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Abstract

We present unique NUV observations of a well-observed X-class flare from NOAA 12087 obtained at the
Ondrějov Observatory. The flare shows a strong white-light continuum but no detectable emission in the higher
Balmer and Lyman lines. Reuven Ramaty High-Energy Solar Spectroscopic Imager and Fermi observations
indicate an extremely hard X-ray spectrum and γ-ray emission. We use the RADYN radiative hydrodynamic code
to perform two types of simulations: one where an energy of 3×1011 erg cm−2 s−1 is deposited by an electron
beam with a spectral index of ≈3, and a second where the same energy is applied directly to the photosphere. The
combination of observations and simulations allows us to conclude that the white-light emission and the
suppression or complete lack of hydrogen emission lines is best explained by a model where the dominant energy
deposition layer is located in the lower layers of the solar atmosphere, rather than the chromosphere.

Key words: line: formation – Sun: atmosphere – Sun: flares – techniques: spectroscopic

1. Introduction

One of the main characteristics of solar white-light flares
(WLF) is strong emission in the higher order hydrogen Balmer
lines and the near-UV continuum (Donati-Falchi et al. 1985;
Fletcher et al. 2015). WLF can be classified as type I or type II
according to their spectral properties, which correspond with a
prevailing emission mechanism (Machado et al. 1986, pp.
483–488). Type I WLF have strong, broad Balmer lines
emission and are thought to originate in the chromosphere at a
temperature of about 104 K. In contrast, type II WLF show
weaker Balmer line emission, show no evidence of a Balmer
edge at 364.6 nm, and are thought to originate deeper in the
photosphere with a density higher than 1015 cm−3 and a strong
H− contribution. Ding et al. (1999) highlighted that the models
of type II WLF require a significant temperature increase
around the upper photosphere and temperature minimum
region. They speculate that the heating mechanism should
keep the chromosphere relatively undisturbed and that the flare
energy must be deposited in the lower layers of the solar
atmosphere (see also Li et al. 1997). In a related study, Metcalf
et al. (1990) used two neutral magnesium lines (457.1 and
517.3 nm) to quantify the changes in the atmospheric structure
during five flares (all with electron spectral index smaller than
4), and concluded that in three of these events the only heating
and ionization mechanism was chromospheric backwarming by
Balmer and Paschen continuum radiation. They also reported
that in two of the events, the Mg I 517.3 nm line core emission
did not correlate with X-rays, and the cause of the enhancement
in the Balmer and Paschen continua was unclear.

In a WLF observation close to the solar limb (N05E64),
Boyer et al. (1985) measured that the flare excess signal related
to the quiet solar signal around the Balmer jump reached up to
19%. Strong emission in Ca II H&K and Hò lines was also
detected. They concluded that Paschen or H− continuum
radiation were not likely to be responsible for the emission, and
instead proposed the presence of a slightly warmer layer

(≈150 K) in the photosphere. Hudson et al. (2010) compared
the three observations of WLF Balmer continua presented by
Hiei (1982), Neidig (1983), and Machado & Rust (1974). Their
spectral signatures varied from the clear presence of a Balmer
jump to one that was shifted toward longer wavelengths and to
its complete absence.
A comprehensive study of flares on M dwarf stars was

recently carried out by Kowalski et al. (2013), who acquired a
large number of spectra over the spectral range 340–920 nm.
The wide spectral coverage allowed the simultaneous study of
the Balmer lines and the Balmer and Paschen continua. One of
the common features of the flares was a Balmer continuum in
emission. The non-detection of the Balmer jump in the high
resolution spectra (R∼40,000) was attributed to the presence
of a pseudo-continuum caused by the blending of the higher
order Balmer lines. The stellar flare observations (400–480 nm)
also indicate a hot blackbody emission with characteristic
temperatures of around 10,000 K. One of the most surprising
results was the detection of strong absorption hydrogen Balmer
and Ca II H&K lines in the impulsive phase of an M dwarf
megaflare, in strong resemblance to the spectrum of hot stars
(i.e., Vega). This indicates that the heating takes place in the
deep layers of the atmosphere.
The first attempts to model the response of the solar

atmosphere to an injected electron beams date back to 1980s.
Zharkova & Kobylinskii (1993) presented a detailed analysis of
the response of the Balmer and Lyman lines, as well as
continua on electron beams with different initial fluxes and
spectral indices. They point out that both the Lyman and
Balmer line wings appear to rise in models with higher electron
beam fluxes (1011 erg cm−2 s−1 compared to 109 erg cm−2 s−1)
and lower spectral indices. Line core intensities tend to
decrease.
In the present paper we analyze multi-wavelength observa-

tions of a rare X-class flare. Our observations include the
hydrogen Balmer and Lyman lines and continua. A comparison
with radiative hydrodynamic simulations is also presented.
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2. Observations and Data Reduction

On 2014 June 11, a solar flare classified by the Geosta-
tionary Operational Environmental Satellites (GOES) as X1.0

peaking at 9:06 UT was observed in active region NOAA
12087 near the eastern limb (S18E57). The event was observed
at Ondrějov Observatory, Czech Republic, the Solar Dynamics

Figure 1. Upper panel: GOES X-ray lightcurves for the flares under investigation. The gray background marks the time intervals covered by spectroscopy in the
visible. Lower panel: Spectra at selected times (also marked in the upper panel by vertical black lines), along with a context Hα images. The overlaid bright circle is a
reflection from the delimiting aperture with a diameter of 10 mm, which corresponds to 57 in the focal plane. The middle column shows the net flare spectra (i.e., a
quiet Sun spectrum has been subtracted). The right column shows the spectra in the middle column normalized to quiet Sun.
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Observatory (SDO), Reuven Ramaty High-Energy Solar
Spectroscopic Imager (RHESSI, Lin et al. 2002) and the Fermi
Gamma-ray Space Telescope (Meegan et al. 2009) satellites.
This flare was the fourth strong event in this active region
detected over the previous 24 hr. The preceding day, two other
events appeared (X2.2 peaking at 11:42 UT and X1.5 peaking
at 12:52 UT), followed by M3.0 event on June 11 peaking at
8:09 UT.

2.1. Optical Spectroscopy

We obtained spectra in the 350–485 nm wavelength range at
Ondrějov Observatory using the Horizontal Sonnen For-
schungs Anlage 2 (HSFA 2, Kotrč 2009) telescope with a
Jensch-type coelostat. The instrument consists of an image
selector with a set of circular diaphragms delimiting the active
region under investigation; a 1D spectrometer HR4000 by
Ocean Optics, Inc., with a spectral resolution of ∼0.03 nm per
pixel; and an Hα context imaging system. The
spectrograph has been optimized for observations of strong
solar flares at sub-second resolution. After going through the
selected diaphragm, the light is focused onto an optical fiber

that feeds the spectrometer. The outer rim of the diaphragm
reflects light into a camera, allowing us to receive a context
image of the target that emits the detected spectrum. The
spectrometer includes a built-in 14-bit CCD with very low
noise characteristics. The mean value of 50 dark frames with
exposure time of 30 ms is 668.18±0.16 counts, with a
standard deviation of 9.89±0.13 over the whole wavelength
range. During the recording we used a function of the
spectrometer’s control software Electric Dark Correction,
which allows us to subtract the read-out offset automatically.
A set of dark frames was recorded every 20–60 minutes, with
the same exposure time as the observations. A quiet Sun
spectrum at approximately the same distance from the disc
center was also recorded for comparison. The quiet Sun data
can provide a reference spectrum that allows us to estimate the
excess emission during the flare. The spectral data can be
displayed as wavelength versus counts plots, or be used to
construct lightcurves in 11 predefined channels. A detailed
description of this spectrograph has been published by Kotrč
et al. (2016).
The observation of AR 12087 commenced on June 11 at

8:07 UT, with an integration time of 40 ms and a cadence of
0.09 s (Figure 1). The observations were interrupted briefly at
8:39 UT for calibration purposes and recommenced at 8:44 UT
with an integration time 30 ms. The data acquisition ended at
9:09 UT. We used a diaphragm with diameter of 10 mm (57
arcsec). Both data sets were supported by a context imaging in
Hα line, with a cadence of 0.2 and 1 s, respectively.

2.2. SDO/HMI White-light Emission

Helioseismic and Magnetic Imager (SDO/HMI, Scherrer
et al. 2012) observations in the far wings of the Fe I line
(617.3 nm) show evidence for white-light emission during the
flare under investigation. We localize the source of the white-
light emission with difference imaging using SSW routines.
Software: hmi_prep.pro, index2map.pro, drot_map.pro, and

diff_map.pro (Freeland & Handy 1998). Once the bright
kernels are localized, we cut two 5 pixel×5 pixel subimages
centered on the kernels and calculate their mean signal during
the event (see Figure 2). Two ribbon-like structures are
produced during the impulsive phase, matching the maximum

Figure 2. Green contours highlight the white-light ribbons observed by SDO/HMI. A time evolution of the mean value over the red and blue boxes is plotted on the
right panel. The orange contours mark the HXR sources with energies 40–70 keV observed by RHESSI at the time interval 9:04:14–9:04:40 UT. The gray lightcurve
shows the corrected count rate of the RHESSI 50–100 keV channel in arbitrary units.

Figure 3. Flaring difference of the X1.0 event from SDO/EVE, showing the
strong suppression of the higher Lyman lines.
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seen in the hard X-rays with a decay time around 8–10 minutes.
The ribbons light up along their length from northeast to
southwest, and are co-spatial and co-temporal with the RHESSI
hard X-rays.

2.3. SDO/EVE

The EUV Variability Experiment (EVE; Woods et al. 2012)
is one of three instruments onboard the SDO (Pesnell
et al. 2012). EVE measures the solar irradiance between 0.01
and 105.0 nm using Multiple EUV Grating Spectrographs
(MEGS)—A (5–37 nm), B (35–105 nm), Photometer
(121.6 nm), and a EUV Spectrophotometer (0.01–3.9 nm) at a
cadence of 10 s. The MEGS-B spectral range contains
numerous emission lines formed over a broad range of
temperatures. Many of the cooler lines—most notably Lyman
β, Lyman γ, Lyman δ (hereafter Lyβ, Lyγ, Lyδ)—are formed
in the chromosphere, along with the Lyman free-bound

continuum (LyC), with a recombination edge at 91.2 nm. A
spectrum obtained during the impulsive phase of the X1.0 flare
is shown in Figure 3. Due to unforeseen degradation, MEGS-B
operates at a reduced duty cycle. Fortunately, on 2014 June 11,
the instrument was exposed to the Sun for 3 hr between 08:00
and 11:00 UT, capturing both the M3.0 and X1.0 flares of
that day.
In order to construct the temporal profile of the LyC for the

events presented here, we applied the RANdom Sample
Consensus (Fischler & Bowles 1981) technique described in
Milligan et al. (2014) to Version 5 of the EVE data. This
technique treats any overlying emission lines as outliers in the
data, allowing the “pure” continuum to be fit with a chosen
function. The EVE data between 80 nm and the recombination
edge at 91.2 nm were fit with a power-law function that was
extrapolated to shorter wavelengths. By integrating under the
fit at each 10 s interval, lightcurves of LyC emission were
established (top panel of Figure 4). Lightcurves of higher order

Figure 4. Lightcurves of Lyman continuum recorded by EVE/SDO and X-rays recorded by GOES (upper panel), Lyman lines (middle panel), recorded by EVE/SDO
and Lyα (bottom panel), recorded by GOES. The vertical dashed line marks the maximum in RHESSI 100–300 keV flux.
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Lyman lines were obtained by fitting each line with a Gaussian
profile and integrating over the fit to get the total flux at each
interval (the middle panel of Figure 4).

While the MEGS-P diode provides measurements of the
solar Lyα flux, also at 10 s cadence, Milligan & Chamberlin
(2016) showed that the temporal behavior of this emission
during flares appears much more “gradual”, rather than bursty,
as one would expect from an impulsively heated chromosphere.
The reason for this unusual behavior is not clear. As such we
shall use the Lyα lightcurves from the GOES/EUVS
instrument instead (see Section 2.4).

2.4. GOES/EUVS Lyα

As the Lyα data from SDO/EVE are somewhat inconsistent
for reasons that are yet not fully understood, we utilized data
from the EUV Sensor on GOES15 instead. The EUVS onboard
the previous three GOES satellites (13, 14, and 15) comprise
five EUV channels: A, B, C, D, and, E. The E channel spans
the Lyα line at 121.6 nm in a broadband (∼10 nm) manner
similar to MEGS-P, although its time profiles exhibit a
behavior similar to that of LyC from EVE (Milligan &
Chamberlin 2016). The Lyα lightcurves for the M and X-class
flares on 2014 June 11 are plotted on the bottom panel of
Figure 4. Similar to that seen in the EVE line and continuum
data during the X1.0 flare, the Lyα emission was heavily
suppressed relative to the M3.0 flare an hour earlier.

3. Results

The Lyα emission begins to rise together with hard X-rays at
approximately 09:01 UT (Figure 4). Figure 3 shows flaring
spectra (only excess signal from the flare) of the X1.0 event,
where the higher hydrogen Lyman lines are heavily suppressed.
A Lyman jump is not detectable in these observations (also see
upper panel of Figure 4). The same figure shows a much
stronger signal in the Lyman lines during the weaker M3.0
event. The flares of 2014 June 11 have a very weak response in
the higher Balmer lines, as these maintain their absorption
profiles throughout the events. This effect is more pronounced
in the X1.0, which shows no response at all (Figure 5). The

same event shows brightening in the continuum at wavelengths
<400 nm at 8:48 UT. The continuum brightening appears only
about 1–2 minutes before the <25 keV burst was detected by
RHESSI, and remains elevated until the end of the observation
at 9:10 UT, whereby its intensity varies between 10% and 21%
above the quiet level (see lower panel of Figure 1). Weak line
core emission is detected in the Ca II H&K lines.
Clear ribbon-like WL emission is visible on the HMI images,

but due to the low cadence (45 s), it is difficult to determine its
exact timing. However, the observations show a good
correspondence between the brightest WL emission and the
hard X-rays (>40 keV). Table 1 shows a summary of the main
observational characteristics of the four flare events observed
on active region 12087 on 2014 June 10–11. Although all
X-class events reached similar flux in X-rays, the morphology
of WL emission and line profiles are qualitatively different.

4. RADYN Modeling

In order to understand the suppressed hydrogen Balmer and
Lyman emission observed in the X1 flare, we carried out radiative
hydrodynamic simulations. Software used was RADYN (Carlsson
& Stein 1992, 1995, 1997; Allred et al. 2015).
The code has been used extensively to model the emission of

both solar and stellar flares (e.g., Abbett & Hawley 1999;
Allred et al. 2005; Testa et al. 2014; Kennedy et al. 2015;
Kuridze et al. 2015; Rubio da Costa et al. 2015, 2016; Kerr
et al. 2016; Kowalski et al. 2016). RADYN solves the coupled
set of equations describing hydrodynamics, radiative transfer,
and non-LTE atomic level populations for a six-level with
continuum H atom, nine-level with continua He I and He II
ions, and a six-level with continuum Ca II ion. It uses an
adaptive grid (Dorfi & Drury 1987) so that it can resolve the
high-speed shocks that develop during flares. It models one-
dimensional loop structures that extend from the sub-photo-
sphere into the corona. To model the response of the solar
atmosphere to flares, it has been coupled with an additional
code that simulates the kinetic transport of non-thermal (i.e.,
flare-accelerated) particles injected at the loop top as described
in Allred et al. (2015). This code models the accelerated
particle distribution function in response to energy loss and
pitch-angle scattering due to Coulomb collisions, synchrotron
emission, and magnetic mirroring. It includes relativistic
effects, which are important for high-energy particles. Energy
lost by the non-thermal particles is assumed to be transferred to
the ambient plasma in the form of heat. Additionally, when
these particles collide with ambient ions, they may further
ionize the ions. We have included that effect in the collisional
ionization rate equations solved by RADYN using the methods
of Fang et al. (1993) and Arnaud & Rothenflug (1985).
Importantly for this work, RADYN can be used to predict the
Balmer emission originating from optically thick regions of the
atmosphere in response to flare heating. Since RADYN uses a
six-level hydrogen atom, it directly predicts Balmer line
profiles up to Hγ. To model higher order Balmer lines, we
have input snapshots of the loop temperature, density, and
velocity as a function of column mass into the radiative transfer
code, RH (Uitenbroek 2001). RH has been configured to
include a 20-level model hydrogen atom, allowing the
prediction of line profiles up to H18.
We have configured RADYN to perform two experiments.

In each case, heating was applied to a loop structure, which
started in a state of hydrostatic equilibrium. We chose as a

Figure 5. Spectral profiles of Hγ and Hδ during the rise (red), impulsive
(green), and decay (blue) phase of the X1.0 flare on 2014 June 11.
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starting state the QS.SL.HT loop described in Allred et al.
(2015). This loop has a half-length of 10 Mm, a constant
cross-sectional area, and apex temperature and density of 3
MK and 1010 cm−3, respectively. In order to model the effects
of magnetic mirroring and synchrotron emission on non-
thermal particles, we have assumed a magnetic field strength
that decreases exponentially from 1000 G in the footpoint to
100 G at the loop top. For the first experiment, we have
injected electrons at the loop top. RHESSI hard X-ray
observations taken during this flare were used to constrain
the accelerated electron spectrum. The spectrum was best fit
to a power-law with a cutoff energy, Ec, of 20 keV and a
power-law index, δ=3. The pitch-angle distribution of the
injected electrons was chosen to be a Gaussian centered
around the loop axis, and with a half width half max of 23°.5.
That δ is unusually low and indicates the presence of a
relatively large number of high-energy electrons. These
penetrate deeply, so perhaps they could be responsible for
heating the low chromosphere, below the region where
Balmer emission originates. In this experiment, a flux of
´3 1011 erg cm−2 s−1 of electrons were injected continuously

for 10 s. The atmosphere is quickly heated in response. The
temperature and density along the axis of the loop are shown

in Figure 6. Additionally, we have plotted the heating rate due
to the injected electron beam and the plasma velocity. The
corona has been heated to 20 MK and has an electron density
of 1011 cm−3 as a result of chromospheric evaporation, which
has brought material into the corona. The beam heating peaks
at 0.79 Mm above the photosphere. In fact, the temperature
has been increased nearly all the way to the photosphere. The
Balmer emission predicted from this simulation is discussed
in Section 5.
For the second experiment, rather than injecting electrons at

the loop top, we applied heating directly to the temperature
minimum region. A heating rate of 3×1011 erg cm−2 s−1 was
applied for 10 s, resulting in the same total energy deposited as
in the first experiment. However, the dynamics of this
simulation were quite different. The temperature, density,
heating rate, and velocity are plotted in Figure 7. In this case,
since no electrons moved through the corona nor upper
chromosphere, these regions remained relatively unaffected by
the heating. However, the dense upper photosphere and
temperature minimum region reach nearly 8000 K. The
velocity has a maximum of only 4kms−1. The Balmer
emission predicted from this simulation and compared with the
previous experiment is discussed in Section 5.

Table 1
A Summary of the Main Observational Properties of the Four White-light Flares Observed in NOAA 12087 on 2014 June 10–11

Peak time (UT) Position GOES Classification Balmer Line Profiles WL Emission C364 nm

2014 Jun 10
11:42 S19E81 X2.2 Emission, CR pronounced Very strong >16%
12:52 S20E89 X1.5 Emission, minor CR Widespread >13%

2014 Jun 11
08:09 S18E68 M3.0 Absorption Weak, points-like None
09:06 S18E66 X1.0 Absorption Strong 19%

Note. The C364 nm column shows the excess signal in the vicinity of the Balmer edge relatively to the non-flaring signal. For the first two flares, we determine a lower
limit due to a lack of measurements during impulsive phases. CR denotes the presence of a central reversal in the line profiles.

Figure 6. (Top panel) Temperature (black solid) and heating rate (red) as a function of height above the photosphere after 10 s of electron beam heating compared with
the temperature in the initial loop (black dashed). (Bottom panel) Electron density (black solid) and velocity (red) as a function of height above the photosphere after
10 s of heating, compared with the density in the initial loop (black dashed).
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Figure 7. Quantities plotted are identical to those in Figure 6, except that these are in response to direct temperature minimum heating.

Figure 8. RH synthetic spectra produced from RADYN snapshots taken 10 s into the simulations. Upper left: a response of the atmosphere on electron beams
( = ´F 3 1011 erg cm−2 s−1, =E 20 keVc , d = 3). Upper right: a response of the atmosphere on direct temperature minimum region heating
( = ´F 3 1011 erg cm−2 s−1). Lower left (right): a combination of flaring and quiet signal (see legend) divided by the quiet signal from beam (direct TMR)
heating models.
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5. Discussion and Concluding Remarks

The context Hα images in Figure 1 show that the flare
occurred in a relatively small part of the measured atmosphere
inside the bright circle where the observed spectra have been
integrated over. We estimated the flaring area by setting up an
intensity threshold two times higher than the median signal in
the image. We investigated a few images recorded during
impulsive and early gradual phases. Due to seeing effect and
evolution of the flare, this yielded lower and upper estimates of
4% and 7% for the flare area, respectively. We synthesized the
resulting spectrum for a 4%, 7% flare and 96%, 93% quiescent
Sun contributions, respectively. Figure 8 shows that beam
heating produces the well-known strong emission in the Balmer
line cores, while heating of the temperature minimum produces
an increased continuum with weak core emission and enhanced
line wings. The latter is qualitatively most similar to our
observations (Figure 1). Our findings are in agreement with the
limb flare observations of Martínez Oliveros et al. (2012), who
concluded that the WL emission and HXR emission originate
at a height of about 200–400 km, which is deeper in the
atmosphere than in our second modeling approach. Additional
simulations show that depositing the energy into depths of 300

or 400 km produce clear absorption line profiles (O. Procházka
et al. 2017, in preparation).
Spectroscopic observations of solar flares in the blue part of

the electromagnetic spectrum are rare. One such observation of
C1.1 was recently presented by Kowalski et al. (2015a), who
found emission in the higher order Balmer lines but no
evidence for a Balmer jump. Their observations show a similar
continuum shape in the vicinity of the Balmer jump to the one
we present in the right column of Figure 1. Kleint et al. (2016)
used the Facility Infrared Spectropolarimeter (Jaeggli
et al. 2010), Interface Region Imaging Spectrograph (De
Pontieu et al. 2014), HMI, and RHESSI to investigate the
energetics of an X1 flare. Their modeling revealed the
prevailing emission arose in the UV, visible, and IR
wavelengths. As blackbody emission alone does not fit the
observed continuum; both blackbody and hydrogen recombi-
nation continua must be taken into consideration. In a unique
stellar flare observation, Kowalski et al. (2013) showed strong
Balmer absorption lines (see their Section 6.3) during a
megaflare on the M dwarf star YZ CMi. The spectral signatures
of the megaflare resemble that of an A star spectrum, which led
to the conclusion that this is caused by a combination of a hot
blackbody plus absorption component.

Figure 9. Observations of X2.2 and X1.5 flares on 2014 June 10 with clear emissions in the Balmer lines (description as in Figure 1). The red spectrum was rescaled to
match an exposure time 30 ms.
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The spectra of the X-class flares observed from the same
active region on 2014 June 10 show strong Balmer line
emission (Figure 9). This is a common characteristic of solar
flares (Švestka 1972) and is in agreement with the findings of
Kowalski et al. (2015b), who studied the observational
signatures of both solar and dwarf M star flare atmospheres.
Besides the strong emission lines, we also detected an excess
continuum signal in shorter wavelengths (<410 nm) compared
to the quiescent spectrum. For the X2.2 event we estimated the
continuum excess as 16%, while for the X1.5 event it was 13%.
As we can see from the GOES X-rays, the X2.2 and X1.5
events were first captured during the early decay phase, so we
accept these excess numbers as lower estimates.

Although an electron beam model cannot be a priori
excluded from the interpretation of our observations, the
parameters of such a beam may have to be rather extreme if we
were to consider electrons only. Lower energy electrons
contribute to the heating of the upper chromosphere creating
strong hydrogen line emission, which we did not detect in the
X1.0 event. Electrons with energies of 350 keV or above may
be required to reach the temperature minimum region
(Aboudarham & Henoux 1986). The RHESSI data show
evidence for particles of such a high energy in the studied flare;
lower energy electrons are also present. Alternative mechan-
isms to transport the energy from the reconnection site to the
lower layers will therefore also need to be considered.

We believe that our observations combined with the
radiative hydrodynamic simulations provide strong evidence
that the heating of the X1 2014 June 11 flare occurs below the
chromosphere. Given the lack or strong suppression of
hydrogen Balmer and Lyman lines, we speculate that this
heating may not be a consequence of electron beams
accelerated to the lower layers. Zharkova & Zharkov (2007)
compared standard electron beams and mixed proton/electrons
beams to explain an X17.2 flare from 2003 October 28. They
concluded that mixed beams produce shocks that help with the
delivery of momentum into the deeper layers. An alternative
mechanism presented by Fletcher & Hudson (2008) proposes
Alfvén waves as a way for transporting the energy through the
chromosphere. Russell & Fletcher (2013) claimed that the
depth where the energy of the Alfvén waves is deposited
depends strongly on their frequency spectrum. Waves with
periods longer than 10 s penetrate deeper the higher density
parts of the lower atmosphere, and can heat the temperature
minimum region.

The absence of emission in the higher order Balmer lines and
the absence of a Balmer jump in the X1 class event, together
with the strong suppression of Lyman lines, are features of type
II WLFs. Our radiative hydrodynamic models show that by the
depositing the energy in the upper photosphere and temperature
minimum region, the spectral characteristics of these flares can
be reproduced.
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