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Abstract: This paper presents an analytical method for the extraction of the complex relative permittivity 

of multi-layered dielectric substrates that are used to construct thin film microstrip lines (TFMLs). The 

proposed approach is based on the analysis of an equivalent parallel plate waveguide filled with a 

dielectric material whose relative dielectric permittivity is the effective dielectric permittivity of the 

corresponding TFML. The extraction technique relies only on the knowledge of the complex propagation 

constant obtained from S-parameter measurements and is applicable to a wide range of line dimensions 

and dielectric permittivity values. For experimental verification, several TFMLs were fabricated, and from 

the measured scattering parameters, the complex dielectric characteristics of each device are extracted. 

The extracted relative permittivity and loss tangent values are then compared to the dielectric parameters 

obtained from a numerical technique based on full wave analyses. The accuracy of the proposed analytical 

method is shown to be approximately 15% and 5% for the fabricated TFMLs with ratios of the microstrip 

line width (W) to dielectric thickness (H), (W/H) of 4 and 80, respectively. 

 

1. Introduction 

Thin film microstrip lines are a scaled-down version of conventional microstrip lines (MSLs), but 

with fundamentally different electrical characteristics, [1]. Electrically thin conductors (less than one skin 

depth thick at the operating frequencies), in addition to the associated finite conductivity, exhibit 

extraordinary conductor and radiation losses in conjunction with a slow-wave behaviour that are not 

consistent with the dispersion relations of typical MSLs. In this regard, the individual effect of the 

conductors and the dielectrics cannot be easily separated or, in other words, dielectric characterization 

based on TFMLs is a challenging task, [2].  

A first attempt to solve the issue was presented in [3] where low-permittivity dielectric materials 

were characterized in two steps based on the knowledge of the per-unit-length (PUL) parameters; i.e. 

resistance (R), inductance (L), conductance (G) and capacitance (C). In the first step, the PUL parameters 

are obtained from measurements of the complex propagation constant and complex characteristic 

impedance of the TFML. Following this, several full wave simulations are performed for the TFML in 

order to obtain a curve fitting polynomial mapping the complex permittivity of the TFML substrate to the 

corresponding PUL capacitance and conductance. The curve fitting step may be eliminated in favour of 
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using a data bank of TFMLs to provide closed-form formulas for the PUL  parameters based on the 

dielectric substrate as well as the geometric dimensions of the line, [4]-[5]. It should be pointed out that 

studies [4-5] assumed TFMLs to be three layered, consisting of the ground, substrate and microstrip line 

layers. In [6], the thin ground plane layer is mounted on n-doped silicon, which affects the wave 

propagation mechanism and ultimately results in the need for the TFML to be treated as a four layer 

substrate. 

An alternative study of dielectric characterization of thin-film materials was performed using multi-

layered parallel plate waveguides (PPWGs) to overcome the problems encountered in TFMLs, [7]. 

Although the results are shown to be promising, this method is valid only for wide TFMLs with an aspect 

ratio of W/H ≈ 50. 

In this paper, the unknown complex relative dielectric permittivity, εr, associated with the dielectric 

material of a TFML is extracted based on a multi-layer PPWG filled by a dielectric material exhibiting the 

effective permittivity, εeff, of the corresponding TFML, [8]. In this regard, the effective permittivity of the 

TFML, εeff, is first obtained based on an equivalent multi-layer PPWG analysis. The proposed analytical 

technique does not make any simplifying assumptions on metal conductivity or thickness and considers 

wave propagation inside each layer of the composite structure.  Hence, the extracted εeff is free from the 

propagation effects of the adjacent layers, specifically thin conductors. The corresponding relative 

dielectric permittivity is then retrieved from the resulting εeff in conjunction with the dispersion formulas 

for conventional MSLs, [9], since the effect of thin conductors is already taken into account. The main 

advantage of the proposed extraction method lies with the fact that it only requires the knowledge of the 

complex propagation constant, which is obtained from scattering parameters measurements, and it is 

therefore significantly less cumbersome than the two-step procedure of [3]. 

The results obtained using the proposed extraction method are compared with the complex relative 

permittivity obtained using an accurate, albeit time consuming, curve-fitting optimization procedure 

available in a commercial full-wave simulator, [10]. The difference between the two sets of results is 

shown to be within 15% for narrow microstrip lines (W/H ≈ 4), inferring that the proposed analytical 

method can be used as a starting point in the optimization procedure to yield time effective and accurate 

dielectric characterization of materials based on TFMLs. In addition, the proposed method extends the 

usage of the traditional PPWG method in [7] which is only applicable to wide microstrip lines (W/H ≈ 50). 

In other words, the new method is investigated for both narrow and wide microstrip lines and W/H can be 

as low as 4 up to higher values; i.e. 80. Moreover, it is well-suited for the challenging problem of 

characterization of high dielectric constant materials, [15]. This is because proper impedance matching is 
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plausible based on a narrow TFML which, compared to a PPWG, yields lower reflections when connected 

to a 50 Ohm measurement system. Therefore, the measurement results are less sensitive to random errors 

(experimental and noise errors).  

The paper is organized as follows; Section II is devoted to the effective permittivity extraction based 

on an equivalent PPWG analysis with an emphasis on providing a clear understanding of the wave 

propagation mechanism in TFMLs. Section III discusses the complex relative permittivity extraction both 

from the proposed analysis and the curve-fitting optimization. Section IV discusses the test structures and 

the corresponding results. Section V concludes the paper. 

2. Effective permittivity extraction  

 
2.1. Parallel Plate Waveguide (PPWG) Analysis 

 

The geometry of a multi-layer parallel plate waveguide is shown in Fig. 1 (a) where each layer is 

characterized by an arbitrary complex relative permittivity, εri, and the corresponding thickness, di. All 

media are considered isotropic and homogeneous and the waves are propagating in the direction of the z-

axis having no variations along x-axis. The time and z-coordinate dependencies are assumed as 
 zzktj

e


 

where the complex propagation constant kz = β – jα with β and α as the propagation and attenuation 

constants, respectively. 

The objective of the derivation is to obtain the dispersion relation of the dominant TM mode inside 

the PPWG, in order to relate the complex propagation constant of the waveguide to the dielectric and 

physical characteristic of each constituent layer. In this regard, Maxwell’s equations are solved with the 

relevant boundary conditions; i.e. continuity of the tangential components of the electric and magnetic 

fields. Without any loss of generality, two perfect electric conducting (PEC) media are used as the lower 

and upper extreme layers, namely at i = +l and i = -m, in order to close the boundaries of the PPWG, as 

required for the full analysis. In general, PEC walls can be placed at points of no wave propagation, in 

order to define the clear boundaries of the domain within which a solution is sought. By adopting these 

two PEC walls, as will be shown, the final dispersion relation for the dominant TM mode will only contain 

even orders of the complex propagation constant, kz. The dispersion relation of the dominant TM mode for 

the PPWG of Fig. 1 (a) is given [11], 
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   a       b 
Fig. 1.  Equivalent parallel plate waveguide (PPWG) model of a thin film microstrip line (TFML)  

a Multi-layer PPWG 

b Five layer TFML 
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With the normal propagation constants (in the y direction), pi, given by, 
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Here, k0 = ω/c is the free space wave number, εri = εi/ε0 is the relative permittivity of each layer and 

μri = 1 for dielectrics. 

 

2.2. Thin Film Microstrip Line 
 

A thin film microstrip line based on an n-doped silicon substrate is shown in Fig. 1 (b). As can be 

seen, the dielectric material is sandwiched between two metal layers. An insulating layer is employed to 

isolate the microstrip ground plane from the conductive silicon substrate. The PPWG analysis performed 

in the previous section relies on the mapping of εrd of Fig. 1 (a) to the effective permittivity of the TFML, 

εeff, Fig. 1 (b), which also accounts for the geometric parameters of the line, [8]. It should be pointed out 

here that the focus of this study is on TFMLs with W/H > 4 where W is the width of the microstrip track 

and H represents the dielectric material thickness. For such a wide microstrip track, the TFML can be 

readily modeled by an equivalent five layer PPWG, [8]. 

The relative permittivity of a conductor is given by εr = (1– jσ/ωε0) where σ is the conductivity. In 

this case, due to the large relative permittivity of the conducting layers up to optical frequencies; i.e. ε±r1, 

the following holds   1
2
01

2
01

2
1 /1    jkkkp rrz  with 101 /2    as the 

conductors’ skin depth. In addition, tanh(2p0d0) can be substituted by the corresponding linear 

approximation as the thin dielectric layer (order of a few microns) makes the argument very small. Using 

these approximations, Eq. (1) can be re-arranged to yield a transcendental equation for kz, 
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 Which, after re-arranging gives a quadratic equation in εeff, 
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Where t±1 are given in (1). It is also worthwhile to consider the simple case of a symmetrical three-

layer PPWG which can be used to model a three-layer TFML. For this case, we can assume d±1 = T, ε±r1 = 
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εr1 = 1 - jσ/ωε0 and p±1 = p1 = (1+j)/δ. Meanwhile, it can be shown from Eq. (2) that  

)coth(tanh 11 Tp  and thus, 
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By substituting (6) into (4) and by considering that (εeff × t1)
2
 << 2(εeff × t1)/H, one obtains 
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Equation (7) describes the wave propagation mechanism in the equivalent three-layer PPWG 

modeled for the corresponding symmetrical three-layer TFML. An inspection of (7) reveals that the only 

difference between the wave propagation mechanism of TFMLs and MSLs is the additional term, 2
yk , 

which takes into account the effect of thin conductors. For MSLs with T > 3δ, this term is less significant 

and tends to zero if the dielectric thickness, H, is chosen in the order of hundreds of microns. Alternatively, 

as frequency increases to values for which the skin depth is well below the metal thickness, k0 becomes 

much larger than ky; hence 0kk effz  ; which is the well known Quasi-TEM behavior of a conventional 

MSL. On the other hand, as frequency decreases, the contribution of the two terms in (7) changes and ky 

plays the dominant role. In other words, the skin depth increases meaning that waves can now effectively 

propagate inside the whole volume of the conductors which give rise to significant Ohmic as well as 

radiation losses. Ultimately for very low frequencies, k0 has a negligible value in contrast to a large ky, thus; 
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Where coth(γ1T) in (8) is replaced by 1/γ1T since the argument is small. As can be seen from (9), the 

propagation and attenuation constants have equal contributions, a phenomenon which is also observed for 

wave propagation inside a conducting medium. In addition, β has a non-linear behavior with frequency 

indicating that conductors play an increasingly important role in the propagation mechanism at low 

frequencies. 

The unknown complex effective permittivity can now be obtained by re-arranging (7), 

 

)/( 22
0

2
yzeff kkk         (10) 

  

Equations (5) and (10) give, respectively, the complex effective permittivity, εeff, of a 5 and 3-layer 

PPWG based on the complex propagation constant, kz, and the information on the layers (thicknesses, 

relative permittivity and/or conductivities) other than the dielectric material. Here, kz can be calculated 

from the scattering parameter measurements of multiple transmission lines having the same transversal 

geometry but with different lengths, [12]. Having obtained kz and with the knowledge of the characteristics 

of the relevant layers, the complex effective permittivity, εeff, can be extracted. It is important to highlight 

the fact that the extracted εeff is free from the unwanted effects of thin conductors as the presented analysis 

reduces the problem of a TFML to a typical MSL by introducing a modified complex propagation constant. 

On the other hand, it is obvious from (5) and (10) that if the different layers such as thin conductors are not 

considered in the wave propagation mechanism, the extracted εeff cannot separate the effect of the 

dielectric substrate from the conductors, since conductors (dielectric) are in this case underestimated 

(overestimated), [3]. In the next section, it will be shown that the corresponding relative permittivity of the 

TFML can be retrieved using the extracted εeff and the available dispersion formulas, [9]. 

 

3. Relative permittivity extraction  

 
3.1. Proposed Analytical Method 

 

In the previous section, the procedure to extract the effective permittivity εeff of a TFML was 

discussed. In order to obtain the associated relative permittivity, εr, we can use the resulting εeff and apply 

the available dispersion relations for a typical microstrip line, [9]. The formula given in [9] has a high 

degree of accuracy, better than 0.6 percent in the range 0.1 < W/H < 10, 1 < εr < 128, and any H/λ0 where 

λ0 is the free space wavelength. Concerning the wide range of the relative permittivity (1 < εr < 128) and 
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the fact that the dielectric thickness (H) can have any value, the formula in [9] for the dielectric 

permittivity is used, 
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Where εeff is obtained from Eq. (5) or (10) and the dc value εeff (0), is adopted from [1] which also 

accounts for the finite thickness of the microstrip, 
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The ultimate high frequency value of real(kz/k0)
2
 can be chosen for εr as at these frequencies, the skin 

depth is fully established and a typical microstrip line can be assumed. Finally, (11) can be used along 

with the geometric parameters of the line (W and H) to yield the relative permittivity of the line at each 

frequency point.  

 

3.2. Optimized Full Wave Simulation Method 
 

A curve fitting procedure based on a full-wave simulation tool can also be used to accurately retrieve 

the relative permittivity associated with the dielectric material of a TFML, [10]. However, this has a 

tendency to be very time consuming due to the complex propagation nature in thin film conductors. To 

this end, full wave simulations based on the software package CST, [13], are performed on the five-layer 

TFML where the unknown complex relative permittivity of the simulated line is optimized to yield the 

complex propagation constant obtained from the measurements. In addition, the optimization tool in CST 

allows a defined range of uncertainty for the geometric parameters and/or conductivities of the layers. In 
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this case, conductivity of the metal layers can be inferred from dc resistance measurements. The exact 

dimensions of the TFML can be also obtained using scanning electron microscope (SEM) measurements.  

It should be also pointed out that conductive layers were introduced in CST as arbitrary materials 

having a permittivity value defined by the associated conductivity. This was adopted with a fine 

volumetric mesh of the conductor layers to ensure that the EM waves are allowed to propagate inside thin 

conductors and they are not treated as surface impedances which is the case for conductive strips in CST, 

[13]. 

 

4. Test Structures and results 

Test wafers were fabricated using standard micro-fabrication techniques. The wafers consist of 

transmission lines (TLs) having two CPW-to-Microstrip transitions at the input and output ports connected 

through a thin film microstrip line (TFML) section of length L = 0, 1 mm, 2 mm and 5 mm, Fig. 2(a). The 

extraction procedure presented in the previous sections require the S parameter results or the complex 

propagation constant, kz, of the TFML section which hosts the unknown dielectric material as the input. 

The S parameters of the TFML section can be retrieved using the thru-line technique reported in [14] to 

remove the effect of the transitions. Here, the thru configuration represents two transitions connected 

back-to-back (L = 0) while the line configuration presents two transitions connected through a TFML 

section of length L. The CPW in Fig. 2 (a) is patterned on the ground plane (bottom electrode) and is 

designed to have 50Ω characteristic impedance. In this case, the dielectric substrate for the CPW is silicon 

dioxide with εr = 3.9, whereas the silicon substrate has a dielectric permittivity of 11.9. The corresponding 

geometric parameters are G = 180 μm, S = 44 μm and W = 80 μm with the length of the transition as Lt = 

2200 μm. The signal path of the CPW is connected through a via with diameter d = 3 μm to the microstrip 

track of the TFML section with a width of W = 4 μm. It should be noted, that even though the CPW-to-

microstrip transition is designed with the knowledge of the dielectric substrate, such knowledge is not 

necessarily required for the purpose of the extraction of the unknown dielectric parameters of the TFML. 

This is because the parameters of the CPW-to-microstrip transitions are not used in the retrieval of the 

unknown dielectric parameters.  

To produce the TLs, a gold ground conductor was deposited on an insulating layer of SiO2 material 

which was deposited on a silicon substrate. The dielectric material was then deposited on the surface of the 

ground plane. Next, the SiO2 barrier layer was deposited. This barrier layer was etched away to expose the 

top of the dielectric layer as well as to open vias to the ground plane. The top electrode as the microstrip is 

then patterned and deposited on the dielectric material, Fig. 2 (a).  
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A typical cross-section of one of the TFMLs measured with a scanning electron microscope (SEM) 

is also provided in Fig. 2 (b). For the reported measurements, silicon dioxide (SiO2) is used as the 

dielectric material. The SiO2 is deposited using Plasma-Enhanced Chemical Vapor Deposition and may 

contain impurities which may contribute to a different relative permittivity. The geometric parameters of 

the line were measured using SEM and found to be as follows; the width of the microstrip was W = 

4±0.05 um, conductor thickness for the microstrip track and the ground plane T = 2.6±0.05um and TGND = 

0.5±0.02um, dielectric thickness H = 1.1±0.05um, the thickness of the SiO2 insulating layer and the silicon 

substrate were 0.3±0.05 um and 600 um, respectively. Conductivities of the top and bottom gold layers 

were derived from measurements of dc resistance and metal geometries and found to be (3.85±0.15)×10
7
 

S/m and (2.55±0.15)×10
7 

S/m, respectively. The dielectric constant of the silicon substrate is 11.9 with a 

conductivity of 500 S/m.  

 

  

  Si substrate 

 

Au electrode with 

Ti adhesion layer 

SiO2 layer 

Au electrode with 

Ti adhesion layer 

 
    a      b 
Fig. 2.  Multi-layer TFML circuits  

a Topology of the TFMLs 

b Cross section of a fabricated TFML measured with a scanning electron microscope  

 

 

The test structures were measured using a vector network analyzer and a microwave probe station 

with a pitch size of 250 μm GSG. Figure 3 (a) shows the measured propagation constant, β, and 

attenuation constant, α, of the thin microstrip line section obtained from two transmission lines with L = 0 

and 5mm as the thru and line configurations, respectively. Also shown and compared in this figure are the 

optimized curves obtained from CST optimization simulations. As can be seen, the measured and 

simulated results agree well over the whole frequency band of interest.  

The complex effective permittivity, εeff, was then calculated from the measured kz and the 

corresponding layer characteristics at each frequency point using Eq. (10) as previously discussed, Fig. 3 
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(b). An inspection of the extracted εeff shows the familiar dispersion behavior of a typical microstrip line 

where the effective permittivity of the line has a gradually increasing slope. This is due to the fact that the 

EM fields are also distributed in air at low frequencies. As frequency increases, the fields are more 

concentrated in the dielectric material until the effective permittivity finally reaches the relative 

permittivity of the dielectric material, [1].  

Also shown in Fig. 3 (b) is the conventional definition used for the complex effective permittivity; 

i.e. ε = real(kz/k0)
2
.  In this case, the effective permittivity shows a slow-wave behavior which is a direct 

consequence of the thin conductors. Comparing the two curves for the effective permittivity, it is obvious 

that the extracted εeff obtained from analysis is “cleaned” from the effect of thin conductors as this is 

already taken into account.  

The complex relative permittivity of the unknown dielectric material, εr, is also obtained using the 

proposed analytical method, as well as using the full wave numerical simulator, Fig. 3 (b). A comparison 

between the two εr curves reveal an error smaller than 15% above 3 GHz. This error is likely due to the 

parallel plate waveguide approximations and can be improved using wider microstrip lines as will be 

discussed shortly. The analytically obtained εr shows a greater error at low frequencies, which is 

understandable, since at low frequencies the conductors are electrically thinner compared to their electrical 

thickness at higher frequencies. The effect of thinner conductors at low frequencies manifests itself in an 

increased sensitivity to the exact value of the conductor properties (thickness and conductivity). Further, 

since the conductor thickness is not perfectly uniform along the length of the TFML, the small undulations 

along its surface act as a source of error, which is mostly visible at low frequencies. At higher frequencies, 

the effect of small undulations is less pronounced since the conductor in this case is electrically thicker.  

The extracted loss tangent, tanδ, from the analysis is also shown and compared with the value 

obtained from the full wave simulations, Fig. 3 (b). The difference between the two curves is due to the 

fact that the extracted εr is underestimated and hence the corresponding tanδ is overestimated. This effect 

is, as elaborated above, likely due to the fact that at low frequencies the conductors are electrically very 

thin.  
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    a      b 
Fig. 3.  Extracted parameters of the five layer TFML in Fig. 2a 

a corresponding measured and simulated complex propagation constant  

b complex permittivity of the dielectric material for the five-layer TFML in Fig. 1 

 

 

To evaluate the effect of the microstrip width on the accuracy of the extraction procedure, very wide 

TFMLs have been designed to retrieve the relative permittivity of the dielectric material. To achieve this 

goal, test samples based on wide TFMLs with an aspect ratio (W/H) of about 80 were designed, fabricated 

and measured. A prototype of one of the circuits is shown in Fig. 4 (a) with the dimensions (in um) of W ≈ 

80±0.5, T ≈ 0.57±0.02, TGND ≈ 8.3±0.1, H ≈ 1.02±0.02, the thickness of the SiO2 insulating layer and the 

silicon substrate are 0.5 and 600, respectively. As can be seen, the TFML is wide enough in this case and a 

different CPW-to-Microstrip transition is adopted where the RF probes are connected directly to the thin 

microstrip line. In particular, two transmission lines with L = 5 and 10 mm were fabricated and measured 

with the geometric parameters of the CPW-to-Microstrip transition as G = 500 μm, S = 240 μm and W = 

80 μm and Lt = 500 μm, Fig. 4 (a). Again, we have used PECVD silicon dioxide as the dielectric material, 

which may have impurities. The conductivity of the two gold metal layers were found to be 

(2.69±0.2)×10
7
 S/m and (3.66±0.2)×10

7 
S/m for the bottom and top metals, respectively.     

Using a similar procedure as discussed for the case of a narrow microstrip line, the propagation and 

attenuation constants corresponding to a thin film microstrip line of length 5 mm are obtained from 

measurements and CST optimization simulations, Fig. 4 (b). As evident, the measured and simulated 

propagation constants, β, are well matched. The largest error is related to the simulated attenuation 

constant, α, and is about 10% over the whole frequency band. It is believed that the difference observed is 

related to manufacturing imperfections. In particular, the very wide microstrip line exhibits great 
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reflections (S11 is as poor as -1dB for f > 10GHz) which may have contributed to the increased error in 

these regions. Later, the analytical and CST curve fitting methods are applied to extract the associated 

complex effective and relative permittivity, Fig. 4 (c). It is clear from Fig. 4 (c) that the correlation 

between the two extracted curves for the relative permittivity is reduced to about 5% for this wide TFML. 

Moreover, the effective and relative permittivity curves obtained from the analysis shows that they have 

similar values for frequencies above approximately 3 GHz. This is expected since for a wide microstrip 

line, the effective permittivity of the line simplifies to the relative permittivity of the dielectric material, 

[1].  

As can be seen, the extracted loss tangent, tanδ, from analysis shows negative values at some 

frequencies. The reason for a negative tanδ is likely to be three-fold. The first reason lies with 

measurement uncertainty, which demonstrates itself as a noisy response evident in Fig. 4 (b). The second 

reason lies with an increased difficulty in decoupling the real and imaginary part of the complex 

propagation constant at low frequencies, at which the conductors are very thin. The third reason lies with a 

variety of random errors in the scattering parameters measurements. In our future work, we aim to address 

these shortcomings in a systematic manner.   

 

 
a 
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    b      c 
Fig. 4.  Relative permittivity extraction based on wide TFMLs  

a Topology of fabricated wide TFMLs 

b Corresponding measured and simulated complex propagation constant  

c Extracted complex permittivity of the dielectric material for the wide TFML 

     

5.  Conclusion 

A method for complex relative permittivity extraction of dielectric materials based on multi-layer 

TFMLs was presented in this paper. An equivalent PPWG filled with a dielectric material whose relative 

permittivity is given by the effective permittivity of the corresponding TFML was analyzed. The 

dispersion relation of the dominant TM mode was obtained by solving Maxwell’s equations with the 

relevant boundary conditions. The complex effective permittivity of the TFML was first extracted using 

the equivalent PPWG and it was shown to be free from the effects of thin conductors. Subsequently, the 

associated complex relative permittivity was obtained from the available dispersion formulas for 

conventional microstrip lines. An optimization technique based on full wave simulations was also 

employed, but although this technique yields accurate results, it is time consuming. A combination of the 

two techniques is suitable for dielectric characterization of materials based on TFMLs with W/H > 4. High 

permittivity materials such as ferroelectrics are potential candidates as the design topology is also suitable 

to allow a dc bias scheme.  
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