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Abstract 

Practical solutions for multiple antibiotic determination in food is required by the food 

industry and regulators for cost effective screening purposes. This study describes the 

feasibility in development and preliminary performance of a novel multispot nanoarray for 

antibiotic screening in honey. Using a multiplex approach the metabolites of the four main 

nitrofuran antibiotics including morpholinomethyl-2-oxazolidone (AMOZ), 3-amino-2-

oxazolidinone (AOZ), semicarbazide (SEM), 1-aminohydantoin (AHD) and chloramphenicol 

(CAP) were simultaneously detected. Antibodies specific to the five antibiotics were nano-

spotted onto microtitre plate wells and a direct competitive assay format was employed. The 

assay characteristics and performance were evaluated for feasibility as a screening tool for 

antibiotic determination in honey to replace traditional ELISAs. Optimisation of the spotting 

and assay parameters were undertaken with both individual and multiplex calibration curves 



generated in PBS buffer and a honey matrix. The limits of detection as determined by the 

20% inhibitory concentrations (IC20) were determined as 0.19, 0.83, 0.09, 15.2 and 35.9 

ng/mL in PBS buffer,  0.34, 0.87, 0.17, 42.1 and 90.7 ng/mL in honey (fortified at the start of 

the extraction) and 0.23, 0.98, 0.24, 24.8 and 58.9 ng/mL in honey (fortified at the end of the 

extraction) for AMOZ, AOZ, CAP, SEM and AHD respectively. This work has demonstrated 

the potential of multiplex analysis for antibiotics with results available for 40 samples within 

a 90 min period for antibiotics sharing a common sample preparation. Although both the 

SEM and AHD assay do not show the required sensitivity with the antibodies available for 

use to meet regulatory limits, with further improvements in these particular antibodies this 

multiplex format has the potential to show a reduction in cost with reduced labour time in 

combination with the high throughput screening of samples. This is the first 96 well spotted 

microtitre plate nanoarray for the semi-quantitative and simultaneous analysis of antibiotics.  

 

Keywords: nanoarray, screening method, immunoassay, antibiotic, nitrofurans, AMOZ, 

AOZ, SEM, AHD, chloramphenicol, honey.  

 

Introduction 

Antibiotics are a vital component for the treatment and elimination of disease in human, 

plants and animals. There are many concerns regarding the human consumption of food 

products contaminated with drug residues such as antibiotics. Antibiotic residues from 

agricultural use must be carefully monitored as they can adversely impact public health due 

to allergenic and carcinogenic factors and may also contribute to bacterial resistance. 

Nitrofurans belong to a class of synthetic broad spectrum antibiotics which all contain the 

characteristic five-membered nitrofuran ring. They were commonly used as feed additives for 

growth promotion and used mainly for livestock, aquaculture and apiculture for the 

prophylactic and therapeutic treatment of bacterial infections. Parent nitrofuran compounds 

are quickly metabolised after ingestion and have very short in vivo half-lives. Monitoring of 

nitrofurans is therefore based on the monitoring of the tissue-bound metabolites of nitrofurans 

as they remain in the body for many weeks after treatment (McCracken and Kennedy, 1997; 

Cooper et al., 2005). The four main nitrofuran antibiotics are furaltadone, furazolidone, 

nitrofurazone and nitrofurantoin with the resulting tissue bound metabolite residues AMOZ, 

AOZ, SEM and AHD produced respectively. There is however increasing concern in the use 

of SEM as a marker for nitrofurazone due to its reported natural occurrence in seafood, eggs, 

whey and heather honey (Crews, 2012) but recommendations in the measurement of total and 



comparison of between free and protein bound SEM may offer a solution until an alternative 

marker is identified (Points et al., 2015). The nitrofuran metabolites have also been shown to 

be stable after cooking with 67-100 % of the residues remaining after conventional cooking 

techniques and additionally there was no significant change in residue concentration after 

storage at -20 °C (Cooper and Kennedy, 2007). In 1995, the use of nitrofurans for livestock 

production was completely prohibited in the European Union (EU) due to concerns about the 

carcinogenicity and their potential harmful effects on human health. Nitrofuran antibiotics 

have been included in Commission Regulation (EC) 1442/95 as compounds that are not 

permitted for use in the livestock industry. The EU has established a minimum required 

performance limit (MRPL) of 1 µg/kg for tissue of animal origin. There is however 

increasing concern in the use of SEM as a marker for nitrofurazone due to its natural 

occurrence in seafood, eggs, whey and heather honey (Crews et al., 2012). CAP is a broad 

spectrum antibiotic with excellent antibacterial and pharmacokinetic properties. This 

antibiotic is proven to be valuable for the treatment of bacterial infections in human and 

veterinary medicine as well as being administered to animals for disease prevention. It is 

often associated with serious side effects such as the development of aplastic anaemia and 

bone marrow suppression (Jimenez et al., 1990). In 1994, CAP was included in the Annex 

IV of the Council Regulation (EEC) No. 2377/90 and is therefore banned in the EU for the 

treatment of food producing animals. Consequently, CAP may not be present in animal 

products for human consumption and a MRPL of 0.3 μg/kg in meat, eggs, milk, urine, 

aquaculture products and honey has been set.  

As both the nitrofurans and CAP are prohibited substances, zero tolerance applies. Methods 

of detection therefore require very low detection limits and high sample throughput. The 

development of rapid, inexpensive, accurate, multi residue and easy to use screening methods 

are therefore of primary importance in the food industry. Sensitive methods for nitrofuran 

metabolites for both screening (ELISA) and confirmatory methods (LC-MS/MS) were first 

developed by the EU FoodBRAND project (Cooper et al., 2004a; 2004b; Cooper et al., 

2005). Analytical procedures for nitrofuran analysis in various matrices by screening and 

confirmation methods with respect to EU regulations are reviewed in Vass et al. (2008). 

Although analytical methods, HPLC-UV and LC-MS/MS, are available for both nitrofurans 

and CAP (Conneely et al., 2003; O’Keeffe et al., 2004; Cooper et al., 2005; Vivekanandan et 

al., 2005; Han et al., 2011; Douny et al., 2013), it is acknowledged that these methods are 

expensive, require skilled personnel and are time consuming. The need therefore for simple, 

rapid and efficient analytical methods for antibiotics that can be handled by relatively 



unskilled operators has been recognised. Additionally, affordable monitoring of antibiotics to 

ensure food safety requires high throughput and economical methods of detection. To date a 

range of methods for the determination of nitrofuran metabolites and CAP residues in 

foodstuff have been developed. Independent enzyme linked immunosorbent assays (ELISAs) 

are widely used for screening purposes for each nitrofuran metabolite (Cooper et al., 2004; 

Diblikova et al., 2005; Cooper et al., 2007; Cheng et al., 2009; Li et al., 2009) and CAP 

(Fodey et al., 2007; Liu et al., 2014; Guo et al., 2015) thereby requiring five ELISA assays to 

detect all targets. Commercial screening tests are available for honey from Abraxis, 

Europroxima, Randox Food Diagnostics, R-Biopharm, Romer Labs and Tecna for nitrofurans 

detection and from Europroxima, Randox Food Diagnostics, R-Biopharm, Tecna and Bioo 

Scientific for CAP detection. Biosensors have also been developed for honey for the 

independent detection of individual nitrofuran metabolites (Jin et al., 2011; Yang et al., 2011; 

Jin et al., 2014) and CAP (Ferguson et al., 2005; Yan et al., 2012; Kara et al., 2013; Gao et 

al., 2014). There is, however, an increasing necessity for the development and 

implementation of multiplexed tests that can detect a range of antibiotics simultaneously thus 

serving to reduce operator time and costs. Multiplex assays for nitrofurans include both 

antibody based screening methods (Thompson et al., 2011; O’Mahony et al., 2011; Liu et al., 

2015) and confirmatory physiochemical LC-MS/MS methods (Tribalat et al., 2006; Lopez et 

al., 2007) for the detection of all four nitrofurans simultaneously. LC-MS/MS multiple 

analyte  tests are also described for the simultaneous detection of the nitrofuran metabolites 

and CAP (An et al., 2015, El-Demerdash et al., 2015, Veach et al., 2015; Kaufmann et al., 

2015). The only commercial test available for multiple antibiotic detection is from Randox 

Food Diagnostics based on a customised biochip technology with chemiluminescent 

detection for the four main nitrofuran metabolites..  

In recent years innovative nano science and technology with state of the art sensing 

equipment have allowed the emergence of novel detection platforms. Nanoarrays have 

become unique and important tools for high-throughput analysis providing promising 

methods in which several targets are separately detected in spatially defined zones 

simultaneously. This enables miniaturization, higher sensitivity and simplified sample 

preparation in combining multiple extraction procedures into a single procedure. Nanoarrays 

may be employed in a number of applications such as medical diagnosis, genetic testing, 

environmental monitoring and food safety. There are very few studies that effectively employ 

this promising technology for the detection of antibiotics. An immunoassay using the 

microarray chip reader 3 platform has been described for the determination of antibiotic 



residues in milk (Kloth et al., 2009a; 2009b) and honey (Wutz et al. 2011). A novel 

multiplex nanoarray based on planar waveguide with fluorescence detection was developed 

for the detection of a number of antibiotics including CAP (McGrath et al., 2015) in milk. 

Nanoarray formats in 96 well microtitre plates provide very promising and powerful 

detection methods in which several targets can be detected simultaneously. The benefits of 

ELISA and nanoarrays can thus be combined to produce a multiplex test capable of 

conducting large surveys and high throughput but also the simultaneous semi-quantitative 

detection of many antibiotics by users already familiar with ELISA methods. 

Apiculture relies on antibiotics to prevent disease spreading through bee colonies, however, 

the overuse of these antibiotics can cause residues in honey products. Honey is one of the 

many foods that are monitored for antibiotic residues worldwide. Honey producers, 

importers, exporters and regulators, therefore, need simple, fast and effective ways to test 

honey for antibiotics. The development of sensitive, multi residue, rapid and high throughput 

screening methods are therefore important in the area of food safety and residue 

determination. The aim of this research was to demonstrate feasibility of a direct competitive 

multiplex nanoarray in a 96 well microtitre plate for the simultaneous detection of five key 

banned antibiotics (AMOZ, AOZ, SEM, AHD and CAP) in honey as a rapid and easy to use 

detection system. 

 

Materials and methods 

Instrumentation   

A sciFLEXARRAYER S5 (Scienion, Germany) was used for spotting microtitre plates and a 

sciReader CL colorimetric nanoarray reader (Scienion, Germany) was used for scanning and 

analysing spot intensities. 

 

Reagents 

Antibodies and enzyme labelled HRP conjugates for AMOZ, AOZ, SEM, AHD and CAP 

were provided by Tecna (Trieste, Italy). Nunc 96 well microtitre plates (442404 flat bottom; 

473768 breakable) were purchased from VWR (Leicestershire, UK). SciColor T2, enzyme 

substrate solution, was purchased from Scienion (Berlin, Germany). Methanol, hexane, 

dimethyl sulfoxide, ethyl acetate (all HPLC grade), 2-nitrobenzaldyde, dipotassium 

phosphate, bovine serum albumin, CAP, 2-NP-AMOZ, 2-NP-AOZ, 2-NP-SEM and 2-NP-

AHD were all purchased from Sigma-Aldrich (Dorset, UK). CAP, 2-NP-AMOZ, 2-NP-AOZ, 



2-NP-SEM and 2-NP-AHD were all prepared as 1mg/mL stock standards in methanol and 

stored at -20°C until required for use. 

 

Spotting nanoarrays 

Purified antibodies were diluted in filtered printing buffer (100 mM sodium phosphate, 50 

mM sodium chloride, 100 μg/mL BSA, 0.005 % Tween-20, pH 8.0) to the required 

concentration (depending on the antibody). A spotting volume of 1 nL for each antibody was 

spotted onto a 96 well microtitre plate using a sciFLEXARRAYER S5. For part one of the 

study (optimisation) a nine spot matrix format (3x3 array) was arrayed with a 1000 µm spot 

to spot pitch composing of nine replicates of each target in separate wells. For part two of the 

study (multiplex spotting analysis) a 25 spot matrix format (5x5 array) was arrayed with a 

500 µm spot to spot pitch composed of five replicates of each target (x 5 targets) in the same 

well. All spotting was carried out at room temperature and 65 % humidity. Microtitre plates 

were left at 65 % humidity for 1 hr on the nanospotter before being stored at 25 °C and 30 % 

humidity overnight in a humidity chamber (Deny, China). 

 

Assay protocol 

Enzyme labelled HRP conjugate (50 µl) diluted in bovine serum albumin (0.2 %) and 

sample/standard (50 µl) were applied to each well. The microtitre plate was incubated for 60 

min at room temperature. The microtitre plate was washed 4 times with ELISA wash solution 

(0.15 M NaCl, 0.0125 % Tween) and dried with lint-free paper. SciColor T2 (50 µl) was 

added to each well and incubated for 30 min at room temperature. Finally, the microtitre plate 

was washed 2 times with ELISA wash solution and dried with lint-free paper. The microtitre 

plate was scanned using the sciReader CL colorimetric nanoarray reader. 

 

Data processing 

Microtitre plates were scanned using the sciReader colorimetric nanoarray reader at an 

exposure of 100 ms. An image of each well of the microtitre plate was taken and saved as a 

TIFF file. One microtitre plates takes approximately 1 min to scan. The images are opened 

and processed using sciANA software from Scienion. The spotting matrix of each well is 

defined by the number of blocks (1x1) and number of spots (5x5) so that the software knows 

the spotting configuration. Next the image is evaluated and the software attempts to find the 

spotting configuration that has been specified. If the software successfully detects the spots it 

will draw grids around each spot automatically. If the intensity difference between the spots 



and the background is too low the software will not be able to find the spots and instead the 

grids must be manually aligned by the user. Once grids are aligned then the data can be 

exported into Excel. The Excel sheet will contain information on each spot of the well 

including X and Y coordinates, diameter, median intensity of spot and intensity of 

background. The median intensity (with background removed) measured in pixels was used 

for further data analysis. 

 

Optimisation of assay set-up 

Key materials and reagents were assessed to determine the optimum assay set-up. These 

included the microtitre plate supplier for spotting (Scienion (Clear Scienion Type 1 (CPH-

5511); Clear Scienion Type 2 (CPH-5521)), Nunc (White plates 463201; Flat bottom 442404; 

Breakable 473768) and Millipore (MSFBN6B50), and the TMB/E supplier for the assay 

(Millipore and Scienion).  

 

Optimisation of spotting volume 

Both 1 nL and 5 nL spotting volumes were initially assessed for AMOZ, AOZ and CAP 

assays to determine any effects on assay performance. By applying the optimised antibody 

dilutions of AMOZ (1/2000), AOZ (1/1000) and CAP (1/1000) and enzyme labelled HRP 

conjugates at AMOZ (1/4000), AOZ (1/100) and CAP (1/1000), eight-point calibration 

curves, from 0 to 50 ng/mL were prepared in PBS buffer for each antibiotic and assessed as 

an individual system (only one antibiotic spotted) with no interaction from any other 

antibiotic.  

 

Optimisation of antibodies and enzyme labelled HRP conjugates 

A chequerboard design was employed to optimise the assay parameters. Microtitre plates 

were spotted in an individual system using antibodies to determine optimum parameters for 

each antibiotic. Microtitre plates were spotted using purified antibodies at a spotting volume 

of 1 nL at dilutions 1/50 – 1/500 for AHD, 1/250 – 1/2000 for AOZ and CAP and 1/500 – 

1/4000 for AMOZ and SEM. Spotted antibodies were assessed as a chequerboard with 

individual enzyme labelled HRP conjugates at different dilutions (1/50 – 1/8000). A negative 

(0 ng/mL) and positive (10 ng/mL) standard were assessed for each parameter to determine 

optimum assay parameters for each antibiotic. The optimised antibody dilutions were for 

AMOZ (1/2000), AOZ (1/1000), SEM (1/4000), AHD (1/250) and CAP (1/1000) and the 



optimised enzyme labelled HRP were for AMOZ (1/4000), AOZ (1/100), SEM (1/1000), 

AHD (1/100) and CAP (1/1000). 

 

Individual and multiplex calibration curves 

Microtitre plates were spotted in a multiplex system (AMOZ, AOZ, SEM, AHD and CAP) 

and both individual and multiplex calibration curves were assessed. Spotting and assay 

parameters were determined during the optimisation stage. The microtitre plates were spotted 

using purified antibodies at a spotting volume of 1 nL using different antibody dilutions 

depending on the antibody. Antibody dilutions for each antibody were as follows; AMOZ 

(1/2000), AOZ (1/1000), SEM (1/4000), AHD (1/250) and CAP (1/1000). Enzyme labelled 

HRP conjugates were used at the following dilutions for each antibody; AMOZ (1/4000), 

AOZ (1/100), SEM (1/1000), AHD (1/100) and CAP (1/1000) during the assay. Eight-point 

individual calibration curves for AMOZ, AOZ, SEM, AHD or CAP were prepared in PBS 

buffer (10 mM, pH 7.4) at concentrations 0, 0.05, 0.1, 0.5, 2, 5, 10 and 50 ng/mL (AMOZ, 

AOZ and CAP) and at concentrations 0, 1, 5, 10, 25, 50, 100 and 200 ng/mL (SEM and 

AHD). Eight-point multiplex calibration curves for AMOZ, AOZ, SEM, AHD and CAP were 

also prepared in PBS buffer. Where necessary further standards were added as additional 

calibration points to improve the curve shape for the multiplex calibration curves especially 

for SEM and AHD. Calibration curves were assessed and examined (n=2 analysis, 5 spots per 

analysis) and sensitivity as either the midpoint (IC50) for full curves or the 50% inhibition 

concentration from the zero response determined from a 4 parameter fit curve using 

BIAevaluation version 4.1 software (Biacore, GE Healthcare). 

 

Sample preparation 

Hexane (5 mL), 1 M HCl (0.5 mL) and distilled water (4 mL) were added to honey (1 g) and 

vortex mixed for 1 min. The sample was centrifuged at 3000 g for 10 min and frozen at -80 

°C for 2 hr in order to separate the phases. The upper phase was discarded and the lower 

aqueous phase was allowed to defrost. 2-Nitrobenzaldyde (10 mM) in dimethyl sulfoxide 

(200 µl) was added to the aqueous phase and the sample was incubated overnight at 37 °C. 

Dipotassium phosphate (0.1 M, 5 mL), NaOH (1 M, 0.4 mL) and ethyl acetate (5 mL) were 

added to the sample and vortexed for 1 min. The sample was centrifuged at 3000 g for 10 

min. The upper organic phase (2.5 mL) was transferred to a glass test tube and evaporated at 

50°C under a slow nitrogen stream. Finally, the residue was dissolved in 1 mL PBS (10 mM, 

pH 7.4).  



 

 

Matrix effects 

Microtitre plates were spotted for the multiplex format and assay parameters examined were 

as described previously. Blank material for honey was sourced by Queen’s University Belfast 

and was confirmed as blank for the analytes of interest. Calibration curves for AMOZ, AOZ, 

SEM, AHD and CAP covering the concentration range of 0 – 1000ng/mL were prepared in 

PBS buffer to achieve full calibration curves. Calibration curves were also prepared, 

equivalent in final concentration to the buffer curve for honey samples fortified at the start of 

extraction, and honey fortified at the end of extraction to determine matrix and recovery 

effects in the assay compared to the buffer curve.  

 

Results and Discussion 

Optimisation of assay set up 

Based on the selection of the microtitre plates assessed the Nunc flat-bottomed plates were 

chosen for the assay development based on the assay performance achieved and price 

compared to the competitor plates. Millipore TMB/E (E-S001) was deemed not suitable for 

this multiplex assay as this reagent re-mobilised the spots whereby the development reaction 

was observed throughout the well, merging spots instead of as individual spots. Alternatively, 

when using the SciColor T2 special enzyme substrate solution the reaction was observed on 

the individual immobilised spots within the well and the liquid could be removed prior to 

scanning.  

 

Optimisation of Spotting Volumes 

For the two spotting volumes of 1 nL and 5 nL individual eight-point calibration curves for 

each antibiotic (AMOZ, AOZ or CAP) were successful achieved (Figure 1). Similar curve 

shapes were observed between the two spotting volumes and there was minimal difference in 

sensitivity when applying the 1 nL or 5 nL spotting volume. Nonetheless, the smaller spots 

appeared sharper and were more clearly spatially defined.  Initially reagents were only 

available for the AMOZ, AOZ and CAP targets and therefore it was decided that the final 

nanoarray would be spotted at 1 nL; the smaller spotting volume enabled the addition of the 

further two targets AHD and SEM when these reagents became available.  

 

Optimisation of antibodies and enzyme labelled HRP conjugates 



For the optimisation of the pairing of antibody and enzyme labelled HRP conjugate for each 

target the dilutions were optimised to give a spot intensity for the 0 ng/mL at approximately 

20,000 pixels. At this level of signal there was significant improvements in the ease of grid 

alignments and the processing of data as the software was able to find the spotted nanoarrays 

and carry out grid alignments with the images automatically. Final assay parameters for the 

spotted antibodies were 1/2000, 1/1000, 1/4000, 1/250 and 1/1000 for AMOZ, AOZ, SEM, 

AHD and CAP respectively. Final assay parameters for the enzyme labelled HRP conjugates 

were 1/4000, 1/100, 1/1000, 1/100 and 1/1000 for AMOZ, AOZ, SEM, AHD and CAP 

respectively. These optimum parameters selected provided suitable results in terms of spot 

intensity and inhibition with the 10 ng/mL positive standard to develop further each assay. A 

relatively high concentration of 10 ng/mL was applied compared to the MRPLs for the 

positive control to observe a working dynamic range for AMOZ, AOZ and CAP between 

negative and positive controls and to observe inhibition for the AHD and SEM assays with 

detectable spot intensities. 

 

 

Individual and multiplex calibration curves 

Eight-point individual calibration curves determined for each antibiotic (AMOZ, AOZ, SEM, 

AHD or CAP) as individual curves in the multiplex format with all targets spotted in the 

assay were successfully achieved (Figure 2). Additionally, eight-point multiplex calibration 

curves for all five antibiotics (AMOZ, AOZ, SEM, AHD and CAP) analysed simultaneously 

in the multiplex assay were completed (Figure 3). Table 1 presents the limit of detection 

(LOD) of the assays, as the IC20, and midpoint, IC50, based on the midpoint of a full 

sigmoidal curve or the 50% inhibition concentration for partial curves for each target both in 

the individual assay and multiplex format. For AMOZ, AOZ and CAP the LODs achieved at 

0.09, 0.26 and 0.04 ng/mL as individual assays is suitable to meet the MRPL values of 1 

ng/mL and 0.3 ng/mL for the nitrofurans and CAP respectively. The LODs of these three 

individual assays are lower compared to when they are multiplexed at 0.19, 0.34 and 0.09 

ng/mL for AMOZ, AOZ and CAP respectively. For multiplexing the detection of these 

targets at the MRPLs is realistic. The IC50 was similar for CAP at approximately 0.8 ng/mL 

for both the individual and multiplex calibration curves. The IC50 increased from 1.2 ng/mL 

to 3.2 ng/mL for AMOZ and similarly for AOZ from 1.9 ng/mL to 3.1 ng/mL between the 

individual and multiplex calibration curves showing a decrease in sensitivity for AMOZ and 

AOZ. Multiplexing assays with different antibodies may lead to some degree of cross talk 



between targets which accounts for the increase in the IC20 and IC50 for the multiplex curves. 

The benefits of multiplexing can be a suitable compromise to a minimal loss of sensitivity in 

most applications. However, for SEM and AHD the antibodies utilised do not allow the 

assays to reach the desired LODs for these targets as individual assays with IC20 values 

established of 35.9 and 15.2 ng/mL respectively. Nonetheless, the proof of principle in 

multiplexing has still been established. With better-quality antibodies the LODs for these 

targets could be improved. The IC50 was greater than 200 ng/mL for both SEM and AHD for 

the individual calibration curves. For the multiplex calibration curves for the matrix study the 

calibration range was increased to 1000 ng/mL for both SEM and AHD to determine 

sensitivity (Figure 4). As expected the dynamic range for both SEM and AHD was improved 

and 50 % inhibition of 166.6 g/mL and 553.8 ng/ml respectively were obtained for the 

multiplex curves. Additionally, when assessed as individual calibration curves on multiplex 

spotted microtitre plates both SEM and AHD conjugates showed a degree of cross reactivity 

with other spotted antibodies. SEM was detected by the AMOZ, AOZ and AHD spotted 

antibodies and AHD was detected by the AOZ spotted antibody. Reduced sensitivities 

between the individual and multiplex calibration curves is possibly due to minor interference 

and non-specific binding of reagents between the assays. There was extremely good 

repeatability shown with the IC50 values shown for the first multiplex study in PBS buffer 

(Figure 3) compared to the PBS buffer data from the matrix study (Figure 4) as outlined in 

Table 1 though the LODs were more variable. 

  

Matrix effects 

For the examination of matrix and recovery effects for the multiplex assay, over the 

concentration range for the sample preparation method applied, calibration curves of 

equivalent concentration prepared in PBS buffer, honey fortified before extraction and honey 

fortified after extraction were generated (Figure 4). It should be noted that for nitrofuran 

analysis there is the added complexity in sample preparation in the derivatisation of the 

marker metabolites for their detection. Therefore the extraction and derivatisation remains an 

overnight process for all methods though the advantage of the nanoarray is that it offers the 

simultaneous analysis of the five targets from the one sample extract. Due to the sensitivity 

required to achieve the desired MRPL detection levels the matrix and recovery effects appear 

more pronounced at the LODs (IC20 values) compared to the midpoints (IC50 values) of the 

calibration curves (Table 1).  The comparison of matrix effects is determined by differences 

observed in the calibration curves prepared in PBS buffer and honey matrix fortified at the 



end of the extraction based on 100% recovery of the targets. Low matrix effects over the 

concentration range were evident for each antibiotic with differences observed in both LODs 

and IC50s in calibration curves prepared in honey matrix (fortified at the end) compared to 

PBS buffer. Generally, the LODs were higher in fortified honey matrix curves though for 

AMOZ, AOZ and CAP still achieving the target MRPLs. An indication of the recovery of 

each assay can be observed on comparison of the difference between the calibration curves 

fortified before and after extraction. Based on the extraction method applied full recovery of 

the targets when fortified at the beginning of the extraction may not have been achieved 

based on the assumptions to attain 100% recovery. If the curves are overlaying there is 

excellent recovery in the assay but if they vary substantially then there are issues in recovery 

of the extraction method being applied. As can be observed from Figure 4 for each of the 

targets there are marginal differences in the overlay of the calibration curves highlighting 

minimal losses in recovery from the extraction method applied. When blank honey extract 

was fortified at the end of the extraction the IC50 improved for the AMOZ target to 1.4 ng/mL 

compared to 3.0 ng/mL in honey fortified at the beginning of the extraction. For other targets 

the sensitivity was marginally improved to that previously determined in honey fortified at 

the start of the extraction. For SEM the IC50 was 166.6 ng/mL in PBS buffer decreasing to 

272.7 ng/mL in honey (fortified at the start) and 138 ng/mL (fortified at the end). For AHD 

the IC50 was quite high in PBS buffer at 553.8 ng/mL increasing to > 1000 ng/mL in honey 

matrix. Neither SEM nor AHD show the required sensitivity that would meet regulatory 

limits to be used successfully in a testing laboratory.  Based on the comparison of the 

calibration curves determined it may be possible to apply a PBS buffer calibration curve to 

determine the concentration of each target in real samples as opposed to having a supply 

available of known blank honey for all targets to prepare extracted curves. The suitability of 

buffer curves for calibrations would need to be determined in a full validation study. The 

incorporation of a calibration curve for each target allows for the semi-quantitative analysis 

for the target nitrofuran metabolites and CAP as opposed to a qualitative yes / no response 

reflective of the LOD and associated MRPL. 

 

Conclusions 

The feasibility of a novel multispot nanoarray for the semi-quantitative and simultaneous 

screening of AMOZ, AOZ, CAP, SEM and AHD in honey has been illustrated whereby these 

antibiotics were successfully multiplexed into one assay. It was realised that antibodies for 

SEM and AHD were not as sensitive as for the other antibiotics and further improvements to 



the sensitivity to make this multiplex nanoarray more applicable for regulatory testing would 

be necessary. Similarly, with the considerations of the natural occurrence of SEM it may be 

appropriate for rapid methods to source an antibody that differentiates between protein bound 

SEM compared to free SEM as protein bound is believed to be more indicative of 

nitrofurazone usage compared to natural occurrence. The identification of an alternative 

marker would also be important.  

This study has demonstrated the proof of concept of a multiplex nanoarray for multiple 

nitrofuran and chloramphenicol detection with results available for 40 samples within 90 min 

after extraction. The benefit of this assay system is that it follows established ELISA 

protocols, whereby laboratories with immunological screening methods already in place have 

end users familiar with the steps of the analysis. The simplicity and sensitivity of the 

antibiotic nanoarray means it could be used as a multiple target screening technique for many 

antibiotics within the area of residue determination and food safety. This study has shown 

some very promising data that is worthy of further research to determine if this approach is 

suitable for a commercial diagnostic test in the food industry. As the multiplex reader 

technology is relatively new, uptake and implementation would require replacement of 

existing ELISA plate readers. In the food safety diagnostics sector this investment should be 

comparable to existing readers to have potential interest for future users, though 

consideration should also be given to the simultaneous high throughput detection of five 

targets on an established ELISA platform compared to five individual assays which has the 

potential to minimise labour time improving throughput reducing the overall cost of analysis 

in the long term. As traditional antibody based screening methods are now competing in a 

number of laboratories with LC-MS/MS methods as the new screening tools the cost of kits 

for multiplex analysis should be relatively low to be competitive with these LC-MS/MS 

methods. Improvements to the sensitivity for SEM and AHD, the addition of other antibiotics 

to the nanoarray and the detection in different food matrices are also all worthy of further 

evaluations. Additionally, prior to implementation a full validation and inter-laboratory trial 

of the nanoarray should be conducted following accreditation guidelines. To meet with the 

criteria of the EU this would be according to the guidelines for the validation of screening 

methods as outlined in the European decision EC/2002/657. For the collaborative trial the 

availability of multiplex readers would also need consideration. 

Acknowledgements 

This study was funded by Regione Friuli Venezia Giulia (I): “Legge Regionale 47/78” and by 

the Advanced ASSET project, partly funded through InvestNI and from the European 



Sustainable Programme 2007−2013 under the European Regional Development Fund 

(“ERDF”). 

 

 

References 

An H, Parrales L, Wang K, Cain T, Hollins R, Forrest D, Liao B, Paek HC, Sram J. 2015. 

Quantitative Analysis of Nitrofuran Metabolites and Chloramphenicol in Shrimp Using 

Acetonitrile Extraction and Liquid Chromatograph-Tandem Mass Spectrometric Detection: A 

Single Laboratory Validation. J. AOAC Int. 98:602-608 

 

Cheng C, Hsieh K, Lei Y, Tai Y, Chang T, Sheu S, Li W, Kuo T. 2009. Development and 

Residue Screening of the Furazolidone Metabolite, 3-Amino-2-oxazolidinone (AOZ), in 

Cultured Fish by an Enzyme-Linked Immunosorbent Assay. J. Agric. Food Chem. 57:5687-

5692 

 

Council regulation (EEC) No 2377/90 of 26 June 1990 laying down a community procedure 

for the establishment of maximum residue limits of veterinary medicinal products in 

foodstuffs of animal origin. 1990. Off. J. Eur. Union L224:1-8 

 

Commission regulation (EC) No 1442/95 of 26 June 1995 amending annexes I, II, III and IV 

of council regulation (EEC) No 2377/90 laying down a community procedure for the 

establishment of maximum residue limits of veterinary medicinal products in foodstuffs of 

animal origin. 1995. Off. J. Eur. Union L143:26-30 

 

Conneely A, Nugent A, O'Keeffe M, Mulder P, van Rhijn J, Kovacsics L, Fodor A, 

McCracken R, Kennedy D. 2003. Isolation of bound residues of nitrofuran drugs from tissue 

by solid-phase extraction with determination by liquid chromatography with UV and tandem 

mass spectrometric detection. Anal. Chim. Acta 483:91-98 

 

Cooper KM, Kennedy DG. 2007. Stability studies of the metabolites of nitrofuran antibiotics 

during storage and cooking. Food Addit. Contam. 24:935-942 

 



Cooper KM, Samsonova JV, Plumpton L, Elliott CT, Kennedy DG. 2007. Enzyme 

immunoassay for semicarbazide - The nitrofuran metabolite and food contaminant. Anal. 

Chim. Acta 592:64-71 

 

Cooper K, Caddell A, Elliott C, Kennedy D. 2004. Production and characterisation of 

polyclonal antibodies to a derivative of 3-amino-2-oxazolidinone, a metabolite of the 

nitrofuran furazolidone. Anal. Chim. Acta 520:79-86 

 

Cooper K, Elliott C, Kennedy D. 2004. Detection of 3-amino-2-oxazolidinone (AOZ), a 

tissue-bound metabolite of the nitrofuran furazolidone, in prawn tissue by enzyme 

immunoassay. Food Addit. Contam. 21:841-848 

 

Cooper K, Mulder P, van Rhijn J, Kovacsics L, McCracken R, Young P, Kennedy D. 2005. 

Depletion of four nitrofuran antibiotics and their tissue-bound metabolites in porcine tissues 

and determination using LC-MS/MS and HPLC-UV. Food Addit. Contam. 22:406-414 

 

Crews C. 2012 Potential natural sources of semicarbazide in honey. Report for the Food 

Standards Agency in Scotland. Project code FS241065. 

https://www.food.gov.uk/sites/default/files/semicarbazide_in_honey.pdf  

Accessed 12/12/2016 

 

Diblikova I, Cooper K, Kennedy D, Franek M. 2005. Monoclonal antibody-based ELISA for 

the quantification of nitrofuran metabolite 3-amino-2-oxazolidinone in tissues using a 

simplified sample preparation. Anal Chim. Acta 540:285-292 

 

Douny C, Widart J, de Pauw E, Maghuin-Rogister G, Scippo M. 2013. Determination of 

Chloramphenicol in Honey, Shrimp, and Poultry Meat with Liquid Chromatography-Mass 

Spectrometry: Validation of the Method According to Commission Decision 2002/657/EC. 

Food Anal. Methods. 6:1458-1465 

 

El-Demerdash A, Song F, Reel RK, Hillegas J, Smith RE. 2015. Simultaneous Determination 

of Nitrofuran Metabolites and Chloramphenicol in Shrimp with a Single Extraction and LC-

MS/MS Analysis. J. AOAC Int. 98:595-601 



European Commission Decision (EC) No 2002/657/EC implementing Council Directive 

96/23/EC concerning the performance of analytical methods and the interpretation of results 

Official Journal of the European Communities, L221, 8-34 

 

 

Ferguson J, Baxter A, Young P, Kennedy G, Elliott C, Weigel S, Gatermann R, Ashwind H, 

Stead S, Sharman M. 2005. Detection of chloramphenicol and chloramphenicol glucuronide 

residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance 

biosensor and Qflex((R)) kit chloramphenicol. Anal. Chim. Acta 529:109-113 

 

Fodey T, Murilla G, Cannavan A, Elliott C. 2007. Characterisation of antibodies to 

chloramphenicol, produced in different species by enzyme-linked immunosorbent assay and 

biosensor technologies. Anal. Chim. Acta 592:51-57 

 

Gao F, Feng S, Chen Z, Li-Chan ECY, Grant E, Lu X. 2014. Detection and Quantification of 

Chloramphenicol in Milk and Honey Using Molecularly Imprinted Polymers: Canadian 

Penny-Based SERS Nano-Biosensor. J. Food Sci. 79:2542-2549 

 

Guo L, Song S, Liu L, Peng J, Kuang H, Xu C. 2015. Comparsion of an 

immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, 

florfenicol and chloramphenicol in food samples. Biomedical Chromatogr. 29:1432-1439 

 

Han J, Wang Y, Yu C, Yan Y, Xie X. 2011. Extraction and determination of chloramphenicol 

in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-

phase system coupled with high-performance liquid chromatography. Anal. Bioanal. Chem. 

399:1295-1304 

 

Jin W, Yang G, Shao H, Qin A. 2014. A label-free impedimetric immunosensor for detection 

of 1-aminohydantoin residue in food samples based on sol-gel embedding antibody. Food 

Control 39:185-191 

 

Jin W, Yang G, Wu L, Wang Q, Shao H, Qin A, Yu B, Li D, Cai B. 2011. Detecting 5-

morpholino-3-amino-2-oxazolidone residue in food with label-free electrochemical 

impedimetric immunosensor. Food Control 22:1609-1616 



 

Kara M, Uzun L, Kolayli S, Denizli A. 2013. Combining molecular imprinted nanoparticles 

with surface plasmon resonance nanosensor for chloramphenicol detection in honey. J. Appl. 

Polym. Sci. 129:2273-2279 

 

Kaufmann A, Butcher P, Maden K, Walker S, Widmer M. 2015. Determination of nitrofuran 

and chloramphenicol residues by high resolution mass spectrometry versus tandem 

quadrupole mass spectrometry. Anal. Chim. Acta 862:41-52 

Kloth K, Niessner R, Seidel M. 2009. Development of an open stand-alone platform for 

regenerable automated microarrays. Biosens. Bioelectron. 24:2106-2112 

Kloth K, Rye-Johnsen M, Didier A, Dietrich R, Maertlbauer E, Niessner R, Seidel M. 2009. 

A regenerable immunochip for the rapid determination of 13 different antibiotics in raw milk. 

Analyst. 134:1433-1439 

Li J, Liu JX, Wang JP. 2009. Multidetermination of Four Nitrofurans in Animal Feeds by a 

Sensitive and Simple Enzyme-Linked Immunosorbent Assay. J Agric. Food Chem. 57:2181-

2185 

 

Liu N, Song S, Lu L, Nie D, Han Z, Yang X, Zhao Z, Wu A, Zheng X. 2014. A rabbit 

monoclonal antibody-based sensitive competitive indirect enzyme-linked immunoassay for 

rapid detection of chloramphenicol residue. Food Agric. Immunol. 25:523-534 

 

Liu Y, Jiang W, Chen Y, Zeng P, Zhang M, Wang Q. 2015. Simultaneous detection of four 

nitrofuran metabolites in honey using high-throughput suspension array technology. Anal. 

Methods. 7:4097-4103 

 

Lopez MI, Feldlaufer MF, Williams AD, Chu P. 2007. Determination and confirmation of 

nitrofuran residues in honey using LC-MS/MS. J. Agric. Food Chem. 55:1103-1108 

 

McCracken R, Kennedy D. 1997. The bioavailability of residues of the furazolidone 

metabolite 3-amino-2-oxazolidinone in porcine tissues and the effect of cooking upon residue 

concentrations. Food Addit. Contam. 14:507-513 

 



McGrath TF, McClintock L, Dunn JS, Husar GM, Lochhead MJ, Sarver RW, Klein FE, Rice 

JA, Campbell K, Elliott CT. 2015. Development of a rapid multiplexed assay for the direct 

screening of antimicrobial residues in raw milk. Anal. Bioanal. Chem. 407:4459-4472 

 

O'Keeffe M, Conneely A, Cooper K, Kennedy D, Kovacsics L, Fodor A, Mulder P, van Rhijn 

J, Trigueros G. 2004. Nitrofuran antibiotic residues in pork The FoodBRAND retail survey. 

Anal. Chim. Acta 520:125-131 

 

O'Mahony J, Moloney M, McConnell RI, Benchikh EO, Lowry P, Furey A, Danaher M. 

2011. Simultaneous detection of four nitrofuran metabolites in honey using a multiplexing 

biochip screening assay. Biosens. Bioelectron. 26:4076-4081 

 

Points J, Burns DT, Walker M. 2015 Forensic issues in the analysis of trace nitrofuran 

veterinary residues in food of animal origin Food Control 50, 92 - 103 

 

Thompson CS, Traynor IM, Fodey TL, Crooks SRH, Kennedy DG. 2011. Screening method 

for the detection of a range of nitrofurans in avian eyes by optical biosensor. Anal. Chim. 

Acta 700:177-182 

 

Tribalat L, Paisse O, Dessalces G, Grenier-Loustalot M. 2006. Advantages of LC-MS-MS 

compared to LC-MS for the determination of nitrofuran residues in honey. Anal. Bioanal. 

Chem. 386:2161-2168 

 

Vass M, Hruska K, Franek M. 2008. Nitrofuran antibiotics: a review on the application, 

prohibition and residual analysis. Vet. Med. 53:469-500 

 

Veach BT, Baker CA, Kibbey JH, Fong A, Broadaway BJ, Drake CP. 2015. Quantitation of 

Chloramphenicol and Nitrofuran Metabolites in Aquaculture Products Using Microwave-

Assisted Derivatization, Automated SPE, and LC-MS/MS. J. AOAC Int. 98:588-594 

 

Vivekanandan K, Swamy M, Prasad S, Mukherjee R. 2005. A simple method of isolation of 

chloramphenicol in honey and its estimation by liquid chromatography coupled to 

electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 

19:3025-3030 



 

Wutz K, Niessner R, Seidel M. 2011. Simultaneous determination of four different antibiotic 

residues in honey by chemiluminescence multianalyte chip immunoassays. Microchimica. 

Acta 173:1-9 

 

Yan L, Luo C, Cheng W, Mao W, Zhang D, Ding S. 2012. A simple and sensitive 

electrochemical aptasensor for determination of Chloramphenicol in honey based on target-

induced strand release. J. Electroanal. Chem. 687:89-94 

 

Yang G, Jin W, Wu L, Wang Q, Shao H, Qin A, Yu B, Li D, Cai B. 2011. Development of an 

impedimetric immunosensor for the determination of 3-amino-2-oxazolidone residue in food 

samples. Anal. Chim. Acta 706:120-127 

 



T
ab

le
 

T
ab

le
 1

. L
im

it
 o

f 
de

te
ct

io
n 

(L
O

D
),

 a
s 

th
e 

20
 %

 i
nh

ib
it

io
n 

co
nc

en
tr

at
io

n 
(I

C
20

),
 a

nd
 m

id
-p

oi
nt

 f
or

 t
he

 c
al

ib
ra

ti
on

 c
ur

ve
 (

IC
50

) 
fo

r 
ea

ch
 a

nt
ib

io
ti

c 

(A
M

O
Z

, 
A

O
Z

, 
S

E
M

, 
A

H
D

 a
nd

 C
A

P
) 

ex
pr

es
se

d 
as

 n
g/

m
L

 f
or

 b
ot

h 
in

di
vi

du
al

 a
nd

 m
ul

ti
pl

ex
 a

na
ly

si
s 

us
in

g 
P

B
S

 b
uf

fe
r 

an
d 

a 
ho

ne
y 

m
at

ri
x 

(h
on

ey
 s

am
pl

es
 f

or
ti

fi
ed

 a
t t

he
 s

ta
rt

 a
nd

 e
nd

 o
f 

th
e 

ex
tr

ac
ti

on
).

 

 

A
nt

ib
io

ti
c 

In
di

vi
du

al
 A

na
ly

si
s 

M
ul

tip
le

x 
A

na
ly

si
s 

M
ul

tip
le

x 
A

na
ly

si
s 

P
B

S
 B

uf
fe

r 
P

B
S

 B
uf

fe
r 

P
B

S
 B

uf
fe

r 
H

on
ey

 
F

or
ti

fi
ed

 a
t s

ta
rt

 o
f 

ex
tr

ac
ti

on
 

H
on

ey
 

F
or

tif
ie

d 
at

 e
nd

 o
f 

ex
tr

ac
ti

on
 

IC
20

 
(n

g/
m

L
) 

IC
50

 

(n
g/

m
L

)
IC

20
 

(n
g/

m
L

) 
IC

50
 

(n
g/

m
L

)
IC

20
 

(n
g/

m
L

) 
IC

50
 

(n
g/

m
L

)
IC

20
 

(n
g/

m
L

) 
IC

50
 

(n
g/

m
L

)
IC

20
 

(n
g/

m
L

) 
IC

50
 

(n
g/

m
L

)
A

M
O

Z
 

0.
09

 
1.

2 
0.

65
 

3.
2 

0.
19

 
3.

0 
0.

34
 

4.
1 

0.
23

 
1.

4 

A
O

Z
 

0.
26

 
1.

9 
1.

0 
3.

1 
0.

83
 

3.
5 

0.
87

 
4.

0 
0.

98
 

3.
5 

C
A

P 
0.

04
 

0.
7 

0.
16

 
1.

0 
0.

09
 

0.
8 

0.
17

 
1.

1 
0.

24
 

0.
9 

S
E

M
 

45
.8

 
>

 2
00

* 
34

.8
 

16
1.

4*
 

15
.2

 
16

6.
6*

 
42

.1
 

27
2.

7*
 

24
.8

 
13

8.
0*

 

A
H

D
 

6.
9 

>
 2

00
* 

25
.4

 
>

20
0*

 
35

.9
 

55
3.

8*
 

90
.7

 
>

 1
00

0*
 

58
.9

 
>

 1
00

0*
 

 
*A

 f
ul

l c
al

ib
ra

tio
n 

cu
rv

e 
w

as
 n

ot
 o

bt
ai

ne
d 

th
er

ef
or

e 
th

e 
50

 %
 in

hi
bi

tio
n 

co
nc

en
tr

at
io

n 
w

as
 c

al
cu

la
te

d 
fr

om
 th

e 
0 

ng
/m

L
 s

ta
nd

ar
d.

 
 



 

Figures 

 

 

 

Figure 1: Individual calibration curves for AMOZ, AOZ and CAP in PBS buffer using individual spotted 

microtitre plates at 1 and 5 nL spotting volume (n=2 analysis, 9 spots per analysis). 



 

Figure 2: Individual calibration curves for the independent detection of AMOZ, AOZ, CAP, SEM and AHD in 

PBS buffer using a multiplex spotted microtitre plate (n=2 analysis, 5 spots per analysis). 

 

 

 

 

 

Figure 3: Multiplex calibration curves based on the simultaneous detection of AMOZ, AOZ, CAP, SEM and 
AHD in PBS buffer using a multiplex spotted microtitre plate (n=2 analysis, 5 spots per analysis). 

 

 

 

 



 

     

 

     

 

 

 

Figure 4: Matrix and recovery effects for AMOZ, AOZ, CAP, SEM and AHD in PBS buffer, honey fortified at 

the start of the extraction and blank honey extracts fortified after extraction using multiplex spotted microtitre 

plates (n=2 analysis, 5 spots per analysis).  
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