supersaturated argon vapor. This phenomenon has been simulated using the

Lennard-Jones potential in previous works20 and the coordination number of the atoms has

been used to distinguish those atoms in the gaseous phase from those in the nascent droplet.21

In this work, we thus chose to model this process using the Lennard Jones potential that was

used in these previous work and to use the coordination number as the symmetry function

in the scheme in section 2. The (i, j) element of the adjacency matrix, Mij, was calculated

using the following function:

Mij =


1 for rij < 4.5

[rij − 5.5]2 [rij − 3.5] for 4.5 ≤ rij ≤ 5.5

0 otherwise

(3)
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where rij is the distance between atom i and atom j. The function above goes smoothly

to zero at rij = 5.5 Å. We thus state that atoms i and j are only connected if they are

within 5.5 Å of each other. As illustrated in the middle panel of figure 3 we can analyze this

adjacency matrix using the DFS algorithm, find the connected components and thus identify

any droplets of liquid that have nucleated in our simulation. Furthermore, if we take the sum

of any row of the above adjacency matrix,
∑N

i=1 = Mij, we get the coordination number, ci,

for the ith atom. Our final CV in this section is thus the sum of the coordination numbers

for the atoms in the largest cluster:

s =

N1∑
i=1

N∑
j=1

Mij (4)

where, to reiterate, the first sum here runs over those atoms in the largest cluster identified

by the DFS algorithm and the second sum runs over all the atoms in the system.

When evaluating the adjacency matrix, we use the continuous function described in

equation 3 rather than a simpler Heavyside function because we would like to be able to

calculate derivatives for the final collective variable s. We need these derivatives because we

would like to use a bias that is a function of this coordinate to accelerate sampling. This

bias will introduce additional forces on the atoms the values of which will depend on the

derivative of the CV with respect to the atomic positions. The fact that our CV is not

differentiable is thus a concern. However, we have found that these issues resolve themselves

if the parameters are set sensibly. In particular, when using derivatives, it is important

to ensure that a smooth and differentiable function is used within the definition of the

symmetry function. If this is done, and if the cutoff that determines whether or not two

atoms are connected for the DFS algorithm is set at a value where this continuous switching

function has decayed to zero, the value of the final function will not change discontinuously

when one further atoms is added to the cluster. Even if these cutoffs are set in this way

the value of the function will still change discontinuously if two smaller clusters merge to
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form one much larger cluster. Fortunately, such events were not observed during the liquid

nucleation trajectories described in this section. This not surprising because, at these low

supersaturations, classical nucleation theory predicts that the concurrent formation of two

large nuclei is extremely unlikely.

As discontinuous changes in the value of equation 4 are not observed we can safely use

this function as a collective variable in a metadynamics simulation.17 This method uses

a history-dependent bias to force droplets to grow and dissolve rapidly. Furthermore, at

the end of a metadynamics simulation, we can recover the free energy as a function of our

collective variable from the bias.17,22 The system we investigated was composed of 100 Argon

atoms at 80.7 K. The temperature was kept constant using the velocity-rescale thermostat23

and the volume was fixed at 180.36 nm3. The equations of motion were propagated with a

2 fs time-step for 200 ns using gromacs-4.6.524–27 and the following PLUMED input file:

lq: COORDINATIONNUMBER SPECIES=1-100 SWITCH={CUBIC D_0=0.45 D_MAX=0.55} LOWMEM

cm: CONTACT_MATRIX ATOMS=lq SWITCH={CUBIC D_0=0.45 D_MAX=0.55}

dfs: DFSCLUSTERING MATRIX=cm

clust1: CLUSTER_PROPERTIES CLUSTERS=dfs CLUSTER=1 SUM

mt: METAD ...

ARG=clust1.sum SIGMA=10. HEIGHT=2. PACE=500

TEMP=80.7 BIASFACTOR=50 GRID_MIN=0 GRID_MAX=6000

... mt: METAD

Figure 4 shows that the CV is able to drive a cluster with a larger number of bonds to

form and dissolve multiple times over the course of this short simulation. As clusters form

and dissolve a large number of times during the metadynamics simulation we are able to

say with confidence that any estimate of the free energy we extract from this simulation will

be converged. We therefore calculated the estimate of the free energy as a function of the

number of atoms in the largest of the clusters that was identified using the DFS algorithm

that is shown in figure 5 using the reweighting algorithm developed by Bonomi et al.28 We
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Figure 4: Behavior of the CV employed to drive the nucleation of a droplet in a LJ gas as a
function of the simulation time.

Figure 5: The free energy for a supersaturated Lenard Jones gas as a function of the number
of atoms in the liquid nucleus. Snapshots of the bubble obtained during the metadynamics
calculations are also shown.
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can calculate the quantity on the x-axis of this figure by adding the following instructions

to the PLUMED input that was used for the metadynamics simulation and which was given

above:

ss: CLUSTER_NATOMS CLUSTERS=dfs CLUSTER=1

PRINT ARG=ss FILE=colvar

This converged free energy surface is shown in figure 5. It is important to note that we have

to use reweighting to extract the free energy as a function of cluster size as we cannot use

the number of atoms in the largest cluster as a CV for a metadynamics simulation as this

quantity can change discontinuously.

Our metadynamics simulations of the nucleation of the droplets were run with a constant

number of atoms, a constant temperature, and a constant volume so there is a coupling

between the size of the droplet and the chemical potential of the surrounding gas.29–32 The

free energy shown in figure 5 thus increases as the cluster grows because of this finite size

effect.

A visual inspection of the trajectories led us to believe that clusters became more spherical

as they grow. To investigate this more thoroughly we introduce the shape anisotropy k as a

measure of the sphericity of the clusters:

k =
3

2

(λ41 + λ42 + λ43)

(λ21 + λ21 + λ21)
2
− 1

2
(5)

To compute k we evaluated the inertia tensor for the largest cluster of atoms in our system:

Tαβ =

N1∑
i=1

mi(x
(i)
αβ − x̂αβ)

In this formula the sums run over the atoms in the largest cluster and mi, x
(i) and x̂ are

used to denote the mass of the ith atom in this cluster, the position of this atom and the

position of the center of mass for the atom in the cluster. Tαβ is a symmetric, 3× 3 matrix
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and the λ1, λ2 and λ3 values in equation 5 are the eigenvalues of this matrix. Consequently,

k is a unit-less quantity that takes a value between 0 and 1. This quantity is zero when the

cluster is spherical and one when the atoms are arranged in a line.33

The free energy surface shown in figure 6 was again calculated using the reweighting

algorithm developed by Bonomi et al.28 The free energy surface here is shown as a function

of the number of atoms in the largest cluster, n, and the shape anisotropy, k. Figure 6

shows clearly that small clusters are very flexible and that for these small clusters there is

no barrier for going from a spherical shape with k ≈ 0 to a less isotropic shape with with

k ≈ 0.25. A visual inspection of the trajectory shows that these anisotropic clusters have

a flattened, pancake-like shape with λ1 < λ2 ≈ λ3. When the droplets grow larger these

non-spherical shapes disappear and the droplet becomes more spherical so as to minimize

the surface-volume ratio. This behavior at large sizes is completely in accordance with the

predictions of classical nucleation theory. Furthermore, the fact that the smallest nuclei

are non-spherical is similar to the behavior that has been observed in simulations of the

nucleation of crystalline Lennard-Jones nuclei from the melt.34

Figure 6: The free energy surface for droplet formation from the gas as a function of the
size of the cluster n and the shape anisotropy k. This free energy surface was obtained
by reweighting the biased metadynamics trajectory. It is clear from this figure that small
droplets are flexible and can adopt a range of shapes. However, as the droplets grow this
flexibility disappears and the clusters become spherical.
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4 Nucleation of solid urea from the melt

Figure 7: Histograms of symmetry functions for pure crystalline urea (green lines) and liquid
urea (blue lines). These probability densities were calculated from 300 ns long trajectories
of 300 urea molecules, which were run at 450 K. The left-most panel shows the radial
distribution function for the carbon atoms of urea together with a dashed line that indicates
where the first coordination sphere is considered to end in this work. The central panel
shows the histograms of torsional angles between the vectors connecting the carbon and
oxygen atoms on neighboring urea molecules. The dashed line in this figure shows the shape
of the function, K(φij), that we use to determine whether or not neighboring urea molecules
are arranged as they would be in the solid. The rightmost figure shows a histogram for the
quantity ζ that is defined in equation 7 and that was used to distinguish those molecules in
the solid from those in the liquid. The dashed line in this final figure shows where we locate
the dividing surface between the solid and the liquid in this work.

For this second example we chose to re-examine the well-tempered metadynamics trajec-

tories from a recent article on the formation of solid urea from the melt.35 The particular

simulations we chose were the ones performed in the NVT ensemble on a system of 300 urea

molecules at the melting temperature. The methods described in the previous section can

be used when the atoms or molecules come closer together when nucleating the new phase.

They can thus be applied to study the formation of liquid droplets from vapor or to exam-

ine the precipitation of a solute from solution.36–40 They are clearly not appropriate when

examining nucleation of crystals from the melt, however, because, as can be seen clearly in

the radial distribution functions shown in the left-most panel of figure 7, the molecules in

the new (solid) phase are no closer together than they were in the liquid.

The difference between the solid and liquid phases is illustrated in the central panel

of figure 7 which shows histograms of torsional angles between the vectors connecting the
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Figure 8: Figure illustrating the manner in which the CV is calculated in the early parts of
section 4. Each of the blue circles in the panel on the left hand side represents a molecule.
The black arrows represent the orientations of the molecules, which can be calculated using
PLUMED. In any solid portions of the system the molecules will be aligned and hence these
orientation vectors will point in the same direction. As shown in the second panel we can
construct an adjacency matrix with elements that measure whether or not the molecules
that are within a cutoff distance of each other have the same orientation. This matrix can
then be inserted into the DFS clustering algorithm and the crystalline regions can thus be
discovered.

carbon and oxygen atoms on all urea molecules whose central carbon atoms are within 6.4 Å

of each other. In the solid phase this distribution has peaks around 0 and π radians indicating

that adjacent urea molecules are aligned. In the liquid by contrast the distribution of angles

is close to uniform and the structure is thus less ordered. These observations suggest that

solid clusters forming from the melt can be identified using a strategy like that shown in

figure 8. Essentially the elements of the adjacency matrix are calculated using:

Aij = σ(rij)K(φij) where K(φij) =

[
1−

∣∣∣∣φijb1
∣∣∣∣]+

[
1−

∣∣∣∣φij − πb2

∣∣∣∣] (6)

Here σ(rij) is a switching function on the distance between the carbon atoms of molecules i
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and j that is one when rij < 6.4 and zero otherwise. φij, meanwhile, is the torsional angle

between the vectors connecting the carbon atoms to the oxygen atoms in urea molecules i

and j. The function K(θij) is shown as a dashed line in the middle panel of figure 7 - the

parameters b1 and b2 were set equal to 0.8 and 0.7 throughout this work. K(θij) converts

torsional angles close to zero and π to a number close to one, while converting other values of

the torsion to numbers close to zero. Consequently, the i, j element of the adjacency matrix

is only large, and the corresponding urea molecules are thus only connected, if they are close

together and if the orientations of their carbon oxygen bonds are close to parallel or anti

parallel. When this connectivity matrix is analyzed using the DFS algorithm the largest

cluster of solid molecules should thus be identified. This is not what is observed in practice,

however. The experiments we ran using this method suggested that all the molecules in the

system were part of the largest crystalline cluster at all times. In other words, the algorithm

found that every molecule in the system was connected into one contiguous crystalline mass

at all times despite the fact that multiple conversions between solid and liquid were clearly

seen in the trajectory. It would appear that a small number of molecules are aligned when the

system is in the liquid phase simply because, as shown in figure 7, the distribution of relative

orientations of molecules is close to uniform. When the adjacency matrix is calculated as

described above molecules thus appear connected even though they are not crystalline.

To remedy this problem an average value for K(φij) was calculated for each of the

molecules in the system using:

ζi =

∑
j σ(rij)K(φij)∑

j σ(rij)
(7)

This function, which is similar to that used in a number of other recent articles,37–39 measures

whether or not the C-O bonds on the urea molecules in the first coordination sphere around

molecule i point in the same direction as the bond in molecule i. As shown in the right-most

panel of figure 7 the value of this order parameter effectively distinguishes molecules within

the solid from molecules within the liquid. The crystalline clusters that are present in the

system can thus be identified using the strategy illustrated in figure 9. DFS clustering is
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Figure 9: Figure illustrating the manner in which the CV is calculated in the later parts
of section 4 and in section 5. For urea the value of the ζi order parameter is calculated for
each of the molecules in the system while for GeTe the value of ci is calculated for each
atom. These quantities allow us to differentiate those atoms/molecules whose environment
resembles that in the solid from those atoms/molecules whose environment resembles that
in the liquid phase. In the leftmost panel these duly-identified, solid-like atoms/molecules
are shown in red, while liquid-like atoms/molecules are shown in blue. To be totally clear,
however, the red and blue circles are used to represent species that are chemically identical.
Once the symmetry functions have been calculated an adjacency matrix is constructed for
only those atoms with a high value for the order parameter (ζi or ci). In this diagram we
would thus construct an adjacency matrix for the atoms shown in red in the figure and the
i, j element of this matrix would tell us whether or not atoms i and j are within a certain
cutoff. When we run the DFS algorithm with this matrix as input we are thus able to
identify the three distinct crystalline clusters shown in red in the second panel of this figure.
As shown in the right-most panel one possible final step involves calculating how many of
the connected components identified by the DFS algorithm contain more than 4 atoms.

performed considering only those atoms that have a large value for the quantity ζi defined

in equation 7. In other words, the elements of the adjacency matrix are calculated using:

Aij = σ(rij)S(ζi)S(ζj) where S(ζi) =


1 if ζi > ζ0

0 otherwise

In this work ζ0 = 0.5 and S(ζi) was a Heavyside function. There is sufficient flexibility within

PLUMED, however, to use a continuous switching function if derivatives are required. The
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input that instructs PLUMED to do this calculation is shown below:

MOLECULES ...

MOL1=1,2,1

MOL2=9,10,9

...

LABEL=m1

... MOLECULES

smac: SMAC ...

DATA=m1

SWITCH={RATIONAL D_0=0.639 R_0=0.1 D_MAX=0.64}

KERNEL1={TRIANGULAR CENTER=0 SIGMA=0.8}

KERNEL2={TRIANGULAR CENTER=pi SIGMA=0.7}

SWITCH_COORD={RATIONAL R_0=0.001}

... smac: SMAC

ff: MFILTER_MORE DATA=smac SWITCH={GAUSSIAN D_0=0.49 R_0=0.5 D_MAX=0.5}

c1: CONTACT_MATRIX ATOMS=ff SWITCH={RATIONAL D_0=0.639 R_0=0.01 D_MAX=0.64}

dfs: DFSCLUSTERING MATRIX=c1

cc1: CLUSTER_PROPERTIES ...

CLUSTERS=dfs CLUSTER=1

MORE_THAN={GAUSSIAN D_0=0.49 R_0=0.5 D_MAX=0.5}

... cc1: CLUSTER_PROPERTIES

This input was used to analyze a 300 ns well-tempered metadynamics trajectory, which,

as discussed in the first paragraph of this section, was taken from a previously published

article.35 In this trajectory urea was observed to transition between the solid and liquid

phases multiple times because of the simulation bias. The results of the analysis are shown
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in figure 10. In the top panel the total number of molecules that have ζi > 0.5, and which are

thus solid, is shown. In the bottom panel meanwhile the same quantity is shown calculated

for those atoms that form part of the largest connected cluster. These two plots are very

similar which suggests that a single solid nucleus forms in these simulations. In other words,

all the molecules of solid are connected into one single contiguous mass.

Figure 10: Analysis of a 300 ns crystallisation simulation for urea at 450 K, in which the
reversible formation of the solid is observed. In the top panel the total number of molecules
that have a ζ > 0.5 and which are thus considered to be solid is shown. In the lower panel the
number of molecules with ζ > 0.5, which are are in the largest cluster found in the system is
shown. These two curves are almost identical, which suggests that all the crystalline atoms
in the system are connected together into a single, contiguous crystalline mass.
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5 Crystal Nucleation of GeTe from the supercooled liq-

uid phase

For this final application the formation of a polycrystalline solid within a supercooled liquid

phase was examined. In particular, we analysed simulations of the phase change material

GeTe whose equilibrium structure at temperatures above 623 K is that of cubic rock salt.41

Phase change materials such as this one are of great practical relevance,42,43 as they are

currently employed in optical storage devices (such as DVDs and Blu-ray Discs) as well as

in electronic nonvolatile memories (Phase Change Memories, PCM).43 At the heart of these

technologies stands the fast (on the ns timescale) and reversible phase transition between

the crystalline and amorphous phases of chalcogenide glasses such as GeTe.44 Devices that

use these materials take advantage of the fact that these substances can exist in these two

distinct forms when storing binary data. Furthermore, data can be read and thus recovered

as the amorphous phase has an optical reflectivity and electrical resistivity that differs by

several order of magnitudes from that of the crystalline phase. In PCMs, crystallization from

the amorphous phase is achieved by heating the system above its the glass transition temper-

ature. This generates a supercooled liquid which, under certain conditions, can recrystallize

in the ordered phase.

The density difference between the supercooled liquid at the melting temperature of

1000 K and the crystalline phase at 0 K is of the order of 5% only.45 If we are intent on

discovering crystalline clusters of GeTe in an MD simulation working with an adjacency

matrix that measures whether or not atoms are within a certain cutoff, as described in

Sec. 3, is thus clearly not appropriate. Similarly, the method described in Sec. 4 is also

not appropriate as the system in this case is composed of atoms, which do not have an

orientation per se. One can, however, calculate something similar to an orientation for each

central atom i by first calculating the set of vectors, {rij}, that connect it to the atoms in

its coordination spheres. Once these vectors are calculated the following quantities can be
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extracted:

q
(i)
lm =

∑N
j 6=i σ(|rij|)Ylm(rij)∑N

j 6=i σ(|rij|)
where σ(|rij|) =


1 if |rij| < d0

0 otherwise

(8)

Here the sum runs over the N atoms in the system, Ylm(rij) is one of the spherical harmonics

and in this work σ(|rij|) is essentially a Heavyside function with d0 equal to 5.3 Å although

there is sufficient flexibility within PLUMED to use a continuous switching function here

instead if derivatives are required. It is common within the materials simulation community

to combine all the q
(i)
lm values for a given l value into a single vector quantity. The norm of

this vector is then the so-called Steinhardt parameter:7,8

q
(i)
l =

√√√√ 4π

2l + 1

l∑
m=−l

|q(i)lm|2 (9)

The top right panel of fig. 11 shows that this order parameter is not particularly effective

at distinguishing those atoms in the crystalline parts of the system from those atoms in

the supercooled liquid. Furthermore, we found that the method from Lechner and Dellago8

that involves taking local averages of these complex vectors was not much more effective at

distinguishing between atoms in the solid and in the liquid. A more effective choice is to use

local Steinhardt parameters:8,9

Q
(i)
6 =

∑N
j 6=i σ(|rij|)q̂(i)

6 � q̂(j)
6∑N

j 6=i σ(|rij|)
(10)

In this expression σ(|rij|) is a switching function on the distance between atoms i and j with

parameter d0 = 5.3 Å. q̂
(i)
6 is the versor of the (2l + 1)-dimensional complex vector q

(i)
l that

is constructed by combining all the elements of q
(i)
lm with l = 6. This local order parameter,

Q
(i)
6 , thus measures whether or not the atoms in the first and second coordination spheres

around atom i have their coordination spheres ordered in a similar fashion. Obviously, for
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atoms in the bulk of an ordered solid phase this quantity is large. For atoms in a disordered

amorphous or liquid phase, meanwhile, this quantity should be small. It is thus unsurprising

to find that, as shown in the lower left panel of figure 11, this approach is better able to

distinguish between atoms in the disordered and ordered phases.

The local order parameter Q
(i)
6 has been used widely in the literature. It is popular

because it often gives a far more effective measure of local order than the Steinhardt order

parameter q
(i)
l (see Eq. 9), which is particularly important when performing enhanced sam-

pling simulations of crystallization.46 In this work the switching functions in equations 8 and

10 are set large enough so that all the atoms in the first and second coordination spheres of

atom i are taken into account when calculating q
(i)
6 and Q

(i)
6 because, as shown figure 11, the

resulting quantity is better able to distinguish crystalline from amorphous than the function

in which only the first coordination spheres are considered.

In figure 12a the atoms are colored according to the value of the Q
(i)
6 parameter. This

figure highlights an additional complexity associated with examining nucleation in this sys-

tem. In certain temperature regimes (500-600 K) multiple nucleation centers appear on the

very short timescale of 102−3 ps over which crystallization is observed and the product that

ultimately emerges is thus polycrystalline.47,48 This product polycrystal contains a number of

randomly oriented grains, which can be distinguished by eye in figure 12a. In this figure the

regions where the atoms are colored blue and where they are clearly ordered are separated

by narrow red regions where the structure is disordered. Ideally the clustering algorithm

should find that each of these misaligned domains is disconnected from the others so that

each domain is classified as a separate cluster.

The approach outlined in figure 9 shows how the local Steinhardt parameters can be used

when finding the crystalline domains. Remember these parameters allow one to distinguish

atoms in the ordered parts of the system from those in more disordered parts. The elements
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Figure 11: Histograms of symmetry functions for pure GeTe crystal (blue lines) and pure
GeTe liquid (green lines). These probabilities were calculated from 2 ns long trajectories
of 4096 atoms of solid and liquid, which were run at a temperature of 675 K. Further
details can be found in Ref. 47. The top left panel shows the radial distribution functions
together with dashed lines which indicate where the first and second coordination spheres
are considered to end in this work. The second figure shows the histogram of values we
observed for the modulus of the vector q6 in the solid and liquid systems. The dashed lines
in this figure indicate the histogram obtained if only the atoms in the first coordination
sphere are considered when calculating this quantity. The solid lines, meanwhile, show what
is obtained if both the first and second coordination spheres are considered. Neither of these
symmetry functions is particularly good at distinguishing crystalline atoms from those in
the supercooled liquid phase. The lower left panel shows the histograms obtained for Q6.
Once again the dashed lines show the distributions that are obtained if the parameter for the
switching function in equation 10 is set equal to 3.6 Å(first coordination sphere only), while
the solid lines show the distribution that is obtained if this parameter is set equal to 5.2 Å
(first and second coordination spheres). For both pairs of histograms the switching function
in equation 8 is set equal to 5.2 Å. Once again there is overlap between the distributions of
values seen for the solid and liquid and this parameter thus struggles to distinguish the solid
from the liquid. The bottom right panel shows the histograms for the quantity, c, which is
defined in equation 1. As is clear from the figure this symmetry function is the most effective
in distinguishing crystalline atoms from liquid atoms.
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Figure 12: The clusters found in a polycrystalline, 32768-atom configuration of GeTe using
various different clustering protocols. Panel (a) shows a snapshot of all the atoms in the
system. Those atoms with a high value for Q6 are colored blue whilst those atoms with
a low value are colored white or red. In this figure one can clearly see that the sample
is composed of ordered but misaligned domains. Panel (b) shows that the largest cluster
contains the majority of the atoms in the system if only those atoms with a low value of Q6

are excluded from the clustering. A more effective strategy is illustrated in panel (c). The
clusters shown in this figure were found by neglecting any atom that did not have a high
value for Q6 and which was not connected to at least six other atoms that also had high
values for Q6 when calculating the adjacency matrix. In this figure the atoms shown in blue
are part of the largest domain found, the atoms in red compose the second largest domain,
the atoms shown in black form the third largest and the atoms shown in yellow form the
fourth largest domain.
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of the adjacency matrix are thus calculated using the following expression:

Aij = σ(|rij|)S(Q
(i)
6 )S(Q

(j)
6 ) where S(Q

(j)
6 ) =


1 if Q

(j)
6 > q0

0 otherwise

A Heavyside function was used in this work for S(Q
(j)
6 ) with q0 = 0.2, while the parameter

of the switching function on the distance, σ(|rij|), was set equal to d0 = 3.6 Å. It is worth

noting there is, once again, sufficient flexibility within PLUMED to replace these two discrete

switching functions with continuous functions if derivatives are required.

By filtering the atoms using a switching function, S(Q
(i)
6 ) on the local q6 parameter we

effectively ensure that the atoms in the disordered parts of the system, which have a low

value for Q6, are always disconnected. The overall effect is thus that the DFS clustering is

only performed on the set of atoms which have a high value for Q
(i)
6 .

Analyzing the configuration shown in figure 12a using this particular approach gives the

result shown in figure 12b. Unfortunately, all of the misaligned crystalline domains are

connected into one single contiguous mass. We are thus unable to label the different grains.

Looking closely at the cluster found in figure 12c, however, one sees that there is empty

space around the various crystalline grains in the polycrystalline sample. This makes a lot

of sense as figure 12a shows that each of the regions where the atoms are coloured blue,

indicating a high-Q
(i)
6 value, is surrounded by regions in which the atoms are coloured white

and red indicating low values for Q
(i)
6 . The problem is that within these regions, where the

Q
(i)
6 values are for the most part small, there are a few atoms that have anomalously high

values. These atoms connect the grains and thus explain why the clustering algorithm finds

that all the grains connected into one single domain. To counter balance this effect we thus

calculated the following coordination number for each of the atoms:

ci =
∑
i 6=j

S(Q
(i)
6 )S(Q

(j)
6 )σ(|rij|)
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The parameter of the switching function, σ(|rij|), is set equal to d0 = 3.6 Å in this case so

this function measures the number of ordered atoms in the first coordination sphere of atom

i. Figure 11 shows the overlap in the histograms of values for this quantity that were found

for a trajectory of crystalline structures and a trajectory of liquid structures. The overlap

between these two histograms is negligible so this quantity is better than Q6 at distinguishing

atoms in the crystal from atoms in the melt. To incorporate this symmetry function in the

cluster analysis the elements of the adjacency matrix were thus calculated using:

Aij = f(ci)f(cj)σ(|rij|) where f(ci) =


1 if ci > c0

0 otherwise

(11)

In this work the parameter in the Heavyside function c0 was set equal to 6 and once again

there is flexibility within PLUMED to make this discontinuous function continuous if deriva-

tives are required. The PLUMED input that allows one to cluster the configuration using

this matrix is shown below:

q6: Q6 SPECIES=1-32768 SWITCH={GAUSSIAN D_0=5.29 R_0=0.01 D_MAX=5.3} LOWMEM

lq6: LOCAL_Q6 SPECIES=q6 SWITCH={GAUSSIAN D_0=5.29 R_0=0.01 D_MAX=5.3} LOWMEM

flq6: MFILTER_MORE DATA=lq6 SWITCH={GAUSSIAN D_0=0.19 R_0=0.01 D_MAX=0.2}

cc: COORDINATIONNUMBER SPECIES=flq6 SWITCH={GAUSSIAN D_0=3.59 R_0=0.01 D_MAX=3.6}

fcc: MFILTER_MORE DATA=cc SWITCH={GAUSSIAN D_0=5.99 R_0=0.01 D_MAX=6.0}

mat: CONTACT_MATRIX ATOMS=fcc SWITCH={GAUSSIAN D_0=3.59 R_0=0.01 D_MAX=3.6}

dfs: DFSCLUSTERING MATRIX=mat

OUTPUT_CLUSTER CLUSTERS=dfs CLUSTER=1 FILE=cluster1.xyz

As in the previous example using this protocol effectively ensures that some of the atoms

in the system will always be disconnected from the clusters. In this case, however, rather

than just discarding those atoms with a low Q
(i)
6 parameter we also discard atoms that are

bonded to fewer than six atoms that also have a large value for Q
(i)
6 . This effectively removes
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the atoms in the disordered parts of the system from consideration as, although these atoms

have high values for Q
(i)
6 , they are connected to atoms that have low values for Q

(i)
6 . As

shown in figure 12d with this setup we find that the various misaligned crystalline domains

are disconnected.

Having identified a suitable collective variable we used it to analyze an 800 ps nucleation

trajectory that was taken from Ref. 48. This simulation involved 16384 GeTe formula units

and was run at 600 K, which corresponds to a supercooling of 400 K. The results from this

analysis are shown in figure 13. The top panel shows the sum of f(ci) calculated for all

the atoms in the system as a function of time. In other words, this top panel shows the

total number of atoms in crystalline domains. The middle panel of this figure shows how

the number of domains containing more than 27 atoms changes as a function of simulation

time. This quantity was calculated using:

w =
M∑
i=1

Ω

(
Ni∑
j=1

f(cj)

)
where Ω(x) =


1 if x > 27

0 otherwise

In this expression the first sum runs over the clusters found using the DFS algorithm. The

second sum meanwhile accumulates the sum of the f(ci) values (see equation 11) for those

atoms in each of the clusters found. It is important to note that, because of the difficulties

discussed in section 3, this quantity cannot be made continuous by replacing the discontin-

uous function Ω with a continuous function.

The lower panel in figure 13 shows the number of atoms in each of the six largest domains

found in the system as a function of simulation time. This quantity is calculated using the

following function:

n =
N∑
j=1

f(cj)

where the sum runs over the atoms in in the cluster of interest and f(cj) is defined as in

equation 11. To calculate the quantities shown in the middle panels of figure 13 the following
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PLUMED input must be appended after the input that was shown previously.

nclust: CLUSTER_DISTRIBUTION ...

CLUSTERS=dfs

TRANSFORM={GAUSSIAN D_0=5.99 R_0=0.01 D_MAX=6.0}

MORE_THAN={GAUSSIAN D_0=26.99 R_0=0.01 D_MAX=27}

... nclust: CLUSTER_DISTRIBUTION

PRINT ARG=nclust.* FILE=colvar

Figure 13: Analysis of a 800 ps crystallisation simulation for GeTe at 600 K, in which the
formation of a polycrystal is observed. In the top panel we show how the number of atoms
that are identified as crystalline changes as a function of simulation time. This quantity
was calculated by counting the number of atoms with a f(ci) value greater than or equal to
6. The middle panel shows the number of crystalline clusters containing 27 solid atoms or
more as a function of time. The lowest panel meanwhile shows how the sizes of the 6 largest
crystalline domains found in the sample change as a function of time.
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6 Conclusions

In the preceding sections we have discussed the framework that we have developed for exam-

ining nucleation and growth phenomena by means of molecular dynamics simulation. This

framework is based on a set of collective variables that are inspired by the definition given

to the word phase in thermodynamics. A phase of a system is defined as a region of space in

which the physical properties of the system are uniform. Hence, when one crosses a phase

boundary the physical properties of the system change discontinuously. All the CVs that we

have discussed within this article thus work by performing three operations:

1. Local atom-centered, symmetry functions are computed to distinguish between the

various different environments in the system.

2. An adjacency matrix is computed, which is then analysed using a clustering algorithm.

This procedure returns the set of connected components in the graph.

3. The sum of the symmetry functions in each of the connected components is determined

and some linear/non-linear combination of these quantities is used as a final collective

variable.

The object oriented structure within PLUMED has allowed us to write an extremely

flexible implementation of this method. Firstly, we can use all the various atom-centered

symmetry functions that are available in PLUMED in step 1. In step 2 we can construct

the adjacency matrix using all the atoms in the system as was explained in section 3 or we

can choose to only calculate the adjacency matrix for those atoms that have their symmetry

function within a particular range as discussed in sections 4 and 5. Furthermore, the method

used to calculate the elements of this adjacency matrix can be changed. We are thus not

confined to simply stating that particles i and j are connected if they are within a certain

cutoff distance of each other. Lastly, once we have determined a set of connected components

using the DFS algorithm, we can calculate a range of different non-linear combinations of

the symmetry functions of which they are composed in order to get a final CV.
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This new functionality in PLUMED makes it straightforward to create new CVs as com-

plex combinations of variables directly from the input file. In addition, other scientists using

PLUMED are not confined to using the functionality that is currently available within it.

We are aware that the specific details of any problem under study are important so we have

tried to make it as straight forward as possible to implement new methods for calculating

symmetry functions, adjacency matrices and even for finding the connected components from

the adjacency matrix in PLUMED. It is thus possible to use new methods implemented in

this way in any of the work flows described in the earlier sections of this paper.
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